
Olivier Danvy, Chung-chieh Shan (Eds.): IFIP Working Conference
on Domain-Specific Languages 2011 (DSL 2011).
EPTCS 66, 2011, pp. 195–209, doi:10.4204/EPTCS.66.10

c© J. Karczmarczuk
This work is licensed under the
Creative Commons Attribution License.

Specific “scientific” data structures, and their processing

Jerzy Karczmarczuk
Dept. of Computer Science, University of Caen, France

jerzy.karczmarczuk@unicaen.fr

Programming physicists use, as all programmers, arrays, lists, tuples, records, etc., and this requires
some change in their thought patterns while converting their formulae into some code, since the
“data structures” operated upon, while elaborating some theory and its consequences, are rather:
power series and Padé approximants, differential forms and other instances of differential algebras,
functionals (for the variational calculus), trajectories (solutions of differential equations), Young dia-
grams and Feynman graphs, etc. Such data is often used in a [semi-]numerical setting, not necessar-
ily “symbolic”, appropriate for the computer algebra packages. Modules adapted to such data may
be “just libraries”, but often they become specific, embedded sub-languages, typically mapped into
object-oriented frameworks, with overloaded mathematical operations. Here we present a functional
approach to this philosophy. We show how the usage of Haskell datatypes and – fundamental for our
tutorial – the application of lazy evaluation makes it possible to operate upon such data (in particular:
the “infinite” sequences) in a natural and comfortable manner.

The fox knows many little things; the hedgehog one big thing.
Archilochus, 680 BC – 645 BC

1 Introduction

The most ubiquitous boiler-plate code element in scientific computation are iterative loops. The term:
“scientific computation” means here applied mathematics, including algebra, analysis and geometry.
We shall not speak about “symbolic” computation – the processing of syntactic structures containing
symbolic indeterminates – but about numerical and “semi-numerical” (using the Knuth [9] terminology)

Fig. 1: An algorith-
mic flower

calculi. Semi-numerical means that the processed data are mainly numeric, but
usually composite and structured, subject to specific global mathematical opera-
tions, e.g. the multiplication of powers series represented as sequences of coeffi-
cients, the contraction of tensors, etc.

Some of these structures are relatively primitive. If x is an appropriately
normalized horizontal gradient picture – a two-dimensional array of numbers
representing gray pixels, and y – its transpose (a vertical gradient), the image at
the right is obtained by one simple algebraic expression: x2 + y2 < 0.5− 0.45 ·
cos(10 · atan2(y,x)).

The for loop for the pixel coordinates is implicit and hidden, and since in the
domain of scientific computing, simulation, etc., the loops are omnipresent, this vectorization mechanism
is the main source of the success of such languages as Matlab. But in images pixels are independent. In
other data structures – such as the mentioned above power series – the manipulation of objects combines
many elements in a non-trivial manner. In others, such as sequences representing the numerical solutions
of differential equations, their construction is incremental, takes into account many existing data pieces
in order to add more. This cannot be easily vectorized.

http://dx.doi.org/10.4204/EPTCS.66.10
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


196 Scientific data structures

This text advocates the use of co-recursive, lazy data structures (mainly 1-dimensional sequences)
processed through functional algorithms implemented in Haskell [11]. We will show several heteroge-
neous examples of the same, uniform approach: how to treat these objects as mathematical expressions,
how to build complicated algorithms upon them, and how to adapt some delicate computational problems
to this sort of algorithmization. The understanding of a simple Haskell code is required from the reader,
but no real experience with lazy algorithms is assumed.

1.1 Simple co-recursive sequences

The laziness of Haskell is often introduced through simple examples of non-terminating, extrapolating
recursive functions, which generate “infinite” lists, such as the definition of the sequence of all positive
integers: integs, predefined as [1 ..] = [1, 2, 3, 4, ...]

integs = fromN 1 where fromN m = m : fromN (m+1)

We shall be more interested by recursive data rather than recursive functions. The case above may be
defined as
integs = 1 : (integs + ones) where ones = 1 : ones

(From now on, the operator (+) acting on sequences, it should be read as the overloaded, element-wise
addition, equivalent to zipWith (+), or similar. Our sequences may not be standard lists, but they
should be Functors (possessing the mapping functional), and they should be “zippable”). The basic
programming pattern is the definition of a piece of data in terms of itself, but “protected” by a known
prefix. So, the list ones begins with 1, and that permits the program to establish the value of its second
elements, which is . . . 1, etc. The second element of integs is equal to 1+ 1 = 2, which makes it
possible to compute the third element. The essence of the algorithm consists in the sequential traversal
of the sequence; no element can be created before its prefix. This is a similar definition of the Fibonacci
sequence [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...]:
fibs = 0 : ftail where ftail = 1 : fibs + ftail

We observe that such constructions are too often presented as pedagogical curiosities, since this “borrow-
ing from the future”, extrapolating recursion, cannot be easily implemented in older classical languages.
We want to advocate their usage as a genuine, practical programming methodology, or – perhaps –
a specific language. We have observed that the obvious activity of physicists, engineers, etc. of “doing
mathematics on a computer” too often results in an abuse of computer algebra packages because of the
confusion between mathematics and the processing of formal expressions. The paradox is that very often
this manipulation of formulae with indeterminates produces the results unwieldy and unreadable, which
are used only to generate numerical codes in, say, Fortran, not for insight.

