
Olivier Danvy, Chung-chieh Shan (Eds.): IFIP Working Conference
on Domain-Specific Languages 2011 (DSL 2011).
EPTCS 66, 2011, pp. 181–194, doi:10.4204/EPTCS.66.9

c© Jeremy Gibbons

Maximum Segment Sum, Monadically
(distilled tutorial)

Jeremy Gibbons
Department of Computer Science, University of Oxford

Wolfson Building, Parks Road, Oxford OX1 3QD, United Kingdom
jeremy.gibbons@cs.ox.ac.uk

The maximum segment sum problem is to compute, given a list of integers, the largest of the sums
of the contiguous segments of that list. This problem specification maps directly onto a cubic-time
algorithm; however, there is a very elegant linear-time solution too. The problem is a classic exercise
in the mathematics of program construction, illustrating important principles such as calculational
development, pointfree reasoning, algebraic structure, and datatype-genericity. Here, we take a side-
ways look at the datatype-generic version of the problem in terms of monadic functional program-
ming, instead of the traditional relational approach; the presentation is tutorial in style, and leavened
with exercises for the reader.

1 Introduction

Domain-specific languages are one approach to the general challenge of raising the level of abstraction
in constructing software systems. Rather than making use of the same general-purpose tools for all
domains of discourse, one identifies a particular domain of interest, and fashions some tools specifically
to embody the abstractions relevant to that domain. The intention is that common concerns within that
domain are abstracted away within the domain-specific tools, so that they can be dealt with once and for
all rather than being considered over and over again for each development within the domain.

Accepting the premise of domain-specific over general-purpose tools naturally leads to an explosion
in the number of tools in the programmer’s toolbox—and consequently, greater pressure on the tool
designer, who needs powerful meta-tools to support the lightweight design of new domain-specific ab-
stractions for each new domain. Language design can no longer be the preserve of large committees and
long gestation periods; it must be democratized and streamlined, so that individual developers can aspire
to toolsmithery, crafting their own languages to address their own problems.

Perhaps the most powerful meta-tool for the aspiring toolsmith is a programming language expres-
sive enough to host domain-specific embedded languages [15]. That is, rather than designing a new
domain-specific language from scratch, with specialized syntax and a customized syntax-aware editor,
a dedicated parser, an optimization engine, an interpreter or compiler, debugging and profiling systems,
and so on, one simply writes a library within the host language. This can be constraining—one has to
accept the host language’s syntax and semantics, which might not entirely match the domain—but it is
very lightweight, because one can exploit all the existing infrastructure rather than having to reinvent it.

Essentially, the requirement on the host language is that it provides the right features for capturing
new abstractions—things like strong typing, higher-order functions, modules, classes, data abstraction,
datatype-genericity, and so on. If the toolsmith can formalize a property of their domain, the host lan-
guage should allow them to express that formalization within the language. One might say that a suffi-
ciently expressive host language is in fact a domain-specific language for domain-specific languages.

http://dx.doi.org/10.4204/EPTCS.66.9

182 Maximum Segment Sum, Monadically

Given a suitably expressive host language, the toolsmith designs a domain-specific language as a
library—of combinators, or classes, or modules, or whatever the appropriate abstraction mechanism is
in that language. Typically, this consists of a collection of constructs (functions, methods, datatypes)
together with a collection of laws defining an equational theory for those constructs. The pretty-printing
libraries of Hughes [16] and Wadler [24] are a good example; but so is the relational algebra that underlies
SQL [9].

This tutorial presents an exercise in reasoning with a collection of combinators, representative of
the kinds of reasoning that can be done with the constructs and laws of any domain-specific embedded
language. We will take Haskell [22] as our host language, since it provides many of the right features for
expressing domain-specific embedded languages. However, Haskell is still not perfect, so we will take
a somewhat abstract view of it, mixing true Haskell syntax with some mathematical idealizations—our
point is the equational reasoning, not the language in which it is expressed. Section 9 provides a brief
summary of our notation, and there are some exercises in Section 10.

2 Maximum segment sum

The particular problem we will be considering is a classic exercise in the mathematics of program con-
struction, namely that of deriving a linear-time algorithm for the maximum segment sum problem, based
on Horner’s Rule. The problem was popularized in Jon Bentley’s Programming Pearls column [1] in
Communications of the ACM (and in the subsequent book [2]), but I learnt about it from my DPhil super-
visor Richard Bird’s lecture notes on the Theory of Lists [4] and Constructive Functional Programming
[5] and his paper Algebraic Identities for Program Calculation [6], which he was working on around
the time I started my doctorate. It seems like I’m not the only one for whom the problem is a favourite,
because it has since become a bit of a cliché among program calculators; but that won’t stop me revisiting
it.

The original problem is as follows. Given a list of numbers (say, a possibly empty list of integers),
find the largest of the sums of the contiguous segments of that list. In Haskell, this specification could be
written like so:

mss :: [Integer]→ Integer
mss = maximum ·mapsum · segs

where segs computes the contiguous segments of a list:

segs, inits, tails :: [α]→ [[α]]
segs = concat ·mapinits · tails
tails = foldr f [[]] where f xxss = (x : head xss) : xss
inits = foldr g [[]] where gxxss = [] : map(x :)xss

and sum computes the sum of a list of integers, and maximum the maximum of a nonempty list of integers:

sum,maximum :: [Integer]→ Integer
sum = foldr (+)0
maximum = foldr1 (t)

(Here, t denotes binary maximum.) This specification is executable, but takes cubic time; the problem
is to do better.

