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Grid computing (GC) systems are large-scale virtual machines, built upon a massive pool of resources
(processing time, storage, software) that often span multiple distributeddomains. Concurrent users
interact with the grid by adding new tasks; the grid is expected to assign resources to tasks in a fair,
trustworthy way. These distinctive features of GC systems make their specification and verification a
challenging issue. Although prior works have proposed formal approaches to the specification of GC
systems, a precise account of theinteraction modelwhich underlies resource sharing has not been
yet proposed. In this paper, we describe ongoing work aimed at filling in this gap. Our approach
relies on(higher-order) process calculi: these core languages for concurrency offer a compositional
framework in which GC systems can be precisely described andpotentially reasoned about.

1 Introduction

Context. Grid computing (GC in the following) systems comprise a large pool of computational re-
sources, which are made available by multiple institutions(administrative domains) to users wishing
to execute tasks that would be hard (or even impossible) to perform in a single administrative domain.
This is in sharp contrast with usual distributed systems, inwhich each resource is owned and controlled
by a single institution. That is, while in distributed systems there is a clear correspondence between
system users and valid resource users, in GC systems an analogous correspondence is less explicit, as
resources may belong to multiple administrative domains. Moreover, a grid user may not correspond
to an actual user in the administrative domains. Yet anotherpoint of contrast concerns transparency
and security requirements: while in conventional distributed systems users typically know a priori the
resources that they need for executing their tasks, grid users may execute tasks without being aware of
the internal structure of the system. GC systems differ alsofrom emerging cloud computing platforms,
which offer economies of scale for exploiting virtually unlimited resources, based on the Software as a
Service (SaaS) paradigm. In fact, differently from clouds,GC systems aim at executing computationally
intensive tasks, subject to constraints on resource availability/access. Other notable differences between
clouds and grids concern failure management, resource ownership, and infrastructure transparency [5].

This Work. Here we are concerned with principled approaches to the correct design and construction
of GC systems. As discussed above, a critical aspect is that of appropriately assigning resources to a
potentially huge number of user tasks running concurrently. Given the scale, complexity, and peculiar-
ities of GC systems, this is a challenging issue from severalperspectives. In this paper, we describe
ongoing work aimed at tackling this issue from the perspective of formal models of computation based
on communication. More precisely, we explore aprocess calculiapproach: based on a small set of op-
erators —typically, atomic interaction, sequencing, parallel composition, and scoping— process calculi
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such as CCS [11] and theπ-calculus [12] have been developed within the concurrency theory commu-
nity as basic models for communicating systems. As process calculi arecompositional, they have proved
useful for developing reasoning techniques over specifications (e.g. behavioral equivalences and type
systems) and for investigating new programming abstractions based on communication. These features
make process calculi an attractive basis for the formal specification and verification of GC systems.

In particular, in this paper we rely onhigher-order process calculi, i.e., calculi in which processes
(more generally, values containing processes) can be communicated. This is in contrast tofirst-order
calculi such as theπ-calculus, in which only basic values and/or communicationchannels can be ex-
changed. Higher-order process calculi can be seen as concurrent variants of theλ -calculus. In fact,
the reduction rule for communication in these formalisms isreminiscent of well-knownβ -reduction in
functional calculi. In the grid setting, higher-order (or process passing) concurrency naturally models the
fact that user tasks —typically, arbitrarily complex descriptions of computational behaviors— need to be
exchanged among different grid components in order to achieve their execution. In particular, we rely on
the higher-orderπ-calculus (HOπ) [15], a core language which enhances the name passing abilities of
theπ-calculus with process passing. HOπ specifications can represent forms of code mobility, therefore
allowing for flexibility in descriptions of concurrent communications. Moreover, useful proof techniques
based on behavioral equivalences are well-understood for (variants of) HOπ (see, for instance, [16]).

The main contribution of this work is a formal model of GC infrastructures, with a focus on the
resource assignment facility that is central to them. Our model distills the main features of GC systems,
as informally discussed in the literature (see, e.g., [6]) and as identified in our own exchanges with GC
experts. The model is divided intostatic anddynamiccomponents. The static component, defined in
first-order logic, formalizes the essential pre-conditions and invariants that should hold for the different
grid subsystems. Using HOπ processes, the dynamic component captures the (concurrent) execution
sequences associated to potentially many users interacting simultaneously with the grid. These compo-
nents are intended to be complementary: building upon the relations defined by the static component, the
dynamic component accounts for the main agents present in real GC infrastructures, such as users, tasks,
administative domains, virtual organizations, and resources. Our model also considers user and resource
proxies, which facilitate user interaction with the GC system and resource management (see Sect. 2).

While simple, our formal model already provides a good basisfor obtaining more detailed descrip-
tions of GC systems and for reasoning about their correctness properties. Examples of such properties
are authentication and authorization guarantees: they areintended to ensure that users only access and
use the administrative domains and resources for which theycan prove their identity/permissions. An ex-
tension of our current model with suitable cryptographic elements (using, e.g., the higher-order language
in [9]) would be a step in this direction. Another relevant property concerns the balanced assignment
of administrative domains and their use of resources. To this end, process specifications of different
scheduling and assignment policies may be necessary —this issue is largely orthogonal to the model
given here. Other properties of interest for GC modelers involve task termination and resource delivery
aspects. By adapting known results on termination and reachability properties for calculi such as CCS [3]
and for variants of HOπ [10, 8], our model could offer an alternative for investigating such properties.

