Provably Total Functions of Arithmetic with Basic Terms

Evgeny Makarov
INRIA
Orsay, France
emakarov@gmail.com

Abstract

A new characterization of provably recursive functions of first-order arithmetic is described. Its main feature is using only basic terms, i.e., terms consisting of 0 , the successor S and variables in the quantifier rules, namely, universal elimination and existential introduction.

1 Introduction

This paper presents a new characterization of provably recursive functions of first-order arithmetic. We consider functions defined by sets of equations. The equations can be arbitrary, not necessarily defining primitive recursive, or even total, functions. The main result states that a function is provably recursive iff its totality is provable (using natural deduction) from the defining set of equations, with one restriction: only terms consisting of 0 , the successor S and variables can be used in the inference rules dealing with quantifiers, namely universal elimination and existential introduction. We call such terms basic.

Provably recursive functions is a classic topic in proof theory [1]. Let $T(e, \vec{x}, y)$ be an arithmetic formula expressing that a deterministic Turing machine with a code e terminates on inputs \vec{x} producing a computation trace with code y. A function f is a provably recursive function of an arithmetic theory T if

$$
\begin{equation*}
T \vdash \forall \vec{x} \exists y T(e, \vec{x}, y) \tag{1}
\end{equation*}
$$

for the code e of some Turing machine that computes f. In other words, f is provably recursive if the termination of its algorithm is provable in T.

The class of provably recursive functions of T can serve as a measure of T 's strength. For example, almost all usual functions on natural numbers are provably recursive in Peano Arithmetic (PA). In contrast, when induction is limited to Σ_{1}-formulas, the set of provably recursive functions coincides with the set of primitive recursive functions [1]. Studying provably recursive functions is also useful because a function that is computable but not provably recursive in T gives rise to a true formula (1) that is independent of T.

In [3], Leivant proposed a characterization of provably recursive function of PA using a formalism for reasoning about inductively generated data called intrinsic theories. The intrinsic theory of natural numbers has a unary data-predicate N , which is supposed to mean that its argument is a natural number. Unlike PA, intrinsic theories don't use functional symbols other than the constructors (0 and S in the case of natural numbers). Thus, provably recursive functions can be characterized using only constructors and the data-predicate. Our result goes in the same direction by additionally replacing the data-predicate with restrictions on quantifier rules.

A deduction system with such restrictions can be considered as a way of reasoning about nondenoting terms. A set of equations P can define non-total functions over natural numbers, and a deduction system with regular quantifier rules has quantified variables ranging over all, not necessarily denoting, terms. For example, a formula $\forall x \exists y f(x)=y$ is trivially provable in a regular system regardless of the

$$
\frac{A[y]}{\forall x A[x]}(\forall I) \quad \frac{\forall x A[x]}{A[t]}(\forall E)
$$

y is not free in open assumptions t is free for x in A

$$
\begin{array}{cc}
& \begin{array}{c}
A[y] \\
\vdots \\
\frac{A}{C} \\
\exists x A[x] \\
\exists x] \\
t \text { is free for } x \text { in } A
\end{array} \\
\frac{\exists x A[x]}{C}(\exists E) \\
y \text { is not free in } C
\end{array}
$$

Figure 1: Quantifier rules of natural deduction
definition of f : we start by $f(x)=f(x)$, introduce the existential quantifier to get $\exists y f(x)=y$ and the universal quantifier to get $\forall x \exists y f(x)=y$. In contrast, allowing only basic eigenterms in the quantifier rules makes quantifiers range over terms denoting natural numbers. The main result of this paper is that the formula $\forall x \exists y f(x)=y$ is provable with this restriction iff f is provably recursive. One direction is proved using intrinsic theories; the other is proved directly, but also following the reasoning of a similar statement in [3].

The structure of the paper is the following. In the next section, relevant definitions are given. Sect. 3 shows that provably recursive functions of PA are provably total when quantifier rules are restricted to basic terms, and Sect. 4 proves the converse.

