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The Java virtual machine and the .NET common language runtime feature an access control mecha-
nism specified operationally in terms of run-time stack inspection. We give a denotational semantics
in “eager” form, and show that it is equivalent to the “lazy” semantics using stack inspection. We
give a static analysis of safety,i.e., the absence of security errors, that is simpler than previous pro-
posals. We identify several program transformations that can be used to remove run-time checks.
We give complete, detailed proofs for safety of the analysisand for the transformations, exploiting
compositionality of the eager semantics.

1 Introduction

System security depends in part on protecting resources through specified access control policies. For
example, a policy may allow only some users the privilege to write the password file. A typical imple-
mentation of the policy founde.g., in UNIX operating systems, involves an access control listA which
associates with each user namen their set of privilegesA (n). When a program is running it has an
associated user, normally the user who invoked the program.To write a file, a program for usern must
make a system call, and that system code checks whetherA (n) includes the privilege of writing to the
file. In order for users to be able to change their passwords, the system code for this task executes in a
special mode (“setuid” in UNIX); the effective user is the owner of the code (say,root) rather than the
originator of the call (n, which can write some files but not the password file).

The Java and .NET platforms offer a similar but more general security system [12, 13]. Instead of
code being owned by a user or by “the system”, there can be codefrom a number of sources, called
principals, which can be offered varying degrees of trust. Moreover, instead of associating a principal
with a loadable executable file, principals can be associated with fragments such as class declarations.
Another refinement is that privileges must be explicitly enabled, by an operation calleddoPrivileged.
The intent is that a program only enables its privileges whenthey are needed; this “principle of least
privilege” [12] may help isolate the effect of security bugsand may facilitate static analysis. Before
executing a dangerous operation, a check is made that the associated privilege has been enabled and is
authorized for the current principal. This check is specified in terms of an implementation calledstack
inspection. Each stack frame is marked with the principal associated with the code for that frame, and the
frame also records the privileges that have been enabled. This is used by procedurecheckPermission
which inspects the current stack.

The above description of the security system is an operational one. While the mechanism itself is
easy to understand, it may over-constrain implementations, and it is difficult to analyze. Analysis is of
interest, e.g., to determine whether a program can exhibit security exceptions when given its expected
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permissions. Implementations of procedure calls do not always push stack, e.g., owing to inlining or tail
call optimization. To understand the security properties achieved, and to optimize performance, we need
analyses that capture the security model more abstractly.

Our contribution is threefold: (i) We give a denotational semantics in “eager” form, and show that it
is equivalent to the “lazy” semantics using stack inspection. (ii) We give a static analysis ofsafety, i.e.,
the absence of security errors. (iii) We identify several program transformations including some that can
be used to remove run-time checks. We give detailed proofs for the analysis and for the transformations,
exploiting compositionality of the eager semantics and simplicity of program equivalence in denotational
semantics.

Related work. Skalka and Smith [17] give an operational semantics and use it to justify a static analysis
of safety specified by a type system. Their type system is complicated by the choice of using a constraint
system which is the basis for a type inference algorithm. We use a similar type system, but prefer
to separate the specification of an analysis from algorithmsto perform the analysis. We also include
recursion in the language. Their semantics is easily seen tomodel the operational descriptions of stack
inspection, but it has the usual shortcomings of operational semantics; for example, proofs ultimately go
by induction on computations.

Wallach, Appel and Felten [19] model the mechanism with an operational semantics that manipulates
formulas in a logic of authentication [1]. They show that theparticular logical deductions corresponding
tocheckPermission can be decided efficiently, and propose an implementation called “security passing
style” in which the security state is calculated in advance.The only result proven is equivalence of the
two implementations. They do not include recursion or higher order functions, and the formal semantics
is not made explicit. Although the use of logic sheds some light on the security properties achieved by
the mechanism, the approach requires a considerable amountof theory that is not directly germane to
analyzing safety or justifying optimizations.

Security passing style can be seen as a presentation of the eager means of evaluating security checks
mentioned by Li Gong [12]. The eager semantics facilitates proofs, but JVM and CLR implementations
use lazy semantics which appears to have better performance[12, 19, 13].

Pottieret al. [15] formalize the eager semantics by a translation into a lambda calculus,λsec, with
operations on sets. Using an operational semantics for the calculus, a proof is sketched of equivalence
with stack semantics. Using a very general framework for typing, a static analysis is given and a safety
result is sketched. The language extends the language of Skalka and Smith [17] by adding permission
tests. The works [17] and [15] aim to replace dynamic checks by static ones, but do not consider program
transformations as such.

This paper originated as a technical report more than a decade ago [3]. At about the same time,
and independently, Fournet and Gordon [11] investigated anuntyped variant ofλsec. They develop an
equational theory that can be used to prove the correctness of code optimizations in the presence of stack
inspection. A prime motivation for their work was the folklore that well-known program optimizations
such as inlining and tail call elimination are invalidated by stack inpection. Their technical development
uses small-step operational semantics and contextual equivalence of programs. To prove an extensive
collection of program equivalences they develop a form of applicative bisimilarity. Additionally, they
prove the equivalence of the lazy and eager implementationsof stack inspection. This equivalence is
also proved in Skalka’s Ph.D. dissertation [16, Theorem 4.1, Chapter 4], where lazy and eager are termed
“backward” and “forward” stack inspection respectively.

Where Fournet and Gordon point out how tail call eliminationcan be invalidated by stack inspection,
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Clements and Felleisen [10] consider program semantics at the level of an abstract machine, namely
the CESK machine. With this semantics they are able to show tail call optimization can be validated
in full generality, and with its expected space savings. This is explored further by Ager et al [2]. They
inter-derive a reduction semantics for the untyped variantof theλsec-calculus, an abstract machine, and
a natural semantics, both without and with tail-call optimization. By unzipping the context in the ab-
stract machine, they connect these semantics to Wallachet al.’s security passing style, characterize stack
inspection as a computational monad, and combine this monadwith the monad of exceptions.1

We treat a simply typed language similar toλsec, but with recursion. In contrast to the cited works we
use a denotational semantics, which is straightforward; infact, once the meanings of types are specified,
the rest of the specification (i.e., meanings of expressions) follows easily.2 The simplicity of our model
makes it possible to give a self-contained formal semanticsand succinct but complete formal proofs. For
example, denotational equality is a congruence simply because the semantics is compositional. We have
not formally connected the semantics with an operational one. Adequacy seems obvious. Full abstraction
is not obvious, but we have proved many of the contextual equivalences of Fournet and Gordon [11] and
expect the remainder to be straightforward to show.

In addition to considering program transformations, Fournet and Gordon [11] address the question of
what security properties can be enforced by stack inspection. They consider a variation that tracks history
in the sense of what code has influenced the result of a computation. Pistoia et al [14] propose a variation
that tracks implicit influences as well. The authors [5] propose another combination of information
flow tracking with stack inspection, using a type and effect system where security types for functions
are dependent on available permissions. In the interim, other code-based access mechanisms have been
introduced (e.g., static permissions in the Android platform) and there have been further development of
static analyses for security properties based on linear temporal logic [7, 6, 8, 18], but there seems to be
little additional work on program equivalence in the presence of stack inspection.

Outline. The next section explains stack inspection informally, andit introduces our language. Sec-
tion 3 gives the eager denotational semantics. Section 4 gives the static analysis for safety, including
examples and correctness proof. Section 5 proves a number ofrepresentative program transformations.
Section 6 shows how all checks can be removed from safe programs. Section 7 gives the stack-based
denotational semantics and shows that it is equivalent to the eager semantics. Section 8 concludes.

2 Overview and language

Each declared procedure is associated with a principaln. We calln thesigner, and writesigns n e for a
signed expression, because typicallyn is given by a cryptographic signature on a downloaded class file.
During execution, each stack frame is labeled with the principal that signs the function, as well as the set
P of privileges that have been explicitly enabled during execution of the function. For our purposes, a
frame is a pair〈n,P〉, and a nonempty stack is a list〈n,P〉 :: S with 〈n,P〉 the top. There should be an
initial stackS0 = 〈n0,∅〉 :: nil for some designatedn0. An expression is evaluated in a stackS and with
an environmenth that provides values for its free variables.

Java provides operations to enable and disable a privilege,i.e., to add it to the stack frame or remove
it. Normally these are used in bracketed fashion, as provided by proceduredoPrivileged which is
given a privilegep and an expressione to evaluate. It enablesp, evaluatese, and then disablesp. Our

1Thanks to Olivier Danvy for communicating this explanation.
2Adding state is straightforward [4], but here we follow the cited works and confine attention to applicative expressions.
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construct is writtendopriv p in e. The effect ofdopriv p in e in stack〈n,P〉 :: S is to evaluatee in
stack〈n,P ∪{p}〉 :: S , that is, to assertp in the current frame. This is done regardless of whetherp is
authorized forn.

Java’scheckPermission operation checks whether a certain privilege has been enabled and is au-
thorized for the current principal. Checking is done by inspecting the current stack. Each dangerous
code fragment should be guarded by a check for an associated privilege, so that the code cannot be exe-
cuted unless the check has succeeded. (This can be assured byinspection of the code, or by other forms
of analysis [9] but is beyond the scope of our paper.) In our syntax, a guarded expression is written
check p for e. The execution of an expression checked for privilegep is to raise a security error, which
we denote by⋆, unless the following predicate is true ofp and the current stack.

chk(p,nil) ⇔ false

chk(p,(〈n,P〉 :: S )) ⇔ p ∈ A (n)∧ (p ∈ P ∨ chk(p,S ))

That is, a privilege is enabled for a stack provided there is some frame〈n,P〉 with p ∈ P and p is
authorized forn and is authorized for all principals in frames below this one.

A direct implementation in these terms requires inspectingsome or all of the stack frames. The
implementation is lazy in that no checking is performed whena privilege is enabled, only when it is
needed to actually perform a guarded operation. On the otherhand, each check incurs a significant cost,
and in secure code the checks will never fail. Static analysis can detect unnecessary checks, and justify
security-preserving transformations.

A stackS determines a setprivs S of enabled, authorized privileges, to wit:

p ∈ privs S ⇔ chk(p,S )

This gives rise to a simple form of eager semantics: instead of evaluating an expression in the context
of a stackS , we useprivs S , along with the current principal which appears on top ofS . The eager,
stack-free semantics is given in Section 3 and we will use this semantics exclusively in the static analysis
and program transformations that follow in Sections 4 and 5.

A denotational semantics that uses explicit stacks will be deferred until Fig. 4 of Section 7. As
mentioned previously, we will then take up the equivalence of the two semantics.