Related Work. We believe that our work improves on previous attempts for grid formalization. The
π-calculus has been used in [19, 21, 20] for analyzing the specific aspects of grid services composition
and workflow. These approaches only model the GC components related to grid services such as re-
sources and tasks; other aspects of the GC dynamics are not considered. In contrast, our model adopts
a more comprehensive view of GC systems, including, e.g., key interaction patterns related to user in-
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tervention, and the rôle of user and resource proxies in resource assignment and task execution. In [13],
Abstract State Machines (ASM) are used to give a declarativecharacterization of GC systems; this char-
acterization formally describes some of the main attributes that a GC system should support. The GC
elements are modeled as universes (sets); their behavior isrepresented using rules over universes. The
only grid agents considered in [13] are tasks (there calledprocesses); there are also user and resource
mapping agents. Each agent executes the rules over the defined universes. In contrast to our work, in
the model of [13] concurrent interactions among GC components are not explicitly represented; also,
such a model does not consider the key concept of virtual organizations and the rôle of user and resource
proxies. Finally, in [1, 4], high-level and colored Petri nets were used to analyze grid architectures and
grid workflows. A 3-layer grid architecture and the interaction between GC components in these layers
is modeled. However, these approaches do not consider virtual organizations, administrative domains,
and security requirements —all of these being central elements in resource assignment.

Organization. The rest of this paper is organized as follows. Sect. 2 brieflyrecalls the main features
of GC systems. In Sect. 3 we present the syntax and semantics of the higher-orderπ-calculus. Sect. 4
gives a brief description of our GC formalization, and Sect.5 illustrates it via a small example. Finally,
future work is discussed in Sect. 6. A full description of ourformal process model is available in [14].

2 Grid Computing: A Brief Overview

Grid computing broadly refers to the coordinated resource sharing and problem solving in dynamic,
multi-institutional virtual organizations. GC systems often require interoperability features and support
for heterogeneous environments. Other typical requirements are decentralized control, security, access
transparency, scalability, availability, and reconfigurability [6]. Sharing in GC systems not only refers
to data and information but also to direct access to all kindsof resources which may be required for
executing complex tasks (computing power, storage, software applications, data). Eachadministrative
domain(AD in the following) establishes what resources are sharedand their access and usage policies.
A virtual organization(VO in the following) is a set of ADs defined by such policies. The participants
in a VO share resources in a controlled way in order to cooperate in executing a specific task. VOs vary
in their purpose, scope, size, duration, structure, community, and sociology [6].

In GC systems, users can transparently share or access resources—they do not need to know (or be
aware of) what resources they are using, where such resources are physically located or that they may
have previously failed and recovered. This transparency isachieved by the so-calledgrid middleware.
This is a software layer that (i) implements theprotocolsandservicesthat enable the seamless sharing
of heterogeneous resources, and (ii) provides key functionalities for enabling task execution and VOs es-
tablishment [18]. In this way, the middleware allows users to access resources while satisfying security
policies such as authentication, authorization, delegation, and single sign-on. To this end, the grid mid-
dleware includes user and resourceproxies[7]. While a user proxy is an entity that is given permission
to act on behalf of a user for a fixed period of time, a resource proxy serves as interface between the
middleware and a resource, thus simplifying (i) the authentication between user proxy and the resource
and (ii) the mapping between grid users and the local users which are valid in the resource.

Grid Resource Assignment Protocol. As our interest is in an interaction-based approach to GC sys-
tems, below we present a protocol which describes the interaction sequence among the main grid compo-
nents (users, ADs, VOs, resources, proxies). The protocol is described as a sequence diagram in Fig. 1;
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Figure 1 The Grid Interaction Protocol as a Sequence Diagram

it formalizes requirements and mechanisms which have been described in the literature only informally.
The formal model given in Sect. 4 is then intended to give a precise account of this protocol.

1. A user sends its credentials to a grid node in order to authenticate. In the figure, this step is represented
by the messagelogin(user cred) from User to VO.

2. If the authentication is successful then the user is granted to access the grid. Otherwise, the user
must revise its credentials. For simplicity, the figure shows only the case in which authentication is
successful; this step is represented by messageok from VO to User.

3. The authenticated user sends a proxy creation request, and a task with its requirements to the grid
node. The task may be a complex object; in particular, it may be structured in terms of subtasks which
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Figure 2 A GC Scenario: Two users (u1, u2), two VOs (v1 – blue,v2 – dotted), three ADs (d1, d2, d3)

follow some process logic. In the figure, these steps are represented by messagesuserproxycreation()
(from User to VO),create() (from VO to User Proxy), andrequest(Task) (from User to VO).

4. The user proxy sends to the grid node the requirements of each subtask. In the figure, this step is
represented by the messagesubmit(reqs,Task′) from User Proxy to VO.

5. The node selects an AD in the VO with available resources tosatisfy the subtask requirements.
This subtask is assigned and sent to the selected AD. In Fig. 1, this is represented by messages
determineAd(Task′) (inside VO),submitTask(Task′) (from VO to AD), andqueue(Task′) (inside AD).

6. The AD assigns appropriate resources for this subtask according to some scheduling strategy. In the
figure, this step is represented by the messageassignRes(Task′) inside AD.

7. The user proxy authenticates into the resource proxies ofassigned resources. If authentication is
successful then the subtask is executed. Otherwise, the subtask is sent back to the grid node. In the
figure, these steps are represented by messagesauth res(user cred) (from User Proxy to Resource
Proxy),ok (from Resource Proxy to User Proxy),sendJob() (from Resource Proxy to Resource), and
job exec() (inside Resource).