We can get quite a long way just using standard properties of map, inits, and so on. It is straightfor-
ward (see Exercise 1) to calculate that

mss = maximum ·map(maximum ·mapsum · inits) · tails

Jeremy Gibbons 183

If we can write maximum ·mapsum · inits in the form foldr he, then the map of this can be fused with the
tails to yield scanr he; this observation is known as the Scan Lemma. Moreover, if h takes constant time,
then this gives a linear-time algorithm for mss.

The crucial observation is based on Horner’s Rule for evaluation of polynomials, which is the first
important thing you learn in numerical computing—I was literally taught it in secondary school, in my
sixth-year classes in mathematics. Here is its familiar form:

n−1

∑
i=0

aixi = a0 +a1x+a2x2 + · · ·+an−1xn−1 = a0 + x(a1 + x(a2 + · · ·+ xan−1))

but the essence of the rule is about sums of products (see Exercise 2):
n−1

∑
i=0

i−1

∏
j=0

u j = 1+u0 +u0u1 + · · ·+u0u1 . . .un−1 = 1+u0(1+u1(1+ · · ·+un−1))

Expressed in Haskell, this is captured by the equation

sum ·mapproduct · inits = foldr (⊕)e where e = 1 ; u⊕ z = e+u× z

(where product = foldr (×)1 computes the product of a list of integers).
But Horner’s Rule is not restricted to sums and products; the essential properties are that addition

and multiplication are associative, that multiplication has a unit, and that multiplication distributes over
addition. This the algebraic structure of a semiring (but without needing commutativity of addition).
In particular, the so-called tropical semiring on the integers, in which “addition” is binary maximum
and “multiplication” is integer addition, satisfies the requirements. So for the maximum segment sum
problem, we get

maximum ·mapsum · inits = foldr (⊕)e where e = 0 ; u⊕ z = et (u+ z)

Moreover, ⊕ takes constant time, so this gives a linear-time algorithm for mss (see Exercise 3).

3 Tail segments, datatype-generically

About a decade after the initial “theory of lists” work on the maximum segment sum problem, Richard
Bird, Oege de Moor, and Paul Hoogendijk came up with a datatype-generic version of the problem [3].
It’s fairly clear what “maximum” and “sum” mean generically, but not so clear what “segment” means
for nonlinear datatypes; the point of their paper is basically to resolve that issue.

Recalling the definition of segs in terms of inits and tails, we see that it would suffice to develop
datatype-generic notions of “initial segment” and “tail segment”. One fruitful perspective is given in
Bird & co’s paper: a “tail segment” of a cons list is just a subterm of that list, and an “initial segment” is
the list but with some tail (that is, some subterm) replaced with the empty structure.

So, representing a generic “tail” of a data structure is easy: it’s a data structure of the same type,
and a subterm of the term denoting the original structure. A datatype-generic definition of tails is a little
trickier, though. For lists, you can see it as follows: every node of the original list is labelled with the
subterm of the original list rooted at that node. I find this a helpful observation, because it explains why
the tails of a list is one element longer than the list itself: a list with n elements has n+1 nodes (n conses
and a nil), and each of those nodes gets labelled with one of the n+1 subterms of the list. Indeed, tails
ought morally to take a possibly empty list and return a non-empty list of possibly empty lists—there are
two different datatypes involved. Similarly, if one wants the “tails” of a data structure of a type in which
some nodes have no labels (such as leaf-labelled trees, or indeed such as the “nil” constructor of lists),

184 Maximum Segment Sum, Monadically

one needs a variant of the datatype providing labels at those positions. Also, for a data structure in which
some nodes have multiple labels, or in which there are different types of labels, one needs a variant for
which every node has precisely one label.

Bird & co call this the labelled variant of the original datatype; if the original is a polymorphic
datatype Tα = µ(Fα) for some binary shape functor F, then the labelled variant is Lα = µ(Gα) where
Gα β = α ×F1β—whatever α-labels F may or may not have specified are ignored, and precisely one
α-label per node is provided. Given this insight, it is straightforward to define a datatype-generic variant
subterms of the tails function:

subtermsF = foldF(inG · fork(inF ·F id root,F ! id)) :: Tα → L(Tα)

where root = fst · in−1
G = foldG fst :: Lα → α returns the root label of a labelled data structure, and

!α = (λa . ()) :: α → 1 is the unique arrow to the unit type. (Informally, having computed the tree of
subterms for each child of a node, we make the tree of subterms for the node itself by assembling all
the child trees with the label for this node; the label should be the whole structure rooted at this node,
which can be reconstructed from the roots of the child trees.) What’s more, there’s a datatype-generic
scan lemma too:

scanF :: (Fα β → β)→ Tα → Lβ

scanF f = L(foldF f) · subtermsF
= foldF(inG · fork(f ·F id root,F ! id))

(Again, the label for each node can be constructed from the root labels of each of the child trees.) In
fact, subterms and scan are paramorphisms [19], and can also be nicely written coinductively as well as
inductively [20].

4 Initial segments, datatype-generically

What about a datatype-generic “initial segment”? As suggested above, that’s obtained from the original
data structure by replacing some subterms with the empty structure. Here I think Bird & co sell them-
selves a little short, because they insist that the datatype T supports empty structures, which is to say, that
F is of the form Fα β = 1+F′α β for some F′. This isn’t necessary: for an arbitrary F, we can easily
manufacture the appropriate datatype U of “data structures in which some subterms may be replaced by
empty”, by defining Uα = µ(Hα) where Hα β = 1+Fα β .

As with subterms, the datatype-generic version of inits is a bit trickier—and this time, the special
case of lists is misleading. You might think that because a list has just as many initial segments as it
does tail segments, so the labelled variant ought to suffice just as well here too. But this doesn’t work for
non-linear data structures such as trees—in general, there are many more “initial” segments than “tail”
segments (because one can make independent choices about replacing subterms with the empty structure
in each child), and they don’t align themselves conveniently with the nodes of the original structure.