The language constructs are strict in⋆: if a subexpression raises a security error, so does the entire
expression. In Java, security errors are exceptions that can be caught. Thus it is possible for a program
to determine whether acheckPermission operation will succeed. Rather than model the full exception
mechanism, we include a constructtest p then e1 else e2 which evaluatese1 if chk(p,S ) succeeds in
the current stackS , and evaluatese2 otherwise. Note that security error⋆ is raised only by thecheck
construct, not bytest or dopriv.

In Java, the call of a procedure of a class signed by, or otherwise associated with,n, results in a
new stack frame for the method, marked as owned byn. We model methods as function abstractions,
but whereas Skalka and Smith use signed abstractions, we include a separate constructsigns n e.3

Evaluation ofsigns n e in stackS goes by evaluatinge in stack(〈n,∅〉 :: S ). For example, given a
stackS , the evaluation of the application

(fun x . signs user writepass(x ))“myName”

3Fournet and Gordon [11] also use a freely applicable construct for signing. Moreover they identify principals with setsof
permissions: their “framed” expressionR[e] is like oursigns n e for n with A (n) =R.
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amounts to evaluatingwritepass(“myName”) in the stack(〈user ,∅〉 :: S ).
We separatesigns from abstractions because it helps disentangle definitionsand proofs,e.g., these

constructs are treated independently in our safety result.On the other hand, unsigned abstractions do
not model the Java mechanism. In our consistency result, Theorem 7.2, we show that our semantics
is equivalent to stack inspection for allstandard expressions, i.e., those in which the body of every
abstraction is signed.

2.1 Syntax and typing

Given are setsPrincipals andPrivileges, and a fixed access control listA that mapsPrincipals to sets of
privileges. In the grammar for data types and expressions,n ranges overPrincipals andp overPrivileges.
Application associates to the left. We include recursive definitions for expressiveness, and simple ab-
stractionsfun x . e which, while expressible usingletrec, are easier to understand in definitions and
proofs. For simplicity, the only primitive type isbool, and the only type constructor is for functions.
Products, sums, and other primitive types can be added without difficulty. Throughout the paper we use
true to exemplify the treatment of constants in general.

t ::= bool | (t → t)

e ::= true | x | if e then e1 else e2 |

fun x . e | e1 e2 | letrec f (x ) = e1 in e2 |

signs n e | dopriv p in e | check p for e | test p then e1 else e2

A signed abstractionnλx .e in the language of Skalka and Smith is writtenfun x . signs n e in
ours. Our safety result can be proved without restriction toexpressions of this form. But for the eager
semantics to be equivalent to stack semantics, it is crucialthat function bodies be signed so the semantics
correctly tracks principals on behalf of which the body of anabstraction is evaluated.

Definition 2.1 (Standard expression)An expression is standard if for every subexpressionfun x . e or
letrec f (x ) = e in e1 we have thate is signs n e ′ for somen,e ′.

Well-formed expressions are characterized by typing judgementsD ⊢ e : t which express thate has
type t where free identifiers are declared byD . A typing contextD is a labeled tuple of declarations
{x1 : t1, . . . ,xk : tk}. We writeD ,x : t for the extended context{x1 : t1, . . . ,xk : tk ,x : t}, andD .xi for
the type ofxi . The typing rules are given in Figure 1.

2.2 The password example

As an example of the intended usage, we consider the problem of protecting the password file, using
a privilegep for changing password andw for writing to the password file. The user is authorized to
change passwords:A (user) = {p}. Root is authorized to change passwords and to write the password
file: A (root) = {p,w}. SupposehwWrite is the operating system call which needs to be protected from
direct user access. The system provides the following code,which guardshwWrite with the privilege
w .

writepass = fun x . signs root check w for hwWrite(x , “/etc/password”)
passwd = fun x . signs root check p for dopriv w in writepass(x )
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D ⊢ true : bool

D ,x : t ⊢ x : t
D ⊢ e : bool D ⊢ e1 : t D ⊢ e2 : t

D ⊢ if e then e1 else e2 : t

D ,x : t1 ⊢ e : t2
D ⊢ fun x . e : t1 → t2

D ⊢ e1 : t1 → t2 D ⊢ e2 : t1
D ⊢ e1 e2 : t2

D , f : t1 → t2,x : t1 ⊢ e1 : t2 D , f : t1 → t2 ⊢ e2 : t
D ⊢ letrec f (x ) = e1 in e2 : t

D ⊢ e : t
D ⊢ signs n e : t

D ⊢ e : t
D ⊢ dopriv p in e : t

D ⊢ e : t
D ⊢ check p for e : t

D ⊢ e1 : t D ⊢ e2 : t
D ⊢ test p then e1 else e2 : t

Figure 1: Typing rules.

Consider the following user programs.

bad1 = signs user writepass(“mypass”)
bad2 = signs user dopriv w in writepass(“mypass”)
use = signs user dopriv p in passwd(“mypass”)

Herebad1 raises a security exception becausewritepass checks for privilegew which is not possessed
by user . The user can try to enablew , as inbad2, but becausew is not authorized foruser the exception
is still raised. By contrast,use does not raise an exception: functionpasswd checks for privilegep
which is possessed byuser , and it enables the privilegew needed bywritepass. Using transformations
discussed in Section 5, checks that never fail can be eliminated. For example, the analysis will show that
use is safe, and the transformations will reduceuse to

signs user signs root hwWrite(“mypass”, “/etc/password”)

3 Denotational semantics

This section gives the eager denotational semantics.

3.1 Meanings of types and type contexts

A cpo is a partially ordered set with least upper bounds of ascending chains; it need not have a least
element. Below we define, for each typet , a cpo[[t ]]. We assume that⊥ and⋆ are two values not in
{true, false} and not functions; this will ensure that{⊥,⋆}∩ [[t ]] = ∅ for all t . We will identify ⊥ with
non-termination and⋆ with security errors. For cpoC , defineC⊥⋆ = C ∪{⊥,⋆}, ordered as the disjoint
union ofC with {⋆}, lifted with ⊥. That is, for anyu,v ∈ C⊥⋆, defineu ≤ v iff u =⊥, u = v , or u and
v are inC andu ≤ v in C .

We define[[bool]] = {true, false}, ordered by equality. We also take the powersetP(Privileges) to
be a cpo ordered by equality. Define

[[t1 → t2]] = P(Privileges)→ [[t1]]→ [[t2]]⊥⋆
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where→ associates to the right and denotes continuous function space, ordered pointwise. Note that
lubs are given pointwise. Also,[[t1 → t2]] does not contain⊥ but it does have a least element, namely the
constant functionλP . λd .⊥.

Principals behave in a lexically scoped way. By contrast, privileges are dynamic and vary during
execution; this is reflected in the semantics of the functiontype.

Let D = {x1 : t1, . . . ,xk : tk} be a type context. Then[[D ]] is defined to be the set{x1 : [[t1]], . . . ,xk :
[[tk ]]} of labeled tuples of appropriate type. Ifh is such a record, we writeh.xi for the value of fieldxi .
If D is the empty type context∅, then the only element of[[D ]] is the empty record{}. Forh ∈ [[D ]] and
d ∈ [[t ]] we write[h | x 7→d ] for the extended record in[[D ,x : t ]].

3.2 Meanings of expressions

An expression judgement denotes a function

[[D ⊢ e : t ]] ∈ Principals→ P(Privileges)→ [[D ]]→ [[t ]]⊥⋆

Given a principaln, a setP ∈ P(Privileges) denoting privileges required bye, and environmenth ∈
[[D ]], the meaning of[[D ⊢ e : t ]]nPh is either⊥ or ⋆ or an element of[[t ]].

In contrast with the work of Fournet and Gordon we do not restrict P to be a subset ofA (n), though
it can easily be done —simply by giving the denotation this dependent type:

[[D ⊢ e : t ]] ∈ (n : Principals)→ P(A (n))→ [[D ]]→ [[t ]]⊥⋆ (1)

In programs of interest, signed at the top level, most expressions will in fact be applied to permission
sets that satisfy the restriction. Later we observe that therestriction is need for validity of some transfor-
mations, but surprisingly few of them.

In the denotational semantics (Figure 2), we use the metalanguage construct,let d = E1 in E2, with
the following semantics: if the value ofE1 is either⊥ or ⋆ then that is the value of the entire let expres-
sion; otherwise, its value is the value ofE2 with d bound to the value ofE1. The semantics of if-then-else
is ⋆-strict in the guard. We also writeP ⊔n {p} for if p ∈ A (n) thenP ∪{p} elseP .

The semantics is standard for the most part. We will only explain the meanings of the expressions
that directly concern security. In what follows, we will assume, unless otherwise stated, that expression
e is signed by principaln and is computed with privilege setP and in environmenth.

The meaning ofsignsn ′ e is the meaning ofe, signed byn ′, computed with privilege setP ∩A (n ′),
in h. To illustrate the idea, consider Li Gong’s example [12, Section 3.11.2]. A game applet,applet,
has a method that callsFileInputStreamto open the file containing the ten current high scores. In our
semantics, this scenario entails finding the meaning ofsigns system FileInputStream, as invoked under
some privilege setP ⊆A (applet); and, this means we need to find the meaning ofFileInputStream(i.e.,
whether read privileges are enabled) under the privilege set P ∩A (system). Assumingsystemhas all
privileges, this reduces to checking ifapplet has been granted permission to read. If it has not been
granted the permission, the file will not be read, even thoughit calls system code to do so.