8. When the subtask has finished (messagef inish(res), from Resource to its Resource Proxy), it is
detected if there are more subtasks (conditionTask′ 6= null in the loop). If yes then the result of the
previous subtask is transmitted to the next subtask and the previous subprotocol is executed again
(messagesubmit(reqs,Task′)). Otherwise, if the just executed subtask is the last one, then the result
is stored and the protocol finishes (messagestore(res) from User Proxy to AD).

A Representative GC Scenario. We now describe a small, representative example of a GC system.
Depicted in Fig. 2, our scenario draws inspiration from the one given in [6]. It contains three ADs
(denotedd1, d2, andd3) and two VOs (denotedv1 andv2); in the figure, they are depicted as ovals and
rectangles, respectively. VOv1 (blue background) groups participants in an aerospace design consortium
andv2 (dotted background) links participants for sharing spare computing cycles. ADd1 is member of
bothv1 andv2. Also, ADsd1 andd2 participate inv1 and ADd3 participates inv2. We also consider users
u1 andu2: while u1 belongs tov1, useru2 belongs tou2. Bothu1 andu2 have a task to execute in the grid,
denoted Task1 and Task2 in the figure, respectively. To perform, Task1 requires one resource of type (or
descriptor)k1 and one resource of typek2. Similarly, Task2 requires three resources, distinguished by
typesk1, k2, andk3. Resources are located in appropriate ADs: ADd1 owns three resources:r1 (type
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k1), r2 (typek1), andr3 (typek2); AD d2 owns two resources:r4 (typek1) andr5 (typek2); and ADd3

owns three resources:r6 (typek1), r7 (typek2), andr8 (typek8). While resources ofd1 are shared byv1

andv2, resources ofd2 are available only tov1, and resources ofd3 are available only tov2.

3 The Process Model: Syntax and Semantics

This section briefly presents the syntax and semantics of thehigher-orderπ calculus, HOπ. Our presen-
tation closely follows [15]. In HOπ, both names (communication channels) and processes may be passed
around by synchronization on names; communication can be thus loosely assimilated toβ -reduction in
theλ -calculus. We assume a set of names/channels ranged overx,y,z, . . . and a set of process variables
ranged overX,Y,Z, . . .. We writeõ to denote a finite tuple of elementso1, . . . ,ok.

Definition 3.1. The language of HOπ processesis given by the following syntax:

α ::= x(Ũ) | x〈K̃〉

P ::= ∑
i∈I

αi .Pi | P1 | P2 | (ν x)P | if [x= y] then P1 else P2 | D〈K̃〉 | X〈K̃〉

We have twoprefixes, ranged overα ,α ′, . . .. An input prefixx(Ũ) (resp. output prefixx〈K̃〉) denotes
an atomic input action (resp. output action) on a namex. Above,K̃ andŨ denote tuples of names and
processes, and of names and variables, respectively. Process ∑

i∈I
αi .Pi represents thenon-deterministic

choiceamong prefixed processesαi .Pi. The operational semantics ensures that only one of them will be
executed, discarding the rest. WhenI = /0 we write0; whenI = |2| we write α1.P1+α2.P2. Also, we
simply writeα to refer to processα .0. ProcessP1 | P2 stands for theparallel compositionof processes
P1 andP2. We write ∏

j∈J
Pj as a shorthand notation for processP1 | . . . | P|J|. Process(νx)P declares the

namex private to processP. That is, the scope ofx is P; this scope may be enlarged by communication
to other processes (scope extrusion). The conditionalif [x= y] then P1 else P2 is based on equality of
namesx andy: if x= y then the process continues asP1; otherwise it continues asP2. By taking inputs
and restriction as binders, notions of free and bound names/variables arise as expected. We identify
processes up to consistent renaming of bound names/variables, writing≡α for this congruence.

One way of specifying infinite process behavior is viaparametric definitions. NotationD〈K̃〉 denotes
the application of a constant identifierD with parameters̃K. We assume eachD has a unique definition

D(Ũ)
de f
= P, whereŨ is composed of all free names or variables inP, i.e. names or variable which occur

out the scope of any binding. Then,X〈K̃〉 denotes the application of parametersK̃ to process variableX.
We endow our process language with areduction semantics. Intuitively, a reductionP−→ Q denotes

a single evolution step from processP to Q, without interaction from its surrounding environment.

Definition 3.2. Reduction, P−→ Q, is the binary relation on processes defined by the rules in Fig. 3.

As usual, we write=⇒ to denote the reflexive, transitive closure of−→. The rules in Fig. 3 for-
malize process communication and reduction under parallelcomposition and restriction. In rule (COM),
notationP{K̃/Ũ} stands for processP in which all free occurrences of names/variables inŨ have been
substituted by names/processes inK̃. We assume arity in communications is consistent, i.e., thelength
of Ũ must be equal to the length of̃K, with one-to-one correspondence among elements of both tuples.
By means of rule (STR), reduction is closed under astructural congruencerelation, written≡, which is
used to promote process interactions. It is defined as follows:
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Figure 3 Reduction semantics for HOπ

(COM)

(. . .+x(Ũ).P) | (. . .+x〈K̃〉.Q)−→ P{K̃/Ũ} | Q

(PAR)
P−→ P′

P | Q−→ P′ | Q

(RES)
P−→ Q

(νx)P−→ (νx)Q

(STR)
P≡ P′ P′ −→ Q′ Q′ ≡ Q

P−→ Q

Definition 3.3. Structural congruence, written P≡ Q, is the smallest process congruence such that