The approach I prefer here is just to use a collection type to hold the “initial segments”; that is, a
monad. This could be the monad of finite lists, or of finite bags, or of finite sets—we will defer until
later the discussion about precisely which monad, and write simply M. That the monad corresponds to
a collection class amounts to it supporting a “union” operator (]) :: Mα ×Mα →Mα for combining
two collections (append, bag union, and set union, respectively, for lists, bags, and sets), and an “empty”
collection /0 :: Mα as the unit of], both of which the join of the monad should distribute over [17]:

join /0 = /0
join(x] y) = joinx] joiny

Jeremy Gibbons 185

(Some authors also add the axiom join(M(λa . /0)x) = /0, making /0 in some sense both a left and a right
zero of composition.) You can think of a computation of type α →Mβ in two equivalent ways: as a
nondeterministic mapping from an α to one of many—or indeed, no—possible β s, or as a deterministic
function from an α to the collection of all such β s. The choice of monad distinguishes different flavours
of nondeterminism; for example, the finite bag monad models nondeterminism in which the multiplicity
of computations yielding the same result is significant, whereas with the finite set monad the multiplicity
is not significant.

Now we can implement the datatype-generic version of inits by nondeterministically pruning a data
structure by arbitrarily replacing some subterms with the empty structure; or equivalently, by generating
the collection of all such prunings.

prune = foldF(M inH ·opt Nothing ·MJust ·δ2) :: µ(Fα)→M(µ(Hα))

Here, opt supplies a new alternative for a nondeterministic computation:

opt ax = returna] x

and δ2 :: (Fα)M
.→M(Fα) distributes the shape functor F over the monad M (which can be defined for all

traversable functors Fα—we’ll say more about this in Section 7). Informally, once you have computed
all possible ways of pruning each of the children of a node, a pruning of the node itself is formed either
as Just some node assembled from arbitrarily pruned children, or Nothing for the empty structure.

5 Horner’s Rule, datatype-generically

As we’ve seen, the essential property behind Horner’s Rule is one of distributivity, for example of product
over sum. In the datatype-generic case, we will model this as follows. We are given an (Fα)-algebra
(β , f), and a M-algebra (β ,k); you might think of these as “datatype-generic product” and “collection
sum”, respectively. Then there are two different methods of computing a β result from an Fα (Mβ)
structure: we can either distribute the Fα structure over the collection(s) of β s, compute the “product”
f of each structure, and then compute the “sum” k of the resulting products; or we can “sum” each
collection, then compute the “product” of the resulting structure, as illustrated in the following diagram.

Fα (Mβ)
δ2 //

F id k

��

M(Fα β)
M f // Mβ

k

��
Fα β

f
// β

Distributivity of “product” over “sum” is the property that these two different methods agree. For exam-
ple, with f :: FNN→N adding all the naturals in an F-structure, and k :: MN→N finding the maximum
of a collection of naturals (returning 0 for the empty collection), the diagram commutes (see Exercise 8).
(To match up with the rest of the story, we have presented distributivity in terms of a bifunctor F, al-
though the first parameter α plays no role. We could just have well have used a unary functor, dropping
the α , and changing the distributor to δ :: FM .→MF.)

Note that (β ,k) is required to be an algebra for the monad M. This means that it is not only an
algebra for M as a functor (namely, of type Mβ → β), but also it should respect the extra structure of
the monad: k · return = id and k · join = k ·Mk. For the special case of monads of collections, these

186 Maximum Segment Sum, Monadically

amount to what were called reductions in the old Theory of Lists [4] work—functions k of the form ⊕/
for binary operator⊕ :: β×β → β , distributing over union: ⊕/(x]y) = (⊕/x)⊕(⊕/y) (see Exercise 9).
A consequence of this distributivity property is that ⊕ has to satisfy all the properties that] does—for
example, if] is associative, then so must ⊕ be, and so on, and in particular, since] has a unit /0, then ⊕
too must have a unit e⊕ :: β , and ⊕/ /0 = e⊕ is forced (see Exercise 10).

Recall that we modelled an “initial segment” of a structure of type µ(Fα) as being of type µ(Hα),
where Hα β = 1+Fα β . We need to generalize “product” to work on this extended structure, which
is to say, we need to specify the value b of the “product” of the empty structure too. Then we have
maybeb f :: Hα β → β , so that foldH(maybeb f) :: µ(Hα)→ β .

The datatype-generic version of Horner’s Rule is then about computing the “sum” of the “products”
of each of the “initial segments” of a data structure:

⊕/ ·M(foldH(maybeb f)) ·prune

We can use fold fusion to show that this composition can be computed as a single fold, foldF((b⊕) · f),
given the distributivity property⊕/ ·M f ·δ2 = f ·F id (⊕/) above (see Exercise 12). Curiously, it doesn’t
seem to matter what value is chosen for b.

We’re nearly there. We start with the traversable shape bifunctor F, a collection monad M, and a
distributive law δ2 :: (Fα)M

.→M(Fα). We are given an (Fα)-algebra (β , f), an additional element
b :: β , and a M-algebra (β ,⊕/), such that f and ⊕ take constant time and f distributes over ⊕/ in the
sense above. Then we can calculate (see Exercise 13) that

⊕/ ·M(foldH(maybeb f)) · segs =⊕/ · contentsL · scanF((b⊕) · f)

where

segs = join ·Mprune · contentsL · subterms :: µ(Fα)→M(µ(Hα))

and where contentsL :: L .→M computes the contents of an L-structure (which, like δ2, can be defined
using the traversability of F). The scan can be computed in linear time, because its body takes constant
time; moreover, the “sum” ⊕/ and contents can also be computed in linear time (indeed, they can even
be fused into a single pass).

