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Grid computing (GC) systems are large-scale virtual maeibuilt upon a massive pool of resources
(processing time, storage, software) that often span pheltlistributeddomains Concurrent users
interact with the grid by adding new tasks; the grid is exp@db assign resources to tasks in a fair,
trustworthy way. These distinctive features of GC systerakentheir specification and verification a
challenging issue. Although prior works have proposed Bdmpproaches to the specification of GC
systems, a precise account of theeraction modeivhich underlies resource sharing has not been
yet proposed. In this paper, we describe ongoing work aimditliag in this gap. Our approach
relies on(higher-order) process calculthese core languages for concurrency offer a compositiona
framework in which GC systems can be precisely describegatehtially reasoned about.

1 Introduction

Context. Grid computing (GC in the following) systems comprise adéappol of computational re-
sources, which are made available by multiple institutiG@ministrative domainsto users wishing

to execute tasks that would be hard (or even impossible) forpe in a single administrative domain.
This is in sharp contrast with usual distributed systemsyhith each resource is owned and controlled
by a single institution. That is, while in distributed sysie there is a clear correspondence between
system users and valid resource users, in GC systems argangloorrespondence is less explicit, as
resources may belong to multiple administrative domainsredver, a grid user may not correspond
to an actual user in the administrative domains. Yet angbeant of contrast concerns transparency
and security requirements: while in conventional distlusystems users typically know a priori the
resources that they need for executing their tasks, gricsusay execute tasks without being aware of
the internal structure of the system. GC systems differ fism emerging cloud computing platforms,
which offer economies of scale for exploiting virtually imited resources, based on the Software as a
Service (SaaS) paradigm. In fact, differently from clou@g; systems aim at executing computationally
intensive tasks, subject to constraints on resource &iiNéaccess. Other notable differences between
clouds and grids concern failure management, resourcershipeand infrastructure transparency [5].

This Work. Here we are concerned with principled approaches to thecodesign and construction

of GC systems. As discussed above, a critical aspect is fregpyopriately assigning resources to a
potentially huge number of user tasks running concurret@lyen the scale, complexity, and peculiar-
ities of GC systems, this is a challenging issue from seveeespectives. In this paper, we describe
ongoing work aimed at tackling this issue from the perspeatif formal models of computation based
on communication More precisely, we explore grocess calculapproach: based on a small set of op-
erators —typically, atomic interaction, sequencing, f@raomposition, and scoping— process calculi

M. Ayala-Rincon E. Bonelli and I. Mackie (Eds): © C. Ramirez & J. A. Pérez & J. Aranda & J. F. Diaz
Developments in Computational Models (DCM 2013) This work is licensed under the
EPTCS 144, 2014, pp. 97372, d0i:10.4204/EPTCS.144.5 Creative Commoris Attribution License.


http://dx.doi.org/10.4204/EPTCS.144.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

58 Towards Formal Interaction-Based Models of Grid Computifgastructures

such as CCS [11] and thm-calculus [12] have been developed within the concurreheprty commu-
nity as basic models for communicating systems. As proaassicarecompositionglthey have proved
useful for developing reasoning techniques over spedificat(e.g. behavioral equivalences and type
systems) and for investigating new programming abstrastiised on communication. These features
make process calculi an attractive basis for the formalipation and verification of GC systems.

In particular, in this paper we rely dmigher-order process calcyli.e., calculi in which processes
(more generally, values containing processes) can be caicatad. This is in contrast tfirst-order
calculi such as ther-calculus, in which only basic values and/or communicatbannels can be ex-
changed. Higher-order process calculi can be seen as centwariants of thel-calculus. In fact,
the reduction rule for communication in these formalismeeiminiscent of well-knowr3-reduction in
functional calculi. In the grid setting, higher-order (@opess passing) concurrency naturally models the
fact that user tasks —typically, arbitrarily complex déstions of computational behaviors— need to be
exchanged among different grid components in order to eetifeir execution. In particular, we rely on
the higher-orderrcalculus (HO7) [15], a core language which enhances the name passintesbif
the r-calculus with process passing. HGpecifications can represent forms of code mobility, thoeeef
allowing for flexibility in descriptions of concurrent commications. Moreover, useful proof techniques
based on behavioral equivalences are well-understooddoia(ts of) HOt (see, for instancel, [16]).

The main contribution of this work is a formal model of GC mdtructures, with a focus on the
resource assignment facility that is central to them. Oudehdistills the main features of GC systems,
as informally discussed in the literature (see, e.g., [ as identified in our own exchanges with GC
experts. The model is divided in&tatic and dynamiccomponents. The static component, defined in
first-order logic, formalizes the essential pre-condgi@md invariants that should hold for the different
grid subsystems. Using H@processes, the dynamic component captures the (conquesesttution
sequences associated to potentially many users integagititultaneously with the grid. These compo-
nents are intended to be complementary: building upon thaaes defined by the static component, the
dynamic component accounts for the main agents preserdli®(@ infrastructures, such as users, tasks,
administative domains, virtual organizations, and resesir Our model also considers user and resource
proxies, which facilitate user interaction with the GC systand resource management (see §kct. 2).