P | 0≡ P P≡α Q⇒ P≡ Q P | Q≡ Q | P P | (Q | R)≡ (P | Q) | R (νx)0≡ 0
x 6∈ f n(P)⇒ P | (νx)Q≡ (νx)(P | Q) (νx)(νy)P≡ (νy)(νx)P

if [x= y] then P1 else P2 ≡ P1 (if x = y) if [x= y] then P1 else P2 ≡ P2 (if x 6= y)

D(Ũ)
def
= P ⇒ D〈K̃〉 ≡ P{K̃/Ũ} ∑

i∈I
αi .Pi ≡ ∑

j∈J
α j .Pj (if J is a permutation of I)

4 A Formal Model of Grid Interaction

We now give an overview of our formal model of GC systems; a full description can be found in [14].
The model is intended as a formal counterpart of the informalinteraction protocol given in Sect. 2. As
already discussed, the model is divided into static and dynamic components. While the former is given
in terms of invariants (first-order logic formulas), the latter is specified using HOπ processes. The two
components play complementary rôles in our model. On the one hand, the invariants and conditions in
the static part are used to:

− Define the actors in the system (e.g. users, administrative domains, resources, tasks) and useful
relationships between them;

− Describe the initial configuration of the system;

− Define well-formedness conditions for the processes of the dynamic part.

On the other hand, the dynamic part focuses on representing:

− How the grid assigns resources to each task;

− The start of task execution;

− The state of tasks and their assigned resources.

It is worth highlighting that processes of the dynamic component cannot add new tasks, resources or
users. Although these capabilities are present in some realgrid systems, in the current development we
focus on systems in which those elements cannot be added at runtime.

Static Component: Base Sets and Invariants

In order to formalize the key components of GC systems, we first relate such components to base refer-
ence sets. Then, we state associated invariant properties by defining static predicates over elements of
such sets. Table 4 summarizes our notation for these base sets. The intuitive meaning of most of them
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Figure 4 Static model: Base sets for GC components

GC Component Base set GC Component Base set
Users u∈U VOs v∈V
ADs d ∈ D Tasks T ∈ T
Resources r ∈ R User Tasks S ∈ S
Nodes n∈ N User Proxies a∈ A
Resource Proxies x∈ X Resource Descriptors k∈ K
Logs l ∈ L

should be clear from the description given in Sect. 2. We consider that each VO is associated to a group
of access points (nodes) which are contained in the base setN. Observe that we distinguish betweentask
definitions(which belong to base setT) andtask instances, which are submitted by users (and belong to
base setS). We assume that task definitions are built using the next grammar:

T ::= J〈k1, . . . ,km〉 | T.T | T ‖ T | T⊕T | end

Above,J〈k1, . . . ,km〉 denotes abasic taskJ with resources of typek1, . . . ,km, respectively (m≥ 1). Build-
ing upon basic tasks, more complex ones can be defined, using sequential and parallel composition (de-
notedT.T andT ‖ T, respectively) and non-deterministic choice (T⊕ T). We also assume a termination
task, denotedend. As discussed above, we assume that each user is associated to a single task. This is
not a limitation, for tasks may involve several subtasks in parallel and sequential composition.

As for the invariants, based on informal descriptions in theliterature [6], we have identified the
elements that we consider essential to GC systems. Using first-order logic, we formalize such elements
in terms of predicates over the elements of the reference sets. Some of such invariants are the following:

− Each user is member of exactly one VO.Using predicatemember(u,v), which holds if useru∈U is
member of VOv∈V, we may state this invariant as:

∀u∈U ,∃v∈V . member(u,v) ∧ ∀u∈U, v,v′∈V . (member(u,v) ∧ member(u,v′) → v= v′)

− Each user is associated to exactly one task to be executed in the GC system.Using predicatetask(u,S),
which holds if useru∈U is the owner of taskS ∈ S, we may state this invariant as:

∀u∈U ,∃S∈S. task(u,S) ∧ ∀u∈U, S,S′∈S. (task(u,S) ∧ task(u,S′) → S= S′) ∧
∀u,u′∈U, S∈S. (task(u,S) ∧ task(u′,S) → u= u′).

− Each resource belongs to exactly one AD.Using predicatebelongsTo(r,d), which holds if resource
r ∈ Rbelongs to ADd ∈ D, we may express this invariant as:

∀r∈R,∃d∈D. belongsTo(r,d) ∧ ∀r∈R, d,d′∈D. (belongsTo(r,d) ∧ belongsTo(r,d′) → d = d′)

− Every AD can participate in one or more VOs.Using predicateparticipate(d,v), which holds if AD
d ∈ D participates into VOv∈V, we may state this invariant as:∀d∈D,∃v∈V . participate(d,v).

