
J. Pang, Y. Liu, and S. Mauw (Eds.): 4th International Workshop
on Engineering Safety and Security Systems 2015 (ESSS’15)
EPTCS 184, 2015, pp. 81–95, doi:10.4204/EPTCS.184.6

c©Wang, Ostroff, and Hudon
This work is licensed under the Creative Commons
Attribution-Noncommercial-No Derivative Works License.

Using Indexed and Synchronous Events to
Model and Validate Cyber-Physical Systems

Chen-Wei Wang, Jonathan S. Ostroff, and Simon Hudon
Department of Electrical Engineering and Computer Science,

York University, Canada
{jackie, jonathan, simon}@cse.yorku.ca

Timed Transition Models (TTMs) are event-based descriptions for modelling, specifying, and veri-
fying discrete real-time systems. An event can be spontaneous, fair, or timed with specified bounds.
TTMs have a textual syntax, an operational semantics, and an automated tool supporting linear-time
temporal logic. We extend TTMs and its tool with two novel modelling features for writing high-level
specifications: indexed events and synchronous events. Indexed events allow for concise description
of behaviour common to a set of actors. The indexing construct allows us to select a specific actor
and to specify a temporal property for that actor. We use indexed events to validate the requirements
of a train control system. Synchronous events allow developers to decompose simultaneous state up-
dates into actions of separate events. To specify the intended data flow among synchronized actions,
we use primed variables to reference the post-state (i.e., one resulted from taking the synchronized
actions). The TTM tool automatically infers the data flow from synchronous events, and reports
errors on inconsistencies due to circular data flow. We use synchronous events to validate part of
the requirements of a nuclear shutdown system. In both case studies, we show how the new nota-
tion facilitates the formal validation of system requirements, and use the TTM tool to verify safety,
liveness, and real-time properties.

1 Introduction

Cyber-physical systems integrate computational systems (the “controller”) with physical processes (the
“plant”). Such systems are found in areas as diverse as aerospace, automotive, energy, healthcare, man-
ufacturing, transportation, and consumer appliances. A main challenge in developing cyber-physical
systems is modelling the joint dynamics of computer controllers and the plant [1].

Timed Transition Models (TTMs) are event-based descriptions for modelling, specifying, and veri-
fying discrete real-time systems. A system is composed of module instances. Each module declares an
interface and a list of events. An event can be spontaneous, fair, or timed (i.e., with lower and upper time
bounds). In [6], we provided TTMs with a textual syntax, an operational semantics, and an automated
tool, including an editor with type checking, a graphical simulator, and a verifier for linear-time temporal
logic. So far, TTMs were used to verify that a variety of implementations satisfy their specifications.

In this paper, we extend the TTM notation, semantics, and tool for two novel modelling features:
indexed events and synchronous events. These constructs are suitable for writing high-level specification,
and can thus facilitate the validation of system requirements.

Indexed events allow for concise description of behaviour common to a (possibly unspecified) set of
actors. The indexing construct allows us to select a specific actor (such as a train) and specify a temporal
property for that actor. For example, let loc be an array of train locations (a train can be on either the
entrance block, a platform, an exit block, or outside the station). An event move out can be indexed with
a set TRAIN of trains, which results in an indexed event move out(t: fair TRAIN) describing the action

http://dx.doi.org/10.4204/EPTCS.184.6
http://creativecommons.org
http://creativecommons.org/licenses/by-nc-nd/3.0/

82 Indexed Events & Synchronous Events in TTM

of a train t moving out of a platform and into the exit block. As a result, the event index t can be used to
specify the liveness property that every train t waiting at one of the platforms (denoted by the set PLF)
eventually moves out, and into the exit block: �(loc[t] ∈ PLF ⇒ ♦move out(t)). Without the index t,
we can only state a weaker property that some train eventually leaves the station (unless we introduce
auxiliary variables or events).

Synchronous events allow developers to decompose simultaneous state updates into actions of sep-
arate events. However, without a mechanism to reference the post-state values of monitored variables,
we cannot properly model the joint actions of the environment and controller. For example, the synchro-
nized action m := exp || c := f (m) specifies that the new (or next-state) value of controlled variable c
is computed on the basis of the old (or pre-state) value of monitored variable m (i.e., exp). To resolve
this, we use primed variables on the RHS of assignments in event actions to denote post-state values. For
example, the synchronized action m := exp || c := f (m’) specifies that the post-state value of c is now
a function on the post-value value of m. Synchronous events, together with primed variables, are suit-
able for describing high-level specifications used in shutdown systems of nuclear reactors [11]. In such
systems, the next-state value of the system controlled variables are expressed in terms of the current-
state and next-state values of the monitored variables of nuclear reactors. This allows for a simplified
description of the requirements that will later be refined to code.

Contributions. To support indexed and synchronous events for validating requirements, we extend the
semantics of TTM (Sec. 2), and we extend our tool accordingly. For synchronous events, our tool
automatically infers the data flow, and reports on inconsistencies due to circular data flow. We conduct
two realistic case studies: a train control system (Sec. 3) using indexed events, and a part of a nuclear
shutdown system (Sec. 4) using synchronous events.

Resources. Complete details of the two case studies are included in an extended report [10], which also
contains more case studies of cyber physical systems (i.e., a mutual exclusion protocol, and function
blocks from the IEC 61131 Standard for programmable logic controllers) that can be specified using
the new notations. Complete TTM listings of the case studies are available at: https://wiki.eecs.
yorku.ca/project/ttm/index_sync_evt.

2 Semantics for Indexed and Synchronous Events

We extend the one-step operational semantics of TTMs reported in [6] to support both indexed events
(Sec. 2.2) and synchronous events (Sec. 2.3). The extensions involve redefining: 1) the abstract syntax
of events which affects the rules of transitions and scheduling; and 2) the rules of module compositions.
We include the most relevant details to present these extensions, while the complete account of the new
semantics is included in an extended report [10, Sec. 6].

2.1 Abstract Syntax: Introducing Fair and Demonic Event Indices We define the abstract
syntax of a TTM module instance M as a 5-tuple (V,s0,T, t0,E) where 1) V is a set of local or interface
variables; 2) T is a set of timers; 3) E is a set of state-changing events; 4) s0 ∈ STATE is the initial
state (STATE , V → VALUE); and 5) t0 ∈ TIMER is the initial timer assignment (TIMER , T →
N). We define type ∈ T →P(N) and boundt ∈ T →N for querying about, respectively, the type and
upper bound of each timer. For example, if timer t1 is declared as t1 : 0..5, then boundt(t1) = 5 and
type(t1) = {0..6}. Timers count up to one beyond the specified bound, and remain unchanged until they
are started again. The figure below presents the generic form of a TTM event, where V = {v1,v2,v3, · · ·}
and T = {t1, t2, t3, t4, · · ·}.

https://wiki.eecs.yorku.ca/project/ttm/index_sync_evt
https://wiki.eecs.yorku.ca/project/ttm/index_sync_evt

Wang, Ostroff, and Hudon 83

Concrete syntax of event e:

event id (x : fair Tx; y : Ty) [l,u] just
when grd
start t1, t2
stop t3, t4
do v1 := exp1,

if condition then v2 := v′1 + exp2
else skip fi,
v3 :: 1..4

end

Abstract syntax of the event e:

• e.id ∈ ID;