2 Definitions

Let P be a set of first-order equations. Let \mathscr{L} be the language of P plus a constant 0 and a unary functional symbol S (if they are not already used in P). The theory $\mathbf{A}[P]$ is a first-order theory with equality in the language \mathscr{L}. The axioms of $\mathbf{A}[P]$ are the universal closures of the equations in P, denoted by $\forall P$, the separation axioms $\forall x \mathrm{~S}(x) \neq 0$ and $\forall x, y \mathrm{~S}(x)=\mathrm{S}(y) \rightarrow x=y$, and induction

$$
A[0] \rightarrow \forall x(A[x] \rightarrow A[\mathrm{~S}(x)]) \rightarrow \forall x A[x]
$$

for all formulas A in \mathscr{L}. The inference rules are the usual rules of classical natural deduction (see, e.g., [4]) plus the rules of equality:

$$
\frac{A[t] \quad t=s}{A[s]} \quad \overline{t=t}
$$

for all formulas A and terms t, s in $\mathscr{L}(A[s]$ is obtained from $A[t]$ by replacing some occurrences of t by $s)$. The natural deduction rules dealing with quantifiers are shown in Fig. 1. It is easy to see that the rules of equality make it a congruence.

For example, let AM be the usual axioms for addition and multiplication and let PR be the set of standard defining equations for all primitive recursive functions. Then $\mathbf{A}[\mathrm{AM}]$ is Peano Arithmetic and $\mathbf{A}[\mathrm{PR}]$ is Peano Arithmetic with all primitive recursive functional symbols.

A program is a pair (P, f) consisting of a set of equations P and a functional symbol f occurring in P. (When f is clear from the context or is irrelevant, we will write P instead of (P, f).)

We use programs to define functions using an analog of Herbrand-Gödel computability (see [2, 3]). Given a program P, we write $P \vdash^{=} E$ if E is an equation derivable from P in equational logic. The rules of equational logic are the following:

1. $P \vdash^{\equiv} E$ for every $E \in P$;
2. $P \vdash^{\equiv} t=t$ for every term t;
3. if $P \vdash^{=} E[x]$, then $P \vdash^{\vDash} E[t]$ for every term t and a variable x;
4. if $P \vdash^{\risingdotseq} s[t]=r[t]$ and $P \vdash^{F} t=t^{\prime}$, then $P \vdash^{=} s\left[t^{\prime}\right]=r\left[t^{\prime}\right]$.

The relation computed by (P, f) is $\left\{(\vec{n}, m) \mid P \vdash^{=} \mathrm{f}(\overrightarrow{\bar{n}})=\bar{m}\right\}$ (as usual, \bar{n} is a numeral for a number n, consisting of n occurrences of S applied to 0). This relation does not have to be a function. Let us call P coherent if $P \stackrel{\bar{\gamma}}{\bar{m}}=\bar{n}$ for two distinct numerals \bar{m} and \bar{n}. It is easy to see that the relation computed by a coherent program is a partial function.

However, even for a coherent program P the theory $\mathbf{A}[P]$ can be inconsistent because of the separation axioms. This is the case, for example, for $P=\{\mathrm{f}(\mathrm{g}(0))=\mathrm{S}(\mathrm{g}(0)), \mathrm{f}(x)=\mathrm{g}(0)\}$. Call a program P strongly coherent if $\mathbf{A}[P]$ is consistent. It is clear that if a program is strongly coherent, then it is coherent.

Later it will be important that a program containing a functional symbol f corresponding to a primitive recursive function f also contains all defining equations for f. Programs that satisfy this property are called full.

A term is called basic if it consists of $0, S$ and variables only. A term is called primitive recursive if it is in the language of PR. We write $T \vdash^{b} \Gamma \Rightarrow A$ (respectively, $T \vdash^{p r} \Gamma \Rightarrow A$) if there is a classical natural deduction derivation of A from open assumptions Γ in T where the eigenterms of the rules of universal elimination and existential introduction (i.e., terms t in the rules $(\forall E)$ and $(\exists I)$ in Fig. 1) are basic (respectively, primitive recursive). If Γ is empty, we write $T \vdash^{b} A$ or $T \vdash^{p r} A$.