While simple, our formal model already provides a good bisi®btaining more detailed descrip-
tions of GC systems and for reasoning about their correstpesperties. Examples of such properties
are authentication and authorization guarantees: theintmeded to ensure that users only access and
use the administrative domains and resources for whichdaeyrove their identity/permissions. An ex-
tension of our current model with suitable cryptographenatnts (using, e.g., the higher-order language
in [9]) would be a step in this direction. Another relevanbperty concerns the balanced assignment
of administrative domains and their use of resources. T®dhid, process specifications of different
scheduling and assignment policies may be necessary —stus iis largely orthogonal to the model
given here. Other properties of interest for GC modelerslim/task termination and resource delivery
aspects. By adapting known results on termination and edsldly properties for calculi such as CCS [3]
and for variants of H@ [10,(8], our model could offer an alternative for investiggtsuch properties.

Related Work. We believe that our work improves on previous attempts fat fgrmalization. The

n-calculus has been used in [19] 21] 20] for analyzing theip@spects of grid services composition
and workflow. These approaches only model the GC componelated to grid services such as re-
sources and tasks; other aspects of the GC dynamics aremsitieaed. In contrast, our model adopts
a more comprehensive view of GC systems, including, e.g.jrkeraction patterns related to user in-
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tervention, and the réle of user and resource proxies ipureg assignment and task execution. In [13],
Abstract State Machines (ASM) are used to give a declarahegacterization of GC systems; this char-
acterization formally describes some of the main attribtbat a GC system should support. The GC
elements are modeled as universes (sets); their behavieprssented using rules over universes. The
only grid agents considered in [13] are tasks (there cglledesses there are also user and resource
mapping agents. Each agent executes the rules over thedlefinhgerses. In contrast to our work, in
the model of [[13] concurrent interactions among GC comptmare not explicitly represented; also,
such a model does not consider the key concept of virtuahargions and the rdle of user and resource
proxies. Finally, in[[1| 4], high-level and colored Petrismigvere used to analyze grid architectures and
grid workflows. A 3-layer grid architecture and the interactbetween GC components in these layers
is modeled. However, these approaches do not considealotganizations, administrative domains,
and security requirements —all of these being central aisria resource assignment.

Organization. The rest of this paper is organized as follows. Sdct. 2 briefballs the main features
of GC systems. In Sedil 3 we present the syntax and semahtiecs bigher-ordent-calculus. Sect.l4
gives a brief description of our GC formalization, and SEdtlustrates it via a small example. Finally,
future work is discussed in SeLt. 6. A full description of tanmal process model is available in [14].

2 Grid Computing: A Brief Overview

Grid computing broadly refers to the coordinated resoutw@insg and problem solving in dynamic,
multi-institutional virtual organizations. GC systemseof require interoperability features and support
for heterogeneous environments. Other typical requirésnare decentralized control, security, access
transparency, scalability, availability, and reconfiduiity [6]. Sharing in GC systems not only refers
to data and information but also to direct access to all kiofdsesources which may be required for
executing complex tasks (computing power, storage, sofhapplications, data). Eaadministrative
domain(AD in the following) establishes what resources are sharetltheir access and usage policies.
A virtual organization(VO in the following) is a set of ADs defined by such policieshelparticipants

in a VO share resources in a controlled way in order to cod@énaexecuting a specific task. VOs vary
in their purpose, scope, size, duration, structure, coniyjwand sociology!([B].

In GC systems, users can transparently share or accessaesetthey do not need to know (or be
aware of) what resources they are using, where such resoareephysically located or that they may
have previously failed and recovered. This transpareneglseved by the so-callegrid middleware
This is a software layer that (i) implements thtocolsandservicesthat enable the seamless sharing
of heterogeneous resources, and (ii) provides key furaliites for enabling task execution and VOs es-
tablishment[[18]. In this way, the middleware allows userad¢cess resources while satisfying security
policies such as authentication, authorization, delegatind single sign-on. To this end, the grid mid-
dleware includes user and resouprexies[7]. While a user proxy is an entity that is given permission
to act on behalf of a user for a fixed period of time, a resourcaypserves as interface between the
middleware and a resource, thus simplifying (i) the auticatibn between user proxy and the resource
and (ii) the mapping between grid users and the local useichveine valid in the resource.

Grid Resource Assignment Protocol. As our interest is in an interaction-based approach to GE sys
tems, below we present a protocol which describes the ittierasequence among the main grid compo-
nents (users, ADs, VOs, resources, proxies). The protesatgscribed as a sequence diagram in[Rig. 1;
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Figure 1 The Grid Interaction Protocol as a Sequence Diagram
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it formalizes requirements and mechanisms which have begerided in the literature only informally.
The formal model given in Se¢tl 4 is then intended to give aipesaccount of this protocol.

1. Auser sends its credentials to a grid node in order to atidate. In the figure, this step is represented
by the messagkgin(user_cred) from User to VO.

2. If the authentication is successful then the user is gohti access the grid. Otherwise, the user
must revise its credentials. For simplicity, the figure skamly the case in which authentication is
successful; this step is represented by messk@®m VO to User.

