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Any algorithm (in the sense of Gurevich’s abstract-state-machine axiomatization of classical algo-
rithms) operating over any arbitrary unordered domain can be simulated by a dynamic cellular au-
tomaton, that is, by a pattern-directed cellular automaton with unconstrained topology and with the
power to create new cells. The advantage is that the latter is closer to physical reality. The overhead
of our simulation is quadratic.

Order gave each thing view.

—William Shakespeare (King Henry VIII)

1 Introduction

Recent years have seen progress in the understanding of the fundamental notions of computation. Clas-
sical algorithms were axiomatized by Gurevich [14], who also showed that a simple, generic model of
computation, called abstract state machines (ASMs), suffices to emulate state-for-state and step-for-step
any ordinary (non-interactive, sequential) algorithm. In [2], it was shown that the emulation can be made
precise in that it does not access locations in states that the original algorithm does not. In [5, 9], it
was shown that any algorithm that satisfies an additional effectiveness axiom—regardless of its program
constructs and data structures—can be simulated by what we call an effective ASM (EASM), which is an
ASM whose atomic actions are effective constructor and destructor operations. Moreover, such effective
algorithms over arbitrary domains can be efficiently simulated by a random access machine (RAM), as
shown in [7, 8]. In this way, the gap between the informal and formal notions of computation has been
reduced, and the classical Church-Turing thesis—that Turing machines entail all manner of effective
computation—and its extended version—claiming that “reasonable” effective models have comparable
computational complexity—both sit on firmer foundations.

At the same time, von Neumann’s cellular model [15] has been enhanced to encompass more flexible
forms of computation than were covered by the original model. In particular, the topology of cells can
be allowed to change during the evolution of an interconnected device, in what has been called “causal
graph dynamics” [1]. Cellular automata have the advantage of better reflecting the laws of physics
that a real computing machine must comply with. They respect the “homogeneity” of space-time in
that processor cells and memory cells are uniform in nature, in contradistinction with Turing machines,
RAMs, or ASMs, whose controls are centralized. This cellular approach can help us better understand
under what conditions the physical Church-Turing thesis [11], stating that no physically plausible device
can compute more functions than a Turing machine can, might hold [10].

In what follows, we show that any algorithm can be simulated by a dynamic cellular automaton, thus
showing that a homogenous physically-plausible model can implement all algorithmic computations. We
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begin, in the next section, with basic information about cellular automata and abstract state machines. It
is followed by a description of the simulation and a brief discussion.

2 Background

2.1 Cellular Automata

Classical cellular automata are defined as a static tessellate of cells. Initially, each cell is in one of a set
of predefined internal states, conventionally identified with colors, of which we will have only finitely
many. Sitting somewhere to the side is a clock, and every time it ticks, the colors of the cells change.
Each cell looks at the colors of its nearby cells and at its own color and then applies a transition rule,
specified in advance, to determine the new color it takes on for the next clock tick. Transitions are simple
finite-state automata rules. In this model, all cells change at the same time and their transition rules are
all the same.

The underlying topology may take different shapes and have different dimensions. The definition
of neighborhood may vary from one automaton to another. On a two-dimensional grid, the neighbors
may be the four cells in the cardinal directions (called the “von Neumann neighborhood”), or it can
include the for corner cells (the “Moore neighborhood”), or perhaps a block or diamond of larger size. In
principle, any fixed group of cells of any arbitrary shape can be looked out to determine which transition
applies. A sequential automaton is the special case when one cell is active and only that cell can perform
a transition step. In addition, the transition marks one of the active cell’s neighbors (or itself) to be active
for the following step.

To model reality better, one should consider the possibility that the connections between cells also
evolve over time. For dynamic cellular automata [1], cells are organized in a directed graph. Similar to
the above classical case, each cell is colored in one of a palette of predefined colors. Edges also have
colors, to indicate the type of connection between cells, adding flexibility. Transitions are governed by
global clock ticks. In the sequential case one cell is marked active. This cell inspects its neighborhood
and applies a transition rule.