• e. f ind ⊆ ID ; e.d ind ⊆ ID

• e.d ind , e. f ind ∪ d ind

• e.l ∈ N; e.u ∈ N∪ {∞}

• e. f air
∈ {spontaneous, just,compassionate}

• e.grd ∈ STATE×TIMER→BOOL;

• e.start ⊆ T ;

• e.stop⊆ T ;

• e.action ∈ STATE×TIMER↔ STATE;

We use a 10-tuple (id, f ind,d ind, l,u, f air,grd,start,stop,action) to define the abstract syntax of
an event e. We write e.id for its identifier. Sets e. f ind and e.d ind contain, respectively, fair and demonic
indices that can be referenced in the event. Its fairness assumption (i.e., e.fair), as discussed in Sec. 2.2,
filters out certain execution traces that will be considered in the model checking process. Its guard (i.e.,
e.grd) is a Boolean expression referencing state variables, timers, or its indices. An event e must be taken
between its lower time bound (LTB) e.l and upper time bound (UTB) e.u, while its guard e.grd remains
true. The event action involves simultaneous assignments to v1,v2, · · · . We write v3 :: 1..4 for a demonic
(non-deterministic) assignment to v3 from a finite range. Therefore, its state effect is a relation e.action
on state variables and timers. On the RHS of an assignment y := x, the state variable x may be “primed”
(x′) or “unprimed”. A primed variable refers to its value at the next state, or its current-state value if it
is unprimed. The use of primed variables in expressions allows for more expressive descriptions of state
changes, especially when combined with the use of synchronous events (Sec. 2.3).

2.2 Operational Semantics Given a TTM module instance M , an LTS (Labelled Transition Sys-
tem) is a 4-tuple L = (Π,π0,T,→) where 1) Π is a set of system configurations; 2) π0 ∈Π is an initial
configuration; 3) T is a set of transitions names (defined below); and 4)→⊆ Π×T×Π is a transition
relation.

We define Eid as the set of event transition names, and E f air as the set of transition name prefixes,
excluding values of demonic indices (i.e., including values of fair indices): Eid , {e,m | e ∈ E ∧ m ∈
e. f ind→VALUE • (e.id,m)}. On the one hand, we use e(x) to denote the (external) transition name
of event e with x, the values of its fair indices. On the other hand, when referring to the occurrence of e,
in an LTL formula for instance, we use e(x,y) to include y, the values of its demonic indices; otherwise,
values of demonic indices are treated as internal non-deterministic choice within the event.

A configuration π ∈Π is defined by a 6-tuple (s, t,m,c,x, p), where:

• s ∈ STATE is a value assignment for all the variables of the system. The state can be read and changed
by any transition corresponding to an event in E.

• t ∈ TIMER is a timer valuation function. Event transitions may start, stop, and read timers. A tick
transition representing a global clock changes the timers.

• m ∈ T→BOOL records the status of monotonicity of each timer. Suppose event e1 starts t1, then we
may specify that a predicate p becomes true within 4 ticks after e1’s occurrence. However, other events
might stop or restart t1 before p is satisfied, making t1 not in sync with the global clock. The expression
m(t1) (monotonicity of timer t1) holds in any state where t1 is not stopped or reset.

84 Indexed Events & Synchronous Events in TTM

• c ∈ Eid→N ∪ {−1} is a value assignment for a clock implicitly associated with each event. These
clocks are used to decide whether an event has been enabled for long enough (c(e.id,x) ≥ e.l) and
whether it is urgent (c(e.id,x) = e.u).

• x ∈ Eid ∪ {⊥} provides a sequencing mechanism: each transition e is immediately preceded by a
transition e# to update the monotonicity record m.

• p ∈ Eid ∪ {tick,⊥} holds the name of the last event to be taken at each configuration. It is ⊥ in the
initial configuration. It allows us to refer to events in LTL formula, to state that they have just occurred.

We focus on components s and c that are affected the most by fair and demonic indices, whereas
components t, m, and x, as to how the monotonicity status of timers is maintained, are less relevant and
included in [10, Sec. 6].

Given a flattened module instance M , transitions of its corresponding LTS are given as T = Eid ∪
E# ∪ {tick}, where E# , {e ∈ Eid • e#} is the set of monotonicity-breaking transitions as mentioned
above. Explicit timers and event (lower and upper) time bounds are described with respect to this tick
transition. We define the enabling condition of event e∈ E with fair index x and demonic index y as when
its guard is satisfied, and when its implicit clock is in-between its specified bounds: (e.en(x) , (∃y •
e.grd(x,y)) ∧ e.l ≤ c(e.id,x)≤ e.u).

The initial configuration is defined as π0 = (s0, t0,m0,c0,⊥,⊥), where s0 and t0 come from the ab-
stract (Sec. 2.1). The value of each event ei’s implicit clock depends on its guard being satisfied initially.
More precisely, c0(ei.id,x) equals 0 (the clock starts) if (s0, t0) |= (∃y • ei.grd(x,y))1; otherwise, it equals
-1.

An execution σ of the LTS L is an infinite sequence π0
τ1→ π1

τ2→ π2→··· , alternating between config-
urations πi ∈Π and transitions τi ∈ T. Below, we provide constraints on each one-step relation (π e→ π ′)
in an execution. If an execution σ satisfies all these constraints then we call σ a legal execution. To
characterize the complete behaviour of L , we let ΣL denote the set of all its legal executions. Given a
temporal logic property ϕ and an LTS L , we write L � ϕ iff ∀σ ∈ ΣL • σ � ϕ . There are two possible
transition steps (event e(x) and tick):

(s, t,m,c,e(x), p)
e(x)→ (s′, t ′,m′,c′,⊥,e(x)) (1)

(s, t,m,c,⊥, p) tick→ (s, t ′,m′,c′,⊥, tick) (2)

Taking e The transition e(x) specified in Eq. 1 is taken only if the x-component of the configuration is
e (meaning that e# was just taken, so e is the only event allowed to be taken) and (s, t,c) � e.en(x).
The component s′ of the next configuration in an execution is determined non-deterministically by
e.action(x,y), which is a relation as demonic indices or assignments may be used. Consequently, any
next configuration that satisfies the relation can be part of a valid execution, i.e., s′ is only constrained
by (s, t,s′) ∈ e.action(x,y). The following function tables specify the updates to c upon occurrence of
transition e(x).

For each event ei ∈ E, x ∈ ei. f ind→VALUE c′(ei.id)
(s′, t ′) 6|= (∃y • ei.grd(x,y)) -1

(s′, t ′) |= (∃y • ei.grd(x,y))
(s, t) |= (∃y • ei.grd(x,y)) ∧ ¬ei = e c(ei.id,x)
(s, t) 6|= (∃y • ei.grd(x,y)) ∨ ei = e 0

1If a state-formula q holds in a configuration π , then we write π � q. For formulas such as guards which do not depend on
all components of a configuration, we drop some of its components on the left of |=, as in (s0, t0) |= e.grd(x,y).

Wang, Ostroff, and Hudon 85

We start and stop the implicit clock of ei as a consequence of executing e, according to whether ei.grd
just becomes or remains false (1st row), remains true (2nd row), or just becomes true (3rd row). Event ei

is ready to be taken if it becomes enabled ei.l units after its guard becomes true.
Taking tick The tick transition specified in Eq. 2 is taken only if the x-component of the configuration is
⊥ (thus preventing tick from intervening between any e# and e pair) and if ∀e ∈ E • c(e.id,x)< e.u.