We believe that a more rational approach would be to implement mathematical computational struc-
tures in a more direct way, and the presented philosophy may be a small step in this direction.

2 Sound generators and transducers

Perhaps it would be interesting to start not with “just” mathematical sequences, but with something hav-
ing a practical physical meaning. A sound [14] is for us just a sequence – the discrete amplitude as
a function of time, generated by algorithmic methods [7]. For technical reasons we have written our
package in Clean [12], but here we present some functions coded in Haskell. The simplest, monochro-
matic acoustic stream is a sinusoid which could be created as y = map (\n->sin(h*n)) [0 ..],
but this is not natural: real sound generators (hardware or human) do not count the time (in this context).



J. Karczmarczuk 197

z-1 z-1

+

c

-

y

Fig. 2: Sine generator

Many synthesizers use the recurrence formula

sin(nh) = 2cos(h) · sin((n−1)h)− sin((n−2)h) (1)

which can be depicted as the diagram at the left. The block z−1

is a delay element, and the triangle depicts a multiplication by a
scalar. This, and many other similar recurrences may be easily
constructed as co-recursive streams. The recipe is straightfor-

ward, the full sequence is given by
y = sin h : ((2*cos h*>yr) - (0:yr))

where the subtraction has been overloaded for lists, and x *> l = map (x*) l is another useful
universal operator which multiplies sequences by scalars. The conversion of recurrence formula into
streams is the main technique covered by this tutorial.

z-1 z-1

+

+

-

y

h

h

Fig. 3: Another oscillator

There is another popular harmonic oscillator implemen-
tation, usable (sufficiently precise) for a very small h, based
on the numerical solution of the appropriate differential equa-
tion (with the frequency ω = 1): y′′ =−y by a modified and
stable Euler method, with v denoting y′: yn+1 = yn + h · vn;
vn+1 = vn− h · yn+1. The “lazy conversion” in this case is
also easy:
y=0:w where {w=y+h*>u ; u=1:u-h*>w}

Observe that the “attenuation” h*>u etc. does not determine the amplitude, but the frequency of the
signal. If we replace these terms by a product with another, slowly oscillating stream: slowOscil*u,
etc., we will get a vibrato effect. More complicated “soft musical instruments” may be based on similar
principles.

z-n

z-1+

y

1/2

Fig. 4: K-S string

A model of a plucked string proposed by Karplus and
Strong [8], whose generalizations are common ingredients of
many string but also wind instruments, contains a delay line
representing the wave propagating medium. Its length deter-
mines the basic frequency of the string. For us, this will be a
finite list, initialized by anything, e.g. by a random noise. This

list is the prefix of the infinite stream, whose assembly filters the sequence, eliminating the high frequen-
cies as shown on the Fig. (5). The code is quite trivial
y = prefx ++ 0.5*>(y + (0:y))

where prefx = take n random_stream

Fig. 5: Sound of a plucked string

and the result is a fairly realistic sound, similar to the guitar, or koto, or other classical string instru-
ments. The details depend on the initial excitation, and on the filter used. Our approach permits the
construction of complicated filters and other transducers (reverberators, vibrato contraptions, etc. [13])
by an extremely compact code.



198 Scientific data structures

2.1 Filters

We have already seen a simple FIR (Finite Impulse Response) filter – the mean of two neighbouring
elements of the input stream. This weakens the higher frequencies and attenuates the signal. The laziness
is not needed for its implementation. But a general linear (IIR: Infinite Impulse Response) filter is a
transformation x→ y described by

yn =
m

∑
k=0

bkxn−k +
p

∑
k=1

akyn−k , (2)

and it may exploit the co-recursion more actively. One useful category of filters is the all-pass, whose
simple instance is: vn = xn−b · vn−M; yn = b · vn + vn−M.

z-M ++ yx

b

-b

Fig. 6: An all-pass filter

Its coding follows our standard co-recursive
pattern. We can define it as the following
function.
allpass m b x = b*>v + d where

d = delay m v
v = x - b*>d

The all-pass filters do not attenuate partic-
ular frequencies, but introduce the dispersion of sound, as if the waves with different frequencies had
different velocities. They are useful for the percussion instruments, for such effects as the reverberation,
and for coding fractional delays, needed for the fine tuning of the musical note frequency.

The main advantage of the co-recursive approach is the compactness of the code, but also its modu-
larity. But we should pass to more formal, mathematical sequences.

3 Power series

Most approximations in mechanics, etc. are based on perturbational calculus, which yields the result as
a power series depending on a small parameter, say, x: U = u0 + u1x+ u2x2 + · · · + unxn + · · · Almost
always a relatively small number of coefficients uk is computable, and the convergence of the series is a
secondary issue, in most interesting cases the series are anyway asymptotic only. In the formal processing
of series the variable x remains indeterminate and is never really used. We will be interested only in the
set of coefficients [u0,u1,u2, . . .] [4, 10].