The difference between the static and dynamic cases is that in the static case, the transition is gov-
erned by different colorings of the cells in a fixed neighborhood, while in the dynamic case, it is governed
by a set of different neighborhood patterns, each with various colored cells connected by colored edges.
In both cases, a transition rule defines a transformation of the cells in a detected pattern: in the static case
colors change, while in the dynamic case, connections may also change and new cells may be added.
With each clock tick, the active cell inspects its neighborhood to detect one of those predefined patterns.
Then the transition rule is applied according to the detected pattern. (Cells never die in this model,
but they may become disconnected from every other cell.) Examples of such transitions are shown in
Figure 1.

Note that there might be several transition patterns in the neighborhood of an active cell. For example,
given that an active cell detects a pattern of the second type in the example in the figure, it might choose
to act according to the first rule instead. If a neighborhood of the active cell contains pattern p, while
some subset of its cells also constitute a transition pattern p′, we can demand that no transition be applied
using p′. We call this restriction maximality. (Intuition may be purchased from the following scenario.
Assume that your neighbors make a lot of noise from time to time. If at a given time point you have
only one noisy neighbor, you might decide to stay put in peace. But if there are two of them, you would
want to call the police. What’s worse, if you have three or more rowdy neighbors, you might also need
an ambulance. If there is some noise around, a transition might be applied erroneously, as if there were
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Figure 1: Examples of transition rules.

only one noisy neighbor, which is not the natural intent.) So, we want the more specific rules to take
precedence over the less constrained ones.1 In our example, if the second pattern is applicable, then the
first one is not applied. All the same, patterns may overlap, so transitions remain non-deterministic. For
example, consider the following neighborhood:

In general, these choices can affect the final result, but the simulation we describe has the same outcome
regardless.

2.2 Classical Algorithms

Gurevich [14] has axiomatized generic algorithms as follows (see also the exposition in [6]):

Postulate 1 (Axiom of Algorithmicity [14]).
(I) An algorithm is posited to be a state-transition system comprising a set (or class) of states and a

partial transition function from state to next state.

(II) States may be seen as (first-order) logical structures over some (finite) vocabulary, closed under
isomorphism (of structures). Transitions preserve the domain (universe) of states, and, further-
more, isomorphic states are either both terminal (have no transition) or else their next states are
isomorphic (via the same isomorphism).

1An alternative would be to supply a (partial) order according to which transition rules are tried.
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(III) Transitions are governed by a finite, input-independent set of critical (ground) terms over the
vocabulary such that, whenever two states assign the same values to those terms, either both are
terminal or else whatever changes (in the interpretations of operators) a transition makes to one,
it also makes to the other.

States being structures, they include, not only assignments for programming “variables”, but also
the “graph” of the operations that the algorithm can apply. We may view a state over F with domain
(universe) D as storing a (presumably infinite) set of location-value pairs f (a1, . . . ,an) 7→ b, for all f ∈ F
and a1, . . . ,an ∈ D and some b ∈ D. So, by “changes”, we mean τ(x) \ x, where τ is the transition
function, which gives the set of changed location-value pairs. We treat relations as truth-valued functions
and consider all states to be potential input states.

As in this study we are only interested in classical deterministic algorithms, transitions are functional.
We use the adjective “classical” to clarify that, in the current study, we are leaving aside new-fangled
forms of algorithm, such as probabilistic, parallel, or interactive algorithms. For detailed support of
this axiomatic characterization of algorithms and relevant citations from the founders of computability
theory, see [14, 9].

Item I is meant to exclude “hypercomputational” formalisms, such as [12, 17], in which the result of
a computation—or the continuation of a computation—may depend on (the limit of) an infinite sequence
of preceding (finite or infinitesimal) steps. Likewise, processes in which states evolve continuously (as
in analog processes, like the position of a bouncing ball), rather than discretely, are eschewed. Naturally,
in this work, we are only interested in deterministic algorithms, which is why transitions are a partial
function on states.

