
Jean-Yves Marion (Ed.): Second Workshop on
Developments in Implicit Computational Complexity (DICE 2011)
EPTCS 75, 2012, pp. 28–32, doi:10.4204/EPTCS.75.3

Provably Total Functions of Arithmetic with Basic Terms

Evgeny Makarov
INRIA

Orsay, France
emakarov@gmail.com

A new characterization of provably recursive functions of first-order arithmetic is described. Its main
feature is using only basic terms, i.e., terms consisting of 0, the successor S and variables in the
quantifier rules, namely, universal elimination and existential introduction.

1 Introduction

This paper presents a new characterization of provably recursive functions of first-order arithmetic. We
consider functions defined by sets of equations. The equations can be arbitrary, not necessarily defining
primitive recursive, or even total, functions. The main result states that a function is provably recursive iff
its totality is provable (using natural deduction) from the defining set of equations, with one restriction:
only terms consisting of 0, the successor S and variables can be used in the inference rules dealing with
quantifiers, namely universal elimination and existential introduction. We call such terms basic.

Provably recursive functions is a classic topic in proof theory [1]. Let T (e,~x,y) be an arithmetic
formula expressing that a deterministic Turing machine with a code e terminates on inputs ~x producing
a computation trace with code y. A function f is a provably recursive function of an arithmetic theory T
if

T ` ∀~x∃y T (e,~x,y) (1)

for the code e of some Turing machine that computes f . In other words, f is provably recursive if the
termination of its algorithm is provable in T .

The class of provably recursive functions of T can serve as a measure of T ’s strength. For example,
almost all usual functions on natural numbers are provably recursive in Peano Arithmetic (PA). In con-
trast, when induction is limited to Σ1-formulas, the set of provably recursive functions coincides with
the set of primitive recursive functions [1]. Studying provably recursive functions is also useful because
a function that is computable but not provably recursive in T gives rise to a true formula (1) that is
independent of T .

In [3], Leivant proposed a characterization of provably recursive function of PA using a formalism
for reasoning about inductively generated data called intrinsic theories. The intrinsic theory of natural
numbers has a unary data-predicate N, which is supposed to mean that its argument is a natural number.
Unlike PA, intrinsic theories don’t use functional symbols other than the constructors (0 and S in the case
of natural numbers). Thus, provably recursive functions can be characterized using only constructors and
the data-predicate. Our result goes in the same direction by additionally replacing the data-predicate with
restrictions on quantifier rules.

A deduction system with such restrictions can be considered as a way of reasoning about non-
denoting terms. A set of equations P can define non-total functions over natural numbers, and a deduction
system with regular quantifier rules has quantified variables ranging over all, not necessarily denoting,
terms. For example, a formula ∀x∃y f (x) = y is trivially provable in a regular system regardless of the

http://dx.doi.org/10.4204/EPTCS.75.3

E. Makarov 29

A[y]
∀x A[x]

(∀I)

y is not free in open assumptions

∀x A[x]
A[t]

(∀E)

t is free for x in A

A[t]
∃x A[x]

(∃I)

t is free for x in A

∃x A[x]

A[y]....
C

C
(∃E)

y is not free in C

Figure 1: Quantifier rules of natural deduction

definition of f : we start by f (x) = f (x), introduce the existential quantifier to get ∃y f (x) = y and the
universal quantifier to get ∀x∃y f (x) = y. In contrast, allowing only basic eigenterms in the quantifier
rules makes quantifiers range over terms denoting natural numbers. The main result of this paper is that
the formula ∀x∃y f (x) = y is provable with this restriction iff f is provably recursive. One direction is
proved using intrinsic theories; the other is proved directly, but also following the reasoning of a similar
statement in [3].

The structure of the paper is the following. In the next section, relevant definitions are given. Sect. 3
shows that provably recursive functions of PA are provably total when quantifier rules are restricted to
basic terms, and Sect. 4 proves the converse.

2 Definitions

Let P be a set of first-order equations. Let L be the language of P plus a constant 0 and a unary functional
symbol S (if they are not already used in P). The theory A[P] is a first-order theory with equality in the
language L . The axioms of A[P] are the universal closures of the equations in P, denoted by ∀P, the
separation axioms ∀x S(x) 6= 0 and ∀x,y S(x) = S(y)→ x = y, and induction

A[0]→∀x (A[x]→ A[S(x)])→∀x A[x]

for all formulas A in L . The inference rules are the usual rules of classical natural deduction (see, e.g.,
[4]) plus the rules of equality:

A[t] t = s
A[s] t = t

for all formulas A and terms t,s in L (A[s] is obtained from A[t] by replacing some occurrences of t by
s). The natural deduction rules dealing with quantifiers are shown in Fig. 1. It is easy to see that the rules
of equality make it a congruence.

For example, let AM be the usual axioms for addition and multiplication and let PR be the set of
standard defining equations for all primitive recursive functions. Then A[AM] is Peano Arithmetic and
A[PR] is Peano Arithmetic with all primitive recursive functional symbols.

