
Jean-Yves Marion (Ed.): Second Workshop on

Developments in Implicit Computational Complexity (DICE 2011)

EPTCS 75, 2012, pp. 15–27, doi:10.4204/EPTCS.75.2

This work is licensed under the Creative Commons

Attribution-Noncommercial-Share Alike License.

Sublogarithmic uniform Boolean proof nets

Clément Aubert∗

LIPN – UMR7030, CNRS – Université Paris 13,
99 av. J.-B. Clément, 93430 Villetaneuse, France

Abstract Using a proofs-as-programs correspondence, Terui was able to compare two models of

parallel computation: Boolean circuits and proof nets for multiplicative linear logic. Mogbil et. al.

gave a logspace translation allowing us to compare their computational power as uniform com-

plexity classes. This paper presents a novel translation in AC 0 and focuses on a simpler restricted

notion of uniform Boolean proof nets. We can then encode constant-depth circuits and compare

complexity classes below logspace, which were out of reach with the previous translations.

Introduction

Boolean proof nets were introduced by Terui in [8] to study the implicit complexity of proofs nets

for Multiplicative Linear Logic [4] comparatively to Boolean circuits. Those two models of paral-

lel computation were successfully linked using a proofs-as-programs framework, which matches up

cut-elimination in proof nets with evaluation in circuits. Surprisingly [8] does not take into account

uniformity, which guarantees that the resources needed to build a Boolean circuit is inferior to the

computational power it will deliver. [7] and [6] studied the Boolean proof nets in a uniform way and

introduced some non-determinism in it. As their translation from Boolean circuit families to Boolean

proof net families is in logspace (L), it remained unknown if the results were still valid when applied

to sublogarithmic classes of complexity, that is to say AC 0 and NC 1. By restricting the Boolean proof

nets we use, this paper offers a new proof of the correspondence between circuits and proof nets and

extends it to constant-depth circuits.

Boolean circuits ([9], section 1) and proof nets ([3], section 3) are canonical models of parallel

computation, but the latter was mostly seen from the viewpoint of sequential implicit complexity. To

evaluate a proof net is to eliminate its cuts, but to do so with suitable bounds we need to define a

parallel elimination. Trying to apply the two usual rules of rewriting (→m and →a ) in parallel leads

to critical pairs, so we are forced to define a new kind of cut (tightening-cut) and a new rewriting rule

(→t ). The simulation of this reduction rule by Boolean circuits needs UstConn2 gates to be made with

efficiency.

The proof nets we study are for Multiplicative Linear Logic with unbounded arity (MLLu, section 2)

and because of the linearity of this logic, we are forced to keep track of the partial results generated

by the evaluation that are unused in the result. Boolean proof nets (section 4) – as introduced by

Terui – have an expensive way of manipulating this garbage. In this paper we introduce proof circuits

(section 5) as a refinement of the Boolean proof nets that are simpler to manipulate. They are made

of pieces which translate gates and compose easily, so that we reduce the size of the proof net translat-

ing the Boolean circuits. In section 6 we conclude our paper with our main result (theorem 2): there

exists a constant-depth reduction from Boolean circuit families to proof circuit families. So our new

framework offers a variant of the proofs for complexity results and extends them to small classes of

complexity, in a uniform way.

∗Work partially supported by the French project Complice (ANR-08-BLANC-0211-01).

http://dx.doi.org/10.4204/EPTCS.75.2
http://creativecommons.org
http://creativecommons.org/licenses/by-nc-sa/3.0/


16 Sublogarithmic uniform Boolean proof nets

1 Boolean circuits

Boolean circuits (definition 2) are of great interest in the study of complexity, for instance because

of the efficiency of their parallel evaluation. One of their features is that they work only on inputs of

fixed length, and that forces us to deal with families of Boolean circuits – and there arises the question

of uniformity (definition 4).

Definition 1 (Boolean function). A n-ary Boolean function f n is a map from {0,1}n to {0,1}. A Boolean

function family is a sequence f = ( f n)n∈N and a basis is a set of Boolean functions and Boolean func-

tion families. We set :

B0 = {¬,∨2,∧2} andB1 = {¬, (∨n )nÊ2, (∧n )nÊ2}

The Boolean function UstConn2, given in input the coding of an undirected graph G of degree at most

2 and two names of gates s and t , outputs 1 iff there is a path between s and t in G .