For example, with f :: FZZ→Z adding all the integers in an F-structure, b= 0 ::Z, and⊕ ::Z×Z→
Z returning the greater of two integers, we get a datatype-generic version of the linear-time maximum
segment sum algorithm.

6 Distributivity reconsidered

There’s a bit of hand-waving in Section 5 to justify the claim that the commuting diagram there really is
a kind of distributivity. What does it have to do with the familiar equation a⊗ (b⊕c) = (a⊗b)⊕ (a⊗c)
capturing distributivity of one binary operator ⊗ over another, ⊕?

Recall that δ2 :: (Fα)M
.→M(Fα) distributes the shape functor F over the monad M in its second

argument; this is the form of distribution over “effects” that crops up in the datatype-generic Maximum
Segment Sum problem. More generally, this works for any idiom M; this will be important below.

Generalizing in another direction, one might think of distributing over an idiom in both arguments
of the bifunctor, via an operator δ : F · (M×M)

.→M ·F, which is to say, δβ :: F(Mβ)(Mβ)→M(Fβ),
natural in the β . This is the bidist method of the Bitraversable subclass of Bifunctor that Bruno Oliveira
and I used in our paper [14] on the ITERATOR pattern; informally, it requires just that F has a finite
ordered sequence of “element positions”. Given δ , one can define δ2 = δ ·Fpure id.

Jeremy Gibbons 187

That traversability (or equivalently, distributivity over effects) for a bifunctor F is definable for any
idiom, not just any monad, means that one can also conveniently define an operator contentsH : H .→List
for any traversable unary functor H. This is because the constant functor K[β] is an idiom: the pure
method returns the empty list, and idiomatic application appends two lists. Then one can define

contentsH = δ ·Hwrap

where wrap makes a singleton list. For a traversable bifunctor F, we define contentsF = contentsF4 where
4 is the diagonal functor; that is, contentsF :: Fβ β → [β], natural in the β . (No constant functor is a
monad, except in trivial categories, so this convenient definition of contents doesn’t work monadically.
Of course, one can use a writer monad, but this isn’t quite so convenient, because an additional step is
needed to extract the output.)

One important axiom of δ , suggested by Ondřej Rypáček [23], is that it should be “natural in the con-
tents”: it should leave shape unchanged, and depend on contents only up to the extent of their ordering.
Say that a natural transformation φ : F .→G between traversable functors F and G “preserves contents”
if contentsG ·φ = contentsF. Then, in the case of unary functors, the formalization of “naturality in the
contents” requires δ to respect content-preserving φ :

δG ·φ =Mφ ·δF : TM .→MG ⇐ contentsG ·φ = contentsF

In particular, contentsF : F .→List itself preserves contents, and so we expect

δList · contentsF =M(contentsF) ·δF

to hold.
Happily, the same generic operation contentsF provides a datatype-generic means to “fold” over the

elements of an F-structure. Given a binary operator ⊗ :: β ×β → β and an initial value b :: β , we can
define an (Fβ)-algebra (β , f)—that is, a function f :: Fβ β → β—by

f = foldr (⊗)b · contentsF

This is a slight specialization of the presentation of the datatype-generic MSS problem; there we had
f :: Fα β → β . The specialization arises because we are hoping to define such an f given a homoge-
neous binary operator ⊗. On the other hand, the introduction of the initial value b is no specialization,
as we needed such a value for the “product” of an empty “segment” anyway. This “generic folding”
construction is just what is provided by Ross Paterson’s Data.Foldable Haskell library [21].

7 Reducing distributivity

The general principle about traversals underlying Rypáček’s paper [23] on labelling data structures is that
it is often helpful to reduce a general problem about traversal over arbitrary datatypes to a more specific
one about lists, exploiting the “naturality in contents” property of traversal. We’ll use that tactic for the
distributivity property in the datatype-generic version Horner’s Rule.

188 Maximum Segment Sum, Monadically

Consider the following diagram.

Fβ (Mβ)
Freturn id

//

F id (⊕/)

��

(4)

δ2

))(1)

F(Mβ)(Mβ)
δ

//

contentsF

��

F(⊕/)(⊕/)

����������������������������������

(6)

M(Fβ β)

M f

""FFFFFFFFFFFFFFFFFF

McontentsF

��
(2)

(5)

[Mβ]
δ

//

List(⊕/)

��

(7)

M[β]
M(foldr (⊗)b)

// Mβ

⊕/

��
Fβ β contentsF

//

f

66

(3)

[β]
foldr (⊗)b

// β

The perimeter is just the commuting diagram given in Section 5—the diagram we have to justify. Face (1)
is the definition of δ2 in terms of δ . Faces (2) and (3) are the expansion of f as generic folding of an
F-structure. Face (4) follows from ⊕/ being an M-algebra, and hence being a left-inverse of return.
Face (5) is an instance of the naturality property of contentsF : F4 .→List. Face (6) is the property that
δ respects the contents-preserving transformation contentsF. Therefore, the whole diagram commutes if
Face (7) does—so let’s focus on Face (7):

[Mβ]
δList //

List(⊕/)

��

M[β]
M(foldr (⊗)b) // Mβ

⊕/

��
[β]

foldr (⊗)b
// β

Demonstrating that this diagram commutes is not too difficult, because both sides turn out to be list folds.
Around the left and bottom edges, we have a fold foldr (⊗)b after a map List(⊕/), which automatically
fuses to foldr (�)b, where � is defined by x� a = (⊕/x)⊗ a, or, pointlessly, (�) = (⊗) · (⊕/)× id.
Around the top and right edges we have the composition ⊕/ ·M(foldr (⊗)b) ·δList. If we can write δList

as an instance of foldr, we can then use the fusion law for foldr to prove that this composition equals
foldr (�)b (see Exercise 15).