3. The authenticated user sends a proxy creation requakt task with its requirements to the grid
node. The task may be a complex object; in particular, it neagthuctured in terms of subtasks which
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Figure 2 A GC Scenario: Two usersi{, Uy), two VOs {1 — blue,v, — dotted), three ADsd, do, d3)

follow some process logic. In the figure, these steps aresepted by messageser proxycreation)
(from User to VO) creatd) (from VO to User Proxy), andequestTask (from User to VO).

4. The user proxy sends to the grid node the requirementscbf @zbtask. In the figure, this step is
represented by the messagémiireqs TasK) from User Proxy to VO.

5. The node selects an AD in the VO with available resourcesatsfy the subtask requirements.
This subtask is assigned and sent to the selected AD. In Fithid is represented by messages
determineAdT asK) (inside VO),submitTaskTasK) (from VO to AD), andqueuéTasK) (inside AD).

6. The AD assigns appropriate resources for this subtasitdiog to some scheduling strategy. In the
figure, this step is represented by the messagignRed asK) inside AD.

7. The user proxy authenticates into the resource proxiesssifjned resources. If authentication is
successful then the subtask is executed. Otherwise, thiaskuis sent back to the grid node. In the
figure, these steps are represented by messagbgesuser.cred) (from User Proxy to Resource
Proxy),ok (from Resource Proxy to User ProxggndJok) (from Resource Proxy to Resource), and
job_exeq) (inside Resource).

8. When the subtask has finished (messéigésh(res), from Resource to its Resource Proxy), it is
detected if there are more subtasks (condifi@sk # null in the loop). If yes then the result of the
previous subtask is transmitted to the next subtask andréhgops subprotocol is executed again
(messagesubmifreqs TasK)). Otherwise, if the just executed subtask is the last oren the result
is stored and the protocol finishes (messsipeeres) from User Proxy to AD).

A Representative GC Scenario. We now describe a small, representative example of a GCrsyste
Depicted in Fig[ R, our scenario draws inspiration from tine given in [6]. It contains three ADs
(denotedd;, d», andds) and two VOs (denoted; andv,); in the figure, they are depicted as ovals and
rectangles, respectively. V@3 (blue background) groups participants in an aerospacgmesnsortium
andv, (dotted background) links participants for sharing spamputing cycles. ADd; is member of
bothv; andv,. Also, ADsd; andd, participate inv; and ADd3 participates inv,. We also consider users
u; anduy: while u; belongs tov, useru, belongs tas,. Bothu; andu, have a task to execute in the grid,
denoted Taskl and Taskz2 in the figure, respectively. To parfdaskl requires one resource of type (or
descriptor)k; and one resource of typge. Similarly, Task2 requires three resources, distingulsing
typesks, ko, andks. Resources are located in appropriate ADs: é&[owns three resources; (type
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k1), ro (type ki), andrz (typeky); AD d, owns two resources., (type ki) andrs (typeks); and ADds
owns three resources; (typeki), rz7 (type ko), andrg (typeks). While resources o, are shared by,
andv,, resources ofl, are available only tey, and resources af; are available only t@,.

3 The Process Model: Syntax and Semantics

This section briefly presents the syntax and semantics dfigher-orderr calculus, HOt. Our presen-
tation closely follows[[15]. In H@r, both names (communication channels) and processes magbed
around by synchronization on names; communication canuseltiosely assimilated {8-reduction in
the A-calculus. We assume a set of names/channels ranged,gver ... and a set of process variables
ranged ovekX,Y,Z,.... We write0 to denote a finite tuple of elemerus, ..., 0.

Definition 3.1. The language of H@ processess given by the following syntax:

= xU) | x(K)
P = Zai.P. | PLIP | (vX)P | if [x=y] then P else P, | D(K) | X(K)
le
We have twarefixes ranged oven,a’,.... Aninput prefixx(LI) (resp. output prefii(@) denotes

an atomic input action (resp. output action) on a naam@bove,K andU denote tuples of names and

processes, and of names and variables, respectively. $3rjce;.P, represents thaon-deterministic
i€l
choiceamong prefixed processesP. The operational semantics ensures that only one of thehbevil

executed, discarding the rest. Whiea: 0 we write0; whenl = |2| we write a1.P; + a2.P.. Also, we
simply write a to refer to process.0. Procesd; | P, stands for theparallel compositiorof processes

P, andP,. We write [ P; as a shorthand notation for procés ... | By. Procesgvx)P declares the
jed

namex private to procesP. That is, the scope ofis P; this scope may be enlarged by communication
to other processesgope extrusion The conditionalif [x =y then Py else P is based on equality of
namesx andy: if x =y then the process continuesRs otherwise it continues d%. By taking inputs
and restriction as binders, notions of free and bound namésbles arise as expected. We identify
processes up to consistent renaming of bound names/\esjabiiting=, for this congruence.

One way of specifying infinite process behavior is paametric definitionsNotationD(K) denotes

the application of a constant identifiBrwith parameter&. We assume eadb has a unique definition

~. def ~ . . .. . .
D(U) =" P,whereU is composed of all free names or variable®jn.e. names or variable which occur

out the scope of any binding. The)(](K> denotes the application of parametkrso process variabli.
We endow our process language witlfeduction semanticdntuitively, a reductiorP — Q denotes
a single evolution step from proceBgo Q, without interaction from its surrounding environment.