Adding and subtracting series is easy, element-wise. The multiplication is a convolution, which
requires loops, and a fair amount of “administrative” code, in order to ensure the correct treatment of
truncations. But we don’t truncate anything. . . Let’s represent the series through their first element and
its tail: U = u0 + xU , where U = u1 +u2x+ · · · [4]. We can immediately write

U ·V = (u0 + xU) · (v0 + xV ) = u0 · v0 + x(u0V +U ·V ) (3)

One doesn’t need to be an expert in Haskell in order to code the overloaded multiplication:
(u0 : uq) * v@(v0 : vq) = u0*v0 : (u0*>vq + uq*v)

The definition is recursive, but since the prefix (the first element of the result) is available immediately,
the second element is computable as well. This is a sound co-recursion, with finite progress. The division
seems more intricate, and its “classical” code takes a half of a typical textbook page, or more. But, if
W = U/V , then U = W ·V , and we see that in U = u0 + xU = v0w0 + x(w0V +W ·V ), the components
of W are computable:



J. Karczmarczuk 199

(u0 : uq) / v@(v0 : vq) =
let w0 = u0/v0
in w0 : (uq - w0*>vq) / v

and here the laziness of the language is much more “aggressive”, transposing codes written in this style
to a strict, imperative language is really difficult.

The classical elementary functions need just two auxiliary functions: the differentiation and the
integration of series:

sdiff (_ : uq) = zipWith (*) uq [1..]
sint cnst u = cnst : zipWith (/) u [1..]

If W = eU , then its derivative W ′ = eU ·U ′, or W =
∫

W ·U ′. We have thus another 1-liner:

exp u@(u0 : _) = w where w = sint (exp u0) (sdiff u * w)

Exactly the same procedure can be used for the square root: if W =
√

U , then W ′ =U ′/(2
√

U), or W =√
u0 +

∫
U ′/(2W ), or for the arbitrary power. If W =Ua, then W ′ = aUa−1U ′, or W = ua

0 +
∫

U ′ ·W/U .
A recurrent problem in computation with series is that often the theory gives us a perturbation expan-

sion in the wrong direction (e.g. we get a power series expressing some thermodynamic potential through
pressure, but we want to compute the pressure!) Given a series without the free term (this is important),
say

z = t + v2t2 + v3t3 + · · · , (4)

we want to construct its functional reversal, the series t = W (z), such that z+w2z2 +w3z3 · · · = t. The
algorithms are known since the times of Lagrange, but their coding is quite heavy. But we can reduce
the algorithmization to the composition of series, which produces a very short code. We begin thus
with another question, how to construct W (x) =U(V (x)), where V (0) = 0, otherwise we would have to
compute an infinite numerical sum, in order to get w0. The co-recursive coding in this case is just an
infinite Horner scheme

U(v) = u0 +V · (u1 +V · (u2 +V · (u3 + · · ·))) (5)

= u0 + x(v1 + xv2 + · · ·) · (u1 + x(v1 + xv2 + · · ·) · (u2 + x(· · ·) · (u3 + · · ·))) . (6)

This expression contains just the multiplication of series in a recursive, obvious pattern. The code is:

scomp u (_: v) = cmv u where
cmv (u0 : uq) = u0 : v*cmv uq

We may return to (4). We cannot code directly t = z− v2t2− v3t3− ·· ·, since this is not properly co-
recursive (try!) and will not terminate. But if we introduce p such that t = zp, the “miracle happens”, the
expression p = 1− z · p2[v2 + v3t + v4t2 + · · ·] may be coded :

revser (_ : _ : vb) = t where
t = 0 : p
p = 1 : (-p*p*scomp vb t)

The lesson is the following: lazy algorithms demand sometimes an intelligent preprocessing of the avail-
able data, in order to construct sound co-recursive definitions. Such techniques are not obvious, and
require some experience. This is not the question of knowing a library, or becoming fluent in Haskell.
The user should master a specific language semantics, in order to formulate his algorithmization before
writing the code.



200 Scientific data structures

We will try to solve a singular differential equation, e.g. the modified Bessel equation:

x2w′′+w′+
1
4

w = 0 . (7)

We cannot integrate twice the w′′ term because of the singularity. (We could write an extension for the
Laurent or the Puiseux series, but here we don’t want to). We know that a regular solution exists, and it
suffices to integrate once w′ =−x2w′′− 1

4 w with w0 = 1. This equation is the solution:

w = sint 1 (-(1%4)*>w - (0:0:sdif (sdif w)))

yielding

w = [1,−1
4
,

1
32

,− 3
128

,
75

2048
,− 735

8192
,
19845
65536

, . . .] (8)

Other strategies are also possible, but require more human work.
At the beginning we have used simple lists to represent series (and other sequences), but this is not

the best choice. First, lists are commonly used for other purposes, and it is better not to overload them
with all possible meanings, Haskell offers the algebraic data types, with which it is easier to define the
numerical type classes. In fact, our true series package uses also a specific datatype

data Series a = Zs | !a :* Series a

where Zs is a compact zero series, avoiding the usage of an infinite list when not needed. The definition
of the arithmetic operations is of course almost the same as before.