In fact, there are various equivalent ways of writing δList as an instance of foldr. The definition given
by Conor McBride and Ross Paterson in their original paper on idioms [18] looked like the identity
function, but with added idiomness:

δList [] = pure []
δList (mb : mbs) = pure(:)~mb~δList mbs

In the special case that the idiom is a monad, it can be written in terms of liftM0 (aka return) and liftM2:
δList [] = liftM0 []
δList (mb : mbs) = liftM2 (:)mb(δList mbs)

Jeremy Gibbons 189

But we’ll use a third equivalent definition:

δList [] = return []
δList (mb : mbs) = M(:)(cp(mb,δList mbs))

where
cp :: Mα×Mβ →M(α×β)
cp(x,y) = join(M(λa .M(a,)y)x)

That is,

δList = foldr (M(:) · cp)(return [])

In the use of fold fusion in demonstrating distributivity for lists (Exercise 15), we are naturally lead to a
distributivity condition

⊕/ ·M(⊗) · cp = (⊗) · (⊕/)× (⊕/)
for cp. This in turn follows from corresponding distributivity properties for collections (see Exercise 16),

⊕/ ·M(a⊗) = (a⊗) ·⊕/
⊕/ ·M(⊗b) = (⊗b) ·⊕/

which can finally be discharged by induction over the size of the (finite!) collections (see Exercise 17).

8 Conclusion

As the title of their paper [3] suggests, Bird & co carried out their development using the relational
approach set out in the Algebra of Programming book [8]; for example, their version of prune is a
relation between data structures and their prunings, rather than being a function that takes a structure
and returns the collection of all its prunings. There’s a well-known isomorphism between relations and
set-valued functions, so their relational approach roughly looks equivalent to the monadic one taken here.

I’ve known their paper well for over a decade (I made essential use of the “labelled variant” con-
struction in my own papers on generic downwards accumulations [10, 11]), but I’ve only just noticed
that although they discuss the maximum segment sum problem, they don’t discuss problems based on
other semirings, such as the obvious one of integers with addition and multiplication—which is, after all,
the origin of Horner’s Rule. Why not? It turns out that the relational approach doesn’t work in that case!

There’s a hidden condition in the calculation, which relates back to our earlier comment about which
collection monad—finite sets, finite bags, lists, etc—to use. When M is the set monad, distribution over
choice (⊕/(x]y) = (⊕/x)⊕(⊕/y))—and consequently the condition⊕/ ·opt b= (b⊕) ·⊕/ that we used
in proving Horner’s Rule—requires ⊕ to be idempotent, because] itself is idempotent; but addition is
not idempotent. For exactly this reason, the distributivity property does not in fact hold for addition with
the set monad. But everything does work out with the bag monad, for which] is not idempotent. The
bag monad models a flavour of nondeterminism in which multiplicity of results matters—as it does for
the sum-of-products instance of the problem, when two copies of the same segment should be treated
differently from just one copy. Similarly, if the order of results matters—if, for example, we were looking
for the “first” solution—then we would have to use the list monad rather than bags or sets. The moral of
the story is that the relational approach is programming with just one monad, namely the set monad; if
that monad doesn’t capture your effects faithfully, you’re stuck.

(On the other hand, there are aspects of the problem that work much better relationally than they do
functionally. We have carefully used maximum only for a linear order, namely the usual ordering of the
integers. A non-antisymmetric order is more awkward monadically, because there need not be a unique

190 Maximum Segment Sum, Monadically

maximal value. For example, it is not so easy to compute “the” segment with maximal sum, because
there may be several such. We could refine the ordering by sum on segments to make it once more a
partial order, perhaps breaking ties lexically; but we have to take care to preserve the right distributivity
properties. Relationally, however, finding the maximal elements of a finite collection under a partial
order works out perfectly straightforwardly. We can try the same trick of turning the relation “maximal
under a partial order” into the collection-valued function “all maxima under a partial order”, but the
equivalent trick on the ordering itself—turning the relation “<” into the collection-valued function “all
values less than this one”—runs into problems by taking us outside the world of finite nondeterminism.)

References

[1] Jon Bentley (1984): Programming Pearls: Algorithm Design Techniques. Communications of the ACM
27(9), pp. 865–873, doi:10.1145/358234.381162.

[2] Jon Bentley (1986): Programming Pearls. Addison-Wesley.

[3] Richard Bird, Oege de Moor & Paul Hoogendijk (1996): Generic Functional Programming with Types and
Relations. Journal of Functional Programming 6(1), pp. 1–28, doi:10.1017/S0956796800001556.

[4] Richard S. Bird (1987): An Introduction to the Theory of Lists. In Manfred Broy, editor: Logic of Program-
ming and Calculi of Discrete Design, Springer-Verlag, pp. 3–42. Available at http://web.comlab.ox.
ac.uk/publications/publication3837-abstract.html. NATO ASI Series F Volume 36.

[5] Richard S. Bird (1988): Lectures on Constructive Functional Programming. In Manfred Broy, editor: Con-
structive Methods in Computer Science, Springer-Verlag, pp. 151–218. Available at http://web.comlab.
ox.ac.uk/publications/publication3849-abstract.html. NATO ASI Series F Volume 55.

[6] Richard S. Bird (1989): Algebraic Identities for Program Calculation. Computer Journal 32(2), pp. 122–126,
doi:10.1093/comjnl/32.2.122.

[7] Richard S. Bird (1998): Introduction to Functional Programming Using Haskell. Prentice-Hall.