Definition 2 (Boolean circuits). Given a basisB, a Boolean circuit overBwith n inputs C is a directed

acyclic finite and labeled graph. The nodes of fan-in 0 are called input nodes and are labeled with

x1, . . . , xn ,0,1. Non-input nodes are called gates and each one of them is labeled with a Boolean func-

tion from B whose arity coincides with the fan-in of the gate. There is a unique node of fan-out 0

which is the output gate. We indicate with a subscript the number of inputs: a Boolean circuit C with

n inputs will be named Cn .

The depth of a Boolean circuit Cn d (Cn) is the length of the longest path between an input node

and the output gate. Its size |Cn | is its number of nodes. We will only consider Boolean circuits of size

nO(1), that is to say polynomial in the size of their input.

Cn accepts a word w ≡ w1 . . . wn ∈ {0,1}n if Cn evaluates to 1 when w1, . . . , wn are respectively

assigned to x1, . . . , xn . A family of Boolean circuits is an infinite sequence C = (Cn)n∈N of Boolean

circuits, C accepts a language X ⊆ {0,1}∗ iff for all w ∈ X , C|w | accepts w .

We now recall the definition of the Direct Connection Language of a family of Boolean circuits, an

infinite sequence of tuples that describes it totally.

Definition 3 (Direct Connection Language [9]). Given (.) a suitable coding of integers and C = (Cn)n∈N

a family of Boolean circuits over a basis B, its Direct Connection Language – written LDC (C ) – is the

set of tuples < y, g , p,b >, such that for |y | = n, we have: g is a gate in Cn , labeled with b ∈B if p = ǫ,

else b is its p t h predecessor.

Definition 4 (Uniformity [1]). A family C is said to be DLOGTIME-uniform if there exists a determin-

istic Turing Machine with random access to the input tape that given LDC (C ), n and g outputs in time

O(log(|Cn |)) any information (position, label or predecessors) about the gate g in Cn .

Despite the fact that a DLOGTIME Turing Machine has more computational power than a con-

stant-depth circuit, “a consensus has developed among researchers in circuit complexity that this D-

LOGTIME uniformity is the ‘right’ uniformity condition” for small complexity classes [5]. Any further

reference to uniformity is to be read as DLOGTIME uniformity.

Definition 5 (AC i , NC i ). For all i ∈ N, given B a basis, a language X ⊆ {0,1}∗ belongs to the class

AC i (B) (resp. NC i (B)) if X is accepted by a uniform family of polynomial-size, logi -depth Boolean

circuits overB1 ∪B (resp. B0 ∪B). We set AC i (;) = AC i and NC i (;) = NC i .



Clément Aubert 17

2 MLLu

Rather than using Multiplicative Linear Logic (MLL) – which would force us to compose binary con-

nectives to obtains n-ary connectives – we work with MLLu which differs only on the arities of the

connectives but better relates to circuits. We write
−→
A (resp.

←−
A ) for an ordered sequence of formulae

A1, . . . , An , (resp. An , . . . , A1).

Definition 6 (Formulae of MLLu). Given α a literal and n Ê 2, formulae of MLLu are:

A ::=α | α
⊥
| ⊗

n (
−→
A ) | Mn (

←−
A )

Duality is defined with respect to De Morgan’s law :

(A⊥)⊥ ≡ A

(⊗n(
−→
A ))⊥ ≡ M

n(
←−
A⊥)

(Mn(
←−
A ))⊥ ≡ ⊗

n(
−→
A⊥)

As for the rest of this article, consider that A, B and D will refer to MLLu formulae. A[B/D] denotes

A where every occurrence of B is replaced by an occurrence of D. We write A[D] if B =α.