For each event e ∈ E, x ∈ e. f ind→VALUE c′(e.id,x)
(s′, t ′) 6|= (∃y • e.grd(x,y)) -1

(s′, t ′) |= (∃y • e.grd(x,y))
(s, t) 6|= (∃y • e.grd(x,y)) 0
(s, t) |= (∃y • e.grd(x,y)) c(e.id,x)+1

Thus, tick increments timers and implicit clocks towards their upper bounds.
Scheduling So far, we have constrained executions so that the state changes in controlled ways. However,
to ensure that a given execution does not stop making progress, we need to assume fairness. The current
TTM tool supports four possible scheduling assumptions.
1. Spontaneous event. When no fairness keyword is given, and the UTB is given as * or unspecified,
then even when the event is enabled, it might never be taken.
2. Just event scheduling (a.k.a. weak fairness [9]). This is assumed when the event is declared with
the keyword just and when the upper time bound is * or unspecified. For any execution σ ∈ ΣL , if
an event e eventually becomes continuously enabled, then it occurs infinitely many times: σ � (∀x •
♦�e.en(x) → �♦(∃y • e(x,y))), where x ranges over e’s fair indices and y its demonic indices.

This highlights the key distinction between fair and demonic indices. The fairness assumption guar-
antees that e(x,) is treated fairly for every single value of x. For example, if x is a process identifier,
making it a fair index means that as long as it is active, each process is eventually given CPU time. In
contrast, if x is treated as a demonic index, then it is possible that infinitely often the same process will
be given CPU time.
3. Compassionate event scheduling (a.k.a. strong fairness [9]). This is assumed when the event is
declared with the keyword compassionate and when the upper time bound is * or unspecified. For any
execution σ ∈ ΣL , if an event e becomes enabled infinitely many times, it has to occur infinitely many
times. More precisely: σ � (∀x • �♦e.en(x) → �♦(∃y • e(x,y)).
4. Real-time event scheduling. The finite UTB e.u of the event e is taken as a deadline: it has to occur
within u units of time after e.grd becomes true or after the last occurrence of e. To achieve this effect,
the event e is treated as just. Since tick will not occur as long as e is urgent (i.e., e.c = e.u), transition e
will be forced to occur (unless some other event occurs and disables it).

2.3 Semantics of Module Composition So far we have specified the semantics of individual mod-
ule instances. However, the TTM notation includes a composition. The semantics of systems comprising
many instances is defined through flattening, i.e. by providing a single instance which, by definition, has
the same semantics as the whole system.
Instantiation When integrating modules in a system, they first have to be instantiated, meaning that the
module interface variables must be linked to global variables of the system which it will be a part of. For
example if we have a Phil module (for philosopher) with two shared variables, left fork and right fork,
and two global fork variables f 1 and f 2, we may instantiate them as:

instances p1 = Phil(share f1, share f2) ; p2 = Phil(share f2, share f1) end

Philosopher p1 is therefore equivalent to the module Phil with its references to left fork substituted by
f 1 and its references to right fork substituted by f 2.

86 Indexed Events & Synchronous Events in TTM

Composition The composition m1||m2 is an associative and commutative function on two module in-
stances. To flatten the composition, we rename the local variables and events (by prepending the module
instance name) so that they are system-wide unique. We then proceed to create the composite instance.
Its local variables are the (disjoint) union of the local variables of the two instances. Its interface vari-
ables are the (possibly non-disjoint) union of the interface variables of both instances with their mode
(in, out, share) adjusted properly [10, Table 1, p. 38] (e.g., variable in x in m1 and variable out x in
m2 result in an out variable in the composite instance).

The simplest case of composition results in the union of the set of events of both instances. However,
events from separate instances can be executed synchronously. This can be specified using the notation of
synchronous events. As an illustration, consider a case where the plant and controller act synchronously.

Indexed & Synchronous Events for Modelling and Validating CPS

move out(t : fair TRAIN) just
when call(is platform,loc[t]) && osgn[loc[t]]
do loc[t] := Exit, osgn[loc[t]] := false end

(a) Abstract Version

move out(t : fair TRAIN)[2, ⇤] just
when call(is platform,loc[t]) && osgn[loc[t]]
do loc[t] := Exit, occ[loc[t]] := false, occ[Exit] := true end

(b) Refined Version

Figure 4: Train Control System in TTM: the move in Event in Module STATION

ctrl platform signal(p : fair BLOCK) compassionate
when call(is platform, p)

&& (&&p : BLOCK @ call(is platform, p) �> !osgn[p])
&& !(||t: TRAIN @ loc[t] == Exit)
&& (||t: TRAIN @ loc[t] == p)

do osgn[p] := true end

(a) Abstract Version in module STATION

ctrl platform signal just
when qe.Count() != 0

&& !osgn[qe.First()]
&& !occ[Exit]
&& occ[qe.First()]

do osgn[qe.First()] := true end

(b) Refined Version in module CONTROLLER

Figure 5: Train Control System in TTM: Controller Events

compassionate) on the controller event. That is, a train infinitely often qualified to leave the sta-
tion does so eventually. However, such fairness assumption cannot be implemented efficiently
in a general manner. This is why, in the refined version (Figure 5b), we use a C# FIFO Queue to
dictate the order of departure of the trains: the first train to reach a platform is also the first one
to leave. The reduced non-determinism allows us to remove the fair index on trains and weaken
the fairness assumption (i.e., the event becomes just).

4 Synchronous Events

4.1 Syntax and Informal Semantics We introduce the syntax of synchronous events in TTM
using the following example.

module PLANT
interface

x : out INT = 0
events

generate
do

x :: 0 .. 10
end

end

module CONTROLLER
depends p : PLANT
interface

x : in INT
b : out BOOL = false

events
respond sync p.generate as act
do

if x’ > 0 then b := true else b = false fi
end

end

instances
env = PLANT(out x)
c = CONTROLLER(in x, out b)

with
p := env

end
sync env c ::= env || c

end
composition

system = sync env c
end

At the module level (e.g., CONTROLLER), we use a depends clause to specify a list of instances
that the current module depends on. At the event level (e.g., respond), we use a sync . . . as
. . . clause to specify the list of events to be synchronized, qualified by names of the dependent

Proc. AVoCS 2014 8 / 15

We say module CONTROLLER depends on module PLANT . At the module level (e.g., CTRL), we use a
depends clause to specify a list of instances that the current module depends on. At the event level (e.g.,
respond), we use a sync . . . as . . . clause to specify the list of events to be synchronized, qualified by
names of the dependent instances (e.g., p.generate), and to rename the synchronized events with a new
name (act). Actions of events that are involved in synchronization may reference the primed version of
input variables to obtain their next-state values. For example, the respond event uses the next-state value
of the input variable x (i.e., x’) to compute the next-state value of its output variable b. In creating an
instance, we use a with . . . end clause to bind all its dependent instances, if any. We use the ::= operator
to rename the synchronized instances (e.g., sync env c). As instances env and c are synchronized as the
new instance sync env c, taking the event sync env c.act has the effect of updating, as one atomic step,
the monitored variable x then controlled variable b.

Specifying depends clauses (at the module level) and sync clauses (at the event level) results in one
or more compound events whose actions are composed of those involved in the synchronization. We
discuss the process of merging event actions below. For how event time bounds and fairness assumptions
are merged in synchronization, refer to [10, p. 40].

The use of synchronous events results in three kinds of dependency graphs2.

1. The Module Dependency Graph contains the set of vertices V = MOD, and the set of edges consisting
of (m1, m2), where module m1 depends on m2.

