A knowledge representation meta-model for rule-based modelling of signalling networks

Adrien Basso-Blandin
(LIP, ENS Lyon)
Walter Fontana
(Harvard Medical School)
Russ Harmer
(CNRS & LIP, ENS Lyon)

The study of cellular signalling pathways and their deregulation in disease states, such as cancer, is a large and extremely complex task. Indeed, these systems involve many parts and processes but are studied piecewise and their literatures and data are consequently fragmented, distributed and sometimes—at least apparently—inconsistent. This makes it extremely difficult to build significant explanatory models with the result that effects in these systems that are brought about by many interacting factors are poorly understood.

The rule-based approach to modelling has shown some promise for the representation of the highly combinatorial systems typically found in signalling where many of the proteins are composed of multiple binding domains, capable of simultaneous interactions, and/or peptide motifs controlled by post-translational modifications. However, the rule-based approach requires highly detailed information about the precise conditions for each and every interaction which is rarely available from any one single source. Rather, these conditions must be painstakingly inferred and curated, by hand, from information contained in many papers—each of which contains only part of the story.

In this paper, we introduce a graph-based meta-model, attuned to the representation of cellular signalling networks, which aims to ease this massive cognitive burden on the rule-based curation process. This meta-model is a generalization of that used by Kappa and BNGL which allows for the flexible representation of knowledge at various levels of granularity. In particular, it allows us to deal with information which has either too little, or too much, detail with respect to the strict rule-based meta-model. Our approach provides a basis for the gradual aggregation of fragmented biological knowledge extracted from the literature into an instance of the meta-model from which we can define an automated translation into executable Kappa programs.

In César A. Muñoz and Jorge A. Pérez: Proceedings of the Eleventh International Workshop on Developments in Computational Models (DCM 2015), Cali, Colombia, October 28, 2015, Electronic Proceedings in Theoretical Computer Science 204, pp. 47–59.
Published: 2nd March 2016.

ArXived at: http://dx.doi.org/10.4204/EPTCS.204.5 bibtex PDF
References in reconstructed bibtex, XML and HTML format (approximated).
Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org