Definition 7 (Sequent calculus for MLLu). A sequent of MLLu is of the form ⊢ Γ, where Γ is a multiset

of formulae. The inference rules of MLLu are as follow :

ax.
⊢ A, A⊥

⊢ Γ1, A1 . . . ⊢ Γn , An
⊗n

⊢Γ1, . . . ,Γn ,⊗n (
−→
A )

⊢ Γ, A ⊢∆, A⊥

cut
⊢ Γ,∆

⊢Γ,
←−
A

M
n

⊢Γ,Mn(
←−
A )

Derivations of MLLu are built with respect to those rules. MLLu has neither weakening nor contrac-

tion, but admits implicit exchange and eliminates cuts. The formulae A and A⊥ in the rule cut are

called the cut formulae.

3 Proof nets

Proof nets are a parallel syntax for MLLu that abstract away everything irrelevant and only keep the

structure of the proofs. We introduce measures (definition 10) on them in order to study their struc-

ture and complexity, and a parallel elimination of their cuts (definition 11).

Definition 8 (Links). We introduce in figure 1 three sorts of links – •, ⊗n andMn – which correspond

to MLLu rules.

Every link may have two kinds of ports: principal ones, indexed by 0 and written below, and aux-

iliary ones, indexed by 1, . . . ,n and written above. The auxiliary ports are ordered, but as we always

represent the links as in figure 1, we may safely omit the numbering. Axiom links have two principal

ports, both indexed with 0, but we can always differentiate them (for instance by naming them 0r and

0l ) if we need to.

Remark 1. There is no sort cut: a cut is represented with an edge between two principal ports.



18 Sublogarithmic uniform Boolean proof nets

•

0 0

⊗

0

1 n
. . . . . .

M

n 1
. . . . . .

0

Figure 1: ax-link, ⊗n-link andMn-link

Definition 9 (Decorated derivations and proof net). Given a derivation of MLLu, we decorate it in the

following way:

– an index is associated to every formula. The formulae introduced by an axiom have the same

proper index, and the formulae introduced by a logical rules (⊗n andMn) have a fresh index,

– a description is associated to every sequent.

The rules given in figure 2 indicate how a proof is decorated and how to build a proof net from a

description.

The type of a proof net P is Γ if there exists a decorated derivation of ⊢ Γ⊲D(P): a proof net always

has several types, but up to α-equivalence (renaming of the literals) we may always assume it has a

unique principal type. If a proof net may be typed with Γ, then for every A it may be typed with Γ[A].

By extension we will use the notion of type of an edge.

The structures obtained by following those rules respect criterion of correctness. For instance two

ports of a same link may not be connected, a port may be connected only once and every auxiliary

port is connected. We do not have to take into account pseudo nets.

Remark 2. The same proof net – as it abstracts derivations – may be induced by several descriptions.

Conversely, several graphs – as representations of proof nets – may correspond to the same proof net:

we get round of this difficulty by associating to every proof net a single drawing among the drawings

with the minimal number of crossings between edges, for the sake of simplicity. Two graphs repre-

senting proof nets that can be obtained from the same description are taken to be equal.

Definition 10 (Size and depth of a proof net). The size |P | of a proof net P is the number of its links.

The depth of a proof net is defined with respect to its type:

– The depth of a formula is defined by recurrence:

d (α) = d (α⊥)= 1

d (⊗n(
−→
A )) = d (Mn(

←−
A )) = 1+max(d (A1), . . . ,d (An))

– The depth d (π) of a derivation π is the maximum depth of cut formulae in it.

– The depth d (P) of a proof net P is

mi n{d (π) | π can be decorated as ⊢ Γ⊲D(P) for some Γ}

The depth d (P) of a proof net depends on its type, but it is minimal when we consider the

principal type of the proof net.

To make the most of the computational power of proof nets, we need to achieve a speed-up in

the number of steps needed to normalize them. If we try roughly to reduce in parallel a cut between

two ax-links, we are faced with a critical pair. [8] avoids this situation by using a tightening reduction

which eliminates in one step all the cuts between axioms. We can then safely reduce all the other cuts

in parallel.



Clément Aubert 19

ax.
⊢ p : A, p : A⊥

⊲axp
 

• pp

{⊢ Γi , pi : Ai ⊲D(Pi )}1ÉiÉn
⊗n

⊢ Γ1, . . . ,Γn , s : ⊗n(
−→
A )⊲ tensor

p1 ,...,pn
s (D(P1), . . . ,D(Pn))

 

P1

p1

Pn

pn

⊗

s

. . . . . .