3.1 Partitions

Another example is a generating function for the number of partitions of an integer. One of possible
representations is an infinite product

Z(x) =
∞

∏
n=1

1
1− xn . (9)

which seems hardly usable. It may be reformulated as a “runaway”, open recurrence

Z(x) = Z1(x) where Zm(x) =
1

1− xm Zm+1(x) . (10)

If we regard at Zm(x) as a series in x, the sequence of its coefficients starts with 1 followed by m zeros.
We can rephrase the equation above as: Zm = Zm+1 + xmZm. Notice that an attempt to express Zm+1
through Zm, the “normal” recursion, would be utterly silly. We need “just” Z1. . .

We define a family of auxiliary sequences Bm such that Zm = 1+xmBm. It fulfils a sound co-recursive
scheme

Bm(x) = 1+ x
(
Bm+1(x)+ xm−1Bm(x)

)
. (11)

The program:

partgen = 1 :* b 1 where
b m = p where p = 1 :* b (m+1) + (0:*1)^(m-1)*p

yields [1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101,135, 176, 231, . . . ] without difficulties. We don’t
even need the series algebra, we have only used the integer power of a primitive series (0:*1)^m, which
can be coded as 1 prefixed by m zeros.



J. Karczmarczuk 201

4 Differential expressions

Everybody needs derivatives. They are not only delivered as some wanted final results, but play also
active role: they are used in differential recurrences which define some functions, in the determination
of the propagation of errors in processing data with uncertainties, etc. Sometimes simple numerical ap-
proximations (differential quotients) suffice, but in general such procedures are unstable, not suited for
higher-order derivatives, and if iterated, the quality of approximation is difficult to estimate. The “sym-
bolic”, formal differentiation dominates, and the usage of computer algebra packages is fairly common,
even if what we really need are numbers – derivatives at a given value of the differentiation variable. (For
simplicity we will discuss here the 1-dimensional case.)

We will show how to enlarge the domain of “normal” arithmetic expressions which may depend on
one particular object called the “differentiation variable”, whose name is irrelevant [6]. The standard
algebra of expressions, with the 4 operations, elementary functions, etc., becomes a differential algebra
– a domain which contains also the derivation: e→ e′, which is a linear ((e+ f )′ = e′+ f ′) operator,
obeying the Leibniz rule: (e · f )′ = e′ · f + e · f ′. This rule, and the existence of the division suffice to
prove that (e/ f )′ = (e′ f − e f ′)/ f 2, and all the differentiation properties of standard functions. But the
elements of such an algebra cannot be “just numbers”, it is easy to prove that such an algebra is trivial,
that e′ = 0 for all e.

We will implement the expressions belonging to a non-trivial algebra extensionally, as sequences
whose head is the “normal” expression containing constants, the value of our “variable”, etc., and the re-
maining elements are derivatives. The programs will manipulate lazy lists [e,e′,e′′,e(3), . . .]. The deriva-
tives are not algorithmically computed from a structural form representing the expression (the program
doesn’t keep it), but are physically present inside. The value of the first derivative of such expression is
its second element. Since in general the derivative is algebraically independent of the original expression,
the sequence is potentially infinite, only in the case of polynomials the sequence terminates with zeros.

4.1 Arithmetic

Of course, we have to start with something. Constants, such as π are represented as [3.14159 . . . ,0,0, . . .],
and the differentiation variable whose value is, say, 2.5, is [2.5,1,0,0, . . .]. There is a resemblance
between this domain and the (Taylor) power series, but they are mathematically different. In order
to optimize the structure of these generalized expressions, we shall not use normal lists, but specific
algebraic data structures:

data Dif a = Cd !a | !a :> Dif a

where the first variant denotes a constant followed by zeros (no need to keep the full infinite tower,
although this might be produced while processing these data), and the recursive case is equivalent to a
list. The “variable” will be coded as 2.5 :> Cd 1, or as 2.5 :> 1, since the lifting from number to
constants is automatic, with the instance fromInteger c = Cd (fromInteger c). The arithmetic
is defined below, the presentation is simplified. The derivatives “compute themselves” as parts of the
manipulated expressions.

Cd x + Cd y = Cd (x+y) -- Trivialities
Cd x + (y:>yq) = (x+y):>yq
(y:>yq) + Cd x = (x+y):>yq
(x:>xq)+(y:>yq) = x+y :> xq+yq



202 Scientific data structures

c*>Cd x = Cd (c*x)
c*>(x:>xq) = (c*x):>(c*>xq)
Cd x * p = x*>p -- and symmetrically
xs@(x:>xq) * ys@(y:>yq) = (x*y) :> (xs*yq+xq*ys)
sqr xs@(x:>xq) = x*x :> (2*>(xq*xs)) -- Square. Slightly optimized

The remaining functions are also straightforward, it suffices to transpose some school formulae into code,
with a minimum of discipline. The co-recursion follows similar patterns as in the case of series.

recip xs@(x:>xq) = ip where
ip = recip x :> (-xq*sqr ip)

xs@(x:>xq)/ys@(y:>yq)
| x==0 && y==0 = xq/yq
| otherwise = w where w = x/y :> xq/ys - w*yq/ys

exp xs@(x:>xq) = w where w = exp x :> xq*w
log xs@(x:>xq) = log x :> (xq/xs)
sqrt xs@(x:>xq) = w where w = sqrt x :> ((1/2) *> (xq/w))
sin xs@(x:>xq) = sin x :> xq*cos xs
cos xs@(x:>xq) = cos x :> (-xq*sin xs)
atan xs@(x:>xq) = atan x :> xq/(1+sqr xs)
asin xs@(x:>xq) = asin x :> xq/sqrt(1-sqr xs)

The division is redundant, it may be retrieved from recip. We have included a variant which applies
automatically the de l’Hôpital rule, but this is not a universal choice !