The meaning ofdopriv p in e is the meaning ofe computed with privilege setP ∪{p} if p ∈A (n),
and is the meaning ofe computed with privilege setP if p 6∈ A (n). The meaning ofcheck p for e is a
security error ifp 6∈P ; otherwise, the meaning is that ofe. Finally, the meaning oftest p then e1 else e2

is the meaning ofe1 or e2 according asp ∈ P or p 6∈ P .
We leave it to the reader to check that the semantics of each construct is a continuous function of the

semantics of its constituent expressions, so the semanticsof recursion is well defined.
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[[D ⊢ true : bool]]nPh = true

[[D ,x : t ⊢ x : t ]]nPh = h.x

[[D ⊢ if e then e1 else e2 : t ]]nPh = let b = [[D ⊢ e : bool]]nPh in
if b then [[D ⊢ e1 : t ]]nPh else[[D ⊢ e2 : t ]]nPh

[[D ⊢ fun x . e : t1 → t2]]nPh = λP ′ ∈ P(Privileges). λd ∈ [[t1]].
[[D ,x : t1 ⊢ e : t2]]nP ′[h | x 7→d ]

[[D ⊢ e1 e2 : t2]]nPh = let f = [[D ⊢ e1 : t1 → t2]]nPh in
let d = [[D ⊢ e2 : t1]]nPh in fPd

[[D ⊢ letrec f (x ) = e1 in e2 : t ]]nPh
= let G(g) = λP ′

. λd . [[D , f : t1 → t2,x : t1 ⊢ e1 : t2]]nP ′[h | f 7→g ,x 7→d ] in
[[D , f : t1 → t2 ⊢ e2 : t ]]nP [h | f 7→fixG ]

[[D ⊢ signs n ′ e : t ]]nPh = [[D ⊢ e : t ]]n ′(P ∩A (n ′))h
[[D ⊢ dopriv p in e : t ]]nPh = [[D ⊢ e : t ]]n(P ⊔n {p})h
[[D ⊢ check p for e : t ]]nPh = if p ∈ P then [[D ⊢ e : t ]]nPh else⋆
[[D ⊢ test p then e1 else e2 : t ]]nPh = if p ∈ P then [[D ⊢ e1 : t ]]nPh else[[D ⊢ e2 : t ]]nPh

Figure 2: Denotational semantics

4 Static Analysis

The denotational semantics in Section 3 gives a dynamic or run-time view of safety; if a program is safe,
its execution will not yield⋆. In this section, we specify a type system that statically guarantees safety;
if a program is well-typed in the system then it is safe. One may utilize the static analysis for optimizing
programse.g., removing redundant checks of privileges at run-time.

The static analysis is specified by an extended form of typingjudgement. The idea is to give not
only the type of an expression, but a principaln and setP of privileges for which the expression is safe.
An arrow typet1 → t2 denotes functions dependent on a set of privileges, and the static analysis uses
annotated types to track sets of privileges adequate for safety. We adopt a Greek notational style for types
in the static analysis. LettingΠ range over sets of privileges, annotated types,θ , are defined by

θ ::= bool | (θ1
Π

−→ θ2)

For this syntax to be finitary, one could restrictΠ to finite sets, but we have no need for such restriction in
our proofs. An expression typedθ1

Π
−→ θ2 signifies that its application may require at least the privileges

Π for safe execution.

4.1 Type-based analysis

The analysis is specified by the typing judgement∆; n ⊢ e : θ , Π. In words, expressione signed by
principal n and typed in context∆, has (annotated) typeθ and is safe provided at least the setΠ of
privileges are enabled. Figure 3 gives the specification.

Constanttrue, identifiers, and anonymous functions of the formfun x . e are all safe: they do not
require any privileges be enabled for safe execution. However, the bodye in fun x . e, may require a set
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∆; n ⊢ true : bool, ∅

∆,x : θ ; n ⊢ x : θ , ∅
∆,x : θ1; n ⊢ e : θ2, Π

∆; n ⊢ fun x . e : θ1
Π

−→ θ2, ∅

∆; n ⊢ e1 : θ1
Π

−→ θ2, Π1 ∆; n ⊢ e2 : θ ′
1, Π2 θ ′

1 ≤ θ1

∆; n ⊢ e1 e2 : θ2, Π∪Π1∪Π2

∆; n ⊢ e : bool, Π1 ∆; n ⊢ e1 : θ , Π2 ∆; n ⊢ e2 : θ , Π3

∆; n ⊢ if e then e1 else e2 : θ , Π1∪Π2∪Π3

∆, f : θ1
Π

−→ θ2,x : θ1; n ⊢ e1 : θ2, Π ∆, f : θ1
Π

−→ θ2; n ⊢ e2 : θ , Π1

∆; n ⊢ letrec f (x ) = e1 in e2 : θ , Π∪Π1

∆; n ⊢ e : θ , Π
∆; n ⊢ check p for e : θ , Π∪{p}

∆; n ⊢ e : θ , (Π⊔n {p})

∆; n ⊢ dopriv p in e : θ , Π
∆; n ′ ⊢ e : θ , Π Π ⊆ A (n ′)

∆; n ⊢ signs n ′ e : θ , Π
∆; n ⊢ e1 : θ , Π1 ∆; n ⊢ e2 : θ , Π2

∆; n ⊢ test p then e1 else e2 : θ , Π1∪Π2

Figure 3: Static analysis

of privilegesΠ be enabled. This is manifest in the typeθ1
Π

−→ θ2. The latent privileges,Π, get exposed
during an application,e1e2. Saye1 has typeθ1

Π
−→ θ2; if Π1 may be enabled duringe1’s execution,

andΠ2 may be enabled duringe2’s execution, then application itself may requireΠ be enabled; hence
Π∪Π1∪Π2 may be enabled during the execution ofe1e2. The application rule also uses subtyping, as
discussed in the sequel.

The analysis forcheck p for e requires that in addition to privileges enabled fore, the privilegep
be enabled so that the check is safe. IfΠ is the set of privileges that may be enabled during the execution
of dopriv p in e, thenp can be assumed to be enabled during the execution ofe, providedp ∈ A (n).

Finally, forsigns n ′ e the only privileges that should be enabled are the ones authorized forn ′. Note
that a signed expression can occur in a term with a different owner, so it is not the case thatΠ ⊆ A (n)
for every derivable∆;n ⊢ e : θ , Π.

4.2 Subtyping

Where Skalka and Smith [17] use a constraint-based type system whose constraints subsequently must
be solved,4 our analysis is syntax-directed. In some sense, our system gives minimal types and privilege
assumptions. (Pottieret al.’s system [15] enjoys a principal types property also. Reasoning about mini-
mal security contexts for code invocation is also considered in several papers by Bessonet al. [7, 6, 8].)
We do not formalize this notion, but informally it sheds light on the specification of the analysis. In the
case of values, such as variables and abstraction, the privilege set is empty. In the case ofcheck p for e,
the rule adds the checked privilegep to the “minimal” privileges ofe, and similarly for the other security
constructs. In the case of conditional, a union is formed from the “minimal” privileges of the constituent
expressions, and the types of the constituents are the same as the type of the conditional. By contrast, in
the case of applicatione1e2, the “minimal” types and privileges fore1 ande2 need not match exactly. So
we define a relation of subtyping with the informal meaning that θ ′ ≤ θ provided the privileges required

4Pottieret al. [15] use unification of row variables, in a relatively complicated system.
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by θ ′ are contained in those required byθ . This is significant only in casee2 has functional type, in
which case the latent privileges ofe2 should be among those ofe1.

Subtyping is defined as the least relation≤ with bool ≤ bool and, for arrow types,θ1
Π1−→ θ ′

1 ≤

θ2
Π2−→ θ ′

2 providedθ2 ≤ θ1, θ ′
1 ≤ θ ′

2, andΠ1 ⊆ Π2.
To relate the semantics to the static analysis, we need the ordinary typeθ∗ obtained by erasing

annotations. This is defined by induction onθ , to wit: bool∗ = bool and(θ1
Π

−→ θ2)
∗ = θ∗

1 → θ∗
2 . It is

easy to show that ifθ1 ≤ θ2, thenθ∗
1 = θ∗

2 .
Due to subtyping, an expression can have more than one annotated type and satisfy more than one

judgement. But a derivable judgement∆; n ⊢ e : θ , Π has only one derivation, which is dictated by the
structure ofe. Proofs in the sequel will go by “induction one”, meaning induction on the derivation of
some judgement∆; n ⊢ e : θ , Π.

4.3 Examples

For anyn, the expressions in the password example (Section 2.2) can be analyzed as follows.

∅; n ⊢ writepass : string
{w}
−→ void , ∅

∅; n ⊢ passwd : string
{p}
−→ void , ∅

∅; n ⊢ use : void , ∅

This confirms thatuse is safe. On the other hand, there is noΠ such that∅; n ⊢ bad1 : void , Π or
∅; n ⊢ bad2 : void , Π. SuchΠ must satisfyw ∈ Π for the application ofwritepass, owing to the rules
for application and fordopriv in . And Π must satisfyA (user)⊆ Π by the rule for signs.

Here is another example, inspired by ones in Skalka and Smith[17]. Define the following standard
expressions:

lp = fun f . signs n (fun x . signs n (dopriv p in (f x )))

cp = fun x . signs n (check p for x )

The reader can verify that one analysis forcp is given by the typing∆; n ⊢ cp : (bool
{p}
−→ bool),∅ and

that the typing demandsp ∈ A (n). Similarly, the reader can verify that one possible analysis for lp is

given by the typing∆; n ⊢ lp : (bool
{p}
−→ bool)

∅

−→ (bool
∅

−→ bool),∅.
For allP ∈ P(Privileges), for all h : ∆∗, we can show (omitting types and some steps),

[[lp]]nPh = λP1. λd1. λP2. λd2. [[dopriv p in f x ]]n(P2∩A (n))[h | f 7→ d1,x 7→ d2]
= {lettingP3 = P2∩A (n)}

λP1. λd1. λP2. λd2. d1(P3⊔n {p})d2

[[cp]]nPh = λP ′
1. λd ′

1. if p ∈ (P ′
1∩A (n)) then [[x ]]n(P ′

1∩A (n))[h | x 7→d ′
1] else⋆

= λP ′
1. λd ′

1. if p ∈ (P ′
1∩A (n)) then d ′

1 else⋆

LetF = [[lp]]nPh, let d = [[cp]]nPh, and letG = [[(lp cp)]]nPh. Then

[[(lp cp)]]nPh = FPd

= λP2. λd2. if p ∈ ((P3⊔n {p})∩A (n)) then d2 else⋆
= λP2. λd2. d2 becausep ∈ A (n)

[[(lp cp)true]]nPh = GP([[true]]nPh)
= true

Hence(lp cp)true is safe in any environment and typable as∆; n ⊢ (lp cp)true : bool,∅.
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4.4 Safety of the analysis

Theorem 4.1 (Safety)Suppose∅; n ⊢ e : θ , Π is derivable. Then for allP ∈ P(Privileges) with
Π ⊆ P , it is the case that[[∅ ⊢ e : θ∗]]nP{} 6= ⋆.

Proof: Immediate consequence of Lemma 4.5 below.

In order to serve as an adequate induction hypothesis, the lemma strengthens the theorem by allowing
judgements with non-empty contexts. But this is not enough.Values at arrow types are functions that
depend on privilege sets. As induction hypothesis for the case of application we require these functions
be safe with respect to the privilege setΠ annotating their type.

Definition 4.2 For each annotated typeθ the predicatesafe θ on [[θ∗]]⊥⋆ is defined as follows:
safe θ(⊥) ⇔ true andsafe θ(⋆) ⇔ false for all θ . For values other than⊥ and⋆, the definition is by
induction on structure ofθ .

safe bool(b) ⇔ true

safe (θ1
Π

−→ θ2)(f ) ⇔ ∀P ∈ P(Privileges).∀d ∈ [[θ∗
1 ]].