Definition 3.2. Reduction P — Q, is the binary relation on processes defined by the rulesgrid

As usual, we write—> to denote the reflexive, transitive closure-ef>. The rules in Fig[13 for-
malize process communication and reduction under paal@lposition and restriction. In rul€QM),
notationP{K /U } stands for procesB in which all free occurrences of names/variabletl/ihave been
substituted by names/processe&inWe assume arity in communications is consistent, i.e.|ethgth
of U must be equal to the length &f with one-to-one correspondence among elements of bolstup
By means of rule§TR), reduction is closed understructural congruenceelation, written=, which is
used to promote process interactions. It is defined as fellow
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Figure 3 Reduction semantics for H®

(COM) N N o
(...+xU).P)| (... +x(K).Q) — P{K/U} | Q
(PAR) (RES) (STR)
P—P P—Q P=P P —-Q Q@=0Q
PIQ—P|Q (vX)P — (vX)Q P—Q

Definition 3.3. Structural congruence, written £ Q, is the smallest process congruence such that

P|lO=P P=¢Q=P=Q PIQ=Q|P PI(QIR=(P|Q)|R (vx)0=0
x& fn(P) =P (v)Q=(vX)(P[Q)  (vX)(vy)P = (vy)(vX)P
if [X=Y] then Py else P, = Py (if x=Y) if [X=Y] then P else P, = P (if X #Y)

~ def ~

DU)=P = D) = P{K/U} S a.R = 5 aj.P(ifJis apermutation of)
i€l j€d

4 A Formal Model of Grid Interaction

We now give an overview of our formal model of GC systems; adakcription can be found in [14].
The model is intended as a formal counterpart of the infoiimtaraction protocol given in Seétl 2. As
already discussed, the model is divided into static and miymaomponents. While the former is given
in terms of invariants (first-order logic formulas), thetdatis specified using H® processes. The two
components play complementary rdles in our model. On tleehamd, the invariants and conditions in
the static part are used to:

— Define the actors in the system (e.g. users, administrativeaths, resources, tasks) and useful
relationships between them;

— Describe the initial configuration of the system;

— Define well-formedness conditions for the processes of yinawmhic part.
On the other hand, the dynamic part focuses on representing:

— How the grid assigns resources to each task;

— The start of task execution;

— The state of tasks and their assigned resources.

It is worth highlighting that processes of the dynamic comgu cannot add new tasks, resources or
users. Although these capabilities are present in someayrisbsystems, in the current development we
focus on systems in which those elements cannot be addedtaheu

Static Component; Base Sets and Invariants

In order to formalize the key components of GC systems, werétate such components to base refer-
ence sets. Then, we state associated invariant propetidsfiming static predicates over elements of
such sets. Tablg 4 summarizes our notation for these baseTs intuitive meaning of most of them
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Figure 4 Static model: Base sets for GC components

GC Component | Base set|| GC Component Base set
Users ueU VOs veV
ADs deD Tasks TeT
Resources reR User Tasks SesS
Nodes neN User Proxies acA
Resource Proxies x € X Resource Descriptors k € K
Logs lel

should be clear from the description given in SELt. 2. We idenghat each VO is associated to a group
of access points (nodes) which are contained in the bad¢ €atbserve that we distinguish betweask
definitions(which belong to base s@&t) andtask instanceswvhich are submitted by users (and belong to
base sef). We assume that task definitions are built using the nexhgrar:

Ti=J3(ki,....km) | T.T | T||T | T®T | end

Above,J(ky, ..., km) denotes dasic taskl with resources of typky, . . ., ky, respectively iy > 1). Build-
ing upon basic tasks, more complex ones can be defined, wesgstial and parallel composition (de-
notedT.T andT || T, respectively) and non-deterministic choi@e¥T). We also assume a termination
task, denote@nd. As discussed above, we assume that each user is assooiatathgle task. This is
not a limitation, for tasks may involve several subtasksarafiel and sequential composition.

As for the invariants, based on informal descriptions in literature [6], we have identified the
elements that we consider essential to GC systems. Usit@fdsr logic, we formalize such elements
in terms of predicates over the elements of the referense Setne of such invariants are the following:

— Each user is member of exactly one \(@3ing predicatanembefu,v), which holds if useu € U is
member of VOv € V, we may state this invariant as:

Vueu, Ivev. membefu,v) A Vyeu, yvev. (Membefu,v) A membefu,v) — v=V)

— Each user is associated to exactly one task to be executkd BE systemJsing predicatéasku, S),
which holds if useu € U is the owner of task € S, we may state this invariant as:

Vueu, Jses. tasku,8) A Vyeu, sges. (tasku,S) A tasku,s’) — S=5") A
Vuveu, ses (tasku,s) A tasku',S) — u=uU).

— Each resource belongs to exactly one ABing predicatédelongsTér,d), which holds if resource
r € Rbelongs to ADd € D, we may express this invariant as:

Vrer, Jden- belongsTér,d) A Vicr qaep- (belongsTér,d) A belongsTeor,d’) — d=d’)

— Every AD can participate in one or more VAdsing predicatearticipate(d, v), which holds if AD
d € D participates into VOr € V, we may state this invariant agg<p, Jvey. participatgd,v).