A function f is called provable with basic terms if f is computed by a strongly coherent full program (P, f) and $\mathbf{A}[P] \stackrel{\vdash}{\vdash} \forall \vec{x} \exists y \mathrm{f}(\vec{x})=y$, and similarly for a function provable with primitive recursive terms.

3 Provably recursive functions are provable with basic terms

In this section, we prove one direction of the main result.

Lemma 1.

1. $\mathbf{A}[\mathrm{PR}] \vdash^{b} \forall \vec{x} \exists y \mathrm{f}(\vec{x})=y$ for every functional symbol f from PR .
2. $\mathbf{A}[\mathrm{PR}] \vdash^{b} \forall \vec{x} \exists y t[\vec{x}]=y$ for every primitive recursive term $t[\vec{x}]$.
3. If $\mathbf{A}[\mathrm{PR}] \vdash A$, then $\mathbf{A}[\mathrm{PR}] \vdash^{b} A$ for every formula A.

Proof. 1. By induction on the definition of the primitive recursive function f corresponding to the functional symbol f. If it is one of the base functions, i.e., zero, addition of one or a projection, then the claim is obvious. Suppose that f is defined by composition, e.g., $\mathrm{f}(x)=\mathrm{h}(\mathrm{g}(x))$. By induction hypothesis, we know that

$$
\mathbf{A}[\mathrm{PR}] \vdash^{b} \forall x \exists y \mathrm{~g}(x)=y
$$

and

$$
\begin{equation*}
\mathbf{A}[\mathrm{PR}] \vdash^{b} \forall y \exists z \mathrm{~h}(y)=z \tag{2}
\end{equation*}
$$

Given x, we can use y such that $g(x)=y$ to perform universal elimination on (2) and then use equality rules to derive $\exists z \mathrm{~h}(\mathrm{~g}(x))=z$ and $\exists z \mathrm{f}(x)=z$.

Suppose $f(\vec{x}, y)$ is defined by primitive recurrence on y. Then it is easy to prove $\forall y \exists z \mathrm{f}(\vec{x}, y)=z$ by induction on y.
2. By induction on t, using point 1 in the induction step.
3. By induction on the derivation, using point 2 for $(\forall E)$ and $(\exists I)$.

Theorem 2. All provably recursive functions of $\mathbf{A}[\mathrm{PR}]$ are provable with basic terms.
Proof. Suppose that $f(\vec{x})$ is provably recursive, i.e., $\mathbf{A}[\mathrm{PR}] \vdash \forall \vec{x} \exists y T(e, \vec{x}, y)$ for some Turing machine with code e that computes f. It is well-known that T is a primitive recursive relation, so we can assume that $T(e, \vec{x}, y)$ has the form $\mathrm{g}(\vec{x}, y)=0$ where g is the functional symbol for some primitive recursive function g. Let $h(y)$ be the primitive recursive function that extracts the final result from a computation trace with code y. Since the machine computing f is deterministic, for each \vec{x} we have $g(\vec{x}, y)=0$ for exactly one y.

By Lemma 1.3, $\mathbf{A}[\mathrm{PR}] \vdash^{\bullet} \forall \vec{x} \exists y \mathrm{~g}(\vec{x}, y)=0$. Also, by Lemma 1.1, $\mathbf{A}[\mathrm{PR}] \vdash^{b} \forall y \exists z \mathrm{~h}(y)=z$. Let P be the minimal full program containing equalities from PR for all primitive recursive functional symbols used in these derivations, plus the following equalities.

$$
\begin{aligned}
& \mathrm{f}(\vec{x})=\mathrm{h}(\mathrm{k}(\mathrm{~g}(\vec{x}, y), \vec{x}, y)) \\
& \mathrm{k}(0, \vec{x}, y)=y
\end{aligned}
$$

The following is an outline of a derivation of $\forall \vec{x} \exists z \mathrm{f}(\vec{x})=z$ in $\mathbf{A}[P]$. Given some \vec{x}, let y be such that $\mathrm{g}(\vec{x}, y)=0$ and let z be such that $\mathrm{h}(y)=z$. Then $\mathrm{k}(\mathrm{g}(\vec{x}, y), \vec{x}, y)=y$, so $\mathrm{f}(\vec{x})=\mathrm{h}(y)=z$.