4.2 Some applications

This was a school exercise, real problems begin now, since the system is full of traps. The instantiation
of the Leibniz rule, when iterated, may easily generate an exponential complexity for the higher-order
derivatives. The life of a lazy programmer is very laborious, as the memory may easily clog with un-
evaluated thunks, if not surveyed. The evaluation of the expression sin x*exp(-x) with x being the
differentiation variable, may generate, say, 24 derivatives, and the memory saturates. But would we, in-
telligent humans, apply blindly the Leibniz rule? We note immediately that the sine and cosine generate
similar, alternating terms, and the function

exsn x@(x0:>_) = p where
ex=exp(-x0)
p = sin x0*ex :> q - p
q = cos x0*ex :> (-p - q)

produces a very large number of elements in a very short time.
The next example is the computation of the Maclaurin series for the Lambert function [2] W (z),

defined by an implicit equation
W (z) · eW (z) = z . (12)

It is useful in combinatorics, and also in theoretical physics: solutions of several differential equations
may be expressed through this function. The differentiation of (12) gives

dz
dW

= eW (1+W )
(
=

z
W

(1+W ) for z 6= 0
)
, (13)



J. Karczmarczuk 203

whose inversion
dW
dz

=
e−W

1+W

(
W
z

1
1+W

)
(14)

may be directly coded, taking into account that W (0) = 0:

w = 0.0 :> (exp (-w)/(1.0+w))

This gives the asymptotic series 0.0, 1.0, 2.0, 9.0, 64.0, . . . , (−n)n−1, . . . , which is of course known, but
the idea may be easily used in other expressions.

4.3 The WKB asymptotic expansion

The last example is a procedure useful e.g., in quasi-classical approximations in quantum physics, in the
scattering theory, etc. [1], the Wentzel-Kramers-Brillouin scheme. We shall just sketch the problem and
its solution, in order to show how the co-recursion avoids a very, very intricate coding gymnastics. This
example should be understood, not necessarily tested. We begin with a simple, but singular differential
equation for y(x), parameterized by a very small number ε:

ε
2y′′ = Q(x)y . (15)

This is nothing exotic, the equation describes a (generalized) wave in space, with the frequency going
to infinity (or the Planck constant going to zero). The function Q(x) is usually simple (for the useful
Airy function Q(x) = x), and we want to develop y as a series in ε . But ε = 0 is an essential singularity,
which degenerates the equation (15). Applied mathematics shows many examples of functions which go
to zero when their argument goes to zero, but no power series can be proposed in its neighbourhood, e.g.,
f (x) = exp(−1/x). This is the case here. . .

Within the WKB formalism, the proposed solution for y is represented as (we neglect the normaliza-
tion):

y ∝ exp

(
1
ε

∑
n=0

ε
nSn(x)

)
. (16)

Inserting that into the equation (15) gives a chain of entangled recurrences for Sn(x). The lowest approx-
imation is S′0(x) = ±

√
Q(x), which should be explicitly integrated, this will not be discussed. For the

remaining terms it is natural to separate the even and the odd terms in the powers of ε:

y = exp
(

1
ε

S0(x)+U(x;ε
2)+ εV (x;ε

2)

)
. (17)

It is easy to see that injecting this formula into (15) generates the following recurrences:

U ′ =
−1
2

S′′0 + ε2V ′′

S′0 + ε2V ′
, V ′ =

−1
2S′0

(
U ′2 +U ′′+ ε

2V ′2
)
, (18)

which can be partly solved: eU = 1/
√

S′0 + ε2V ′, but it is not clear whether this strategy is sound, since
V ′ demands the value of U ′′, which requires V ′′ and V (3), etc. The classical algorithmization of the
WKB approach is a nightmare. . . But U and V are series in ε2 (not in ε , and absolutely not in x!), and
higher derivatives of U and V appear only in higher order terms in ε . The co-recursive formulation of
the process becomes effective. The program is just the transcription of the formulae above:



204 Scientific data structures

s0’=... (depends on Q. The solution is for one value of x.) :: (Dif Double)

infixl 6 +:
(a0 :* aq) +: z = a0 :* (aq+z) -- auxiliary

u = -0.5*>log(s0’ :* v’)
u’ = fmap diff u
v’ = (-0.5/s0’)*>(u’*u’ + fmap diff u’ +: v’*v’)

Now u’, v’ are series whose coefficients are differential chains. From this chains we need only the
principal values, not the derivatives, so we calculate fmap dmain u’ and vv’ = fmap dmain v’,
where dmain (x:>_) = x. The only difficulty is the correct typing discipline, and ordering of the
hierarchical structures: what kind of sequences, with which components.