[8] Richard S. Bird & Oege de Moor (1996): Algebra of Programming. International Series in Computer Science,
Prentice-Hall.

[9] E. F. Codd (1970): A Relational Model of Data for Large Shared Data Banks. Communications of the ACM
13, pp. 377–387, doi:10.1145/362384.362685.

[10] Jeremy Gibbons (1998): Polytypic Downwards Accumulations. In Johan Jeuring, editor: Proceedings
of Mathematics of Program Construction, Lecture Notes in Computer Science 1422, Springer-Verlag,
Marstrand, Sweden, pp. 207–233, doi:10.1007/BFb0054292. Available at http://www.comlab.ox.ac.
uk/oucl/work/jeremy.gibbons/publications/polyda.ps.gz.

[11] Jeremy Gibbons (2000): Generic Downwards Accumulations. Science of Computer Programming 37, pp.
37–65, doi:10.1016/S0167-6423(99)00022-2. Available at http://www.comlab.ox.ac.uk/oucl/work/
jeremy.gibbons/publications/genda.ps.gz.

[12] Jeremy Gibbons (2003): Origami Programming. In Gibbons & de Moor [13], pp. 41–60. Available at
http://www.comlab.ox.ac.uk/oucl/work/jeremy.gibbons/publications/origami.pdf.

[13] Jeremy Gibbons & Oege de Moor, editors (2003): The Fun of Programming. Cornerstones in Computing,
Palgrave. ISBN 1-4039-0772-2.

[14] Jeremy Gibbons & Bruno César dos Santos Oliveira (2009): The Essence of the Iterator Pattern. Journal
of Functional Programming 19(3,4), pp. 377–402, doi:10.1017/S0956796809007291. Available at http:
//www.comlab.ox.ac.uk/jeremy.gibbons/publications/iterator.pdf.

[15] Paul Hudak (1996): Building Domain-Specific Embedded Languages. ACM Computing Surveys 28,
doi:10.1145/242224.242477.

http://dx.doi.org/10.1145/358234.381162
http://dx.doi.org/10.1017/S0956796800001556
http://web.comlab.ox.ac.uk/publications/publication3837-abstract.html
http://web.comlab.ox.ac.uk/publications/publication3837-abstract.html
http://web.comlab.ox.ac.uk/publications/publication3849-abstract.html
http://web.comlab.ox.ac.uk/publications/publication3849-abstract.html
http://dx.doi.org/10.1093/comjnl/32.2.122
http://dx.doi.org/10.1145/362384.362685
http://dx.doi.org/10.1007/BFb0054292
http://www.comlab.ox.ac.uk/oucl/work/jeremy.gibbons/publications/polyda.ps.gz
http://www.comlab.ox.ac.uk/oucl/work/jeremy.gibbons/publications/polyda.ps.gz
http://dx.doi.org/10.1016/S0167-6423(99)00022-2
http://www.comlab.ox.ac.uk/oucl/work/jeremy.gibbons/publications/genda.ps.gz
http://www.comlab.ox.ac.uk/oucl/work/jeremy.gibbons/publications/genda.ps.gz
http://www.comlab.ox.ac.uk/oucl/work/jeremy.gibbons/publications/origami.pdf
http://dx.doi.org/10.1017/S0956796809007291
http://www.comlab.ox.ac.uk/jeremy.gibbons/publications/iterator.pdf
http://www.comlab.ox.ac.uk/jeremy.gibbons/publications/iterator.pdf
http://dx.doi.org/10.1145/242224.242477

Jeremy Gibbons 191

[16] John Hughes (1995): The Design of a Pretty-Printing Library. In Johan Jeuring & Erik Meijer, editors:
Advanced Functional Programming, Lecture Notes in Computer Science 925, Springer-Verlag, pp. 53–96,
doi:10.1007/3-540-59451-5 3. Lecture notes from the First International Spring School on Advanced Func-
tional Programming Techniques, Båstad, Sweden.

[17] S. Kazem Lellahi & Val Tannen (1997): A Calculus for Collections and Aggregates. In Eugenio Moggi &
Giuseppe Rosolini, editors: Category Theory and Computer Science, Lecture Notes in Computer Science
1290, Springer, pp. 261–280, doi:10.1007/BFb0026993.

[18] Conor McBride & Ross Paterson (2008): Applicative Programming with Effects. Journal of Functional
Programming 18(1), pp. 1–13, doi:10.1017/S0956796807006326.

[19] Lambert Meertens (1992): Paramorphisms. Formal Aspects of Computing 4(5), pp. 413–
424, doi:10.1007/BF01211391. Available at http://computerscience.nl/research/techreps/

RUU-CS-90-04.html.

[20] Erik Meijer, Maarten Fokkinga & Ross Paterson (1991): Functional Programming with Bananas, Lenses, En-
velopes and Barbed Wire. In John Hughes, editor: Functional Programming Languages and Computer Archi-
tecture, Lecture Notes in Computer Science 523, Springer-Verlag, pp. 124–144, doi:10.1007/3540543961 7.

[21] Ross Paterson (2005): Data.Foldable library for Haskell. Available at http://www.haskell.org/ghc/
docs/6.12.2/html/libraries/base-4.2.0.1/src/Data-Foldable.html.

[22] Simon Peyton Jones (2003): The Haskell 98 Language and Libraries: The Revised Report. Cambridge
University Press, doi:10.1017/S0956796803000315. Available at http://haskell.org/onlinereport/.

[23] Ondřej Rypáček (2010): Labelling Polynomial Functors: A Coherent Approach. Available at http://www.
dcs.kcl.ac.uk/staff/rypacek/labelers.pdf. Manuscript.