It is left to show that P is strongly coherent and computes f. If f is interpreted by f and k is interpreted by the total function

$$
k(z, \vec{x}, u)= \begin{cases}u & \text { if } z=0, \\ y \text { such that } g(\vec{x}, y)=0 & \text { otherwise }\end{cases}
$$

then $\mathbb{N} \models P$; therefore, $\mathbf{A}[P]$ is consistent. Further, for every \vec{m}, n, if $f(\vec{m})=n$ then $P \vdash^{\models} f(\vec{m})=\bar{n}$. On the other hand, if $f(\vec{m}) \neq n$, then $P \mid \overline{ } / \mathrm{f}(\vec{m})=\bar{n}$ because f is total and P is strongly coherent.

4 Functions that are provable with basic terms are provably recursive

To remind, under the assumption $\mathbf{A}[P] \vdash^{b} \forall \vec{x} \exists y \mathrm{f}(\vec{x})=y$ we have to prove that f is provably recursive according to the definition of Sect. 1, not that $\mathbf{A}[P] \vdash \forall \vec{x} \exists y f(\vec{x})=y$, which is trivial. We will prove this statement indirectly, using intrinsic theories [3].

The intrinsic theory of natural numbers, $\mathbf{I T}(\mathbb{N})$, is a first-order theory with equality whose vocabulary has functional symbols $0, \mathrm{~S}$ and a unary predicate symbol N . The additional inference rules are:

$$
\overline{\mathrm{N}(0)} \quad \frac{\mathrm{N}(t)}{\mathrm{N}(\mathrm{~S} t)} \quad \frac{\mathrm{N}(t) \quad A[0] \quad \forall x(A[x] \rightarrow A[\mathrm{~S} x])}{A[t]} .
$$

The variant of intrinsic theory that we are using, called discrete intrinsic theory and denoted by $\overline{\mathbf{I T}}(\mathbb{N})$ in [3], also includes the separation axioms. Note that $\overline{\mathbf{I T}}(\mathbb{N})$ uses regular first-order quantifier rules.

A function f is called provable in $\overline{\mathbf{I T}}(\mathbb{N})$ if it is computed by a strongly coherent program (P, \mathbf{f}) and $\overline{\mathbf{I T}}(\mathbb{N}), \forall P \vdash \forall \vec{x}(\mathrm{~N}(\vec{x}) \rightarrow \mathrm{N}(\mathrm{f}(\vec{x})))$.

The following theorem is proved in [3].
Theorem 3. A function is provably recursive in $\mathbf{A}[\mathrm{PR}]$ iff it is provable in $\overline{\mathbf{I T}}(\mathbb{N})$.

Thus, it is enough to show that functions provable with basic terms are provable in $\overline{\mathbf{I T}}(\mathbb{N})$. In fact, we can show that functions provable with primitive recursive terms are provable in $\overline{\mathbf{I T}}(\mathbb{N})$.

Let us introduce some notation. If A is a formula, then A^{N} denotes A with all quantifiers relativized to N , i.e., having all subformulas of the form $\forall x B$ replaced by $\forall x(\mathrm{~N}(x) \rightarrow B)$ and all subformulas of the form $\exists x B$ replaced by $\exists x(\mathrm{~N}(x) \wedge B)$. If Γ is a set of formulas, then $\Gamma^{\mathbb{N}}=\left\{A^{\mathrm{N}} \mid A \in \Gamma\right\}$. If $\vec{x}=x_{1}, \ldots, x_{n}$, then $\mathrm{N}(\vec{x})$ denotes $\mathrm{N}\left(x_{1}\right) \wedge \ldots \wedge \mathrm{N}\left(x_{n}\right)$.
Lemma 4. Let P be a full program and let $t[\vec{x}]$ be a primitive recursive term in the language of P. Then $\overline{\mathbf{I T}}(\mathbb{N}), \forall P \vdash \mathrm{~N}(\vec{x}) \Rightarrow \mathrm{N}(t[\vec{x}])$.