4.4 Final remark

We have insisted on numerical examples, but the co-recursive strategy is, of course, domain independent,
provided that an adequate set of mathematical operation is defined. The last example combined two
different sorts of sequences.

It is possible to write such algorithms in a symbolic setting, and we did it in Maple and in MuPAD.
But the language of these packages is strict; we used unevaluated macros in order to simulate the lazy
processing, and the “intermediate expression swell disease” is a serious hindrance. Probably the lan-
guages based on rewriting, such as Mathematica, are better adapted to this kind of manipulations than
the very procedural Maple, but we haven’t tested it.

5 Exercise: Feynman diagrams in a 0-dimensional quantum field theory

Your task is to generate the full, untruncated perturbational expansion for a toy Quantum Field The-
ory, which describes the scattering and producing of scalar, chargeless quantum particles in a zero-
dimensional space-time. You will generate infinite power series in the coupling constant γ , considered
small. Despite the lack of realism, this is a genuine computational problem, used sometimes to generate
combinatorial factors for a more serious model. You might appreciate that three pages of description
reduce finally to a program, whose essential part is a one-liner!

In Quantum Field Theory nothing is easy. However, a substantial part of the computational difficul-
ties comes from the fact that the only effective mechanism we have, the perturbational calculus, produces
open, extrapolating recurrence equations for some expressions, and the classical coding of the higher-
order terms is incredibly intricate. This can be seen even in a toy theory, where there is no space, and all
“interactions” and “propagation” of quantum particles, reduce to pure numbers [3].

Fig. 7: General behaviour of particles, propagation and interaction



J. Karczmarczuk 205

The theory possesses some objects depicted above. The first is the “propagator”, the probability ampli-
tude (you don’t need to know its true meaning) that a particle moves from one place to another. In a true
field theory, this is a function G2(x0;x1) depending on the space coordinates, but here it will be just a
number G2. The second is the amplitude of scattering, G4, which in a realistic theory is G4(x0,y0;x1,y1).
The series for G2 and G4, which we include for comparison with your results, is:

G2 = 1+ γ
2 +

25
8

γ
4 +15γ

6 +
12155
128

γ
8 +

11865
16

γ
10 +

7040125
1024

γ
12 + · · ·

G4 =
1
2

γ
2 +4γ

4 +
525
16

γ
6 +300γ

8 + · · ·

Fig. 8: Arbitrary in-
teraction

(By the way, the cited above book of Cvitanovič contains a mistake in one of
the computed coefficients. We are sure that our solution is correct, since we had
simply no place to commit errors!) Our formalism should compute the amplitudes
for any number of particles present, and their repartition in time, e.g. with two
particles coming in, and six getting out, since they can be created or annihilated.
(Pathological cases, such as: some particles entering, and nothing coming out,
or vice-versa, should be excluded, since this is physics, and not the theory of
finance. . . ). Readers not interested in physics may consider this exercise as a
Graph Theory problem.

The theoretical basis is poor, we have just two primitive elements, the “bare” propagator ∆, which
is a given function ∆(x0;x1), and describes the motion of a particle without any interaction. Here it is a
number, and it can be attributed any value, for example 1. The second is the bare vertex V , describing an
emission (or an absorption, this is absolutely equivalent, since the model is timeless) of a virtual particle.
Their graphical form is straightforward:

Fig. 9: Primitive propagator and vertex

The vertex diagram may also represent the disintegration of a particle in two, or the reverse process.
The primitive vertex is numerically proportional to a small number γ – the coupling constant, and in
our model is just equal to it. Attention, in fact the drawing at the right may be considered as the vertex
attached to three propagators: γ∆3, the vertex itself is just the “dot”, or the dot with “hooks”: .

The interaction is “costly”, and the amplitudes will be represented as power series in γ . The first
terms should give a reasonable approximation, although in known interesting models these series are
asymptotic, and diverge. But now everything may happen. The theory says that the amplitude for a given
process is equal to the sum of the weights of all possible contributing diagrams, e.g.:



206 Scientific data structures

= ...

...+ +

+ ++

Fig. 10: Some diagrams. . .

Exercise. Draw all the diagrams for G3 with 3 internal vertices. Write the analytical forms (using ∆ and
γ) for their weights. Question. Is it obvious that in G2n+(0,1) only the terms with γ2m+(0,1) are present?
Why? (You don’t need to be a Field Theory specialist, to answer it.)

We have to sum all topologically different diagrams, and the idea is to generate them recursively. We
will “attach” to the external edges some fictitious variables J called currents (depicted as crosses) J, in
order to construct the equation fulfilled by the generating functional

Z[J] =
∞

∑
n

1
n!

GnJn , (19)

S
n

n!