Π ⊆ P ∧ safe θ1(d) ⇒ safe θ2(fPd)

The predicatesafe ∆ on [[∆∗]] is defined bysafe ∆(h) ⇔ ∀x ∈ dom(h).safe(∆.x )(h.x ). Recall thath.x 6=
⊥ andh.x 6= ⋆, because⊥ 6∈ [[t ]] and⋆ 6∈ [[t ]], for all t .

Fact 4.3 θ ≤ θ ′ andsafe θ d imply safe θ ′ d .

Proof: By induction on derivation ofθ ≤ θ ′. The result is clear forbool ≤ bool. For (θ1
Π

−→ θ2) ≤

(θ ′
1

Π′

−→ θ ′
2), assumesafe (θ1

Π
−→ θ2) f . To showsafe (θ ′

1
Π′

−→ θ ′
2) f , consider anyP ∈ P(Privileges),

such thatΠ′ ⊆ P , and anyd ∈ [[θ ′
1
∗]] with safe θ ′

1 d . From the subtyping, we know thatΠ ⊆ Π′, hence
Π ⊆ P . Moreover, by induction on derivation ofθ ′

1 ≤ θ1, we obtainsafe θ ′
1 d implies safe θ1 d . Hence

from assumptionsafe (θ1
Π

−→ θ2) f , we obtainsafe θ2(fPd) holds. Now by induction on derivation
θ2 ≤ θ ′

2, we obtainsafe θ ′
2(fPd).

Lemma 4.4 The predicatesafe preserves lubs. That is, for anyθ , let u : N→ [[θ∗]]⊥⋆ be an ascending
chain. Then,∀i .safe θ (ui ) impliessafe θ (

⊔
i ui).

Proof: By structural induction onθ . Whenθ = bool, the assumptionsafe θ (ui ) impliesui 6= ⋆ for
eachi , so

⊔
i ui is true or false or ⊥. Thus the result holds by definitionsafe.

When θ = (θ1
Π

−→ θ2), assumeP ∈ P(Privileges) andd ∈ [[θ∗
1 ]], such thatΠ ⊆ P and safe θ1(d).

Then, from assumptionsafe (θ1
Π

−→ θ2) ui we obtainsafe θ2 (uiPd) holds for everyi . By the induction
hypothesis onθ2, we getsafe θ2 (

⊔
i(uiPd)). Lubs are pointwise, so we getsafe θ2 ((

⊔
i ui)Pd).

Lemma 4.5 Suppose∆; n ⊢ e : θ , Π is derivable. Then for allP ∈ P(Privileges), for all h ∈ [[∆∗]], if
safe ∆(h) andΠ ⊆ P thensafe θ ([[∆∗ ⊢ e : θ∗]]nPh).

Theorem 4.1 follows from the lemma becausesafe ∅{} and safe θ([[∅ ⊢ e : θ∗]]nP{}) implies
[[∅ ⊢ e : θ∗]]nP{} 6= ⋆.

Another consequence of the lemma is that the language admitsadditional constants at all types,
declared in an initial contextD0, provided the corresponding initial environment assigns asafe meaning
to each identifier inD0.
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Proof: of Lemma. Go by induction on the typing derivation,∆; n ⊢ e : θ , Π. Throughout, we assume
P ∈ P(Privileges) andh ∈ [[∆∗]] andsafe ∆(h) andΠ ⊆ P , and also letu = [[∆∗ ⊢ e : θ∗]]nPh for each
case ofe.

• Casetrue: Then,u = true sosafe bool(u) by definitionsafe.

• Casex : Then,u = h.x andsafe θ(h.x ) follows, by definitionsafe, from the assumptionsafe ∆(h).

• Caseif e then e1 else e2: ThenΠ1∪Π2∪Π3 ⊆ P , and

u = if b then [[∆∗ ⊢ e1 : θ∗]]nPh else[[∆∗ ⊢ e2 : θ∗]]nPh

whereb = [[∆∗ ⊢ e : bool]]nPh. By the induction hypothesis on the typing derivation ofe, noting
thatΠ1 ⊆P , we havesafe bool(b) and henceb 6= ⋆. If b =⊥ thenu =⊥ and⊥ is safe. Otherwise,
b = true or b = false. In the former case, by the induction hypothesis on the typing derivation of
e1, noting thatΠ2 ⊆ P , we havesafe θ(u). The case ofb = false is symmetric.

• Casefun x . e: Thenu = λP ′
. λd . [[∆∗

,x : θ∗
1 ⊢ e : θ∗

2 ]]nP
′[h | x 7→ d ]. Thusu 6= ⋆. To prove

safe (θ1
Π

−→ θ2)(u), consider anyP ′′ ∈ P(Privileges) and anyd ′ ∈ [[θ∗
1 ]] such thatΠ ⊆ P ′′

and safe θ1(d
′), to showsafe θ2(uP

′′d ′). By semantics,uP ′′d ′ = [[∆∗
,x : θ∗

1 ⊢ e : θ∗
2 ]]nP

′′[h |
x 7→ d ′], so the induction hypothesis fore yields safe θ2(uP

′′d ′) provided thatΠ ⊆ P ′′ and
safe (∆,x : θ1)[h | x 7→d ′]. We haveΠ ⊆P ′′ by assumption, andsafe (∆,x : θ1)[h | x 7→d ′] follows
from safe ∆(h) andsafe θ1(d

′).

• Casee1 e2: Let f = [[∆∗ ⊢ e1 : θ∗
1 → θ∗

2 ]]nPh andd = [[∆∗ ⊢ e2 : θ ′
1
∗]]nPh, so thatu = fPd . (Recall

that θ ′
1 ≤ θ1 implies θ ′

1
∗ = θ∗

1 so the applicationfPd makes sense.) From safety ofh and the

assumptionΠ∪Π1 ∪Π2 ⊆ P , we get by induction one1 that safe (θ1
Π

−→ θ2)(f ), and we get
safe θ ′

1(d) by induction one2. By θ ′
1 ≤ θ1 and Fact 4.3 we havesafe θ ′

1(d) ⇒ safe θ1(d). Then

by definitionsafe (θ1
Π

−→ θ2)(f ) we getsafe θ2(fPd).

• Caseletrec f (x ) = e1 in e2: Then,Π∪Π1 ⊆ P .
Now u = [[∆∗

, f : θ∗
1 → θ∗

2 ⊢ e2 : θ∗]]nP [h | f 7→fixG ], where

G(g) = λP ′
. λd . [[∆∗

, f : θ∗
1 → θ∗

2 ,x : θ∗
1 ⊢ e1 : θ∗

2 ]]nP
′[h | f 7→g ,x 7→d ]

To getsafe θ(u) by induction fore2, we needΠ1 ⊆ P and

safe (∆, f : θ1
Π

−→ θ2)[h | f 7→fixG ]

The former follows from the assumptionΠ∪Π1⊆P . The latter follows from assumption,safe∆(h),
andsafe (θ1

Π
−→ θ2)(fixG). We proceed to show safety offixG .

NowfixG =
⊔

i gi , whereg0= λP ′′
.λd ∈ [[θ∗

1 ]].⊥ andgi+1=G(gi ). And,safe (θ1
Π

−→ θ2)(fixG)
is a consequence of the following claim:

∀i . safe (θ1
Π

−→ θ2)(gi) (2)

Then from Lemma 4.4, we getsafe (θ1
Π

−→ θ2)(
⊔

i gi ). It remains to show (2), for which we
proceed by induction oni .
Base case: Showsafe (θ1

Π
−→ θ2)(g0). Assume anyP ′′ ∈ P(Privileges) and anyv ∈ [[θ∗

1 ]], such
thatΠ ⊆ P ′′ andsafe θ1(v). Theng0P

′′v =⊥ 6= ⋆ andsafe θ2(g0P
′′v) holds.
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Induction step: Assumesafe (θ1
Π

−→ θ2)(gi ), to showsafe (θ1
Π

−→ θ2)(gi+1).
Now gi+1 = G(gi ) = λP ′

. λd . [[∆∗
, f : θ∗

1 → θ∗
2 ,x : θ∗

1 ⊢ e1 : θ∗
2 ]]nP [h | f 7→gi ,x 7→d ]. Assume

anyP ′′ ∈ P(Privileges) andv ∈ [[θ∗
1 ]], such thatΠ ⊆ P ′′ andsafe θ1(v). Then

gi+1P
′′(v) = [[∆∗

, f : θ∗
1 → θ∗

2 ,x : θ∗
1 ⊢ e1 : θ∗

2 ]]nP
′′[h | f 7→gi ,x 7→v ]

Note thatsafe (∆, f : θ1
Π

−→ θ2,x : θ1)[h | f 7→ gi ,x 7→ v ]. Therefore, by the main induction hy-
pothesis on the typing derivation∆, f : θ1

Π
−→ θ2,x : θ1; n ⊢ e1 : θ2, Π, sinceΠ ⊆ P , we obtain

safe θ2(gi+1P
′′v).

• Casesigns n ′ e: ThenΠ ⊆ P andu = [[∆∗ ⊢ e : θ∗]]n ′(P ∩A (n ′))h. The induction hypothesis
on the typing derivation ofe can be used to obtainsafe θ(u), becauseΠ ⊆ (P ∩A (n ′)) which
follows from assumptionΠ ⊆P and side conditionΠ ⊆A (n ′) on the antecedent∆; n ′ ⊢ e : θ , Π
of ∆; n ⊢ signs n ′ e : θ , Π.

• Casedopriv p in e: ThenΠ ⊆ P andu = [[∆∗ ⊢ e : θ∗]]n(P ⊔n {p})h. By the induction hypoth-
esis fore, noting that(Π⊔n {p}) ⊆ (P ⊔n {p}), we havesafe θ(u).

• Casecheck p for e:

ThenΠ∪{p} ⊆ P , hencep ∈ P . Now u = if p ∈ P then [[∆∗ ⊢ e : θ∗]]nPh else⋆. Sincep ∈ P ,
we have,u = [[∆∗ ⊢ e : θ∗]]nPh and, by the induction hypothesis on the typing derivation ofe, we
havesafe θ(u).

• Casetest p then e1 else e2: ThenΠ1∪Π2 ⊆ P and

u = if p ∈ P then [[∆∗ ⊢ e1 : θ∗]]nPh else[[∆∗ ⊢ e2 : θ∗]]nPh

We have two cases. Supposep ∈ P . Then, by induction hypothesis on typing derivation ofe1 and
noting thatΠ1 ⊆ P , we haveu = [[∆∗ ⊢ e1 : θ∗]]nPh andsafe θ(u). The case wherep 6∈ P, is
symmetric.