Additional invariants concern access points (nodes)uresodescriptors, task states, resource states,
and task logs; they are given in terms of appropriate baseaai are omitted here for the sake of space.
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Figure 5 Dynamic model: Correspondence among GC components andgzex (full details in [14])

GC Component | HOrm Process Intuitive Description
Grid system Grid 5 Represents the whole GC system
User e U) [u,S]Y = User(C, [S]"®,y) Models the behavior af to authenticate
and submit its task
— UsrMonitor(€,g,a,y, P) Monitors tasks submitted hy
Node fe N) [n]wd = AP(y,d) Models the interaction afi with users
to authenticate
— AP-UsrHandler(chy, chp, ce) Models the user proxy creation and task
submission
< AP-ProxyHandler(ce d) Represents the interaction with the user task
VO (veV) Composition of instances &P (y,d) A collection of nodes
AD (d € D) [d] = AD(d) Models the AD with its resources, proxy
resources and management elements
— AD-RecReq(b,d) Receives the tasks assigned to the AD and
puts them in the queue
— AD-AsgRes(b,d, ch) Dequeues tasks and assigns
appropriate resources to them
— AD-LRM(S,X,w,ch,d) Supervises the state of resources, and
determines the available resources for a tgsk
Resourcer(e R) | [r]"9 = AD-Resource(r,q) Models a resource’s behavior when is
used by a task
User Proxy &€ A) | [a]°®P19 = AP-UserProxy(ce p,t,Q) Models the task management, the request of
execution of subtasks and the authenticatipn
with resource proxies
Res. ProxyX € X) | [x]*%"" = AD-ResourceProxy(x,q,r,w) | Acts as a mediator between GC components
and a resource
Log (l €L) AP-Log(0r, Ow,St,2) Interacts with GC components to register the
changes in the task state and result
Task € €T) [T]"® definition Represents the behavior of a task
User Task$ €9 | [s]=[T]"® Models a task instance corresponding to
a user task
Descriptorsk € K) | Namesky, ..., kg Models the different types of resources

Dynamic Component: Model in the HOrT calculus

In addition to specifying the main system components and/#iid relations among them, our model
should unambiguously describe how the system may evolverasudt of the interaction of its com-
ponents. In the light of the protocol given in Sddt. 2, sudieractions may follow intricate patterns
and must adhere to basic correctness and trustworthingéssacr\We would like formal mechanisms to
ensure that models indeed satisfy such criteria. As we waigtescribe GC systems compositionally,
precisely specifying the interacting mechanisms and tieédtionships, first-order logic is not the most
appropriate formalism for this task. We then appeal to s$pations expressed as Hprocesses: they
offer a basis on which interaction features in GC systemsbeasuccinctly represented, and potentially
verified using reasoning techniques over interacting peee We thus extend the static description
overviewed above so as to define in H@he behavior of GC components and their interactions aecord
ing to the invariants and predicates of the static reprasent Fig[5 summarizes the correspondence
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between the elements in the static description and thedentize process representation in the dynamic
component of the model. In the figure, we use the symbdb represent sub-processes which are trig-
gered as part of the execution of a main process. Completeipiians of the processes mentioned the
figure can be found in_[14].

Next we briefly describe process representations for sorde&gmponents (users, middleware, ADS)
mentioned in Figl 5. We use, u, d, andn to denote, respectively, the number of VOs, users, ADs,
and nodes (access points) in the system. Also, we rely omlatdrprocess representations of queues
(and associated operations) which can be easily encode@inyh name passing (see, e.4..[[17]). Itis
worth highlighting that the H@ representations of the GC components are related to theantaand
other elements of the static component of the model. Thigstdeat process interactions do not concern
arbitrary elements of the base sets; rather, they involemehts which may be subject to invariants.
For example, our process representation for users onlyntaratct with the process representation of a
node that corresponds to a VO where such a user is membeaedtitgly, key elements of the process
language (notably, the exchange of fresh channels and sotpesion) turn out to be useful to enforce
the static invariants in the dynamic specification, and ke out undesirable interferences among compo-
nents (as in, e.g., two users which concurrently access a Mty way, sensible correctness/consistency
properties are ensured by construction. Establishing mdbrorrespondence between the static and
dynamic components is part of ongoing work (see $éct. 6).

Grid system. A grid system is modeled as the composition of processegseptation of users, ADs,
and access points. These are dendigs]®Y, [d], and [n]“*9, respectively, which are used as in-
termediate notations for processeser(c, [S]'©,y), AD(d), and AP(y,d), respectively. This structure
promotes interaction: while user processes interact vaitess point processes through private channels
Yy1,...,Yn, AD processes communicate with access point processes/atgpchannelsly, ..., ds. This
way, our process model of a GC system, parametriwppn, o, andn, is the following:

Grid gt & (vynl,...,ynn>(”uui,siﬂ@ynowuw | (v dy.....dg)([] In] o 3m | []a)
e heH

wherel ={1,...,u},H ={1,...,n}, andL = {1,...,0} are index sets over users, access points,
and ADs, resp. In processser(C, [S]"®,y) (defined below)[S]'® is a process representation of task
(wheres is a instance of) that depends on nameande: whilet is used to send subtasks requirements
to the appropriate user proxg,is used to signal task completion. Giver I, we write nod€u;) to
denote the index of the access point for ugeNamed in AD(d) is used for interaction between the AD
and access point processes. Allﬂ(y,d) namey is used to interact with user processes, whilgtands
for a tuple with the access channel of the ADs in the VO asgetieo the access point. We write(np)
to denote the VO associated to nage

Users. The process model for users, denotedr(C, [S]"©,y), is parametric on a tuple of user creden-
tials €, a task proces@]}t € (explained above), and a namewhich is used to access a grid node (an
instance of procesAP(y,d )) ProcessJser(C, [S]"®,y) interacts with node proce@sP(y,d> in order to
authenticate to the grid, create a user proxy, and submmitorcher task. More precisely, we have:

User(E [S]'%y) %' (v u)(y(E u).u(chy, —,m).
if [m= ok| then chy.chy(a).chy ([S]"®).chy(g).UsrMonitor(C,g,a,, Ps)

else0)
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Figure 6 Process\P-ProxyHandler(ce d), part of the middleware, interacts with the user proxy pssce

AP-ProxyHandler(ce d) def ce(k,m,a,g).(AP-ProxyHandler (ce d) |

(ve,b, f)( [] AP-Searchk(c. f,di) | AP-Acc(c, f.b) |
di€d~

b(dh,....do). Y G (kmag)))

jel..o

Above, the first output oy represents an authentication request against a serviteyddmtAP(y,d).

This service returns namk (resp.denied) if the authentication is successful (resp. failed). Wet@vri
u(chy, —, m) to denote a reception of three arguments along which the second one is not relevant.
Namechy is a private name communicated AR (y,d): this enables the interference-free communication
between user process and a subprocess of the grid nodegrédss, ch; is used for user proxy creation
and task submission: proxy creation is requested by an psigual onchy; then, a nama (to be used

to access the user proxy) is receivedabm; subsequently, the task can be sent: this is represented by
the (higher-order) output prefohy ([S]"®). Once the task has been sent, a channel associated to the log
of the submitted task is received ohy, and proces$/srMonitor(C,g,a,y,P) is launched: it abstracts
the user interaction with her access point for monitoringtdsk just submitted. The last parameter for
UsrMonitor, proces<s, specifies the user behavior that is executed upon recepitire final result of

her task. Such a process may correspond to, e.g., a questahes such a result into a remote database.

Middleware. The middleware is represented as the composition of aca@st grocesseé\P(y,d).
For each VO in the grid, there are some instances of accens$ micesses associated to it. An in-
stance ofA\P(y,cT) interacts with an instance afser(C, [S]"¢,y) for authentication purposes, user proxy
creation, and task submission/monitoring, as just exptiirThen, procesAP(y,dv) launches a process
AP-ProxyHandIer(cedN), given in Fig 6, which interacts with the user proxy process.
ProcessAP-ProxyHandIer(ced~) is parametric on (i) namee, which is used to receive the task re-
quirements from the user proxy process; and (ii) tmf)lwhich contains the names associated to the ADs
of the VO of the access point. Onéé-ProxyHandler(ce d) has received onethe tuplek which rep-
resents the descriptors of the required grid resourcesleitis the appropriate ADs for the requested re-
sources. We abstract this selection by proce8&eSearch® andAP-Acc. Given a tuple/set of resources
descriptorK, each instance of proce&®-Search® searches among the resources shared by an AD with
resources satisfying the requirementKinOnce a suitable AD has been fourt?-Search® sends the
access channel of that AD #®P-Acc, which records all such access channels. Once all instasfces
AP-Search® have completed the searchP-Acc sends such ADs to proceéeP—ProxyHandler(Ce,dN)
along nameb. Then,AP-ProxyHandIer(cecT) non-deterministically selects an AD.

Administrative domains. As mentioned above, an AD is represented as pro&€xsl), which con-
sists of the parallel composition of processes in chargeadiving, queuing, and attending task execu-
tion requests. AlscAD(d) comprises process models of resources and resource p(seebelow). For
the sake of space, we only present the proéd3sAsgRes(b, d, ch), which is in charge of assigning the
appropriate resources for the subtasks assigned to the AB pfocess, given in Fi@l 7, is parametric
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Figure 7 Proces?\D-AsgRes(b, d, ch) assigns appropriate resources for the subtasks assigtietAD.

AD-AsgRes(b,d,ch) %' (v n,c)(b(n,c).(c(ki,....k;,m, p,g,b).

(v o,ang,ans)
(ch(ki,...,kz,ans,ans).
(ang(cry,...,crz).
P(ky,cry,....kz,crz,m 0) . AD-AsgRes (b, d, ch)

_|_
ans.d(ki,...,kz,m p,g) .AD-AsgRes(b/,d,ch))
| 0(X).X)
+ n.AD-AsgRes(b,d,ch)))

on channeld,d, andch: it extracts a request of the queue through chanbeledc, and proceeds to
attend it. ThenAD-AsgRes(b,d,ch) interacts with the local resource manager process throhgh-c
nelsch, ansg, andans in order to determine the resources for the request. If gpjai® resources for
the request are available th&i-AsgRes(b,d, ch) receives inang the access channels of the resource
proxies and forwards them to the user proxy through nam®therwise, if there are no resources then
AD-AsgRes(b,d, ch) receives an input iang and sends the request back to the queue.