Proof. The proof is similar to Lemma 1. For example, to show that a function $f(\vec{x}, y)$ defined by primitive recurrence on y is provable, one needs to use induction on the formula $\mathrm{N}(y) \wedge \mathrm{N}(\mathrm{f}(\vec{x}, y))$. The fullness of P is necessary to ensure that the induction hypothesis is true of all subterms of t.

Lemma 5. Suppose that P is a full program and $\Gamma \cup\{A\}$ is a set of formulas whose free variables are among \vec{x}. If $\mathbf{A}[P] \vdash^{p r} \Gamma \Rightarrow A$ and all primitive recursive functional symbols in the derivation occur in P, then $\overline{\mathbf{I T}}(\mathbb{N}), \forall P \vdash \mathrm{~N}(\vec{x}), \Gamma^{\mathrm{N}} \Rightarrow A^{\mathrm{N}}$.

Proof. The proof is by induction on the derivation. If A is an axiom of $\mathbf{A}[P]$ other than induction, then $\overline{\mathbf{T}}(\mathbb{N}), \forall P \vdash A$ and $A \vdash A^{\mathbb{N}}$. The only other cases that need attention are those dealing with quantifiers and induction.

If $A[t]$ is derived from $\forall y A[y]$, then by induction hypothesis, $\forall y\left(\mathrm{~N}(y) \rightarrow A^{\mathrm{N}}[y]\right)$ is derivable. Since t is a primitive recursive term in the language of $P, \mathrm{~N}(t)$ is derivable by Lemma 4 , so $A^{\mathrm{N}}[t]$ is derivable as well. The case of $(\exists I)$ is similar. The cases of $(\forall I)$ and $(\exists E)$ are also straightforward.

The relativized version of the induction axiom is

$$
B^{\mathrm{N}}[0] \rightarrow \forall y\left(\mathrm{~N}(y) \rightarrow B^{\mathrm{N}}[y] \rightarrow B^{\mathrm{N}}[\mathrm{Sy}]\right) \rightarrow \forall y\left(\mathrm{~N}(y) \rightarrow B^{\mathrm{N}}[y]\right) .
$$

It is proved by induction in $\overline{\mathbf{I T}}(\mathbb{N})$ for the formula $\mathrm{N}(y) \wedge B^{\mathrm{N}}[y]$.
Theorem 6. All functions provable with primitive recursive terms are provably recursive.
Proof. Let f be computed by a strongly coherent full program (P, f) and let $\mathbf{A}[P]{ }^{\perp r} \forall \vec{x} \exists y f(\vec{x})=y$. Then by Lemma 5, $\overline{\mathbf{I T}}(\mathbb{N}), \forall P \vdash \forall \vec{x}(\mathrm{~N}(\vec{x}) \rightarrow \exists y \mathrm{~N}(y) \wedge \mathrm{f}(\vec{x})=y)$. This implies that $\overline{\mathbf{I T}}(\mathbb{N}), \forall P \vdash \forall \vec{x}(\mathrm{~N}(\vec{x}) \rightarrow$ $\mathrm{N}(\mathrm{f}(\vec{x}))$), so by Theorem 3, f is provably recursive.

Acknowledgments

I am grateful to Daniel Leivant, Lev Beklemishev and Tatiana Yavorskaya for constructive discussion.

References

[1] Samuel R. Buss (1998): First-Order Proof Theory of Arithmetic. In: Handbook of Proof Theory, chapter II, Studies in Logic and the Foundations of Mathematics 137, Elsevier, pp. 79-147.
[2] Stephen Kleene (1952): Introduction to Metamathematics. Wolters-Noordhof, Groningen.
[3] Daniel Leivant (2002): Intrinsic reasoning about functional programs I: first order theories. Annals of Pure and Applied Logic 114(1-3), pp. 117-153, doi:10.1016/S0168-0072(01)00078-1.
[4] Anne Sjerp Troelstra \& Helmut Schwichtenberg (2000): Basic proof theory (2nd edition). Cambridge University Press, New York, NY, USA.