1
-=

Fig. 11: Generating functional

(In a realistic theory J are functions, and the functional involves the integration over the coordinates.)
The sum above is equivalent to Gn =

dn

dJn Z[J]|J=0. One differentiation produces one external leg.
Our theory must be complete (this is the meaning of: “everything may happen”). A particle may pass

through the interaction zone without interaction, or it may scatter at least once. It is easy to see that the
interaction diagram for say, G4 may be drawn as

...= + + +

Fig. 12: Recursive reduction of G4

Notice that G4 contains G5! The formalism is naturally co-recursive (although rare are physicists who
have ever heard this name. . . ). We shall repeat the same reduction in the case of Z[J]. From now on the
“bubbles” will implicitly keep the dependence on J, we will not put implicitly J = 0.



J. Karczmarczuk 207

= + 1/2
Fig. 13: Dyson-Schwinger equation

Exercise. Prove that its analytical form is:

d
dJ

Z[J] = J∆ ·Z[J]+ 1
2

∆γ
d2

dJ2 Z[J] (20)

Is it obvious that the factor 1/2 which comes from the symmetry considerations is necessary?

Exercise. In the theory of graphs we know that if Z is the generating functional for a set of graphs,
its logarithm: W = logZ generates all the connected components. Write the D-S equation for the first
derivative of W , and draw the appropriate diagram. Prove that the diagram is:

= + +1/2 1/2

Fig. 14: Logarithmic Dyson-Schwinger equation

The combinatorics of this form is similar to the D-S equation for a real theory, but the algebra is richer
(spinors, charge indices, etc., and the space-time adds many analytic features, the functional (or at least
partial) derivatives, and the space integration. In principle the development of W in powers of γ may, and
has been used to generate approximations to measurable amplitudes in electrodynamics, but using some
other techniques, not the D-S equation. Its co-recursive form makes it difficult to generate the code. But
not for us!

W is a function of J and γ , a double series, which should be properly ordered: we shall need some
first terms of the development in J (G2, or G4, etc.), but we want the full, not truncated series in γ .

Exercise. Introduce ϕ = dW/dJ, and rewrite the equation of the Fig. 14, assuming that ∆ = 1;
this parameter, related to the “mass” of the particle may be arbitrarily fixed. Prove that you get: ϕ =
J + 1

2 γ(ϕ ′+ϕ2). Write a program which solves this equation and computes ϕ . Notice that there is
almost nothing to do, this equation should be the program. But the representation of terms depends on
the ordering of the series. Consider ϕ first as a series in γ , whose coefficients are series in J, the first
element of the result, ϕ0(J) = J is the identity series. The differentiation ϕ ′ propagates to the coefficients,
so it should be coded as fmap sdiff.

Exercise. Compute G2 by taking the second term of each element of ϕ , and G4 – the fourth term.
Or, better: transpose the series, and take its second and the fourth element. The transposition function
should be coded in one line. . .

6 Final remarks

Lazy programming is sufficiently universal so that we may speak about a specific language, which has
to be mastered, with its semantics, and style. This style is not a free lunch. . . Some “simple” algorithms



208 Scientific data structures

have fast rising complexity, and the programs do horrible things with the memory. (In some cases a
memoization may help). Sometimes a serious human preprocessing of the formulae is needed in order
to yield a sound co-recursive algorithm. However, we are persuaded that the positive aspects of this
approach dominate.

While discussing the acoustic streams we mentioned that often we don’t need to generate the “time”
stream. But it may be needed elsewhere, e.g. in the solution of equations of motion. The arithmetic
sequences: [x0, x0+h ..] are so ubiquitous and useful, that it might be interesting to represent
them just through their first element, and the difference h. The presentation above may and should be
optimized [5].

6.1 Co-recursion, Universe and Everything

Since this is a “distilled tutorial”, perhaps a bit of a “distilled philosophy” (ethereal. . . ) might be ap-
propriate. In a computing world where imperative programs dominate, the lazy, co-recursive data are
unknown, and it is easy to claim that this approach is “unnatural”. However, the extrapolation, and even
the extrapolating self-reference is quite popular. The well-known flood-filling algorithm in computer
graphics is a paradigmatic example thereof. In order to fill a figure (contiguous set of pixels) with a
given colour, select one (test if unfilled) pixel, fill it, and repeat the same for all the neighbours. This
is the construction of the transitive closure of the neighbouring relation, and it is also used in the sim-
ulation of the percolation, and other similar phenomena. The process is “potentially infinite” and only
the finiteness of the space ensures its termination. But even if the space is infinite, the finite progress of
the process – essential for the co-recursion – is a sound property. The process may be interrupted at any
moment, and resumed.

Why sn+1 = f (sn) (given s0) should be more natural than s = s0 :> f (s) (with an appropriate se-
quencing constructor (:>) which replaces the assignment of some local variables)? Is the strictness,
the applicative order of evaluation more natural than the laziness? The deferred execution might be
slightly less efficient, but we gain in modularity, the creation and the consumption of data are conceptu-
ally separate (although physically they are interleaved). The main obstacle for the usage of co-recursive
techniques is the teaching habitude, the mental pattern “borrow from the future” seems a bit exotic.

But is it? In my opinion a small child who learns to walk, applies this pattern. She has no “admin-
istrative memory” in order to construct an iteration loop in her head. The walking process consists in
traversing a “co-recursive sequence” of steps, while adding them to this Great Plan. And everybody who
had children knows how this process stops. . .