A program is a pair (P, f) consisting of a set of equations P and a functional symbol f occurring in P.
(When f is clear from the context or is irrelevant, we will write P instead of (P, f).)

30 Provably Total Functions of Arithmetic with Basic Terms

We use programs to define functions using an analog of Herbrand-Gödel computability (see [2, 3]).
Given a program P, we write P `= E if E is an equation derivable from P in equational logic. The rules of
equational logic are the following:

1. P `= E for every E ∈ P;

2. P `= t = t for every term t;

3. if P `= E[x], then P `= E[t] for every term t and a variable x;

4. if P `= s[t] = r[t] and P `= t = t ′, then P `= s[t ′] = r[t ′].

The relation computed by (P, f) is {(~n,m) | P `= f(~̄n) = m̄} (as usual, n̄ is a numeral for a number n,
consisting of n occurrences of S applied to 0). This relation does not have to be a function. Let us call P
coherent if P 6`= m̄ = n̄ for two distinct numerals m̄ and n̄. It is easy to see that the relation computed by a
coherent program is a partial function.

However, even for a coherent program P the theory A[P] can be inconsistent because of the separation
axioms. This is the case, for example, for P = {f(g(0)) = S(g(0)), f(x) = g(0)}. Call a program P
strongly coherent if A[P] is consistent. It is clear that if a program is strongly coherent, then it is coherent.

Later it will be important that a program containing a functional symbol f corresponding to a prim-
itive recursive function f also contains all defining equations for f . Programs that satisfy this property
are called full.

A term is called basic if it consists of 0, S and variables only. A term is called primitive recursive
if it is in the language of PR. We write T `b Γ ⇒ A (respectively, T `pr

Γ ⇒ A) if there is a classical
natural deduction derivation of A from open assumptions Γ in T where the eigenterms of the rules of
universal elimination and existential introduction (i.e., terms t in the rules (∀E) and (∃I) in Fig. 1) are
basic (respectively, primitive recursive). If Γ is empty, we write T `b A or T `pr A.

A function f is called provable with basic terms if f is computed by a strongly coherent full program
(P, f) and A[P] `b ∀~x∃y f(~x) = y, and similarly for a function provable with primitive recursive terms.

3 Provably recursive functions are provable with basic terms

In this section, we prove one direction of the main result.

Lemma 1.

1. A[PR] `b ∀~x∃y f(~x) = y for every functional symbol f from PR.

2. A[PR] `b ∀~x∃y t[~x] = y for every primitive recursive term t[~x].

3. If A[PR] ` A, then A[PR] `b A for every formula A.

Proof. 1. By induction on the definition of the primitive recursive function f corresponding to the
functional symbol f. If it is one of the base functions, i.e., zero, addition of one or a projection, then
the claim is obvious. Suppose that f is defined by composition, e.g., f(x) = h(g(x)). By induction
hypothesis, we know that

A[PR] `b ∀x∃y g(x) = y

and
A[PR] `b ∀y∃z h(y) = z (2)

Given x, we can use y such that g(x) = y to perform universal elimination on (2) and then use equality
rules to derive ∃z h(g(x)) = z and ∃z f(x) = z.

E. Makarov 31

Suppose f (~x,y) is defined by primitive recurrence on y. Then it is easy to prove ∀y∃z f(~x,y) = z by
induction on y.

2. By induction on t, using point 1 in the induction step.
3. By induction on the derivation, using point 2 for (∀E) and (∃I).

Theorem 2. All provably recursive functions of A[PR] are provable with basic terms.

Proof. Suppose that f (~x) is provably recursive, i.e., A[PR] ` ∀~x∃y T (e,~x,y) for some Turing machine
with code e that computes f . It is well-known that T is a primitive recursive relation, so we can assume
that T (e,~x,y) has the form g(~x,y) = 0 where g is the functional symbol for some primitive recursive
function g. Let h(y) be the primitive recursive function that extracts the final result from a computation
trace with code y. Since the machine computing f is deterministic, for each ~x we have g(~x,y) = 0 for
exactly one y.

By Lemma 1.3, A[PR] `b ∀~x∃y g(~x,y) = 0. Also, by Lemma 1.1, A[PR] `b ∀y∃z h(y) = z. Let P be the
minimal full program containing equalities from PR for all primitive recursive functional symbols used
in these derivations, plus the following equalities.

f(~x) = h(k(g(~x,y),~x,y))

k(0,~x,y) = y

The following is an outline of a derivation of ∀~x∃z f(~x) = z in A[P]. Given some ~x, let y be such that
g(~x,y) = 0 and let z be such that h(y) = z. Then k(g(~x,y),~x,y) = y, so f(~x) = h(y) = z.

It is left to show that P is strongly coherent and computes f . If f is interpreted by f and k is interpreted
by the total function

k(z,~x,u) =

{
u if z = 0,
y such that g(~x,y) = 0 otherwise

then N |= P; therefore, A[P] is consistent. Further, for every ~m,n, if f (~m) = n then P `= f(~̄m) = n̄. On the
other hand, if f (~m) 6= n, then P 6`= f(~̄m) = n̄ because f is total and P is strongly coherent.