In each connected component of the module dependency graph, we construct a synchronous event set
(e.g., {PLANT.generate,CONTROLLER.respond }) by including each event e, where e declares a sync
clause, and all events under e’s sync clause.

2Assume that MOD denotes the set of declared modules, EVT the set of declared events qualified by their containing
modules, e.g., PLANT.generate, and VAR the set of interface and local variables

Wang, Ostroff, and Hudon 87

2. An Event Dependency Graph contains the set of vertices V = EVT, and the set of edges consisting of
(e1, e2), where e1 and e2 are in the same synchronous event set and e2 is declared under the sync clause
of e1.
3. An Action Graph is constructed from each synchronous event set. We write VARs to denote variables
that are involved in actions of events in a synchronous event set s. For each synchronous event set s, its
corresponding action graph contains the set of vertices V = VARs, and the set of edges consisting of (v1,
v2), where the computation of v1’s new (or next state) value depends on that of v2. There are two cases
to consider: 1) in an equation where v2 appears on the RHS and v1’ on the LHS (i.e., v1’ = . . . v2 . . .);
and 2) in an assignment where v2 appears on the RHS and v1 on the LHS (i.e., v1 := . . . v2 . . .).

We perform a topological sort on each action graph to calculate the order of variable assignments,
from which we calculate a sequence of variable projections. The projection for each variable v is a pair
(v,act), where act is either an unconditional assignment (i.e., v := exp), or an conditional assignment
(i.e., if b1 then v := exp1 elseif b2 then v := exp2 . . . else . . .). The latter case is resulted from the fact
that changes on v (either through assignments or the primed notation) occur inside nested if-statements.
Finally, the produced sequence of variable projections is adopted as the action of the compound event.

To ensure consistency, the TTM tool reports an error when, e.g., one of the above graphs contains a
cycle, or a flattened (or compound) event assigns multiples values to the same variable.
Iterated Composition. Iterated composition allows us to compose an indexed set of similar instances.
For example, in the case of a network of processes, we may specify the common process behaviour
as a module once, and instantiate them from the set PID of process identifiers: system = || pid :
PID @ Process(in pid).

3 Example: A Train Control System

We illustrate the use of TTM indexed events in a train control system. There are two reasons for using
the indexed events. First, all trains entering and leaving the station share a common behaviour. Second,
by declaring event indices (ranging over trains) as fair, we can assert that individual trains arriving at the
station are guaranteed to depart, without being blocked indefinitely by other trains.

ENTRY PLATFORM EXIT

SIGNALS

(a) Topology

loc[t] =
Entr

arrive (t)
 when entrance block is free

loc[t] =
in_switch

loc[t] =
Out

move_in (t)
 when incoming signal is green

loc[t] =
Exit

move_out (t)
 when outgoing signal is green

depart (t)

(b) State Transitions of Train t ∈ TRAIN

Figure 1: A Train Control System

Fig. 1a shows the topology of the train control system [3]. There is an entry block (Entr) and an exit
block (Exit) on both ends of the station. Between the entry and exit blocks is a set PLF of special blocks

88 Indexed Events & Synchronous Events in TTM

called platforms. At most one train may stay at the entry or exit block at a time. On the entry bock,
there is a signal isgn regulating the incoming train, depending on the availability of platforms. On each
platform p ∈ PLF, there is a signal osgn[p] regulating the outgoing train, depending on the availability
of the exit block. Fig. 1b illustrate the common behaviour of all trains. Each train is initially travelling
outside the station. The train may first arrive at the entry block, provided that it is not occupied. When
the signal isgn turns green, the train is directed via an in-switch to move in an available platform. For
some train t, after it moved to platform p, it waits for the light signal of platform p to turn green and then
moves away from p and onto the exit block. Then the train may depart from the station.

Trains must never collide in the train station. Also, once a train arrives, it should be eventually
scheduled to depart from the station.

(∀t1, t2 : TRAIN • (t1 6= t2∧ loc[t1] 6= Out∧ loc[t2] 6= Out)⇒ loc[t1] 6= loc[t2]) (3)
�(loc[t] = Entr⇒ ♦(loc[t] = Out)) (4)

We consider two versions of TTM that satisfy both Eq. 3 and 4. Fig. 2a presents the TTM interface
of an abstract version, where monitored and controlled variables are separated. As a result, the abstract
version contains a single STATION module that: (a) owns all variables; and (b) mixes all events of
train movement (e.g., event move out in Fig. 3a) and of signal control (e.g., event ctrl platform signal
in Fig. 4a). On the other hand, Fig. 2b presents the interface of a refined version, which distinguishes
between one monitored variable (i.e., occ for the set of occupied platforms) and three controlled variables
(i.e, isgn for an incoming train, in switch for platform currently connected to the entrance block, and osgn
for outgoing trains). Consistently, the behaviour of the controller and that of the trains are factored in
separate events and placed in separate modules. The monitored variable (with modifier in) is owned by
the STATION module and read-only for the CONTROLLER module.

ECEASST

module, as indicated by the modifier in its interface. Similarly, the controlled variables are ex-
clusively written by the CONTROLLER module, and are read-only for the STATION module.

module STATION
interface
loc : out ARRAY[OPT BLOCK]
isgn : out BOOL
osgn : out ARRAY[BOOL]
in switch : out BLOCK

(a) Abstract

module STATION
interface

occ : out ARRAY[BOOL]
isgn : in BOOL
osgn : in ARRAY[BOOL]
in switch : in BLOCK

local
loc : ARRAY[OPT BLOCK]

share initialization
qe : <Queue>

end
module CONTROLLER
interface

occ : in ARRAY[BOOL]
isgn : out BOOL
osgn : out ARRAY[BOOL]
in switch : out BLOCK

(b) Refined: Separate Station & Controller Events

Figure 3: Train Control System in TTM: Interfaces

The refinement of the abstract train control system changes the representation of the data
used by control events. In the abstract version (Figure 3a), the array variable loc is used to
map each train to its current location, constrained by type OPT BLOCK , {Out}[BLOCK where
BLOCK , {Entr, Exit}[PLF. All train events (e.g., move out in Figure 4a) are indexed with
the set of trains and update their location accordingly (e.g., loc[t] := Exit). All control events
(e.g., ctrl platform signal in Figure 5a) query the value of loc in their guards (e.g., we write !(||t:
TRAIN @ loc[t] == Exit) to check that the exit block is not occupied). However, a more realistic
station controller may monitor platforms in the station only, rather than all trains including those
travelling elsewhere outside the station. Consequently, in the refined version (Figure 3b), by
refactoring loc as a local variable in the STATION module (the environment), we hide it from
the CONTROLLER. The controller then only has access to the monitored variable occ (i.e., the
set of occupied platforms) which encodes a coarser grain of information than loc (i.e., locations
of all trains). Using the new monitored variable occ simplifies guards of controller events (e.g.,
in Figure 5b, we write !occ[Exit] instead of an existential quantification to express that the exit
block is free). In addition, train events in the environment (e.g., Figure 4b) updates both the local
variable loc and the output variable occ. This raises the question of whether the CONTROLLER
module accesses the monitored variable occ in a way consistent with the corresponding events in
the abstract model. Therefore, we assert the following invariant (where s is a STATION instance):
a block is occupied if and only if it corresponds to the location of some train.