The next example may look a little cynical, but it is realistic. Borrowing money (bank credits) by
poor countries (and some families in difficulty) is too often such a process: more money is borrowed
and added to the debt, in order to pay the existing credit (to traverse the sequence of reimbursement
steps). We know – unfortunately – that this infinite co-recursion must be often broken by an external
mechanism. . . The very idea of the bank credit is a lazy, co-recursive (runaway) algorithm, which works
in practice because the bank buffers are voluminous enough. The true Game consists in running away
before the Bottom hits you. By the way, in some countries (we shall omit their names) the social security
expenses operate on borrowed-from-the-future funds, which will (hopefully) “un-virtualize” themselves
thanks to the work of our grandchildren.

If the reader is still unconvinced, here is the Ultimate Example showing that the co-recursion is The
Big Thing. We have seen that the perturbational approach in the Quantum Field Theory demands that the
description of the virtual amplitudes with n particles contain the amplitudes with n+1, n+2, etc. bodies.
But, is it just a particular theoretical description? No, we know that the theory works, that in the electro-



J. Karczmarczuk 209

weak interactions the particles get produced according to this scheme, and that they un-virtualize and
become real, provided there is enough energy around. But now, in Cosmology, there is a (metaphysical;
impossible to prove, but please! have faith!) hypothesis that the negative gravitational potential energy
of all particles, compensates exactly their positive energy due to their masses. So, the virtual process of
creating more, and more particles, and adding them to this co-recursive Universe may borrow (let’s be
honest: steal!) the energy from the gravitation, activated when the particles will appear. . . The quantum
fluctuations become persistent, and here we are. There cannot be any doubt: “let there be light!” is a
lazy (co-recursive) functional construct.

Now, perhaps the Universe will pay the debt one day, or perhaps the Processor decides to raise a
particular exception to stop this silly process, but this is a matter for another tutorial, presented when I
learn the answer.

References
[1] Carl M. Bender & Steven A. Orszag (1978): Advanced Mathematical Methods for Scientists and Engineers.

McGraw-Hill.
[2] Robert M. Corless, Gaston H. Gonnet, D. E. G. Hare, David J. Jeffrey & Donald E. Knuth (1996): On the

Lambert W Function. Advances in Computational Mathematics 5, pp. 329–359. doi:10.1007/BF02124750
[3] Predrag Cvitanovič (1983): Field Theory. Technical Report, Nordita, Copenhagen.
[4] Jerzy Karczmarczuk (1997): Generating Power of Lazy Semantics. Theoretical Computer Science 187, pp.

203–219. doi:10.1016/S0304-3975(97)00065-0
[5] Jerzy Karczmarczuk (2000): Traitement paresseux et optimisation des suites numériques. In: Actes de

JFLA’2000, INRIA, pp. 17–30.
[6] Jerzy Karczmarczuk (2001): Functional Differentiation of Computer Programs. Higher-Order and Symbolic

Computation 14, pp. 35–57. doi:10.1023/A:1011501232197
[7] Jerzy Karczmarczuk (2005): Functional Framework for Sound Synthesis. In: Practical Applications of

Declarative Programming, LNCS 3350, Springer, Long Beach, pp. 7–21. doi:10.1007/978-3-540-30557-6_3
[8] Kevin Karplus & Alexander Strong (1983): Digital Synthesis of Plucked Strings and Drum Timbres. Com-

puter Mus. Journal 7(2), pp. 43–55.
[9] Donald E. Knuth (1981): The Art of Computer Programming, Seminumerical Algorithms. 2, Addison-Wesley.

[10] M. Douglas McIlroy (1999): Power Series, Power Serious. Journal of Functional Programming 9, pp. 323–
335. doi:10.1017/S0956796899003299

[11] Simon L. Peyton Jones (2003): Haskell 98 Language and Libraries – The Revised Report. Cambridge
University Press.

[12] Rinus Plasmeijer & Marko van Eekelen (1998): Clean Language Report, v. 2.1. HILT B.V. and University of
Nijmegen.

[13] Julius O. Smith: Web publications, Center for Computer Research in Music and Acoustics (CCRMA), Stan-
ford University. Available at http://www-ccrma.stanford.edu/~jos/.

[14] John William Strutt (Lord Rayleigh) (1877): The Theory of Sound. Dover.

http://dx.doi.org/10.1007/BF02124750
http://dx.doi.org/10.1016/S0304-3975(97)00065-0
http://dx.doi.org/10.1023/A:1011501232197
http://dx.doi.org/10.1007/978-3-540-30557-6_3
http://dx.doi.org/10.1017/S0956796899003299
http://www-ccrma.stanford.edu/~jos/

	1 Introduction
	1.1 Simple co-recursive sequences

	2 Sound generators and transducers
	2.1 Filters

	3 Power series
	3.1 Partitions

	4 Differential expressions
	4.1 Arithmetic
	4.2 Some applications
	4.3 The WKB asymptotic expansion
	4.4 Final remark

	5 Exercise: Feynman diagrams in a 0-dimensional quantum field theory
	6 Final remarks
	6.1 Co-recursion, Universe and Everything