4 Functions that are provable with basic terms are provably recursive

To remind, under the assumption A[P] `b ∀~x∃y f(~x) = y we have to prove that f is provably recursive
according to the definition of Sect. 1, not that A[P] ` ∀~x∃y f(~x) = y, which is trivial. We will prove this
statement indirectly, using intrinsic theories [3].

The intrinsic theory of natural numbers, IT(N), is a first-order theory with equality whose vocabulary
has functional symbols 0, S and a unary predicate symbol N. The additional inference rules are:

N(0)

N(t)
N(St)

N(t) A[0] ∀x (A[x]→ A[Sx])
A[t]

.

The variant of intrinsic theory that we are using, called discrete intrinsic theory and denoted by IT(N)
in [3], also includes the separation axioms. Note that IT(N) uses regular first-order quantifier rules.

A function f is called provable in IT(N) if it is computed by a strongly coherent program (P, f) and
IT(N),∀P ` ∀~x (N(~x)→ N(f(~x))).

The following theorem is proved in [3].

Theorem 3. A function is provably recursive in A[PR] iff it is provable in IT(N).

32 Provably Total Functions of Arithmetic with Basic Terms

Thus, it is enough to show that functions provable with basic terms are provable in IT(N). In fact,
we can show that functions provable with primitive recursive terms are provable in IT(N).

Let us introduce some notation. If A is a formula, then AN denotes A with all quantifiers relativized
to N, i.e., having all subformulas of the form ∀x B replaced by ∀x (N(x)→ B) and all subformulas of the
form ∃x B replaced by ∃x (N(x)∧B). If Γ is a set of formulas, then ΓN = {AN | A ∈ Γ}. If~x = x1, . . . ,xn,
then N(~x) denotes N(x1)∧ . . .∧N(xn).
Lemma 4. Let P be a full program and let t[~x] be a primitive recursive term in the language of P. Then
IT(N),∀P ` N(~x)⇒ N(t[~x]).

Proof. The proof is similar to Lemma 1. For example, to show that a function f (~x,y) defined by primitive
recurrence on y is provable, one needs to use induction on the formula N(y)∧N(f(~x,y)). The fullness of
P is necessary to ensure that the induction hypothesis is true of all subterms of t.

Lemma 5. Suppose that P is a full program and Γ∪{A} is a set of formulas whose free variables are
among ~x. If A[P] `pr

Γ ⇒ A and all primitive recursive functional symbols in the derivation occur in P,
then IT(N),∀P ` N(~x),ΓN ⇒ AN.

Proof. The proof is by induction on the derivation. If A is an axiom of A[P] other than induction, then
IT(N),∀P ` A and A ` AN. The only other cases that need attention are those dealing with quantifiers
and induction.

If A[t] is derived from ∀y A[y], then by induction hypothesis, ∀y (N(y)→ AN[y]) is derivable. Since t
is a primitive recursive term in the language of P, N(t) is derivable by Lemma 4, so AN[t] is derivable as
well. The case of (∃I) is similar. The cases of (∀I) and (∃E) are also straightforward.

The relativized version of the induction axiom is

BN[0]→∀y (N(y)→ BN[y]→ BN[Sy])→∀y (N(y)→ BN[y]) .

It is proved by induction in IT(N) for the formula N(y)∧BN[y].

Theorem 6. All functions provable with primitive recursive terms are provably recursive.

Proof. Let f be computed by a strongly coherent full program (P, f) and let A[P] `pr ∀~x∃y f(~x) = y. Then
by Lemma 5, IT(N),∀P ` ∀~x (N(~x)→ ∃y N(y)∧ f(~x) = y). This implies that IT(N),∀P ` ∀~x (N(~x)→
N(f(~x))), so by Theorem 3, f is provably recursive.

Acknowledgments

I am grateful to Daniel Leivant, Lev Beklemishev and Tatiana Yavorskaya for constructive discussion.

References
[1] Samuel R. Buss (1998): First-Order Proof Theory of Arithmetic. In: Handbook of Proof Theory, chapter II,

Studies in Logic and the Foundations of Mathematics 137, Elsevier, pp. 79–147.
[2] Stephen Kleene (1952): Introduction to Metamathematics. Wolters-Noordhof, Groningen.
[3] Daniel Leivant (2002): Intrinsic reasoning about functional programs I: first order theories. Annals of Pure

and Applied Logic 114(1–3), pp. 117–153, doi:10.1016/S0168-0072(01)00078-1.
[4] Anne Sjerp Troelstra & Helmut Schwichtenberg (2000): Basic proof theory (2nd edition). Cambridge Univer-

sity Press, New York, NY, USA.

http://dx.doi.org/10.1016/S0168-0072(01)00078-1

	1 Introduction
	2 Definitions
	3 Provably recursive functions are provable with basic terms
	4 Functions that are provable with basic terms are provably recursive