Observe how alsédD-AsgRes(b,d, ch) features higher-order communication in its interactiothwi
task proces$§s]"e. In fact, using a higher-order process communication one@mot shown), the task
procesgs]"€is expected to send a job AD-AsgRes(b, d, ch)—which is denoted by process variable
As soon as the reception artakes place, procegsD-AsgRes(b, d, ch) will execute the involved job.

User and Resource Proxies. We represent user proxies as instances of a process whielvagthe
requirements of the subtasks of the user task profs}$8 and submits such requirements to an access
point process. Moreover, a user proxy process interactspitces#AD-AsgRes(b, d, ch) which sends it

the channels of the resource proxies of assigned resoufresly, the user proxy process communicates
with resources proxies process in order to authenticat®hbiain the direct access to resources. Resource
proxies are abstracted as a process which interacts wiflssisciated resource process and instances of
user proxy process. The interaction with its associatedures process allows the resource proxy to
keep track of the state of the resource, as a resource ndsfig®xy when a task has been completed.

Other components. In addition to the components described above, our proceslsialso includes
representations for other components in the GC system, Ipdogs processes, resource processes, and
gueue processes. There is a log process for each user task @harge of registering the current state
and the result of a task. Middleware processes (accessspam¢ract to read the log when the user
process requests it. In fact, proces#dsProxyHandler(ce d) and AP-UserProxy(ce p,t,g) interact
with the log process to register a new state and/or the firmllire Resource processes abstract the
behavior of actual grid resources. They interact with reseyroxy process and task procesg'®.
Finally, the queue process is a process representation uduwecstructure. There is a queue process for

each AD, which is used to store the subtasks requests ofresoassigned to the AD.
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5 Formalizing a Representative Grid Scenario

We now illustrate our formal model by instantiating it withet scenario presented in Sédt. 2 (see also
Fig.[2). The following table summarizes some of the corregp@ base sets:

Base Set Description
D ={di,dp,ds} Administrative domains
U ={ugup} Users
Vo ={vi, v} Virtual organizations
N ={ng,ny} Grid nodes
R ={ra,rp,rs,rqg,r5,16,r7,rg} | Resources
K ={kg, ko, ks} Resource descriptors
T ={Ty, T2} Task definitions
S =1{S1,8,} User tasks

For the sake of space, we do not present the static compoh#ime enodel. Still, the description
of the scenario given in Se€ll 2 should provide an intuitdeai of the key valid relationships between
the main grid components. We only highlight the fact thatruaskss; and S, are instances of task
definitionsT,; andT,, respectively. As for the dynamic component of the moddlpfdng the notation
given in Fig[5, our scenario is represented by the followH@yt process:

Grid (5})}7 = (V y17y2)([[u17slﬂc~1.yl ‘ [[UZ,SQ]]@'YZ ‘
(V dl,d27d3)([[n1]]v1,y1.d1,d2 | [[nz]]vZ.Y2.d2,d3 | [[dl]] | [[dz]] | [I:d3ﬂ))

wherew = 2, u = 2, = 2, andn = 2. By expanding the definitions g, S]°Y, [[n]}"yv and[di],
the above process can be equivalently stated as follows:

Gridgr = (vy1,Y2)((vts,er) User(Cr, [Sa]%%,y1) | (v to, &) User(Cz, [S2]'2%,y2) |
(v d1,d2,d3) (AP (y1,d1,dp) | AP¥2(y2,d2,d3) | AD(d1) | AD(d2) | AD(d3)))

To illustrate process evolution, we now describe a padicrdduction sequence that originates from
Grid 4 YH Precisely, we show the interactions that occur when thewsaccesses the grid for executing
task81 Clearly, (concurrent) interactions related to usgare also possible, but below we restrict to
comment on the reductions related to the process repréisentdu; .

First, we have a sequence of reductlcﬂilsd on H' — GRID?, that represents the steps in which

User(Cy, [S1]%®,y1) interacts with proces&P" (y;, d;, d») to perform steps of user authentication, proxy
creation, and submission of task, as stipulated in the protocol. Proc&RID? is as follows:

GRID! = (v yl,yz)(Ueronitor((:Nl,grl,al,yl,P> | (v tz,ez)User(Gz,[[Sg]]tz’ez,y2> |
(v dy,dp,d3) (APY(S;) | RestSystem'))

where residual processa®'(S;) andRestSystem! are as follows:

APY(s1) = [S1]%® | (V gw1,cer)(AP-Log(Qu1,0r1, submitted,null) |
e1(r).Owi(state,finished).Gy1(result,r) | AP-UserProxy(cer,as,t1,0w1) |
AP-ProxyHandler(cey,d;,dy))