⇤ (8b : BLOCK • occ[b] ⌘ (9t : TRAIN • s.loc[t] = b)) (3)

The fundamental difference between the abstract and the concrete TTM models resides in the
scheduling of the green signals that control the passage from the platforms to the exit block.
While the abstract model specifies very little with respect to the order in which trains gain ac-
cess to the exit block (i.e., the order is non-deterministic), the concrete model specifies the order
uniquely. The signals are controlled by event ctrl platform signal. In the abstract version (Fig-
ure 5a), the event is indexed by the set of trains. When the exit block is not occupied, more
than one train located at a platforms may be eligible to move on to the exit block. To satisfy
Property 2, we declare the index on trains as fair and adopt a strong fairness assumption (i.e.,

7 / 15 Volume XXX (2014)

(a) Abstract

ECEASST

module, as indicated by the modifier in its interface. Similarly, the controlled variables are ex-
clusively written by the CONTROLLER module, and are read-only for the STATION module.

module STATION
interface
loc : out ARRAY[OPT BLOCK]
isgn : out BOOL
osgn : out ARRAY[BOOL]
in switch : out BLOCK

(a) Abstract

module STATION
interface

occ : out ARRAY[BOOL]
isgn : in BOOL
osgn : in ARRAY[BOOL]
in switch : in BLOCK

local
loc : ARRAY[OPT BLOCK]

share initialization
qe : <Queue>

end
module CONTROLLER
interface

occ : in ARRAY[BOOL]
isgn : out BOOL
osgn : out ARRAY[BOOL]
in switch : out BLOCK

(b) Refined: Separate Station & Controller Events

Figure 3: Train Control System in TTM: Interfaces

The refinement of the abstract train control system changes the representation of the data
used by control events. In the abstract version (Figure 3a), the array variable loc is used to
map each train to its current location, constrained by type OPT BLOCK , {Out}[BLOCK where
BLOCK , {Entr, Exit}[PLF. All train events (e.g., move out in Figure 4a) are indexed with
the set of trains and update their location accordingly (e.g., loc[t] := Exit). All control events
(e.g., ctrl platform signal in Figure 5a) query the value of loc in their guards (e.g., we write !(||t:
TRAIN @ loc[t] == Exit) to check that the exit block is not occupied). However, a more realistic
station controller may monitor platforms in the station only, rather than all trains including those
travelling elsewhere outside the station. Consequently, in the refined version (Figure 3b), by
refactoring loc as a local variable in the STATION module (the environment), we hide it from
the CONTROLLER. The controller then only has access to the monitored variable occ (i.e., the
set of occupied platforms) which encodes a coarser grain of information than loc (i.e., locations
of all trains). Using the new monitored variable occ simplifies guards of controller events (e.g.,
in Figure 5b, we write !occ[Exit] instead of an existential quantification to express that the exit
block is free). In addition, train events in the environment (e.g., Figure 4b) updates both the local
variable loc and the output variable occ. This raises the question of whether the CONTROLLER
module accesses the monitored variable occ in a way consistent with the corresponding events in
the abstract model. Therefore, we assert the following invariant (where s is a STATION instance):
a block is occupied if and only if it corresponds to the location of some train.

⇤ (8b : BLOCK • occ[b] ⌘ (9t : TRAIN • s.loc[t] = b)) (3)

The fundamental difference between the abstract and the concrete TTM models resides in the
scheduling of the green signals that control the passage from the platforms to the exit block.
While the abstract model specifies very little with respect to the order in which trains gain ac-
cess to the exit block (i.e., the order is non-deterministic), the concrete model specifies the order
uniquely. The signals are controlled by event ctrl platform signal. In the abstract version (Fig-
ure 5a), the event is indexed by the set of trains. When the exit block is not occupied, more
than one train located at a platforms may be eligible to move on to the exit block. To satisfy
Property 2, we declare the index on trains as fair and adopt a strong fairness assumption (i.e.,

7 / 15 Volume XXX (2014)

(b) Refined: Separate Station & Controller Events

Figure 2: Train Control System in TTM: Interfaces

The refined version of TTM changes the representation of the data used by control events. In the ab-
stract version (Fig. 2a), the array variable loc is used to map each train to its current location, constrained
by type OPT BLOCK , {Out}∪BLOCK where BLOCK , {Entr, Exit}∪PLF. All train events (e.g.,
move out in Fig. 3a) are indexed with the set of trains and update their location accordingly (e.g., loc[t] :=
Exit). All control events (e.g., ctrl platform signal in Fig. 4a) query the value of loc in their guards (e.g.,
we write !(||t: TRAIN @ loc[t] == Exit) to check that the exit block is not occupied). However, a more
realistic station controller may monitor platforms in the station only, rather than all trains including those
travelling elsewhere outside the station. Consequently, in the refined version (Fig. 2b), by refactoring loc
as a local variable in the STATION module (the environment), we hide it from the CONTROLLER. The
controller then only has access to the monitored variable occ (i.e., the set of occupied platforms) which

Wang, Ostroff, and Hudon 89

encodes a coarser grain of information than loc (i.e., locations of all trains). Using the new monitored
variable occ simplifies guards of controller events (Fig. 4b). Moreover, train events in the environment
(e.g., Fig. 3b) updates both the local variable loc and the output variable occ. This raises the question
of whether the CONTROLLER module accesses the monitored variable occ in a way consistent with the
corresponding events in the abstract model. Therefore, we assert that a block is occupied if and only if it
corresponds to the location of some train.

move out(t : fair TRAIN) just
when call(is platform,loc[t]) && osgn[loc[t]]
do loc[t] := Exit, osgn[loc[t]] := false end

(a) Abstract Version

move out(t : fair TRAIN)[2, ∗] just
when call(is platform,loc[t]) && osgn[loc[t]]
do loc[t] := Exit, occ[loc[t]] := false, occ[Exit] := true end

(b) Refined Version

Figure 3: Train Control System in TTM: the move out Event in Module STATION

The two versions of TTMs are different in scheduling the green signals that control the passage from
the platforms to the exit block. While the abstract model is non-deterministic about the order in which
trains gain access to the exit block, the concrete model specifies the order uniquely. The signals are
controlled by event ctrl platform signal. In the abstract version (Fig. 4a), the event is indexed by the
set of trains. When the exit block is not occupied, more than one train located at a platforms may be
eligible to move on to the exit block. To satisfy Property 4, we declare the index on trains as fair and
adopt a strong fairness assumption (i.e., compassionate) on the controller event. That is, a train infinitely
often qualified to leave the station does so eventually. However, such fairness assumption cannot be
implemented efficiently. Consequently, in the refined version (Fig. 4b), we use a C# FIFO Queue3 to
specify the order of train departure. The reduced non-determinism allows us to remove the fair index on
trains and weaken the fairness assumption (i.e., the event becomes just).

ctrl platform signal(p : fair BLOCK) compassionate
when call(is platform, p)

&& (&&p : BLOCK @ call(is platform, p) −> !osgn[p])
&& !(||t: TRAIN @ loc[t] == Exit)
&& (||t: TRAIN @ loc[t] == p)

do osgn[p] := true end

(a) Abstract Version in module STATION

ctrl platform signal just
when qe.Count() != 0

&& !osgn[qe.First()]
&& !occ[Exit]
&& occ[qe.First()]

do osgn[qe.First()] := true end

(b) Refined Version in module CONTROLLER

Figure 4: Train Control System in TTM: Controller Events

4 Example: Tabular Requirement of a Nuclear Shutdown System

We illustrate the use of synchronous events on parts of the software requirements of a shutdown system
for the Darlington Nuclear Generating Station. We present two versions of the system. The first version
presents a high-level requirements [11] where the controller responds instantaneously to environment
changes. We synchronize the environment and controller events to model such instantaneity, and check

3Using a C# data object, implementation details of operations such as Enqueue are all encapsulated, resulting in a model
simpler than one using a native TTM array.