5 Some program transformations

Using the eager semantics it is straightforward to justify program transformations that can be used for
optimization. This section shows how checks can be eliminated from the password example and also
considers the proofs of some primitive equations from Fournet and Gordon’s work [11].

5.1 Transformations that eliminate checks

First, we list a series of program transformations that movechecking of privileges “outwards”.

if e then check p for e1 else check p for e2 = check p for if e then e1 else e2

e1(check p for e2) = check p for e1e2

test p then e1 else check p for e2 = check p for test p then e1 else e2

test p ′ then check p for e1 else check p for e2 = check p for test p ′ then e1 else e2

letrec f (x ) = e1 in check p for e2 = check p for letrec f (x ) = e1 in e2

check p for check p for e = check p for e

These are unconditional equalities, as the reader can verify using the denotational semantics (Figure 2).
We emphasize that this means extensional equality of the functions denoted by the two sides. In par-
ticular, e = e ′ means[[D ⊢ e : t ]]nPh = [[D ⊢ e ′ : t ]]nPh for all n,P ,h. Corresponding to Fournet and
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Gordon one may consider a slightly weaker notion of equalitywhereP ranges over subsets ofA (n), as
indicated by (1) in Section 3.2. Later we encounter one transformation that only holds for that weaker
equality.

Once checks have been moved outward, some can be eliminated.To eliminate a check, it must
be known definitely to succeed,e.g., because it has been enabled for an authorized principal. Wegive
an example transformation of this kind in Theorem 5.4, formulated in terms of the following notions
concerning expressions that do not depend on privilegep.

Definition 5.1 (p-purity) An expressione is p-pure if e has no sub-expressions of the form
check p for e ′ or test p then e ′ else e ′′.

For each typet we define semanticp-purity as a predicatepure p t on [[t ]]⊥⋆, as follows:
pure p t(⊥) ⇔ true andpure p t(⋆) ⇔ true for all t . For values other than⊥ and⋆, the definition is by
induction on structure oft .

pure p bool(b) ⇔ true

pure p (t1 → t2)(f ) ⇔ ∀P ∈ P(Privileges).∀d ∈ [[t1]].
pure p t1(d) ⇒ pure p t2(fPd)∧ fPd = f (P −{p})d

Finally, for environmenth ∈ [[D ]] we definepure p D(h) iff pure p t(h.x ) for all x : t in D .

Lemma 5.2 Supposeu : N → [[t1 → t2]] is an ascending chain. Then∀i .pure p (t1 → t2)(ui ) implies
pure p (t1 → t2)(⊔iui ).

Proof: By definition of pure and since joins are given pointwise.

Lemma 5.3 If e is p-pure and typable asD ⊢ e : t , then for alln,P ,h with pure p D(h) we have

[[D ⊢ e : t ]]nPh = [[D ⊢ e : t ]]n(P −{p})h

andpure p t([[D ⊢ e : t ]]nPh).

Proof: By induction one. We observe for anyD ,n,P ,h with pure p D (h)

• Casetrue: The equation is direct from the semantics, which is independent ofP . Forp-purity of
true, the result holds by definition ofpure p bool.

• Casex : the equation is direct from the semantics which is independent of P . For p-purity of
[[D ⊢ x : t ]]nPh, the result holds by hypothesis onh.

• Caseif e1 then e2 else e3: straightforward use of induction.

• Casefun x . e: The equation holds because the semantics is independent ofP . Purity holds by
induction one.

• Casee1e2: To show the equation, we use that[[D ⊢ e1]] is p-pure, which holds by induction. To
show purity, we again use purity ofe1 as well as purity ofe2.

• Caseletrec f (x ) = e1 in e2: By induction one2, using Lemma 5.2.

• Casesigns n ′ e: The equation is direct from semantics, using the fact that(P ∩A (n ′))−{p}=
(P −{p})∩A (n ′).
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• Casedopriv p ′ in e: We first consider the case wherep ′ is distinct fromp. We have

[[D ⊢ dopriv p ′ in e : t ]]nPh
= [[D ⊢ e : t ]]n(P ⊔n {p

′})h semantics
= [[D ⊢ e : t ]]n((P ⊔n {p

′})−{p})h induction hyp.
= [[D ⊢ e : t ]]n((P −{p}⊔n {p

′})h p,p ′distinct
= [[D ⊢ dopriv p ′ in e : t ]]n(P −{p})h semantics

In casep ′ is p we have

[[D ⊢ dopriv p in e : t ]]nPh
= [[D ⊢ e : t ]]n(P ⊔n {p})h semantics
= [[D ⊢ e : t ]]n((P −{p})⊔n {p})h see below
= [[D ⊢ dopriv p in e : t ]]n(P −{p})h semantics

The middle step is by cases on whetherp ∈ A (n). If it is, the step holds by simply by definition
of ⊔n . If not, the step holds by induction one.

• Casecheck p ′ for e: Herep ′ is distinct fromp, by p-purity. We observe

[[D ⊢ check p ′ for e : t ]]nPh
= if p ′ ∈ P then [[D ⊢ e : t ]]nPh else⋆ semantics
= if p ′ ∈ P −{p} then [[D ⊢ e : t ]]n(P −{p})h else⋆ p ′,p distinct, ind. fore
= [[D ⊢ check p ′ for e : t ]]n(P −{p})h

• Casetest p ′ then e1 else e2: Again,p ′ is distinct fromp, and the argument is similar tocheck.

Theorem 5.4 For alln, all p ∈ A (n), and allp-pure closed termse

signs n dopriv p in check p for e = signs n e

Proof: Let h be the empty environment, fore which is closed. We observe for anyn ′
,P :

[[signs n dopriv p in check p for e]]n ′Ph

= [[dopriv p in check p for e]]n(A (n)∩P)h semantics
= [[check p for e]]n((A (n)∩P)⊔n {p})h semantics
= [[check p for e]]n((A (n)∩P)∪{p})h def⊔n , usingp ∈ A (n)
= [[e]]n((A (n)∩P)∪{p})h semantics
= [[e]]n(A (n)∩P)h e andh arep-pure, Lemma 5.3
= [[signs n e]]n ′Ph semantics

In the penultimate step, two uses are needed for the lemma: toremovep and, in the case thatp ∈ P , to
add it back.

In order to deal with the password example we need the following conditional equivalence.

Theorem 5.5 For alln, all p ∈ A (n), and all termse

signs n check p for e = check p for signs n e
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Proof: We observe for anyn ′
,P ,h:

[[signs n check p for e]]n ′Ph

= [[check p for e]]n(P ∩A (n))h semantics
= if p ∈ (P ∩A (n)) then [[e]]n(P ∩A (n))h else⋆ semantics
= if p ∈ P then [[e]]n(P ∩A (n))h else⋆ sets, sincep ∈ A (n)
= if p ∈ P then [[signs n e]]n ′Ph else⋆ semantics
= [[check p for signs n e]]n ′Ph semantics

The above proofs are examples of the benefit of a compositional semantics. The proofs are by direct
calculation, without need for induction. For Theorem 5.4, the proof goes through for open terms as well,
if the environmenth is pure. One expects built-in constants to have pure and safevalues.

5.2 The password example

We now revisit the password example, using Theorems 5.4 and 5.5 to eliminate checks. We abbreviate
user ,root asu,r .

passwd(“mypass”)
= {becausepasswd = (fun x . signs r check p for dopriv w in writepass(x ))}

signs r check p for dopriv w in writepass(“mypass”)
= {becausewritepass = (fun x . signs r check w for hwWrite(x , “/etc/password”))}

signs r check p for dopriv w in signs r check w for hwWrite(“mypass”, “/etc/password”)
= {by Theorem 5.5 sinceA (r) = {p,w}}

check p for signs r dopriv w in check w for signs r hwWrite(“mypass”, “/etc/password”)
= {by Theorem 5.4 sincew ∈ A (r) andsigns r hwWrite(. . .) is p-pure closed}

check p for signs r signs r hwWrite(“mypass”, “/etc/password”)
= {becausesigns n signs n e = signs n e}

check p for signs r hwWrite(“mypass”, “/etc/password”)

In the last step we used the unconditional equationsigns n signs n e = signs n e which is easily
proved. Finally, we obtain:

use = signs u dopriv p in passwd(“mypass”)
= signs u dopriv p in check p for signs r hwWrite(“mypass”, “/etc/password”)
= {by Theorem 5.4 sincep ∈ A (u) andsigns r hwWrite(. . .) is p-pure closed}

signs u signs r hwWrite(“mypass”, “/etc/password”)

5.3 Other transformations

We now give an example of a transformation which employs a weaker notion of equality than the ones
in Section 5.1, cf. (1). This is theTestGrant equation of Fournet and Gordon,5 which, in our notation
amounts to proving, for alln,P ,h,p,e1,e2, with P ⊆ A (n),

[[test p then e1 else e2]]nPh = [[test p then dopriv p in e1 else e2]]nPh (3)

5Theirs is slightly more general, as theirtest anddopriv apply to permission sets; this can be desugared to singleton
permissions as in our notation.
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To show (3) we use the denotational semantics and prove

if p ∈ P then [[e1]]nPh else[[e2]]nPh = if p ∈ P then [[dopriv p in e1]]nPh else[[e2]]nPh

It suffices to prove that whenp ∈ P , we have[[e1]]nPh = [[dopriv p in e1]]nPh. We calculate:

[[dopriv p in e1]]nPh
= [[e1]]n(P ⊔n {p})h semantics
= [[e1]]nPh becausep ∈ P andP ⊆ A (n) impliesp ∈ A (n)

We have proved the correctness of several other primitive equations in Fournet and Gordon’s pa-
per [11, Section 4.1].6 Specifically,Frame Frame, Frame Frame Frame, Frame Frame Grant, Frame

Grant, Frame Grant Frame, Frame Grant Test, Frame Test Then, Grant Grant, Grant Frame, Grant

Frame Grant andTest ∪. We have also proved the correctness of their derived equationsFrame Appl,

Frame Frame Intersect andFrame Grant Intersect. Our proofs of these equations do not require the
restrictionP ⊆ A (n).