. . . . . .

⊢ Γ, p : A⊲D(P ) ⊢∆, q : A⊥
⊲D(Q)

cut
⊢ Γ,∆⊲cut p,q (D(P ),D(Q))

 

P

p

Q

q

⊢ Γ, pn : An , . . . , p1 : A1 ⊲D(P )
M

n

⊢ Γ, s :Mn(
←−
A )⊲par

pn ,...,p1
s (D(P ))

 

M
s

. . . . . .

pn . . . . . . p1
P

Edges representing Γ or ∆ are not drawn, D(P ) is one of the description of the proof net P .

Figure 2: From decorated derivations to proof nets

Definition 11 (Cuts and parallel cut-elimination). A cut is an edge between the principal ports of two

links. If one of these links is an ax-link, two cases occurs:

if the other link is an ax-link, we take the maximal chain of ax-links connected by their principal

ports and defines this set of cuts as a t -cut,

otherwise the cut is an a-cut.

Otherwise it is a m-cut and we know that for n Ê 2, one link is a ⊗n-link and the other is aMn-link.

We define on figure 3 three rewriting rules on the proof nets. For r ∈ {t , a,m}, if Q may be obtained

from P by erasing all the r -cuts of P in parallel, we write P âr Q . If P ât Q , P âa Q or P âm Q , we

write P â Q . To normalize a proof net P is to apply â until we reach a cut-free proof net. â∗ is

defined as the transitive reflexive closure of â.

Theorem 1 (Parallel cut-elimination [8]). Every proof net P normalizes in at most O(d (P)) applications

of â.

So the time needed to evaluate a proof net is relative to its depth, and can be in the worst case

linear in its size – as for the Boolean circuits.



20 Sublogarithmic uniform Boolean proof nets

For all ◦ ∈ {(Mn )nÊ2, (⊗n)nÊ2}, ◦ may be • in →m .

• •

. . .

•
→t

•

M
⊗

. . . . . . . . . . . .

→m

. . . . . . . . . . . .

•
→a

Figure 3: t -, a- and m-reductions

4 Boolean proof nets

In order to compare the complexities of proof nets and of Boolean circuits, we need to define how

proof nets represent Boolean values (definition 12) and Boolean functions (definition 13). To study

them in a uniform framework we define their Direct Connection Language (definition 14).

Definition 12 (Boolean type, 0 and 1 [8]). Let b0 and b1 be the two proof nets of type

B =M
3(α⊥,α⊥,α⊗α)

respectively used to represent false and true:

D(b0) = par
q,p,r
s (t ensor

p,q
r (axp , axq )) b0 ≡

⊗

M

•
•

D(b1) = par
p,q,r
s (t ensor

p,q
r (axp , axq )) b1 ≡

⊗

M

• •

We write
−→
b for bi1

, . . . ,bin
for i ∈ {0,1}.

As we can see, b0 and b1 differ on their planarity: descriptions and proof nets exhibit the ex-

changes that were kept implicit in derivations.

Definition 13 (Boolean proof nets [8]). A Boolean proof net with n inputs is a proof net P(
−→
p ) of type

⊢ p1 : B⊥[A1], . . . , pn : B⊥[An], s : ⊗1+m(B[A],D1, . . . ,Dm)

Given
−→
b of length n, P(

−→
b ) is obtained by connecting with cuts p j to bi j

for all 1 ≤ j ≤ n.



Clément Aubert 21

P(
−→
b )â∗ Q where Q is unique, cut-free and for some descriptions Q1, . . . ,Qn described by

t ensor (D(bi),Q1, . . . ,Qm) for i ∈ {0,1}.

We write P(
−→
b ) →ev. bi .

P(
−→
p ) represents a Boolean function f n if for all w ≡ i1 . . . in ∈ {0,1}n , P(bi1

, . . . ,bin
) →ev. b f (w).

We may easily define families of Boolean proof nets and language accepted by a family of Boolean

proof nets.

The tensor indexed with s in the type is the result tensor: it collects the result of the computation

on its first auxiliary port and the garbage – here named D1, . . . ,Dm – on its other auxiliary ports.