Additional invariants concern access points (nodes), resource descriptors, task states, resource states,
and task logs; they are given in terms of appropriate base sets, and are omitted here for the sake of space.
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Figure 5 Dynamic model: Correspondence among GC components and processes (full details in [14])

GC Component HOπ Process Intuitive Description
Grid system Grid

ω,µ
δ ,η Represents the whole GC system

User (u∈U) Ju,SKc̃,y = User(c̃,JSKt,e,y) Models the behavior ofu to authenticate
and submit its taskS

→֒ UsrMonitor(c̃,g,a,y,P) Monitors tasks submitted byu

Node (n∈ N) JnKv,y,d̃ = AP(y, d̃) Models the interaction ofn with users
to authenticate

→֒ AP-UsrHandler(ch1,ch2,ce) Models the user proxy creation and task
submission

→֒ AP-ProxyHandler(ce, d̃) Represents the interaction with the user task
VO (v∈V) Composition of instances ofAP(y, d̃) A collection of nodes
AD (d ∈ D) JdK = AD(d) Models the AD with its resources, proxy

resources and management elements
→֒ AD-RecReq(b,d) Receives the tasks assigned to the AD and

puts them in the queue
→֒ AD-AsgRes(b,d,ch) Dequeues tasks and assigns

appropriate resources to them
→֒ AD-LRM(s̃, x̃, w̃,ch,d) Supervises the state of resources, and

determines the available resources for a task
Resource (r ∈ R) JrKr,q = AD-Resource(r,q) Models a resource’s behavior when is

used by a task
User Proxy (a∈ A) JaKce,p,t,g = AP-UserProxy(ce, p, t,g) Models the task management, the request of

execution of subtasks and the authentication
with resource proxies

Res. Proxy (x∈ X) JxKx,q,r,w = AD-ResourceProxy(x,q, r,w) Acts as a mediator between GC components
and a resource

Log (l ∈ L) AP-Log(gr ,gw,st, z̃) Interacts with GC components to register the
changes in the task state and result

Task (T ∈ T) ⌈T⌉t,e definition Represents the behavior of a task
User Task (S ∈ S) JSK = ⌈T⌉t,e Models a task instance corresponding to

a user task
Descriptors (k∈ K) Namesk1, . . . ,kκ Models the different types of resources

Dynamic Component: Model in the HOπ calculus

In addition to specifying the main system components and thevalid relations among them, our model
should unambiguously describe how the system may evolve as aresult of the interaction of its com-
ponents. In the light of the protocol given in Sect. 2, such interactions may follow intricate patterns
and must adhere to basic correctness and trustworthiness criteria. We would like formal mechanisms to
ensure that models indeed satisfy such criteria. As we wish to describe GC systems compositionally,
precisely specifying the interacting mechanisms and theirrelationships, first-order logic is not the most
appropriate formalism for this task. We then appeal to specifications expressed as HOπ processes: they
offer a basis on which interaction features in GC systems canbe succinctly represented, and potentially
verified using reasoning techniques over interacting processes. We thus extend the static description
overviewed above so as to define in HOπ the behavior of GC components and their interactions accord-
ing to the invariants and predicates of the static representation. Fig. 5 summarizes the correspondence
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between the elements in the static description and their respective process representation in the dynamic
component of the model. In the figure, we use the symbol→֒ to represent sub-processes which are trig-
gered as part of the execution of a main process. Complete descriptions of the processes mentioned the
figure can be found in [14].

Next we briefly describe process representations for some grid components (users, middleware, ADs)
mentioned in Fig. 5. We useω , µ , δ , andη to denote, respectively, the number of VOs, users, ADs,
and nodes (access points) in the system. Also, we rely on standard process representations of queues
(and associated operations) which can be easily encoded in HOπ via name passing (see, e.g., [17]). It is
worth highlighting that the HOπ representations of the GC components are related to the invariants and
other elements of the static component of the model. This means that process interactions do not concern
arbitrary elements of the base sets; rather, they involve elements which may be subject to invariants.
For example, our process representation for users only can interact with the process representation of a
node that corresponds to a VO where such a user is member. Interestingly, key elements of the process
language (notably, the exchange of fresh channels and scopeextrusion) turn out to be useful to enforce
the static invariants in the dynamic specification, and to rule out undesirable interferences among compo-
nents (as in, e.g., two users which concurrently access a VO). This way, sensible correctness/consistency
properties are ensured by construction. Establishing a formal correspondence between the static and
dynamic components is part of ongoing work (see Sect. 6).

Grid system. A grid system is modeled as the composition of processes representation of users, ADs,

and access points. These are denotedJu,SKc̃,y, JdK, and JnKv,y,d̃, respectively, which are used as in-
termediate notations for processesUser(c̃,JSKt,e,y), AD(d), andAP(y, d̃), respectively. This structure
promotes interaction: while user processes interact with access point processes through private channels
y1, . . . ,yη , AD processes communicate with access point processes in private channelsd1, . . . ,dδ . This
way, our process model of a GC system, parametric onω , µ , δ , andη , is the following:

Grid
ω ,µ
δ ,η

def
= (ν yn1, . . . ,ynη )

(
∏
i∈I

Jui,SiK
c̃i ,ynode(ui ) | (ν d1, . . . ,dδ )(∏

h∈H

JnhK
vo(nh),ynh , d̃h | ∏

l∈L

Jdl K)
)

whereI = {1, . . . ,µ},H = {1, . . . ,η}, andL = {1, . . . ,δ} are index sets over users, access points,
and ADs, resp. In processUser(c̃,JSKt,e,y) (defined below),JSKt,e is a process representation of taskT

(whereS is a instance ofT) that depends on namest ande: while t is used to send subtasks requirements
to the appropriate user proxy,e is used to signal task completion. Giveni ∈ I , we write node(ui) to
denote the index of the access point for userui . Named in AD(d) is used for interaction between the AD
and access point processes. InAP(y, d̃), namey is used to interact with user processes, whiled̃ stands
for a tuple with the access channel of the ADs in the VO associated to the access point. We writevo(nh)
to denote the VO associated to nodenh.