[24] Philip Wadler (2003): A Prettier Printer. In Gibbons & de Moor [13], pp. 223–243. Available at http:
//homepages.inf.ed.ac.uk/wadler/papers/prettier/prettier.pdf. ISBN 1-4039-0772-2.

9 Appendix: Notation

For the benefit of those not fluent in Haskell and the Algebra of Programming approach, this appendix
presents some basic notations. For a more thorough introduction, see the books by Richard Bird [7, 8]
and my lecture notes on “origami programming” [12].

Types: Our programs are typed; the statement “x :: α” declares that variable or expression x has type α .
We use product types α ×β (with morphism fork :: (α → β)× (α → γ)→ (α → β × γ)), sum
types α + β , and function types α → β . We assume throughout that types represent sets, and
functions are total.

Functions: Function application is usually denoted by juxtaposition, “ f x”, and is left-associative and
tightest-binding. Function composition is backwards, so (f ·g)x = f (gx).

Operators: It is often convenient to write binary operators in infix notation; this makes many algebraic
equations more perspicuous. We use sections (a⊕) and (⊕b) for partially applied binary operators,
so that (a⊕)b = a⊕ b = (⊕b)a. In contrast to Haskell, we consider binary operators uncurried;
for example, (+) :: Z×Z→ Z.

Lists: We use the Haskell syntax “[α]” for a list type, “[]” for the empty list, “a : x” for cons, “++”
for append, and “[1,2,3]” for a list constant. The fold foldr :: (α ×β → β)→ β → [α]→ β is
ubiquitous; it has the universal property

h = foldr f e ⇔ h [] = e ∧ h · (:) = f · id×h

http://dx.doi.org/10.1007/3-540-59451-5_3
http://dx.doi.org/10.1007/BFb0026993
http://dx.doi.org/10.1017/S0956796807006326
http://dx.doi.org/10.1007/BF01211391
http://computerscience.nl/research/techreps/RUU-CS-90-04.html
http://computerscience.nl/research/techreps/RUU-CS-90-04.html
http://dx.doi.org/10.1007/3540543961_7
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/src/Data-Foldable.html
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/src/Data-Foldable.html
http://dx.doi.org/10.1017/S0956796803000315
http://haskell.org/onlinereport/
http://www.dcs.kcl.ac.uk/staff/rypacek/labelers.pdf
http://www.dcs.kcl.ac.uk/staff/rypacek/labelers.pdf
http://homepages.inf.ed.ac.uk/wadler/papers/prettier/prettier.pdf
http://homepages.inf.ed.ac.uk/wadler/papers/prettier/prettier.pdf

192 Maximum Segment Sum, Monadically

and as a special case of this, the fusion law

h · foldr f e = foldr f ′ e′ ⇐ he = e′ ∧ h · f = f ′ · id×h

The function map :: (α → β)→ [α]→ [β] is an instance, via map f = foldr ((:) · f × id) []. So is
scanr, which computes the fold of every tail of a list:

scanr :: (α×β → β)→ β → [α]→ [β]
scanr f e = foldr h [e] where ha(b : x) = f ab : (b : x)

We also use the variant foldr1 f (x++[a]) = foldr f ax on non-empty lists.

Functors: Datatypes are modelled as functors, which are operations on both types and functions; so for
F a functor, Fα is a type whenever α is, and if f :: α → β then F f :: Fα → Fβ . Moreover, F
respects the compositional structure of functions, preserving identity (F idα = idFα) and compo-
sition (F(f · g) = F f ·Fg). For example, List is a functor, with Listα = [α] and List f = map f .
We generalize this also to bifunctors, which are binary operators functorial in each argument; for
example, we will see the bifunctor Lα β = 1+α×β below, as the “shape functor” for lists.

Naturality: Polymorphic functions are modelled as natural transformations between functors. A natural
transformation φ : F .→G is a family of functions φα :: Fα → Gα , one for each α , coherent in the
sense of being related by the naturality condition Gh ·φα = φβ ·Fh whenever h :: α → β .

Datatype-genericity: Datatype-generic programming is expressed in terms of parametrization by a
functor. In particular, for a large class of bifunctors F (including all those built from constants
and the identity using sums and products—the polynomial bifunctors), we can form a kind of least
fixed point Tα = µ(Fα) of F in its second argument, giving an inductive datatype. It is a “fixed
point” in the sense that Tα ' Fα (Tα); so Listα = µ(Lα), where L is the shape functor for lists
defined above. We sometimes use Haskell-style datatype definitions, which conveniently name the
constructors too:

data Listα = Nil | Cons(α,Listα)

Algebras: An F-algebra is a pair (α, f) such that f :: Fα → α . A homomorphism between F-algebras
(α, f) and (β ,g) is a function h :: α → β such that h · f = g ·Fh. One half of the isomorphism
by which an inductive datatype is a fixed point is given by the constructor inF :: Fα (Tα)→ Tα ,
through which (Tα, inF) forms an (Fα)-algebra. The datatype is the “least” fixed point in the
sense that there is a unique homomorphism to any other (Fα)-algebra (β , f); we say that (Tα, inF)
is the initial (Fα)-algebra. We write foldF f for that unique homomorphism; its uniqueness is
captured in the universal property

h = foldF f ⇔ h · inF = f ·Fh

Monads: A monad M is a functor with two additional natural transformations, a multiplication join :
MM

.→M and a unit return : Id .→M (where Id is the identity functor), that satisfy three laws:
join · return = id
join ·Mreturn = id
join ·M join = join · join

Collection types such as finite lists, bags, and sets form monads; in each case, return yields a
singleton collection, and join unions a collection of collections into a collection. Another monad
we will use is Haskell’s “maybe” datatype and associated morphism

data Maybeα = Nothing | Just α

maybee f Nothing = e
maybee f (Just a) = f a

Jeremy Gibbons 193

for which return = Just and join = maybeNothingid. An algebra for a monad M is an M-algebra
(α, f) for M as a functor, satisfying the extra conditions

f · return = id
f · join = f ·M f

Idioms: An idiom M is a functor with two additional natural transformations, whose components are
pureα :: α →Mα and ~α,β :: M(α → β)×Mα →Mβ , satisfying four laws:

pure id~u = u
pure(·)~u~ v~w = u~ (v~w)
pure f ~purea = pure(f a)
u~purea = pure(λ f . f a)~u

Any monad induces an idiom; so does any constant functor Kα , provided that there is a monoidal
structure on α .