90 Indexed Events & Synchronous Events in TTM

it via an invariant property. The refined version illustrates how the response allowance [12] can be
incorporated as event time bounds (i.e, the controller responds fast enough to environment changes). We
decouple the controller from the environment, and check its response via a real-time liveness property.

Requirements of the shutdown system are described mathematically using tabular expressions (a.k.a.
function tables) [4]. Figure 5 exemplifies tabular requirements for two units: Neutron OverPower (NOP)
Parameter Trip (Figure 5a) and Sensor Trips (Figure 5b). In the first column, rows are Boolean conditions
on monitored variables (i.e., input stimuli). In the second column, the first row names a controlled
variable (i.e., output response); the remaining rows specify a value for that controlled variable. We use the
formalism of tabular expressions to check the completeness (i.e., no missing cases from input conditions)
and the disjointness (i.e., no input conditions satisfied simultaneously) of our requirements [4].

Result
Condition c NOPparmtrip

∃i ∈ 0 ..17 • f NOPsentrip[i] = e Trip e Trip
∀i ∈ 0 ..17 • f NOPsentrip[i] = e NotTrip e NotTrip

(a) Function Table for NOP Controller
Result

Condition f NOPsentrip[i]
calibrated nop signal[i] ≥ f NOPsp e Trip

f NOPsp − k NOPhys < calibrated nop signal[i] < f NOPsp (f NOPsentrip[i])−1
calibrated nop signal[i] ≤ f NOPsp − k NOPhys e NotTrip

(b) Function Table for NOP sensor i, i ∈ 0 ..17 (monitoring calibrated nop signal[i])

Figure 5: Tabular Requirement for the Neutron Overpower (NOP) Trip Unit

The NOP Parameter Trip unit (the NOP controller) depends on 18 instances of the Sensor Trip
units (the NOP sensors). There are two monitored variables for each NOP sensor i: (1) a floating-point
calibrated NOP signal value calibrated nop signal[i]; and (2) a floating-point set point value f NOPsp.
The monitored signal is bounded by the two pre-set constants k NOPLoLimit and k NOPHILimit. The
monitored set point can be one of the four constants: k NOPLPsp (low-power mode), k NOPAbn2sp
(abnormal mode 2), k NOPAbn1sp (abnormal mode 1), and k NOPnormsp (normal mode).

Each sensor i determines if the monitored signal goes above a safety range (i.e., ≥ f NOPsp), in
which case it trips by setting the function variable f NOPsentrip[i] to e Trip. To prevent the value of
f NOPsentrip from alternating too often due to signal oscillation, a hysteresis region (or dead band) with
constant size k NOPhys is created. The hysteresis region (f NOPsp− k NOPhys, f NOPsp) is an open
interval. When the monitored signal falls within this region, then the new value of f NOPsentrip remains
as that in the previous state, denoted as f NOPsentrip−1. The NOP controller is responsible for setting the
controlled variable c NOPparmtrip, based on values of f NOPsentrip[i] from all its dependant sensors. If
there is at least one sensor that trips, then the NOP parameter trips by setting c NOPparmtrip to e Trip.

According to the requirements, the system is initialized in a conservative manner. Each calibrated
NOP signal is set to its low limit k NOPLoLimit, but each f NOPsentrip[i] for sensor i and the controlled
variable c NOPparmtrip are all set to e Trip. As we will see in our specification below (i.e., Equation 6),
to ensure that the system satisfies the tabular specification in Figure 5, the NOP controller must have
completed its very first response (denote as predicate ¬init response).

The requirements model in Figure 5 uses a finite state machine, with an arbitrarily small clock tick,
that describes an idealized behaviour. At each time tick t, monitored and controlled variables are updated

Wang, Ostroff, and Hudon 91

instantaneously. State data such as f NOPsentrip−1 are stored and used for the next state. However,
to make such requirements implementable, some allowance on the controller’s response must be pro-
vided [12]. As a result, we present two versions of the NOP system in TTM: (1) an abstract version with
plant and controller taking synchronized actions; and (2) a refined version with the response allowance
incorporated as time bounds of the environment and controller events. The refined version allows us
to assert timed response properties (e.g., once the monitored signal goes above the safety range, the
controller trips within 2 ticks of the clock).

Abstraction of Input Signal Values. The TTM tool, like other model checking tools, cannot handle
the real-valued monitored variables f NOPsp and calibrated nop signal[i]. Instead, based on the given
constants mentioned above, we partition the infinite domains of these two monitored variables into dis-
joint intervals. First, the four possible constant values for f NOPsp have a fixed order and are bounded
by constant low and high limits of the calibrated NOP signal. More precisely, we have 6 boundary cases
to consider: k NOPLoLimit < k NOPLPsp < k NOPAbn2sp < k NOPAbn1sp < k NOPnormsp < k NOPHiLimit.
Second, each of the four possible set points has an associated hysteresis band, whose lower boundary
is calculated by subtracting the constant band size k NOPhys, resulting in 4 additional boundaries4 to
consider: (a) k NOPLPsp− k NOPhys; (b) k NOPAbn2sp− k NOPhys; (c) k NOPAbn1sp− k NOPhys;
and (d) k NOPnormsp− k NOPhys. Consequently, we have 10 boundary cases and 9 in-between cases
(e.g., k NOPLoLimit < signal < k NOPLPsp) to consider. Accordingly, we construct a finite integer set
cal nop that covers all the 19 intervals.

For the purpose of modelling and verifying the NOP controller and sensors in TTM, we parameterize
the system by a positive integer N denoting the number of dependant sensors.

Version 1: Synchronizing Plant and Controller. We first present an abstract version of the model that
couples the NOP controller and its plant by executing their actions synchronously. Figure 6 illustrates
the structure of synchronization. The dashed box in Figure 6 indicates the set of synchronized modules
instances: plant p, controller nop, and 18 sensors sensor i (i ∈ 0 ..17).

sensor_0:
NOP_SENSOR
sensor_0.respond

p: PLANT
p.generate

out f_NOPsp

out c_NOPparmtrip

out f_NOPsentrip[0]
out calibrated_nop_signal[0]

sensor_17:
NOP_SENSOR

sensor_17.respond
out calibrated_nop_signal[17]

...

out f_NOPsp

nop: NOP
nop.respond

out f_NOPsentrip[17]

......

Figure 6: Neutron Overpower (NOP): Abstract Version – Synchronized Plant and Controller

Figure 8 (p. 95) presents the complete5 TTM listing of the NOP unit as described above. The gen-
erate event of the plant non-deterministically updates the value of a global array that is shared with
sensors attached to the NOP controller. The update is performed via the demonic assignment cali-
brated nop signals :: ARRAY[cal nop](N) (Lines 5 – 6). The NOP controller module (Lines 8 – 26)
depends on two module instances (Lines 9–11). First, the controller depends on a plant p that generates

4Value of (a) is still greater than k NOPLoLimit, and similarly value of (d) is still smaller than k NOPHiLimit.
5For clarity, we present a version with one monitoring sensor. The full version with 18 sensors involves just declaring and

instantiating additional dependent sensors. We also exclude definitions of constants and assertions.