Definition 14 (Direct Connection Language for proof nets [7]). Given P = (Pn)n∈N a family of Boolean

proof nets, its Direct Connection Language – written LDC (P) – is the set of tuples < y, g , p ,b > where

for |y | = n: g is a link in Pn , of sort b if p = ǫ else the p t h premise of g is the link b.

If < y, p,0,b > or < y,b,0, p > belong to LDC (P), there is a cut between b and p in C|y |.

5 Proof circuits

A proof circuit is a Boolean proof net (fact 1) made out of pieces (definition 15) which represents

Boolean functions, constants or duplicates values. Garbage is manipulated in an innovative way,

examples 1 should help to understand the mechanism of computation.

From now on every edge represented by is connected on its right to an auxiliary port num-

bered with an integer other than 1 of the result tensor: it carries a piece of garbage.

Definition 15 (Pieces). We present in the table 1 the set of pieces at our disposal. Entries are labeled

with e , exits with s and garbage with g . Edges labeled bk – for k ∈ {0,1} – are connected to the edge

labeled s of the piece bk .

Table 1: Pieces

We set 2 É j É i .

b0 ≡

⊗

M

•
•

s

b1 ≡

⊗

M

• •

s

DU PL1 ≡ ⊗

•

b0 b1

M

•

• s

e

g

N EG ≡

•

•
•

⊗
M

e s



22 Sublogarithmic uniform Boolean proof nets

Table 1: Pieces – continued from previous page

DU PLi ≡

⊗

•

⊗ ⊗

e

b0 b0

i times
︷         ︸︸         ︷

b1 b1

i times
︷        ︸︸        ︷

. . . . . . . . . . . .

M

•

M

•

g

...

•
•

•
• s1

s2

si

si−1

DI S J i ≡

If i = 2, the edge a is the edge s.

M

•
•

g1

b1

⊗
•

e1
•

e2

a

⊗

b1

•

e j

M

•

g j−1

•

⊗

b1

•

ei

M

•

•

gi−1

s

i −3 times







CON J i ≡

⊗
M

e1

•b0
•

g1

••

e2

a

⊗

b0

•

M

•

g j−1

•

⊗

b0

•

e j

ei

M

•

•

gi−1

s

i −3 times









Clément Aubert 23

A piece P with i Ê 0 entries, j Ê 1 exits and k Ê 0 garbage is one of the piece in the table 1, where i

edges are labeled with e1, . . . ,ei , j edges are labeled with s1, . . . , s j and k edges go to the result tensor.

We have P ∈ {b0,b1, N EG , {DU PLi }iÊ1, {DI S J i }iÊ2, {CON J i }iÊ2}.

To compose two pieces P1 and P2 we connect an exit of P1 to an entry of P2. It is not allowed to

loop: we can not connect an entry and an exit belonging to the same piece.

An entry (resp. an exit) that is not connected to an exit (resp. an entry) of another piece is said to

be unconnected.

Definition 16 (Proof circuits). A proof circuit Cn(
−→
p ) with n inputs and one output is obtained by

composing pieces such that n entries and one exit are unconnected. If no garbage is created we add

a DU PL1-piece connected to the unconnected exit to produce some artificially. Then we add a result

tensor whose first edge is connected to the exit – which is also the output of the proof circuit – and the

others to the garbage. We then label every unconnected entries with p1, . . . , pn : those are the inputs

of the proof circuit.

Given
−→
b of length n, Cn(

−→
b ) is obtained by connecting with cuts p j to bi j

for all 1 ≤ j ≤ n.

Fact 1. Every proof circuit is a Boolean proof net.

Proof. We prove this fact with a contractibility criterion [2], by induction on the height of the pieces

of the proof circuit (counted as the number of pieces from the considered piece to the result tensor).

As a proof circuit can always be typed with

⊢B⊥[A1], . . . ,B⊥[An],⊗1+m(B[A],D1, . . . ,Dm)

it is a Boolean proof net.

This fact establishes that proof circuits normalize and output a value, and that it is possible to

represent Boolean functions with them.

Families of proof circuits and acceptation of a language by a family of proof circuits are defined as

usual.