10 Appendix: Exercises

1. (See page 182.) Calculate that

mss = maximum ·map(maximum ·mapsum · inits) · tails

just using the definitions of mss, inits, tails, together with (i) distributivity of map over function
composition, (ii) naturality of concat, that is, map f · concat = concat ·map(map f), and (iii) that
maximum is a list homomorphism, that is, maximum · concat = maximum ·mapmaximum.

2. (See page 183.) Use the sum-of-products version of Horner’s Rule to prove the more familiar
polynomial version.

3. (See page 183.) Hand-simulate the execution of the linear-time algorithm for mss

mss = foldr (⊕)e where e = 0 ; u⊕ z = et (u+ z)

on the list [4,−5,6,−3,2,0,−4,5,−6,5]. Do you understand how it works?

4. (See page 183.) Apart from (+,×) and (t,+), what other semirings do you know, and what
variations on the “maximum segment sum” problem do they suggest?

5. (See page 184.) Verify that the labelled variant of the usual datatype of lists (namely, Listα =
µ(Fα) where shape functor F is given by Fα β = 1+α × β) is a datatype of nonempty lists.
What is the labelled variant of externally-labelled binary trees, whose shape functor is Fα β =
α +β×β? That of internally-labelled binary trees, whose shape functor is Fα β = 1+α×β×β?
And homogeneous binary trees, whose shape functor is Fα β = α +α×β ×β?

6. (See page 184.) If you’re familiar with paramorphisms and with anamorphisms (unfolds), write
subtermsF and scanF as instances of these.

7. (See page 185.) Hand-simulate the execution of prune in the finite bag monad on a small homoge-
neous binary tree, such as the term Fork 1(Leaf 2)(Fork 3(Leaf 1)(Leaf 4)) of type

data Treeα = Leaf α | Fork (α,Treeα,Treeα)

What happens on externally-labelled binary trees? Internally-labelled? How does the result differ
if you let M be sets rather than bags?

194 Maximum Segment Sum, Monadically

8. (See page 185.) Pick a shape functor F and a collection monad M; give suitable definitions of
f :: FNN→ N to sum all naturals in an F-structure and k :: MN→ N to find the maximum of a
collection of naturals; and verify that the rectangle in Section 5 commutes.

9. (See page 186.) Given an M-algebra k, show that k distributes over]—there exists a binary
operator ⊕ such that k (x] y) = k x⊕ k y. (Hint: define a⊕b = k (returna] returnb.)

10. (See page 186.) Given an M-algebra ⊕/ that distributes over], show that ⊕ is associative if] is;
similarly for commutativity and idempotence. Show also that if] has a unit /0, then ⊕ also has a
unit, which must equal ⊕/ /0. (Hint: show first that ⊕/ is surjective.)

11. (See page 186.) Using the universal property of foldF, prove the fold fusion law

h · foldF f = foldF g ⇐ h · f = g ·Fh

Use this to prove the special case of fold-map fusion

foldF f ·Tg = foldF (f ·Fgid)

where Tα = µ(Fα).

12. (See page 186.) Use fold fusion to calculate a characterization of⊕/ ·M(foldH(maybeb f)) ·prune
as a fold, assuming the distributivity property ⊕/ ·M f ·δ2 = f ·F id (⊕/).

13. (See page 186.) Show by calculation that

⊕/ ·M(foldH(maybeb f)) · segs =⊕/ · contentsL · scanF((b⊕) · f)

14. (See page 188.) Convert the big commuting diagram in Section 7 into an equational proof of the
distributivity property⊕/ ·M f ·δ2 = f ·F id (⊕/), assuming the properties captured by each of the
individual faces.

15. (See page 188.) Use fold fusion to prove that

foldr (⊗)b ·List(⊕/) =⊕/ ·M(foldr (⊗)b) ·δList

assuming the distributivity property ⊕/ ·M(⊗) · cp = (⊗) · (⊕/)× (⊕/) of cp.

16. (See page 189.) Prove the distributivity property for cartesian product

⊕/ ·M(⊗) · cp = (⊗) · (⊕/)× (⊕/)

assuming the two distributivity properties ⊕/ ·M(a⊗) = (a⊗) ·⊕/ and ⊕/ ·M(⊗b) = (⊗b) ·⊕/
for collections.

17. (See page 189.) Prove the two distributivity properties for collections

⊕/ ·M(a⊗) = (a⊗) ·⊕/
⊕/ ·M(⊗b) = (⊗b) ·⊕/

by induction over the size of the (finite!) collection, assuming that binary operator ⊗ distributes
over ⊕ in the familiar sense (that is, a⊗ (b⊕ c) = (a⊗b)⊕ (a⊗ c)).

	1 Introduction
	2 Maximum segment sum
	3 Tail segments, datatype-generically
	4 Initial segments, datatype-generically
	5 Horner's Rule, datatype-generically
	6 Distributivity reconsidered
	7 Reducing distributivity
	8 Conclusion
	9 Appendix: Notation
	10 Appendix: Exercises