92 Indexed Events & Synchronous Events in TTM

an array of calibrated NOP signals (specified by the out array argument calibrated nop signal at Lines
4 and 47). Second, the controller depends on a sensor sensor 0 that monitors a particular signal value
(specified by the in argument calibrated nop signal[0] at Lines 30 and 48) and provides feedback (spec-
ified by the share argument f NOPsentrip[0] at Line 31 and 48) for the central NOP controller to make
a final decision (specified by the out argument c NOPparmtrip at Lines 14 and 49).

Actions of the respond events of the NOP controller (Lines 19 – 24) and of its dependent sensors
(Lines 36 – 43) correspond to the tabular requirements (Figure 5a and Figure 5b, respectively). We use
primed variables in these actions to specify the intended flow of actions. Actions of the NOP sensor
reference f NOP’ and calibrated nop signal i’ (Lines 37, 39, and 41) to indicate, that only after the
instance p (in the same synchronous set) has written to these two variables can they be used to calculate
the new value of f NOPsentrip[i]. Similarly, actions of the NOP controller reference f NOPsentrip’[j]
(Lines 20 and 22) to indicate, that only after all sensor instances have written to this array can it be used
to calculate the new value of c NOPparmtrip.

We require that the respond event of the NOP controller, the respond events of its dependent sensors,
and the generate event of the plant, are always executed synchronously (as a single transition). In declar-
ing the controller event respond, we use a sync . . . as . . . clause to specify the events to be included in
the synchronous set. When instantiating the NOP controller, we use a with . . . end clause to bind its
dependent plant and sensor instances (Line 49). Finally, we rename the synchronized plant, controller,
and sensor instances for references in assertions (Line 50).

We check two invariant properties on this abstract version of NOP. First, as all dependent sensors
have written to the shared array f NOPsentrip, the NOP controller responds instantaneously.

�
(

(∃i : 0 ..N • f NOPsentrip[i] = e Trip)⇒ c NOPparmtrip = e Trip
∧ (∀i : 0 ..N • f NOPsentrip[i] = e NotTrip)⇒ c NOPparmtrip = e NotTrip

)
(5)

Second, since all actions of the plant, the NOP controller, and sensors are synchronized together, we can
assert that the controlled variable c NOPparmtrip is updated as soon as the plant has updated the two
monitored variables f NOPsp and f NOPsentrip.

�

 ¬ init response
∧ f NOPsp = k NOPLPsp
∧ k NOPLPsp≤ calibrated nop signal[0]≤ k CalNOPHiLimit

⇒ c NOPparmtrip = e Trip

 (6)

However, the satisfaction of Equation 6 is an idealized behaviour without the realistic concern of
some allowance on the controller’s response [12]. That is, we shall instead allow the state predicate
c NOPparmtrip = e Trip to be established within a bounded delay.

Version 2: Separating Plant and Controller. We refine the TTM of NOP in Figure 8 by decoupling
actions of the controller6 and its plant. Figure 7 illustrates the refined structure of synchronization: the
plant instance p is no longer synchronized with the controller. Consequently, the plant event generate
and the synchronous controller event respond are interleaved.

The resulting system would fail to satisfy Equation 6, as we introduce some allowance on the re-
sponse time (termed response allowance in [12]) of the NOP controller to environment changes. On

6In the NOP controller, actions of the NOP parameter trip unit and sensor units remain synchronized.

Wang, Ostroff, and Hudon 93

sensor_0:
NOP_SENSOR
sensor_0.respond

p: PLANT
p.generate

out f_NOPsp

out c_NOPparmtrip

out f_NOPsentrip[0]
out calibrated_nop_signal[0]

sensor_17:
NOP_SENSOR

sensor_17.respond
out calibrated_nop_signal[17]

...

out f_NOPsp

nop: NOP
nop.respond

out f_NOPsentrip[17]

......

Figure 7: Neutron Overpower (NOP): Refined Version – Separate Plant and Controller

the other hand, as we still consider the controller’s response actions, once initiated, take effect instanta-
neously, the resulting system should still satisfy Equation 5.

We apply the following changes to produce the refined TTM (Figure 8). First, in module PLANT ,
we revise time bounds of the generate event to [2, ∗], which encodes the assumption that the controller
(whose respond event has time bounds [1, 1]) responds fast enough to the environment changes. Second,
in module NOP, we remove the declaration of p : PLANT as a dependent instance (Line 10). We also
remove the declaration of p.generate as an event to be synchronized with the respond event (Line 17).
Third, in creating the instance nop of module NOP, as it no longer depends on a PLANT instance, we
remove the binding statement (Line 49), i.e., env := env. Fourth, in renaming the synchronous instance,
we remove the plant instance (Line 50), i.e., controller ::= sensor 0 || nop. Finally, we add the plant
instance into the composition (Line 52), i.e., system = env || controller.

By declaring a timer t and adding a start t clause to the generate event in module PLANT (Line 6),
we can satisfy the following real-time response property:

�

 f NOPsp = k NOPLPsp
∧ k NOPLPsp≤ calibrated nop signal[0]≤ k CalNOPHiLimit
∧ t = 0

⇒ mono(t) U (c NOPparmtrip = e Trip∧ t < 2)

 (7)

As soon as the set point value and monitored signal value are updated by the plant, the controller produces
the proper response within two ticks of the clock. Before the controller responds, timer t must not be
interrupted (i.e., reset by other events), so as not to provide an inaccurate estimate.

5 Discussion

Our new TTM notations facilitate the formal validation of cyber-physical system requirements. In the
train control system (Sec. 3), the indexing construct allows us to select a specific actor (e.g., a train, a
process, etc.) and specify a temporal property for that actor. Synchronous events, together with primed
variables, allow us to check (real-time) response properties of the tabular requirements of a nuclear
shutdown system (Sec. 4).

To our knowledge, the introduced notations of indexed events and synchronous events (and its com-
bination with primed variables) are novel. For synchronous events, the conventional Communicating
Sequential Processes (CSP) [7] and its tool [2] support multi-way synchronization by matching event
names in parallel compositions. However, the conventional CSP does not allow processes to modify a

94 Indexed Events & Synchronous Events in TTM

shared state. Instead, the system state can only be managed as parameters of recursive processes, making
it impossible to synchronize events that denote different parts of simultaneous updates. The notations of
un-timed CSP# and the stateful timed CSP (extended with real-time process operators such as time-out,
deadline, etc.) [8] allow events to be attached with state updates. However, their semantics and tool sup-
port do not allow events that are attached with updates to be synchronized. The UPPAAL model checker
and its language of timed automata [5] support the notion of broadcast channel for synchronizing multi-
ple state-updating transitions (one sender and multiple receivers). However, the RHS of assignments can
only reference values evaluated at the pre-state. There is no mechanism, such as the notion of primed
variables supported in TTM, for specifying the intended data flow.

For indexed events, the verification tool support for both conventional CSP [7] and UPPAAL [5] does
not allow for fairness assumptions. For UPAAL, it is likely to manually construct an observer, but this is
likely to result in convoluted encoding in larger systems and thus is prone to errors. On the other hand,
the PAT tool allows users to choose fairness assumptions at the event, process, or global level [9] for
verifying the un-timed CSP# and stateful timed CSP [8]. However, our notion of indexed events are of
finer-grained for imposing fairness assumptions, as we allow the declaration of event indices as fair.