Examples 1. We present briefly two examples of computation: the normalization of a piece b0 con-

nected to a N EG-piece (figure 4, page 24) and how the conditional works (figure 5, page 25). Condi-

tional is the core of the computation, we find this pattern in every piece except N EG and the con-

stants.

Remark 3. To compose two proof circuits C1 and C2, we remove the result tensor of C1, identify the

unconnected exit of C1 with the selected input of C2, and recollect all the garbage with the result

tensor of C2. We then label the unconnected entries anew and obtain a proof circuit.

Definition 17 (PCC i (resp. mB N i , [7])). A language X ⊆ {0,1}∗ belongs to the class PCC i (resp.

mB N i ) if X is accepted by a polynomial-size, logi -depth uniform family of proof circuits (resp. of

Boolean proof nets).

If we add "U stConn2-pieces" to the set of pieces, we may easily define PCC i (U stConn2) and

remark that for all i ∈N, PCC i ⊆ PCC i (U stConn2). [8] proves that there exists Boolean proof nets of

constant-depth and polynomial size that represent U stConn2, so we do not define mB N i (UstConn2)

because it would be easy to prove that this class is equal to mB N i for all i ∈N.

Remark 4. By fact 1 we have trivially that for all i ∈N, PCC i ⊆ mB N i .

Lemma 1. For all proof circuit Cn(
−→
p ) and all

−→
b , the cuts at maximum depth in Cn(

−→
b ) are between

the entry of a piece and a value (a constant b0 or b1, or an input bi j
for some 1 ≤ j ≤n).



24 Sublogarithmic uniform Boolean proof nets

⊗

M

•
•

•

•

•

⊗
M

→m
•
•

⊗

M

•

•

•

�a

•
•

⊗

M

≡
⊗

M

• •

Figure 4: b0 connected to N EG normalizes to b1

Proof. For every piece P of Cn(
−→
b ) any cut connecting an entry is always of depth superior or equal

to the maximal depth of the cuts connecting the exits. The cuts of P that do not connect an entry or

an exit of a piece are always of depth inferior or equal to cuts connecting the entries.

The depths of the cut formulae slowly increase from the exit to the entry, and as the entries that

are not connected to other pieces are connected to values, this lemma is proved.

6 Results

By using our proof circuits we prove anew the inclusions between AC i and logical classes of complex-

ity and extend this inclusion to sublogarithmic classes of complexity.

Definition 18 (Problem: Translation from AC i to PCC i ).

Input: LDC (C ) for C a family of Boolean circuits in AC i .

Output: LDC (C ) for C a family of proof circuits in PCC i , such that for

all n ∈ N, for all
−→
b ≡ bi1

, . . . ,bin
, Cn(

−→
b ) →ev. b j iff Cn(i1, . . . , in)

evaluates to j .

Theorem 2. For all i ∈N, translation from AC i to PCC i belongs to AC 0.

Proof. The translation from C to C is obvious, it relies on coding: for every n, a first constant-depth

circuit associate to every gate of Cn the corresponding piece simulating its Boolean function. If the

fan-out of this gate is k > 1, a DU PLk -piece is associated to the exit of the piece, and the pieces are

connected as the gates. The input nodes are associated to the inputs of Cn . A second constant-depth

circuit recollects the only free exit and the garbage of the pieces and connects them to the result

tensor. The composition of these two Boolean circuits produces a constant-depth Boolean circuit

that builds proof circuits.

It is easy to check that CON J k , DI S J k and N EG represent ∧k , ∨k and ¬ respectively. DU PLk

duplicates a value k times, b0 and b1 represent 0 and 1 by convention. The composition of these

pieces does not raise any trouble: Cn effectively simulates Cn on every input of size n.



Clément Aubert 25

⊗

M

• •

⊗

•

⊗

M

•
•

⊗

M

• •

→m

⊗

M

•
•

⊗

M

• •

⊗
• •

•

âa

⊗

⊗

M

•
•

⊗

M

• •

The input (here in a dashed rectangle) is proof net of type B, and it “selects” – according to its planarity or non-

planarity– during the normalization which one of b0 or b1 is connected to the first auxiliary port of the tensor

and so is considered as the result – the other being treated as garbage.