We have also proved the tail call elimination laws in [11, Section 5.2]. The basic idea in tail call
elimination is to not build a new frame for the last call of a function; instead the callee can directly
return to the caller’s caller. Tail call elimination is problematic with stack inspection, as a stack frame
holds the principal for the current code (or, equivalently,the principal’s static permissions). As noted
earlier, Clements and Felleisen [10] give an abstract machine for which tail call elimination is sound and
efficient. The calculus and small-step semantics of Fournetand Gordon [11, Section 5.2] allows a limited
modeling of tail call elimination. Here is one of their two transformations, in our notation:

signs n2 ((fun x . signs n1 e1) e2) = ((fun x . signs n1 e1) e2) (4)

From left to right this can be read as dropping the “frame” of the calling context. In their setting it can
be read as a transition, provided thate2 is a value. They show that this added transition is admissible, in
the sense of not changing outcomes, provided that the callee’s static permissions are among the caller’s,
i.e.A (n1) ⊆ A (n2). For our purposes, a value is a boolean literal, a variable (whose value is thus in
the environment) or an abstraction. We shall prove that the equation holds in our semantics, under these
conditions. For the proof, it is convenient to use the following easily proved fact which holds for any
D ,e1,e2,n,P ,h.

[[D ⊢ (fun x . e1) e2]]nPh = [[D ,x : t ⊢ e1]]nP [h | x 7→ [[D ⊢ e2]]nPh] (5)

Note: if e2 is a value then its semantics[[D ⊢ e2]]nPh is independent fromP (though not necessarily
from n or h); see Fig. 2. To prove (4) we observe

[[D ⊢ signs n2 ((fun x . signs n1 e1) e2)]]nPh
= [[D ⊢ ((fun x . signs n1 e1) e2)]]n(P ∩A (n2))h by semantics of signs
= [[D ,x : t ⊢ signs n1 e1]]n(P ∩A (n2))[h | x 7→ [[D ⊢ e2]]n(P ∩A (n2))h] lemma (5)
= [[D ,x : t ⊢ e1]]n(P ∩A (n1))[h | x 7→ [[D ⊢ e2]]n(P ∩A (n2))h] sem.,A (n1)⊆ A (n2)
= [[D ,x : t ⊢ e1]]n(P ∩A (n1))[h | x 7→ [[D ⊢ e2]]nPh] e2 value, Note above
= [[D ,x : t ⊢ signs n1 e1]]nP [h | x 7→ [[D ⊢ e2]]nPh] semantics of signs
= [[D ⊢ ((fun x . signs n1 e1) e2)]]nPh lemma (5)

As with most of the other equations, the restrictionP ⊆A (n) is not necessary here. Fournet and Gordon
give a second equation, also provable in our setting, that models tail calls involvingdopriv.

6For a few we need to consider the evident generalization of our language that allows permission sets indopriv (for Grant
Grant, Grant Frame, andFrame Grant Intersect) and intest (for Test ∪).
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6 Using the Static Analysis

Section 5 gives several program transformations that can bejustified by the eager denotational semantics
of our language. A more drastic transformation is possible under some conditions. The safety results of
Section 4 show that if the static analysis derives a judgement ∆; n ⊢ e : θ ,Π, then executinge using a
privilege set that contains at least the enabled privilegesΠ would not lead to a security error. We should
therefore be able to drop alldopriv’s andcheck’s from e. If e is test-free, we can then show that the
meaning ofe is the same as its meaning withdopriv’s andcheck’s erased. This is formalized below.

Definition 6.1 The erasure translation(.)− is defined as follows:

true− = true

x− = x

(if e1 then e2 else e3)
− = if e−1 then e−2 else e−3

(fun x . e)− = fun x . e−

(letrec f (x ) = e1 in e2)
− = letrec f (x ) = e−1 in e−2

(signs n e)− = signs n e−

(dopriv p in e)− = e−

(check p for e)− = e−

(test p then e1 else e2)
− is undefined.

Theorem 6.2 Let e betest-free and let∅; n ⊢ e : bool,Π. Then for allP ∈ P(Privileges), if Π ⊆ P

then[[∅ ⊢ e : bool]]nP{}= [[∅ ⊢ e− : bool]]nP{}.

Proof: Immediate consequence of Lemma 6.6 and definitionrel bool below.

Definition 6.3 For each annotated typeθ the relationrel θ on [[θ∗]]⊥⋆ is defined as follows: For allθ ,
rel θ ⊥ ⊥ holds and otherwiserel θ d d ′ is false if eitherd or d ′ is in {⊥,⋆}. For values other than⊥,⋆,
the definition is by induction on structure ofθ .

rel bool b b ′ ⇔ b = b ′

rel (θ1
Π

−→ θ2) f f ′ ⇔ ∀P ∈ P(Privileges).∀d ,d ′ ∈ [[θ∗
1 ]].

Π ⊆ P ∧ rel θ1 d d ′ ⇒ rel θ2 (fPd) (f
′Pd ′)

For annotated type environment∆, the predicaterel ∆ on [[∆∗]] is defined byrel ∆ h h ′ ⇔ dom(h) =
dom(h ′) and∀x ∈ dom(h).rel (∆.x ) (h.x ) (h ′

.x ).

Fact 6.4 θ ≤ θ ′ andrel θ d d ′ imply rel θ ′ d d ′.

Proof: By induction on derivation ofθ ≤ θ ′. The result is clear forbool ≤ bool. For (θ1
Π

−→ θ2) ≤

(θ ′
1

Π′

−→ θ ′
2), assumerel (θ1

Π
−→ θ2) f f

′. To showrel (θ ′
1

Π′

−→ θ ′
2) f f ′, consider anyP ∈ P(Privileges),

such thatΠ′ ⊆P , and anyd ,d ′ ∈ [[θ ′
1
∗]] with rel θ ′

1 d d ′. From the subtyping, we know thatΠ⊆Π′, hence
Π ⊆P . Moreover, by induction on derivation ofθ ′

1 ≤ θ1, we obtainrel θ ′
1 d d ′ impliesrel θ1 d d ′. Hence

from assumptionrel (θ1
Π

−→ θ2) f f ′, we obtainrel θ2(fPd)(f
′Pd ′). Now by induction on derivation

θ2 ≤ θ ′
2, we obtainrel θ ′

2(fPd)(f
′Pd ′).
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Fact 6.5 The relationrel preserves lubs. That is, for anyθ , let u,u ′ : N→ [[θ∗]]⊥⋆ be ascending chains.
Then,∀i .rel θ ui u

′
i

impliesrel θ (
⊔

i ui )(
⊔

i u
′
i
).

Proof: By structural induction onθ . Whenθ = bool, we have
⊔

i ui =
⊔

i u
′
i
= true or false or⊥. Thus

the result holds by definitionrel.
Whenθ = (θ1

Π
−→ θ2), assumeP ∈ P(Privileges) andd ,d ′ ∈ [[θ∗

1 ]], such thatΠ ⊆ P andrel θ1d d ′.

Then, from assumptionrel (θ1
Π

−→ θ2) ui u
′
i

we obtainrel θ2 (uiPd)(u
′
i
Pd ′) for everyi . Hence, by the

induction hypothesis onθ2, we getrel θ2 (
⊔

i(uiPd))(
⊔

i(u
′
i
Pd ′)). Because lubs are pointwise, we get

rel θ2 ((
⊔

i ui)Pd)((
⊔

i u
′
i
)Pd ′).

Lemma 6.6 Suppose∆; n ⊢ e : θ , Π is derivable ande is test-free. Then for allP ∈ P(Privileges),
for all h,h− ∈ [[∆∗]], if rel ∆ h h− andΠ ⊆ P thenrel θ u u−, whereu = [[∆∗ ⊢ e : θ∗]]nPh andu− =
[[∆∗ ⊢ e− : θ∗]]nPh−.

(Note thath−
,u− are just suggestively named identifiers wherease− is the erasure ofe.) Theorem

6.2 follows from the lemma becauserel ∅ {} {} and by definitionrel bool, [[∅ ⊢ e : bool]]nP{} =
[[∅ ⊢ e− : bool]]nP{}.

Proof: of Lemma. Go by induction on the typing derivation,∆; n ⊢ e : θ , Π. Throughout, we as-
sumeP ∈ P(Privileges) and h,h− ∈ [[∆∗]] and rel ∆ h h−. Let u = [[∆∗ ⊢ e : θ∗]]nPh and u− =
[[∆∗ ⊢ e− : θ∗]]nPh− for each case ofe.

• Casetrue: Then,u = true= u− andrel bool u u− by definitionrel.

• Casex : Then,u = h.x andu− = h−
.x . And, rel θ u u− follows from assumptionrel ∆ h h−.

• Caseif e then e1 else e2: ThenΠ1∪Π2∪Π3 ⊆ P , and

u = if b then [[∆∗ ⊢ e1 : θ∗]]nPh else[[∆∗ ⊢ e2 : θ∗]]nPh

u− = if b− then [[∆∗ ⊢ e−1 : θ∗]]nPh− else[[∆∗ ⊢ e−2 : θ∗]]nPh−

whereb = [[∆∗ ⊢ e : bool]]nPh andb− = [[∆∗ ⊢ e− : bool]]nPh−. By the induction hypothesis
on the typing derivation ofe, noting thatΠ1 ⊆ P , we haverel bool b b−. If b = ⊥ = b− then
u =⊥= u− andrel θ ⊥ ⊥. Otherwise,b = true or b = false. In the former case, by the induction
hypothesis on the typing derivation ofe1, noting thatΠ2 ⊆ P , we haverel θ u u−. In the latter
case, by the induction hypothesis on the typing derivation of e2, noting thatΠ3 ⊆ P , we have
rel θ u u−.

• Casefun x . e: Then u = λP ′
. λd . [[∆∗

,x : θ∗
1 ⊢ e : θ∗

2 ]]nP
′[h | x 7→d ]

u− = λP ′
. λd−

. [[∆∗
,x : θ∗

1 ⊢ e− : θ∗
2 ]]nP

′[h− | x 7→d−]

To proverel (θ1
Π

−→ θ2) u u−, consider anyP ′ ∈ P(Privileges) and anyd ,d− ∈ [[θ∗
1 ]] such that

Π ⊆ P ′ andrel θ1 d d−, to showrel θ2 (uP
′d ′) (u−P ′d−). By semantics,

uP ′d = [[∆∗
,x : θ∗

1 ⊢ e : θ∗
2 ]]nP

′[h | x 7→d ]

u−P ′d− = [[∆∗
,x : θ∗

1 ⊢ e− : θ∗
2 ]]nP

′[h− | x 7→d−]

So the induction hypothesis fore yields rel θ2 (uP ′d) (u−P ′d−) provided thatΠ ⊆ P ′ and
rel (∆,x : θ1)[h | x 7→ d ][h− | x 7→ d−]. We haveΠ ⊆ P ′ by assumption, andrel (∆,x : θ1)[h |
x 7→d ][h− | x 7→d−] follows from rel ∆ h h− andrel θ1 d d−.
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• Casee1 e2: Let f = [[∆∗ ⊢ e1 : (θ1
Π

−→ θ2)
∗]]nPh andd = [[∆∗ ⊢ e2 : θ ′

1
∗]]nPh, so thatu = fPd .