Users. The process model for users, denotedUser(c̃,JSKt,e,y), is parametric on a tuple of user creden-
tials c̃, a task processJSKt,e (explained above), and a namey, which is used to access a grid node (an
instance of processAP(y, d̃)). ProcessUser(c̃,JSKt,e,y) interacts with node processAP〈y, d̃〉 in order to
authenticate to the grid, create a user proxy, and submit/monitor her task. More precisely, we have:

User(c̃,JSKt,e,y)
def
= (ν u)(y〈c̃,u〉 .u(ch1,−,m).

if [m= ok] then ch1.ch1(a).ch1
〈
JSKt,e

〉
.ch1(g).UsrMonitor〈c̃,g,a,y,PS〉

else 0)
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Figure 6 ProcessAP-ProxyHandler(ce, d̃), part of the middleware, interacts with the user proxy process.

AP-ProxyHandler(ce, d̃)
def
= ce(k̃,m,a,g).(AP-ProxyHandler〈ce, d̃〉 |

(νc,b, f )( ∏
di∈ d̃

AP-Searchk̃〈c, f ,di〉 | AP-Acc〈c, f ,b〉 |

b(d1, . . . ,dσ ). ∑
j∈1...σ

d j

〈
k̃,m,a,g

〉
))

Above, the first output ony represents an authentication request against a service deployed atAP(y, d̃).
This service returns nameok (resp.denied) if the authentication is successful (resp. failed). We write
u(ch1,−,m) to denote a reception of three arguments alongu, in which the second one is not relevant.
Namech1 is a private name communicated byAP(y, d̃): this enables the interference-free communication
between user process and a subprocess of the grid node process. Also,ch1 is used for user proxy creation
and task submission: proxy creation is requested by an output signal onch1; then, a namea (to be used
to access the user proxy) is received onch1; subsequently, the task can be sent: this is represented by
the (higher-order) output prefixch1〈JSK

t,e〉. Once the task has been sent, a channel associated to the log
of the submitted task is received onch1, and processUsrMonitor(c̃,g,a,y,P) is launched: it abstracts
the user interaction with her access point for monitoring the task just submitted. The last parameter for
UsrMonitor, processPS, specifies the user behavior that is executed upon receptionof the final result of
her task. Such a process may correspond to, e.g., a query thatstores such a result into a remote database.

Middleware. The middleware is represented as the composition of access point processesAP(y, d̃).
For each VO in the grid, there are some instances of access point processes associated to it. An in-
stance ofAP(y, d̃) interacts with an instance ofUser(c̃,JSKt,e,y) for authentication purposes, user proxy
creation, and task submission/monitoring, as just explained. Then, processAP(y, d̃) launches a process
AP-ProxyHandler(ce, d̃), given in Fig 6, which interacts with the user proxy process.

ProcessAP-ProxyHandler(ce, d̃) is parametric on (i) namece, which is used to receive the task re-
quirements from the user proxy process; and (ii) tupled̃, which contains the names associated to the ADs
of the VO of the access point. OnceAP-ProxyHandler(ce, d̃) has received once the tuplẽk which rep-
resents the descriptors of the required grid resources, it selects the appropriate ADs for the requested re-
sources. We abstract this selection by processesAP-SearchK andAP-Acc. Given a tuple/set of resources
descriptorsK, each instance of processAP-SearchK searches among the resources shared by an AD with
resources satisfying the requirements inK. Once a suitable AD has been found,AP-SearchK sends the
access channel of that AD toAP-Acc, which records all such access channels. Once all instancesof
AP-SearchK have completed the search,AP-Acc sends such ADs to processAP-ProxyHandler(ce, d̃)
along nameb. Then,AP-ProxyHandler(ce, d̃) non-deterministically selects an AD.

Administrative domains. As mentioned above, an AD is represented as processAD(d), which con-
sists of the parallel composition of processes in charge of receiving, queuing, and attending task execu-
tion requests. Also,AD(d) comprises process models of resources and resource proxies(see below). For
the sake of space, we only present the processAD-AsgRes(b,d,ch), which is in charge of assigning the
appropriate resources for the subtasks assigned to the AD. This process, given in Fig. 7, is parametric
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Figure 7 ProcessAD-AsgRes(b,d,ch) assigns appropriate resources for the subtasks assigned tothe AD.

AD-AsgRes(b,d,ch)
def
= (ν n,c)(b〈n,c〉 .(c(k1, . . . ,kζ ,m, p,g,b′).

(ν o,ans1,ans2)
(ch

〈
k1, . . . ,kζ ,ans1,ans2

〉
.

(ans1(cr1, . . . ,crζ ).

p
〈
k1,cr1, ...,kζ ,crζ ,m,o

〉
.AD-AsgRes〈b′,d,ch〉

+

ans2.d
〈
k1, . . . ,kζ ,m, p,g

〉
.AD-AsgRes〈b′,d,ch〉)

| o(X).X)
+ n.AD-AsgRes〈b,d,ch〉))

on channelsb,d, andch: it extracts a request of the queue through channelsb andc, and proceeds to
attend it. Then,AD-AsgRes(b,d,ch) interacts with the local resource manager process through chan-
nelsch, ans1, andans2 in order to determine the resources for the request. If appropriate resources for
the request are available thenAD-AsgRes(b,d,ch) receives inans1 the access channels of the resource
proxies and forwards them to the user proxy through namep. Otherwise, if there are no resources then
AD-AsgRes(b,d,ch) receives an input inans2 and sends the request back to the queue.