States as structures make it possible to consider all data structures sans encodings. In this sense,
algorithms are generic. Item II precludes states with infinitary operations, like the supremum of infinitely
many objects, which would not make sense from an algorithmic point of view. The structures are “first-
order” in syntax, though domains may include sequences, or sets, or other higher-order objects, in which
case, the state would provide operations for dealing with those objects. The identification of states
with structures is justified by the vast experience of mathematicians and scientists who have faithfully
and transparently presented every kind of static mathematical or scientific reality as a logical structure.
In restricting structures to be “first-order”, we are limiting the syntax to be first-order. Closure under
isomorphism ensures that the algorithm can operate on the chosen level of abstraction and that states’
internal representation of data is invisible and immaterial to the algorithm. The same algorithm will
work equally with different representations, as for example, testing primality of numbers whether given
as decimal digits, as Roman numerals, or in Neolithic tally notation. This means that the behavior of an
algorithm, in contradistinction with its “implementation” as a C program—cannot, for example, depend
on the memory address of some variable. If an algorithm does depend on such matters, then its full
description must also include specifics of memory allocation.

The intuition behind the third item in the postulate is that it must be possible to describe the effect
of transitions in terms of the information in the current state. Unless all states undergo the same updates
unconditionally, an algorithm must explore one or more values at some accessible locations in the current
state before determining how to proceed. The only means that an algorithm has with which to reference
locations is via terms, since the values themselves are abstract entities. If every referenced location has
the same value in two states, then the behavior of the algorithm must be the same for both of those states.
This postulate—with its fixed, finite set of critical terms—precludes programs of infinite size (like an
infinite table lookup) or which are input-dependent.
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2.3 Generic Programs

It has been shown in [14] that every algorithm, in the sense formalized above, can be emulated step-by
step, state-by-state by a particular form of algorithm:
Definition 1 (ASM Program [13]). ASM programs, over some vocabulary F, are composed of assign-
ments and conditionals.
• A generalized assignment statement

f (s1, . . . ,s`) := u

involves terms u,s1, . . . ,s` over F. Applying it to a state X changes the interpretation that the state
gives to f at the point (s1

X , . . . , t
`
X) to be uX , where tX denotes the value that state X gives to term t.

• Program statements may be prefaced by a conditional test,

if c then p or if c then p else q

where c is a Boolean combination of equalities between terms. Only those branches of conditional
statements whose condition evaluates to TRUE are executed.

• As a matter of convenience, a program statement may also be prefaced by let x = t in . . ., which
has the same effect as if all occurrences of x in the statement were replaced by t.

• Furthermore, statements may be composed in parallel: A ‖ B.

• The program, as such, defines a single transition, which is executed repeatedly, as a unit, until
no assignments are enabled by the conditions preceding them. When no assignments are enabled,
then there is no next state.

By [14], each transition of a classical algorithm can be described by a bounded number of actions of
comparisons and assignments.

All models of effective, sequential computation (including Turing machines, counter machines,
pointer machines, etc.) satisfy the above algorithmicity postulate, and can therefore be programmed
as ASMs. By the same token, idealized algorithms for computing with real numbers, or for geometric
constructions with compass and straightedge (see [18] for examples of the latter) can also be precisely
described by ASM programs. See [6].

ASMs work over arbitrary domains, but in this work, we use sets of atoms. A (fair) unordered
domain consists of a finite set A of atoms a1, . . . ,an, including the empty set ∅, and any set obtained
from atoms by a finite number of applications of the following set-theoretical operations:
• {}, the singleton former;

• ∪, the union of two sets.
An algorithm is also supported with oracle access to
• a binary Boolean membership predicate ∈ with its usual set-theoretic interpretation;

• a unary choice operation ε which returns an (arbitrary) element from a given non-empty set, which
is then used in a program statement. The let construct may be used to ensure that the same choice
is made in more than one place.

Even though computational paths might differ from run to run, an algorithm must commit to the same
output despite the choices it makes. This class of choice-based algorithms over unordered domains was
introduced in [3], where it was proved that a matching problem for graphs can be computed over these
unordered structures, but not if choice is replaced by unbounded parallelism. Later in [4], it was shown
that supporting structures with counting resolves this issue.
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3 Simulating Algorithms with Cellular Automata

We allow only finitely-describable topologies for cellular automata, and we bound their dynamics, re-
quiring that its transition relation should also be describable by a finite number of patterns.

Our main result is that cellular automata with bounded dynamics can simulate the behavior of any
classical algorithm over any unordered domain. We first show how the graph structures of cellular
automata can represent the unordered domains of algorithms. Then we show how a transition may
simulate manipulations of domain elements.