Let f − = [[∆∗ ⊢ e−1 : (θ1
Π

−→ θ2)
∗]]nPh− andd− = [[∆∗ ⊢ e−2 : θ ′

1
∗]]nPh−, so thatu− = f −Pd−.

(Recall thatθ ′
1 ≤ θ1 implies θ ′

1
∗ = θ∗

1 so the applicationsfPd and f −Pd− make sense.) From

rel ∆ h h− and assumptionΠ∪Π1∪Π2 ⊆ P , we get by induction one1 thatrel (θ1
Π

−→ θ2) f f −,
and we getrel θ ′

1 d d− by induction one2. By θ ′
1 ≤ θ1 and Fact 6.4 we haverel θ ′

1 d d− ⇒

rel θ1 d d−. Then by definitionrel (θ1
Π

−→ θ2) f f −, sinceΠ ⊆ P , we getrel θ2(fPd)(f
−Pd−).

• Caseletrec f (x ) = e1 in e2: Then,Π∪Π1 ⊆ P .

Now u = [[∆∗
, f : (θ1

Π
−→ θ )

2∗ ⊢ e2 : θ∗]]nP [h | f 7→fixG ]

u− = [[∆∗
, f : (θ1

Π
−→ θ )

2∗ ⊢ e−2 : θ∗]]nP [h− | f 7→fixG−]

where G(g) = λP ′
. λd . [[∆∗

, f : (θ1
Π

−→ θ2)
∗
,x : θ∗

1 ⊢ e1 : θ∗
2 ]]nP

′[h | f 7→g ,x 7→d ]

G−(g−) = λP ′
. λd−

. [[∆∗
, f : (θ1

Π
−→ θ2)

∗
,x : θ∗

1 ⊢ e−1 : θ∗
2 ]]nP

′[h− | f 7→g−,x 7→d−]

To showrel θ u u− by induction one2, we needΠ1 ⊆ P and

rel (∆, f : θ1
Π

−→ θ2) [h | f 7→fixG ] [h− | f 7→fixG−]

The former follows from assumptionΠ∪Π1 ⊆P . The latter follows from assumption,rel ∆ h h−,
andrel (θ1

Π
−→ θ2)(fixG)(fixG−), which we now proceed to show.

Now fix G =
⊔

i gi , whereg0 = λP ′
. λd ∈ [[θ∗

1 ]]. ⊥ and gi+1 = G(gi). Also fix G− =
⊔

i g
−
i

,

whereg−0 = λP ′
. λd− ∈ θ∗

1 . ⊥ andg−
i+1 = G−(g−

i
). And, rel (θ1

Π
−→ θ2)(fix G)(fix G−) is a

consequence of the following claim:

∀i . rel (θ1
Π

−→ θ2) gi g
−
i

(6)

Then from Lemma 6.5, we getrel (θ1
Π

−→ θ2)(
⊔

i gi)(
⊔

i g
−
i
). It remains to show (6), for which

we proceed by induction oni .
Base case: Showrel (θ1

Π
−→ θ2) g0 g−0 . Assume anyP ′ ∈ P(Privileges) and anyv ,v− ∈ [[θ∗

1 ]],
such thatΠ ⊆ P ′ andrel θ1 v v−. Theng0P

′v =⊥= g−0 P ′v− andrel θ2(g0P
′v)(g−0 P ′v−).

Induction step: Assumerel (θ1
Π

−→ θ2) gi g
−
i

, to showrel (θ1
Π

−→ θ2) gi+1 g
−
i+1.

Now gi+1 = λP ′
. λd . [[∆∗

, f : (θ1
Π

−→ θ2)
∗
,x : θ∗

1 ⊢ e1 : θ∗
2 ]]nP [h | f 7→gi ,x 7→d ]

g−
i+1 = λP ′

. λd−
. [[∆∗

, f : (θ1
Π

−→ θ2)
∗
,x : θ∗

1 ⊢ e−1 : θ∗
2 ]]nP [h− | f 7→g−

i
,x 7→d−]

Assume anyP ′ ∈ P(Privileges) andv ,v− ∈ [[θ∗
1 ]], such thatΠ ⊆ P ′ andrel θ1 v v−. Then

gi+1P
′v = [[∆∗

, f : (θ1
Π

−→ θ2)
∗
,x : θ∗

1 ⊢ e1 : θ∗
2 ]]nP

′[h | f 7→gi ,x 7→v ]

g−
i+1P

′v− = [[∆∗
, f : (θ1

Π
−→ θ2)

∗
,x : θ∗

1 ⊢ e1 : θ∗
2 ]]nP

′[h− | f 7→g−
i
,x 7→v−]

Note thatrel (∆, f : θ1
Π

−→ θ2,x : θ1) [h | f 7→gi ,x 7→v ] [h− | f 7→g−
i
,x 7→v−]. Therefore, by the

main induction hypothesis on the typing derivation∆, f : θ1
Π

−→ θ2,x : θ1; n ⊢ e1 : θ2, Π, since
Π ⊆ P , we obtainrel θ2(gi+1P

′v)(g−
i+1P

′v−).

• Casesigns n ′ e: ThenΠ ⊆ P andu = [[∆∗ ⊢ e : θ∗]]n ′(P ∩A (n ′))h. The induction hypothesis
on the typing derivation ofe can be used to obtainrel θ u u−, becauseΠ ⊆ (P ∩A (n ′)) which
follows from assumptionΠ ⊆ P and side conditionΠ ⊆ A (n ′).

• Casedopriv p in e: ThenΠ ⊆ P andu = [[∆∗ ⊢ e : θ∗]]n(P ⊔n {p})h. By the induction hypoth-
esis fore, noting that(Π⊔n {p}) ⊆ (P ⊔n {p}), we haverel θ u [[∆∗ ⊢ e− : θ∗]]n(P ⊔n {p})h

−.
But nowe− is p-pure. So by Lemma 5.3,[[∆∗ ⊢ e− : θ∗]]n(P ⊔n {p})h

− = [[∆∗ ⊢ e− : θ∗]]nPh−.
But u− = [[∆∗ ⊢ e− : θ∗]]nPh−. Hencerel θ u u−.
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• Casecheck p for e:

ThenΠ∪{p} ⊆ P , hencep ∈ P . Now u = if p ∈ P then [[∆∗ ⊢ e : θ∗]]nPh else⋆. Sincep ∈ P ,
we have,u = [[∆∗ ⊢ e : θ∗]]nPh and, by the induction hypothesis on the typing derivation ofe, we
haverel θ u [[∆∗ ⊢ e− : θ∗]]nPh−. Hencerel θ u u−.

7 Stack Semantics

This section gives a formal semantics using stack inspection, and shows that for standard expressions it
coincides with the eager semantics. The connection is much more direct than that of Wallach, Appel and
Felten, so a complete detailed proof is not very lengthy.

Because the operations on the stack are in fact stack-like, it is straightforward to give a denota-
tional style semantics parameterized on the stack. We defineStacks = nonempty list of(Principals×
P(Privileges)), taken as a cpo ordered by equality. The top is the head of the list, and we write infix ::
for cons, so〈n,P〉 :: S is the stack with〈n,P〉 on top ofS , as in Section 2. We also use the predicate
chk defined there, and recall the definitionp ∈ privs S ⇔ chk(p,S ).

Fact 7.1 For allS and alln we haveprivs(S )∩A (n) = privs(〈n,∅〉 :: S ).

Proof: The sets are equal because for anyp

p ∈ privs(〈n,∅〉 :: S ) ⇔ chk(p,(〈n,∅〉 :: S )) by defprivs
⇔ p ∈ A (n)∧ chk(p,S ) by defchk andp 6∈∅

⇔ p ∈ A (n)∧p ∈ privs(S ) by defprivs

The stack semantics of an expression is a function

([D ⊢ e : t ]) ∈ Stacks→ ([D ])→ ([t ])⊥⋆

Just as in the eager semantics, we need to account for dynamicbinding of privileges by interpreting arrow
types using an extra parameter. The stack semantics of typesis as follows.

([bool]) = {true, false}
([t1 → t2]) = Stacks→ ([t1])→ ([t2])⊥⋆

The semantics of expressions is in Figure 4.
We can now relate the denotational semantics of Figure 2 to the stack semantics of Figure 4.

Theorem 7.2 (Consistency)For any standard expressione and stack(〈n,P ′〉 :: S ), we have

[[∅ ⊢ e : bool]]nP{} = ([∅ ⊢ e : bool])(〈n,P ′〉 :: S ){} whereP = privs(〈n,P ′〉 :: S ).

Proof: Immediate consequence of Lemma 7.5 and definitionsim bool below.

As in the proof of safety, we need to generalize the result to allow nonempty contexts. We also
consider expressions of arrow type, for which a logical relation is needed.

Definition 7.3 Define data-type indexed familysim t ⊆ [[t ]]⊥⋆× ([t ])⊥⋆ as follows. For anyt , sim t d d ′

is true ifd = d ′ andd ∈ {⊥,⋆}; it is false ifd 6= d ′ andd or d ′ is in {⊥,⋆}. Otherwise:

sim bool b b ′ ⇔ b = b ′

sim (t1 → t2) f f ′ ⇔ ∀S ∈ Stacks.∀d ∈ [[t1]].∀d
′ ∈ ([t1]).

sim t1 d d ′ ⇒ sim t2 (f (privs S ) d) (f ′ S d ′)
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([D ⊢ true : bool])Sh = true

([D ⊢ x : t ])Sh = h.x

([D ⊢ if e then e1 else e2 : t ])Sh = let b = ([D ⊢ e : bool])Sh in
if b then ([D ⊢ e1 : t ])Sh else([D ⊢ e2 : t ])Sh

([D ⊢ fun x . e : t1 → t2])Sh = λS ′ ∈ Stacks. λd ∈ ([t1]).
([D ,x : t1 ⊢ e : t2])S ′[h | x 7→d ]

([D ⊢ e1 e2 : t2])Sh = let f = ([D ⊢ e1 : t1 → t2])Sh in
let d = ([D ⊢ e2 : t1])Sh in fSd

([D ⊢ letrec f (x ) = e1 in e2 : t ])Sh
= let G(g) = λS ′

. λd . ([D , f : t1 → t2,x : t1 ⊢ e1 : t2])S [h | f 7→g,x 7→d ] in
([D , f : t1 → t2 ⊢ e2 : t ])S [h | f 7→fixG]

([D ⊢ signs n ′ e : t ])Sh = ([D ⊢ e : t ])(〈n ′
,∅〉 :: S )h

([D ⊢ dopriv p in e : t ])(〈n,P〉 :: S )h = ([D ⊢ e : t ])(〈n,P ∪{p}〉 :: S )h
([D ⊢ check p for e : t ])Sh = if chk(p,S ) then ([D ⊢ e : t ])Sh else⋆
([D ⊢ test p then e1 else e2 : t ])Sh = if chk(p,S ) then ([D ⊢ e1 : t ])Sh else([D ⊢ e2 : t ])Sh

Figure 4: Stack semantics

An environmenth ∈ [[D ]] simulates an environmenth ′ ∈ ([D ]), written sim D h h ′, provided
sim (D .x ) (h.x ) (h ′

.x ) for all x ∈ dom(h).