Observe how alsoAD-AsgRes(b,d,ch) features higher-order communication in its interaction with
task processJSKt,e. In fact, using a higher-order process communication on nameo (not shown), the task
processJSKt,e is expected to send a job toAD-AsgRes(b,d,ch)—which is denoted by process variableX.
As soon as the reception ono takes place, processAD-AsgRes(b,d,ch) will execute the involved job.

User and Resource Proxies. We represent user proxies as instances of a process which receives the
requirements of the subtasks of the user task processJSKt,e and submits such requirements to an access
point process. Moreover, a user proxy process interacts with processAD-AsgRes(b,d,ch) which sends it
the channels of the resource proxies of assigned resources.Finally, the user proxy process communicates
with resources proxies process in order to authenticate andobtain the direct access to resources. Resource
proxies are abstracted as a process which interacts with itsassociated resource process and instances of
user proxy process. The interaction with its associated resource process allows the resource proxy to
keep track of the state of the resource, as a resource notifiesits proxy when a task has been completed.

Other components. In addition to the components described above, our process models also includes
representations for other components in the GC system, namely logs processes, resource processes, and
queue processes. There is a log process for each user task: itis in charge of registering the current state
and the result of a task. Middleware processes (access points) interact to read the log when the user
process requests it. In fact, processesAP-ProxyHandler(ce, d̃) andAP-UserProxy(ce, p, t,g) interact
with the log process to register a new state and/or the final result. Resource processes abstract the
behavior of actual grid resources. They interact with resource proxy process and task processJSKt,e.
Finally, the queue process is a process representation of a queue structure. There is a queue process for
each AD, which is used to store the subtasks requests of resources assigned to the AD.
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5 Formalizing a Representative Grid Scenario

We now illustrate our formal model by instantiating it with the scenario presented in Sect. 2 (see also
Fig. 2). The following table summarizes some of the corresponding base sets:

Base Set Description
D = {d1,d2,d3} Administrative domains
U = {u1,u2} Users
V = {v1,v2} Virtual organizations
N = {n1,n2} Grid nodes
R = {r1, r2, r3, r4, r5, r6, r7, r8} Resources
K = {k1,k2,k3} Resource descriptors
T = {T1,T2} Task definitions
S = {S1,S2} User tasks

For the sake of space, we do not present the static component of the model. Still, the description
of the scenario given in Sect. 2 should provide an intuitive idea of the key valid relationships between
the main grid components. We only highlight the fact that user tasksS1 andS2 are instances of task
definitionsT1 andT2, respectively. As for the dynamic component of the model, following the notation
given in Fig. 5, our scenario is represented by the followingHOπ process:

Grid
ω ,µ
δ ,η = (ν y1,y2)

(
Ju1,S1K

c̃1,y1 | Ju2,S2K
c̃2,y2 |

(ν d1,d2,d3)(Jn1K
v1,y1,d1,d2 | Jn2K

v2,y2,d2,d3 | Jd1K | Jd2K | Jd3K)
)

whereω = 2, µ = 2, δ = 2, andη = 2. By expanding the definitions ofJu,SKc̃,y, JnKv,y,d̃, andJd1K,
the above process can be equivalently stated as follows:

Grid
ω ,µ
δ ,η = (ν y1,y2)

(
(ν t1,e1) User〈c̃1,JS1K

t1,e1,y1〉 | (ν t2,e2) User〈c̃2,JS2K
t2,e2,y2〉 |

(ν d1,d2,d3)(AP
v1〈y1,d1,d2〉 | APv2〈y2,d2,d3〉 | AD〈d1〉 | AD〈d2〉 | AD〈d3〉)

)

To illustrate process evolution, we now describe a particular reduction sequence that originates from
Grid

ω ,µ
δ ,η . Precisely, we show the interactions that occur when the user u1 accesses the grid for executing

taskS1. Clearly, (concurrent) interactions related to useru2 are also possible, but below we restrict to
comment on the reductions related to the process representation of u1.

First, we have a sequence of reductionsGrid
ω ,µ
δ ,η =⇒ GRID1, that represents the steps in which

User〈c̃1,JS1K
t1,e1,y1〉 interacts with processAPv1〈y1,d1,d2〉 to perform steps of user authentication, proxy

creation, and submission of taskS1, as stipulated in the protocol. ProcessGRID1 is as follows:

GRID1 ≡ (ν y1,y2)
(
UsrMonitor〈c̃1,gr1,a1,y1,P〉 | (ν t2,e2)User〈c̃2,JS2K

t2,e2,y2〉 |

(ν d1,d2,d3)(AP
1(S1) | RestSystem1)

)

where residual processesAP1(S1) andRestSystem1 are as follows:

AP1(S1) ≡ JS1K
t1,e1 | (ν gw1,ce1)(AP-Log〈gw1,gr1,submitted,null〉 |

e1(r̃).gw1〈state,finished〉.gw1〈result, r̃〉 | AP-UserProxy〈ce1,a1, t1,gw1〉 |

AP-ProxyHandler〈ce1,d1,d2〉)

RestSystem1 ≡ APv1〈y1,d1,d2〉 | APv2〈y2,d2,d3〉 | AD〈d1〉 | AD〈d2〉 | AD〈d3〉
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In processAP1(S1) above, private namegw1 is used by processesAP-UserProxy〈ce1,a1, t1,gw1〉
andAP-ProxyHandler〈ce1,d1,d2〉 to register the changes in the state of taskS1. Namece1 stands for
the private channel on which these two processes may interact. At this point, we have the reduction
sequenceGRID1 =⇒ GRID2, which represents reductions corresponding to the AD selection in the VO
and the task submission to such an AD. In this case, we assume the AD d1 is selected for the execution
of the task. ProcessGRID2 is as follows:

GRID2 ≡ (ν y1,y2)
(
UsrMonitor〈c̃1,gr1,a1,y1,P〉 | (ν t2,e2)User〈c̃2,JS2K

t2,e2,y2〉 |

(ν d1,d2,d3)(AP
2(S1) | AD1〈d1〉 | RestSystem2)

)

whereAP2(S1) andAD1〈d1〉 stand for residual processes for the access point and for therepresentation
of AD d1, respectively. As above,RestSystem2 stands for the composition of processes for the remaining
components. In processAD1〈d1〉, the interaction between the task process and the user proxyprocess has
evolved toJS1

1
K andAP-UserProxy1, respectively. ProcessesAP2(S1) andRestSystem2 are as follows:

AP2(S1) ≡ JS1
1
K | (ν gw1,ce1)(AP-Log〈gw1,gr1,queued,null〉 |

e1(r̃).gw1〈state,finished〉.gw1〈result, r̃〉 | AP-UserProxy1 |

AP-ProxyHandler〈ce1,d1,d2〉)

ResSystem2 ≡ APv1〈y1,d1,d2〉 | APv2〈y2,d2,d3〉 | AD〈d2〉 | AD〈d3〉

At this point, we may infer a reduction sequence which abstracts steps of resource selection and task
execution. We indeed haveGRID2 =⇒ GRID3, where processGRID3 is as follows:

GRID3 ≡ (ν y1,y2)
(
UsrMonitor〈c̃1,gw1,a1,y1,P〉 | (ν t2,e2)User〈c̃2,JS2K

t2,e2,y2〉 |

(ν d1,d2,d3)(AP
3(S1) | AD2(S1) | ResSystem2)

)

whereAP3(S1) corresponds to residual process for the access point; processAD2(S1) is its analogous
for the representation of ADd1. While processJS2

1
K ≡ e1〈r̃es1〉, processAP3(S1) is as follows:

AP3(S1) ≡ JS2
1
K | (ν gw1,ce1)(AP-Log〈gw1,gr1,running,null〉 |

e1(r̃).gw1〈state,finished〉.gw1〈result, r̃〉 | AP-UserProxy〈ce1,a1, t1,gw1〉〉 |

AP-ProxyHandler〈ce1,d1,d2〉)

ProcessJS2
1
K stands for the residual process for the task process of useru1; it notifies its comple-

tion through channele1. We obtain the reduction sequenceGRID3 =⇒ GRID4 after some reductions
corresponding to task completion and log registering. ProcessGRID4 is as follows:

GRID4 ≡ (ν y1,y2)
(
UsrMonitor〈c̃1,gw1,a1,y1,P〉 | (ν t2,e2)User〈c̃2,JS2K

t2,e2,y2〉 |

(ν d1,d2,d3)(AP
4(S1) | AD3(S1 | RestSystem2)

)

whereAP4(S1) is as follows:

AP4(S1) ≡ (ν gw1,ce1)(AP-Log〈gw1,gr1,finished, r̃es1〉 |

AP-UserProxy〈ce1,a1, t1,gw1〉〉 | AP-ProxyHandler〈ce1,d1,d2〉)

At last, we may infer the reduction sequenceGRID4 =⇒ GRID5, where processGRID5 defined as

GRID5 ≡ (ν y1,y2)
(
P〈r̃es1〉 | (ν t2,e2)User〈c̃2,JS2K

t2,e2,y2〉 |

(ν d1,d2,d3)(AP
4(S1) | AD3(S1) | RestSystem2)

)

and where processP〈r̃es1〉 denotes an unspecified, parameterized process that is to be executed by the
user monitor with the task result̃res1.
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6 Future Work

The process model of GC systems presented here describes basic interactions among grid main compo-
nents, abstracting and enforcing essential static and dynamic properties of such systems. Establishing
an operational correspondence result connecting the invariants in the static description and the HOπ
reductions of the dynamic representation is part of ongoingwork. We conjecture that HOπ processes
representing the dynamic part preserve by construction theinvariants defined by the static part. Slightly
more formally, we conjecture that if processP respects the static invariants, andP −→ P then either
(a) P′ preserves the static invariants, or (b) there is aP′′ such thatP′ =⇒ P′′ andP′′ preserves the static
invariants. One of the challenges in the proof consists in giving a unified treatment to all invariants.

Our current model does not take into account certain aspectstypical of GC infrastructures, such as
time. Still, as already mentioned, we think our current model is already a good basis for extensions:
the inherent compositionality of process specifications should ease orthogonal improvements and refine-
ments. In this sense, as future work, we plan to refine the model with locations (i.e., computation sites)
and process failures. To this end, an initial approach wouldbe using a calculus ofadaptable processes[2],
which enables to incorporate forms of runtime adaptation over located, interacting processes.

A strong motivation for pursuing a process calculi model of GC systems is that of exploiting the proof
techniques over processes (behavioral equivalences, typesystems) so as to reason about grid systems.
That is, we would like to explore how our process model allowsus to reason about correctness properties
of GC systems. This involves, for instance, exploiting our model’s compositionality and well-established
theories of behavioral equivalence to reason about arbitrary behaviors in the grid setting. Also, we would
like to reason about task termination and resource deliveryin the grid setting. These properties are
intrinsically related to reachability problems, and to issues of deadlock- and cycle-detection. We believe
that a process calculi model offers a suitable basis also forinvestigating such problems.
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