Figure 5: The conditional, the core of the computation

Concerning the bounds: the longest path between an entry or a constant and the result tensor

goes through at most 2×d (Cn) pieces and we know by lemma 1 that the increase of the depth is linear

in the number of pieces crossed. We conclude that d (Cn) É 2×3×d (Cn) and that Cn normalizes in

O(d (Cn)) parallel steps.

Concerning the size, by counting we know that a gate of fan-in n and fan-out m is simulated by a

piece made of O(m +n) links. As the number of edges in Cn is bounded by |Cn |
2, the size of Cn is at

most O(|Cn |
2).

A Boolean circuit with unbounded (resp. bounded) arity of size s is translated by a Proof circuit of

size quadratic (resp. linear) in s, whereas [8] considers only unbounded Boolean circuits and translate

them with Boolean proof nets of size O(s5). Our translation – thanks mostly to the easier garbage

collection – needs less computational power, is more clear and besides lower the size of the Boolean

proof nets obtained.

Of course, we could naturally extend this translation to a translation from AC i (UstConn2) to

PCC i (UstConn2) and still remain in AC 0. But it is of little interest to look for a sublogarithmic trans-

lation toward a class of complexity which is probably not strictly included in L.

Fact 2. As the reduction from C to C is in AC 0, we know that this reduction is correct for Boolean circuit

families in AC 0 and that every C obtained by this translation is uniform.

This result brings a novelty in the study of the proof nets as a class of complexity, making them

able to simulate very small classes of complexity born from the Boolean circuits.

Theorem 3 (Simulation). For all i ∈ N, for all Boolean proof net family P = (Pn)n∈N in mB N i , there

exists a family of Boolean circuits C = (Cn )n∈N in AC i (UstConn2) and a constant-depth circuit in AC 0

that given LDC (P) outputs LDC (C ) such that for all
−→
b ≡ bi1

. . .bin
, Pn(

−→
b ) →ev. b j iff Cn(i1, . . . , in) eval-

uates to j .

Proof. We know thanks to [8] that for r ∈ {a,m, t } an unbounded fan-in constant-depth circuit with

O(|Pn |
3) gates – with UstConn2 gates to identify chains of axioms if r = t – is able to reduce all the

r -cuts of Pn in parallel.

A first constant-depth circuit establishes the configuration – which describes Pn – from LDC (P)

and constant-depth circuits update this configuration after steps of normalization. Once the config-

uration of the normal form of Pn is obtained, a last constant-depth circuit identifies the first proof



26 Sublogarithmic uniform Boolean proof nets

net connected to the result tensor and establishes if it is b0 or b1 – that is to say if the result of the

evaluation is false or true.

As all the circuits are of constant depth, the depth of Cn is linear in d (Pn). The size of Cn is

O(|Pn |
4): every circuit simulating a parallel reduction needs O(|Pn |

3) gates and in the worst case –

if d (Pn) is linear in the size of the proof circuit – O(|Pn |) steps are needed to normalize the proof net.

The remark 4 helps us to conclude that PCC i ⊆ mB N i ⊆ AC i (UstConn2)

The simulation is slightly different from the translation: the Boolean circuit does not have to iden-

tify the pieces or any mechanism of computation of Pn , but simply to apply ât , âa , âm to it until

it reaches a normal form and then look at the value obtained. This simulation can be applied to any

Boolean proof net, but in order to have results concerning complexity we preferred to stay in this

uniform framework.

Theorem 4. For all i ∈N, AC i ⊆ PCC i ⊆ AC i (UstConn2).

Proof. By theorem 2 and theorem 3. The key point is to notice – as the reductions are in AC 0– that

AC 0 ⊆ PCC 0 ⊆ AC 0(UstConn2).

Remark 5. We focused on sublogarithmic classes of complexity, but we can draw more general con-

clusions by re-introducing UstConn2. From what precedes and from the fact that UstConn2 may be

represented by Boolean proof nets of constant-depth and polynomial size, it is easy to conclude that

for all i ∈N, PCC i (UstConn2) = AC i (UstConn2) = mB N i .