References

[1] Patricia Derler, Edward A. Lee & Alberto Sangiovanni-Vincentelli (2012): Modeling Cyber-Physical Sys-
tems. Proceedings of the IEEE (special issue on CPS) 100(1), pp. 13 – 28. Available at http://dx.doi.
org/10.1109/JPROC.2011.2160929.

[2] Thomas Gibson-Robinson, Philip Armstrong, Alexandre Boulgakov & AndrewW. Roscoe (2014): FDR3 –
A Modern Refinement Checker for CSP. In: TACAS, LNCS 8413, Springer, pp. 187–201. Available at
http://dx.doi.org/10.1007/978-3-642-54862-8_13.

[3] Simon Hudon & ThaiSon Hoang (2013): Systems Design Guided by Progress Concerns. In: Inte-
grated Formal Methods, LNCS 7940, Springer, pp. 16–30. Available at http://dx.doi.org/10.1007/
978-3-642-38613-8_2.

[4] Ryszard Janicki, DavidLorge Parnas & Jeffery Zucker (1997): Tabular Representations in Relational Docu-
ments. In: Relational Methods in Computer Science, Advances in Computing Sciences, Springer Vienna, pp.
184–196. Available at http://dx.doi.org/10.1007/978-3-7091-6510-2_12.

[5] Kim G. Larsen, Paul Pettersson & Wang Yi (1997): UPPAAL in a Nutshell. International Journal on Soft-
ware Tools for Technology Transfer 1(1–2), pp. 134–152. Available at http://dx.doi.org/10.1007/
s100090050010.

[6] JonathanS. Ostroff, Chen-Wei Wang, Simon Hudon, Yang Liu & Jun Sun (2014): TTM/PAT: Specifying and
Verifying Timed Transition Models. In: FTSCS, Communications in Computer and Information Science 419,
Springer, pp. 107–124. Available at http://dx.doi.org/10.1007/978-3-319-05416-2_8.

[7] A.W. Roscoe (2010): Understanding Concurrent Systems, 1st edition. Springer. Available at http://dx.
doi.org/10.1007/978-1-84882-258-0.

[8] Jun Sun, Yang Liu, Jin Song Dong, Yan Liu, Ling Shi & Étienne André (2013): Modeling and verifying
hierarchical real-time systems using stateful timed CSP. ACM Trans. Softw. Eng. Methodol. 22(1), pp.
3:1–3:29. Available at http://dx.doi.org/10.1145/2430536.2430537.

[9] Jun Sun, Yang Liu, Jin Song Dong & Jun Pang (2009): PAT: Towards Flexible Verification under Fairness. In:
CAV, LNCS 5643, pp. 709 – 714. Available at http://dx.doi.org/10.1007/978-3-642-02658-4_59.

[10] C.-W. Wang, J. S. Ostroff & S. Hudon (2014): Using Indexed and Synchronous Events to Model and Validate
Cyber-Physical Systems. Tech Report EECS-2014-03, York University.

[11] A. Wassyng & M. Lawford (2006): Software tools for safety-critical software development. STTT 8(4-5),
pp. 337–354. Available at http://dx.doi.org/10.1007/s10009-005-0209-6.

[12] A. Wassyng, M. Lawford & X. Hu (2005): Timing Tolerances in Safety-Critical Software. In: FM, pp.
157–172. Available at http://dx.doi.org/10.1007/11526841_12.

http://dx.doi.org/10.1109/JPROC.2011.2160929
http://dx.doi.org/10.1109/JPROC.2011.2160929
http://dx.doi.org/10.1007/978-3-642-54862-8_13
http://dx.doi.org/10.1007/978-3-642-38613-8_2
http://dx.doi.org/10.1007/978-3-642-38613-8_2
http://dx.doi.org/10.1007/978-3-7091-6510-2_12
http://dx.doi.org/10.1007/s100090050010
http://dx.doi.org/10.1007/s100090050010
http://dx.doi.org/10.1007/978-3-319-05416-2_8
http://dx.doi.org/10.1007/978-1-84882-258-0
http://dx.doi.org/10.1007/978-1-84882-258-0
http://dx.doi.org/10.1145/2430536.2430537
http://dx.doi.org/10.1007/978-3-642-02658-4_59
http://dx.doi.org/10.1007/s10009-005-0209-6
http://dx.doi.org/10.1007/11526841_12

Wang, Ostroff, and Hudon 95ECEASST

1 module PLANT /* Template for Nuclear Reactor */

2 interface
3 f NOPsp : out INT = k NOPLPsp
4 calibrated nop signal : out ARRAY[cal nop](NUM SENSORS) = [k CalNOPLoLimit (NUM SENSORS)]
5 events generate[1, 1]
6 do calibrated nop signal :: ARRAY[cal nop](NUM SENSORS), f NOPsp := k NOPLPsp end
7 end
8 module NOP /* Template for Neutron Overpower Controller */

9 depends
10 env : PLANT
11 sensor 0 : NOP SENSOR
12 interface
13 f NOPsentrip : share ARRAY[y trip](NUM SENSORS) /* shared, but read only */

14 c NOPparmtrip : out y trip = e Trip
15 local after init response : BOOL = false
16 events
17 respond[1, 1] sync env.generate, sensor 0.respond as respond
18 do
19 after init response := true,
20 if (|| j: 0..(NUM SENSORS�1) @ f NOPsentrip’[j] == e Trip) then
21 c NOPparmtrip := e Trip
22 elseif (&& k: 0..(NUM SENSORS�1) @ f NOPsentrip’[k] == e NotTrip) then
23 c NOPparmtrip := e NotTrip
24 else skip fi
25 end
26 end
27 module NOP SENSOR /* Template for Sensors */

28 interface
29 f NOPsp : in INT
30 calibrated nop signal i : in cal nop
31 f NOPsentrip i : share y trip /* shared, but write only */

32 local f NOPsentrip i old : y trip = e Trip
33 events
34 respond[1, 1]
35 do
36 f NOPsentrip i old’ = f NOPsentrip i,
37 if f NOPsp’ <= calibrated nop signal i’ then
38 f NOPsentrip i := e Trip
39 elseif (f NOPsp’ � k NOPhys < calibrated nop signal i’) && (calibrated nop signal i’ < f NOPsp’) then
40 f NOPsentrip i := f NOPsentrip i old
41 elseif calibrated nop signal i’ <= f NOPsp’ � k NOPhys then
42 f NOPsentrip i := e NotTrip
43 else skip fi
44 end
45 end
46 instances
47 env = PLANT (out f NOPsp, out calibrated nop signal)
48 sensor 0 = NOP SENSOR(in f NOPsp, in calibrated nop signal[0], share f NOPsentrip[0])
49 nop = NOP(share f NOPsentrip, out c NOPparmtrip) with env := env, sensor 0 := sensor 0 end
50 sys ::= env || sensor 0 || nop /* named synchronous instance */

51 end
52 composition system = sys end

Figure 9: Requirement of NOP Trip Unit in TTM: Synchronized Plant and Controller

15 / 15 Volume XXX (2014)

Figure 8: Requirement of NOP in TTM: Synchronized Plant and Controller

	1 Introduction
	2 Semantics for Indexed and Synchronous Events
	2.1 Abstract Syntax: Introducing Fair and Demonic Event Indices
	2.2 Operational Semantics
	2.3 Semantics of Module Composition

	3 Example: A Train Control System
	4 Example: Tabular Requirement of a Nuclear Shutdown System
	5 Discussion