RestSystem' = APY{(y;,d1,0z) | APY2(y,dz,ds) | AD(d1) | AD(dp) | AD(d3)
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In processAP(s;) above, private name,; is used by processesP-UserProxy(cer,as,t1, Gwt)
and AP-ProxyHandler(ce;, d;, dy) to register the changes in the state of tagk Namece, stands for
the private channel on which these two processes may imtefgcthis point, we have the reduction
sequencé&RID! = GRID?, which represents reductions corresponding to the AD setein the VO
and the task submission to such an AD. In this case, we asfqweeld; is selected for the execution
of the task. Proces3RID? is as follows:

GRID? = (v y1,Y2)(UsrMonitor(Ci,0r1,81,Y1,P) | (V ta,€2)User(C2, [S2]22,y,) |
(v dy,dp,d3)(AP?(S;) | AD*(dy) | RestSystem?))
whereAP?(s,) andAD(d;) stand for residual processes for the access point and foegiesentation
of AD dy, respectively. As abovéRestSystem? stands for the composition of processes for the remaining
components. In proceséd)1<d1>, the interaction between the task process and the user proggss has
evolved to]S!] andAP-UserProxy,, respectively. Processé®?(s;) andRestSystem? are as follows:
APZ(Sl) = [Si] | (v gui,ce)(AP-Log(gw1,0r1, queued,null) |
e1(r).Om (state,finished).Oy1(result,r) | AP-UserProxy, |
AP-ProxyHandler(cey, d1,d2))
ResSystem2 = AP"1<y1,d1,d2> | APY2 (yz,dz,d3> | AD<d2> | AD<d3>

At this point, we may infer a reduction sequence which abttrsteps of resource selection and task
execution. We indeed haw&RID? —> GRID?, where proces&RID? is as follows:

GRID® = (v y1,¥2)(UsrMonitor(C1,Gw1,a1,Y1,P) | (V t2,€2)User(C2, [S2]%%2,y2) |
(v dy,dp,d3)(AP%(S1) | AD?(S1) | ResSystem?))

whereAP3(s,) corresponds to residual process for the access point;§5AE¥ (S, ) is its analogous
for the representation of AB;. While procesgs?] = eg(res;), processAP3(S, ) is as follows:

AP3(Sl) = [S?] | (V Qu1,ce1)(AP-Log(Qw1,0r1, Tunning, null) |
e1(N).Om(state,finished).Ow1(result,r) | AP-UserProxy(cer,ay,t1,0w1)) |
AP-ProxyHandler(cey, dy,d2))

Procesqs?] stands for the residual process for the task process ofussér notifies its comple-
tion through channe#;. We obtain the reduction sequen6&ID®> —> GRID* after some reductions
corresponding to task completion and log registering. €s@RID* is as follows:

GRID* = (v yl,yg)(Ueronitor<C~1,gW1,a1,y1,P> | (v t2,e2)User(Cy, [[Sgﬂtz'ez,y2> |
(v di,dp,d3) (AP%(S1) | AD3(S; | RestSystem?))
whereAP*(s;) is as follows:
AP%S;) = (v gwi,cer)(AP-Log (w1, 0r1, finished, res) |
AP-UserProxy(cey,a3,t1,0m)) | AP-ProxyHandler(cey,d;,dy))
At last, we may infer the reduction sequer@eID* = GRID®, where proces§RID® defined as
GRID® = (vy1,y2)(P(f€s) | (v to,&)User(Co, [S2]%%,y) |
(v d,dp,d3) (AP%(S1) | AD3(S;) | RestSystem?))

and where procesR(res) denotes an unspecified, parameterized process that is tebeted by the
user monitor with the task resuls;.
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6 Future Work

The process model of GC systems presented here describesnt@sctions among grid main compo-
nents, abstracting and enforcing essential static andnaignaroperties of such systems. Establishing
an operational correspondence result connecting theiamtarin the static description and the HO
reductions of the dynamic representation is part of ong@mng<. We conjecture that H® processes
representing the dynamic part preserve by constructiomtiagiants defined by the static part. Slightly
more formally, we conjecture that if proceBsrespects the static invariants, aRd— P then either
(a) P’ preserves the static invariants, or (b) there B @uch that’ =— P” andP” preserves the static
invariants. One of the challenges in the proof consistsvingia unified treatment to all invariants.

Our current model does not take into account certain aspgaitsal of GC infrastructures, such as
time. Still, as already mentioned, we think our current magl@lready a good basis for extensions:
the inherent compositionality of process specificatiormukhease orthogonal improvements and refine-
ments. In this sense, as future work, we plan to refine the hwaitielocations (i.e., computation sites)
and process failures. To this end, an initial approach wbeldsing a calculus @fdaptable processg2],
which enables to incorporate forms of runtime adaptaticer tacated, interacting processes.

A strong motivation for pursuing a process calculi model &f §ystems is that of exploiting the proof
techniques over processes (behavioral equivalencessjgtems) so as to reason about grid systems.
That is, we would like to explore how our process model allag$o reason about correctness properties
of GC systems. This involves, for instance, exploiting owdel’s compositionality and well-established
theories of behavioral equivalence to reason about anpitr@haviors in the grid setting. Also, we would
like to reason about task termination and resource deliiretye grid setting. These properties are
intrinsically related to reachability problems, and taiiss of deadlock- and cycle-detection. We believe
that a process calculi model offers a suitable basis alsim¥estigating such problems.
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