3.1 Bounded Dynamics

Suppose some domain is constructed over two atoms a and b. The classical tree representation of an
element {{a,b},{{a}},{a}} looks like this:

To avoid obvious reduplication of data, we should use edges pointing to shared locations. This represen-
tation is called a term-graph [16], and our sample element will look like this:

Now, assume that we want to represent two distinct elements {{a,b},{{a}},{a}} and {{a,b},{b}}.
To avoid reduplication here, we again use pointers to locations shared by both and call the resulting
structure a tangle [7]. In our example, the tangle will look as follows:

Next, we need to represent the values of functions. We use a slight modification: For each k such that
an ASM has a non-constructor function of arity k, we append to the tangle an ordered k-tuple. Assume
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that our vocabulary has a binary function g(·, ·), and assume our ASM has critical terms t and p. Suppose
we need to represent state X with values t = {{a,b},{{a}},{a}}, p = {{a,b},{b}}, and g(t, p) = {a,b}.
For convenience, we add a focus node called Criticals. Edges outgoing from this node point to the values
of critical terms and are labeled appropriately. Our modified tangle will look as follows:

With tangles, we do not have duplicate nodes, that is, no two distinct nodes have the same subtrees,
since every domain element is represented by at most one node.

As the last step, we reverse all tangle edges, except for those representing critical terms values, to
allow directed access from nodes to parents:

(This step is not necessary, but will have the arrows going in the direction of most of the movements.)
Note that both in-degree and out-degree are unbounded.

The node labeled Criticals will serve as the active one in the following sequential simulation.

3.2 The Simulation

We base the proof of our main result, on the fact that the evolution of any algorithm may be captured
by an ASM program. We show that given a domain simulation as above, for each mechanical rule in
a program, there is a set of transition rules of a cellular automaton that emulates it. And since each
algorithmic transition is described by a finite rule, we will only need finitely many automaton rules to
simulate it.

Lemma 1. Cellular automata simulate the application of pairing 〈·, ·〉 in constant time.

Proof. Assume we want to apply a rule p := 〈t, t ′〉, where t, t ′, and p are critical terms. The transition
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rule for the cellular automaton would be as follows:

We need the second rule to cover the case when the pair already exists; the first rule is more general and
will only fire if the second one is inapplicable.

(The annotations X and Y are not labels; they are used to indicate which nodes on the right of a
pattern correspond to which nodes on the left. For convenience, colorless cells like these match a node
of any color; skirting formality, this way we need not unnecessarily multiply patterns to cover every
possible color combination.)

Lemma 2. Cellular automata simulate the application of choice ε in constant time.

Proof. This operation is used in statements of the form let x = ε(t) in A. A straightforward definition
of the appropriate transition for a cellular automaton will of necessity be nondeterministic, like the ε

operation itself. The pattern chooses the element of t for each of its uses in statement A, like this:

Lemma 3. Cellular automata simulate the application of conditional tests in constant time.

Proof. Each transition of an ASM performs a bounded number of actions of two types: Boolean state-
ments and assignments. Since their number is bounded by the algorithm, it is enough for us to describe
the simulation of one operation of each type. We have two types of Boolean conditions, inclusions and
comparisons:

• Boolean membership ∈ is used only as a condition. A statement

if t ∈ p then t := p

for example, is expressed as follows:
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• Boolean comparison is used as a condition. For example, an ASM described by a rule

if t 6= p then t := f (t, p)

would be simulated by a cellular automaton with the following transitions to cover all cases (there
is a node for f (t, p); there is a node for the pair 〈t, p〉 but not the value; neither):

Lemma 4. Cellular automata simulate the application of singleton formation {·} in a linear number of
steps.

Proof. Assume that an algorithm applies a rule p := {t}, where t and p are critical terms. We simulate
the singleton operation in three steps. First we create a node for the singleton and mark it singleton
suggestion. We also choose another node, if there is one, and mark it singleton candidate:

Then we check if there there already exists a node for that singleton, and if so, we discard the new
singleton node created in previous step. To check, we go over all neighbors of X and check each of them
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in turn. If the requisite singleton node is found, we point to it as the singleton (with a p-marked arrow)
and disconnect the newly created node from the tangle. If the tested node is not the desired one, we mark
it with a cable that states that the node was tested and move on to the next candidate. When there are no
candidates we mark the newly created node as the desired singleton.