Conclusion

By restricting ourselves to the uniform complexity classes and by lightening the simulation of the

Boolean functions by proof nets, we established the validity of results given by [8] and [6] when ex-

tended to constant-depth Boolean circuits. Those complexity classes are of great interest as they are

below L and mostly used in reductions. This paper proves that proof nets for Multiplicative Linear

Logic are a pertinent tool to study complexity classes, including very small ones, even if we do not use

exponentials.

The simulation of the parallel elimination of t -cuts by Boolean circuits needs UstConn2 gates. But

as UstConn2 ∈ L, there is for the time being no clue if a sublogarithmic Boolean circuit can simulate

Boolean proof nets: AC 0(UstConn2) ⊆ AC 1 ⊇ L.

Our future work will aim to prove that proof nets are a model of computation as relevant as Al-

ternating Turing Machines but easier to manipulate: as we are in an implicit complexity framework,

the size of our object suffices to know in which class of complexity it rests, whereas the only way of

knowing where is an ATM is to run it on inputs. We already have gateways – by using correspondences

with Boolean circuits – between Boolean proof nets and ATM, but our objective is to establish direct

proofs.



Clément Aubert 27

References

[1] David A. Barrington, Neil Immerman & Howard Straubing (1990): On uniformity within NC1. Journal of

Computer and System Sciences 41(3), pp. 274–306, doi:10.1109/SCT.1988.5262.

[2] Vincent Danos (1990): La Logique Linéaire appliquée à l’étude de divers processus de normalisation (princi-

palement du λ-calcul). These de doctorat, Université Paris VII .

[3] Vincent Danos & Laurent Regnier (1989): The structure of multiplicatives. Archive for Mathematical logic

28(3), pp. 181–203, doi:10.1007/BF01622878.

[4] Jean-Yves Girard (1996): Proof-nets: The parallel syntax for proof-theory. Logic and Algebra 180, pp. 97–124.

[5] William Hesse, Eric Allender & David A. Barrington (2002): Uniform constant-depth

threshold circuits for division and iterated multiplication. Journal of Computer and

System Sciences 65(4), pp. 695–716, doi:10.1016/S0022-0000(02)00025-9. Available at

http://ftp.cs.rutgers.edu/pub/allender/division.pdf.

[6] Virgile Mogbil (2009): Non-deterministic Boolean Proof Nets. In: Proceedings of FOPARA’09, Lecture

Notes in Computer Science 6324, Springer, pp. 131–145, doi:10.1007/978-3-642-15331-0_9. Available at

http://hal.archives-ouvertes.fr/docs/00/44/39/25/PDF/nBPN_preprintLIPN09.pdf.

[7] Virgile Mogbil & Vincent Rahli (2007): Uniform circuits, & Boolean proof nets. In: Proceedings of LFCS’07,

Lecture Notes in Computer Science 4514, Springer, pp. 401–421, doi:10.1007/978-3-540-72734-7_28. Avail-

able at http://hal.archives-ouvertes.fr/docs/00/14/39/28/PDF/mwBN_preprintLIPN07.pdf.

[8] Kazushige Terui (2004): Proof Nets and Boolean Circuits. In: Proceedings of LICS’04, pp. 182–191,

doi:10.1109/LICS.2004.1319612. Available at http://www.kurims.kyoto-u.ac.jp/~terui/pn.pdf.

[9] Heribert Vollmer (1999): Introduction to Circuit Complexity: A Uniform Approach. Springer Verlag.

http://dx.doi.org/10.1109/SCT.1988.5262
http://dx.doi.org/10.1007/BF01622878
http://dx.doi.org/10.1016/S0022-0000(02)00025-9
http://ftp.cs.rutgers.edu/pub/allender/division.pdf
http://dx.doi.org/10.1007/978-3-642-15331-0_9
http://hal.archives-ouvertes.fr/docs/00/44/39/25/PDF/nBPN_preprintLIPN09.pdf
http://dx.doi.org/10.1007/978-3-540-72734-7_28
http://hal.archives-ouvertes.fr/docs/00/14/39/28/PDF/mwBN_preprintLIPN07.pdf
http://dx.doi.org/10.1109/LICS.2004.1319612
http://www.kurims.kyoto-u.ac.jp/~terui/pn.pdf

	1 Boolean circuits
	2 MLLu
	3 Proof nets
	4 Boolean proof nets
	5 Proof circuits
	6 Results