Lemma 7.4 The relationsim preserves lubs. That is, for anyt , if u : N → [[t ]] andu ′ : N → ([t ]) are
ascending chains and∀i .sim t ui u

′
i

thensim t (
⊔

i ui ) (
⊔

i u
′
i
).

Proof: Go by structural induction ont . Assume thatsim t ui u
′
i
. Whent = bool, by definitionsim we

obtain, for eachi , ui = u ′
i
. Thussim t (

⊔
i ui ) (

⊔
i u

′
i
).

When t = t1 → t2, consider anyP ,S ,d ,d ′ with P = privs(S ) and sim t1 d d ′. We must show
sim t2 ((

⊔
i ui)Pd) ((

⊔
i u

′
i
)Sd ′), i.e., by definition of lubs we must show,sim t2

⊔
i (uiPd)

⊔
i(u

′
i
Sd ′).

By assumption, for everyi , sim (t1 → t2) ui u
′
i
, hence,sim t2 (uiPd) (u

′
i
Sd ′) holds for eachi . Therefore,

by induction fort2, we obtainsim t2
⊔

i(uiPd)
⊔

i(u
′
i
Sd ′).

Lemma 7.5 For any stack(〈n,P ′〉 :: S ), for any standard expressione, and anyD , t ,h,h ′, let u =
[[D ⊢ e : t ]]nPh whereP = privs(〈n,P ′〉 ::S ), and letu ′ =([D ⊢ e : t ])(〈n,P ′〉 ::S )h ′. ThensimD h h ′ ⇒
sim t u u ′.

The Consistency Theorem follows from the lemma becausesim∅ {} {} and sincesim bool u u ′ implies
u = u ′.

Proof: of Lemma. Go by induction one.

• Casestrue andx : Immediate from semantic definitions.

• Caseif e then e1 else e2: Directly by induction.

• Casefun x . e: Let u = [[D ⊢ fun x . e : t1 → t2]]nPh and let

u ′ = ([D ⊢ fun x . e : t1 → t2])Sh
′

Then u = λP ′
. λd . [[D ,x : t1 ⊢ e : t2]]nP ′[h | x 7→d ]

u ′ = λS ′
. λd ′

. ([D ,x : t1 ⊢ e : t2])S ′[h ′ | x 7→d ′]
To showsim (t1 → t2) u u ′, need to show that for anyS ′′

,d ′′
,d ′′′, such thatsim t1 d

′′ d ′′′, it is the
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case thatsim t2 (u (privs S ′′) d ′′) (u ′ S ′′ d ′′′). By standardness,e is signs n ′ e ′ for somen ′
,e ′.

Thus we can proceed as follows, usinge ≡ signs n ′ e ′ and semantics ofsigns.

u (privs S ′′) d ′′ = [[D ,x : t1 ⊢ e : t2]]n (privs S ′′) [h | x 7→d ′′]

= [[D ,x : t1 ⊢ e ′ : t2]]n
′ (privs(S ′′)∩A (n ′)) [h | x 7→d ′′]

u ′ S ′′ d ′′′ = ([D ,x : t1 ⊢ e : t2]) S
′′ [h ′ | x 7→d ′′′]

= ([D ,x : t1 ⊢ e ′ : t2])(〈n
′
,∅〉 :: S ′′) [h ′ | x 7→d ′′′]

Note that by definitionsim and by assumptionsim t1 d ′′ d ′′′, we have,sim (D ,x : t1) [h | x 7→
d ′′] [h ′ | x 7→d ′′′]. Furthermore, by Fact 7.1,privs(S ′′)∩A (n ′) = privs(〈n ′

,∅〉 :: S ′′). Therefore,
by induction fore ′, we obtain,sim t2 (u (privs S ′′) d ′′) (u ′ S ′′ d ′′′). This is where we need
Definition 2.1.

• Casee1e2: [[D ⊢ e1 e2 : t2]]nPh = let f = [[D ⊢ e1 : t1 → t2]]nPh in
let d = [[D ⊢ e2 : t1]]nPh in fPd

([D ⊢ e1 e2 : t2])Sh ′ = let f ′ = ([D ⊢ e1 : t1 → t2])Sh
′ in

let d ′ = ([D ⊢ e2 : t1])Sh in f ′Sd ′

Need to showsim t2 (fPd) (f ′Sd ′). Sincesim D h h ′ andP = privs(S ), therefore, by induction
for e1, we havesim (t1 → t2) f f ′. Similarly, by induction fore2, we havesim t1 d d ′. Hence the
result follows by definitionsim sinceP = privs(S ). This case of the proof shows the necessity of
defining the relationsim.

• Caseletrec f (x ) = e1 in e2:

[[D ⊢ letrec f (x ) = e1 in e2 : t ]]nPh
= let G(g) = λP ′

. λd . [[D , f : t1 → t2,x : t1 ⊢ e1 : t2]]nP ′[h | f 7→g ,x 7→d ] in
[[D , f : t1 → t2 ⊢ e2 : t ]]nP [h | f 7→fixG ]

([D ⊢ letrec f (x ) = e1 in e2 : t ])Sh
= let G ′(g ′) = λS ′

. λd ′
. ([D , f : t1 → t2,x : t1 ⊢ e1 : t2])S ′[h ′ | f 7→g ′,x 7→d ′] in

([D , f : t1 → t2 ⊢ e2 : t ])S [h ′ | f 7→fixG ′]

To show the result, it suffices to showsim (t1 → t2) (fix G) (fix G ′), because then we can use
induction fore2, noting thatsim (D , f : t1 → t2) [h | f 7→ fix G ] [h ′ | f 7→ fix G ′], and thatP =
privs(S ). Accordingly, we demonstrate the following claim:

∀i .sim (t1 → t2) gi g
′
i

(7)

Then from Lemma 7.4, we getsim (t1 → t2)
⊔

i gi
⊔

i g
′
i
. This completes the proof. To show (7),

we proceed by induction oni . We have:

g0 = λP ′
. λd .⊥

gi+1 = λP ′
. λd . [[D , f : t1 → t2,x : t1 ⊢ e1 : t2]]nP

′[h | f 7→gi ,x 7→d ]

= {becausee1 ≡ signs n ′ e ′1 by standardness}

λP ′
. λd . [[D , f : t1 → t2,x : t1 ⊢ e1 : t2]]n

′(P ′∩A (n ′))[h | f 7→gi ,x 7→d ]

g ′0 = λS ′
. λd ′

.⊥

g ′i+1 = λS ′
. λd ′

. ([D , f : t1 → t2,x : t1 ⊢ e1 : t2])S
′[h ′ | f 7→g ′i ,x 7→d ′]

= {becausee1 ≡ signs n ′ e ′1}

λS ′
. λd ′

. ([D , f : t1 → t2,x : t1 ⊢ e ′1 : t2])(〈n
′
,∅〉 :: S ′)[h ′ | f 7→g ′i ,x 7→d ′]
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Clearly,sim (t1 → t2) g0 g
′
0, by definitionsim. To showsim (t1 → t2) gi+1 g

′
i+1, assumesim (t1 →

t2) gi g
′
i

(induction hypothesis), and that for anyS ′ andP ′ = privs(S ′), sim t1 d d ′ holds. Then

sim (D , f : t1 → t2,x : t1) [h | f 7→gi ,x 7→d ] [h ′ | f 7→g ′i ,x 7→d ′]

by definitionsim and sincesim D h h ′. Now by Fact 7.1,P ′∩A (n ′) = privs(〈n ′
,∅〉 :: S ′), so by

the main induction hypothesis one ′1, sim t2 (gi+1P
′d) (g ′

i+1S
′d ′) holds.

• Case signs n e: We have: [[D ⊢ signs n ′ e : t ]]nPh = [[D ⊢ e : t ]]n ′(P ∩ A (n ′))h and
([D ⊢ signs n ′ e : t ])Sh ′ = ([D ⊢ e : t ])(〈n ′

,∅〉 :: S )h ′ so the result holds by induction one pro-
videdP ′∩A (n ′) = privs(〈n ′

,∅〉 :: S ). But this equality holds by Fact 7.1.

• Casedopriv p in e: The result holds by induction fore, provided thatP ⊔n {p}= privs(〈n,P ′∪
{p}〉 :: S ). This holds because for anyp ′

p ′ ∈ P ⊔n {p}
⇔ p ′ ∈ P ∨ (p ′ ∈ A (n)∧p ′ = p) by def⊔n

⇔ chk(p ′,〈n,P ′〉 :: S )∨ (p ′ ∈ A (n)∧p ′ = p) assumption, defprivs
⇔ (p ′ ∈ A (n)∧ (p ′ ∈ P ′∨ chk(p ′,S ))∨ (p ′ ∈ A (n)∧p ′ = p) def chk
⇔ p ′ ∈ A (n)∧ (p ′ ∈ P ′∪{p}∨ chk(p ′,S )) logic and sets
⇔ p ′ ∈ privs(〈n,P ′∪{p}〉 :: S ) defschk andprivs

• Casecheck p for e: Both semantics are conditional; the condition in one case is p ∈ P ′ and in
the other casechk(p,S ), and these are equivalent conditions by assumptionP ′ = privs(S ) for the
Lemma. In case the condition is true, the result holds by induction, which applies because for both
semantics the security arguments fore are unchanged. If the condition is false, the result holds
because both semantics are⋆ andsim t ⋆ ⋆.

• Casetest p then e1 else e2: Similar to the case forcheck.

8 Conclusion

Our work was motivated by the hope, inspired by discussions with Dave Schmidt, for more principled
semantics of static analyses presented in the form of type and effect systems. Our work serves to demon-
strate two attractive features of denotational semantics,which a decade ago seemed largely eclipsed by
operational semantics. The first is proof of program equalities via equational reasoning on denotations.
The second is logical relations, defined by structural recursion on types. We are glad for the opportunity
to demonstrate the utility of denotational semantics whilecelebrating the contributions of Dave Schmidt,
so adept a practitioner of all forms of semantic modeling.
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