As the last step, we remove the marks from the nodes and then remove the edge singleton found:
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As always, we use the rule which forces the most constrained pattern to be applied.
The cost is linear, since we need to check every set of which t is a member to see if it is a singleton.

Lemma 5. Cellular automata can simulate applications of the union of two sets with a quadratic number
of operations (relative to the number of elements in the sets).

Proof. Suppose we want to simulate the operation t := s∪ p, where t, p,s are critical terms, with s
pointing to a node indicated by X and p pointing to Y . The simulation will proceed in several stages;
the correct order of those steps will be assured by the maximality restriction on transitions. Similar rules
should be added to the transition for each possible node coloring. Recall that we want only one instance
of each value.

In the beginning, we have to find whether we already have a node representing union of s and p. For
this we will go over all accessible nodes from (any) one of the elements that belong in the union. We will
show that verifying one node can be done in linear time, so the overall procedure runs in quadratic time.

1. Assume we want to check whether the element whose root is pointed to by u is the union of s
and p. We start by creating a special edge to this element. This edge, labeled CHECK, will serve
as a lock indicating that we are in the midst of the verification process and will not allow other
transitions to get involved in the middle.

2. Next, we detect the elements appearing in all of u, s and p. Edges from those elements are colored
with a special color:

The same is done (in parallel) with t and p.

3. Next, we detect common elements of u and s but not in p. Pointers from detected elements are
again marked with the special color:

The same is done with u and p.
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4. If s, p, and u are all empty, then u is indeed the union of s and p. Mark it as such. Otherwise, u is
not the union node:

5. Once the status of u is clear, we remove the marks from edges:

Each element identified to not be the union is marked with a special color for the duration of the
search so as not to re-check it, similar to the singleton case.

Once all the possible elements have been checked, and no union found, we are ready to create the
union.
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1. First, we create a new node which will eventually hold the union:

A special marked edge tells the automaton that it is the process of creating a union.

2. We start with copying to u the elements that are common to s and p, and mark the edges:

3. In a similar manner, we copy elements that are present in one set only:

4. Once all edges are marked, we know that the desired node is created and we mark it appropriately:

This rule applies only when no element transfers remain.
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5. Once the IS UNION mark appears, all that remains is to clean the marks left en route:

6. As soon as the union is ready and its neighborhood is clean, we may remove the lock:

Note again that the maximality restriction on transitions ensures that all the above steps are applied
in the prescribed order.

Every classical algorithm is emulated step-by-step, state-by-state by an ASM consisting of a fixed
number of comparisons and assignments [14]. That fact, along with the previous lemmata, is what is
needed to achieve our goal:

Theorem 2 (Main). Cellular automata with bounded dynamics (i.e. all the nodes in a pattern are within
a bounded distance of the focus) and without loops (there are no directed cycles within patterns) can sim-
ulate the performance of any classical algorithm over an unordered domain with quadratic multiplicand
overhead.

Proof. We have to ensure that, once the automaton starts to simulate the singleton or union operation, it
cannot be interrupted by the application of other transition rules. Otherwise, foreign steps could affect
the elements of the sets involved in these set operations. This problem can be precluded, for instance, by
changing the color of the Criticals node during the simulation of those operations.

Each step of the original algorithm can only create a bounded number of new sets. Hence the size of
the sets involved in any union operation is bounded by the size of the sets in the initial state plus some
multiple of the algorithm’s steps so far. So the overall overhead caused by unions is quadratic.

4 Discussion

We have outlined the basic features of dynamic cellular automata and proved that this model is flexible
enough to simulate arbitrary computations over unordered domains. It may perhaps be possible to reduce
the cost of the simulation. In particular, allowing negative edges in patterns, for labeled edges that must
not appear, can reduce the complexity of the union operation. One may also consider allowing for
duplication, which would increase the cost of comparisons but reduce the cost of union.



N. Dershowitz & E. Falkovich 31

Another question is at what added expense could one bound the degree of nodes.
One task facing us now is to describe a natural extension to the parallel case. In this case, at each

step, all cells are active and can all affect their neighborhoods.
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