A Logic with Reverse Modalities for History-preserving
Bisimulations

lain Phillips
Department of Computing, Imperial College London, England

iccp@doc.ic.ac.uk

Irek Ulidowski
Department of Computer Science, University of Leicestagl&nd

iu3@mcs.le.ac.uk

We introduce event identifier logic (EIL) which extends Hessy-Milner logic by the addition of
(1) reverse as well as forward modalities, and (2) idensfter keep track of events. We show
that this logic corresponds to hereditary history-preisgr¢HH) bisimulation equivalence within
a particular true-concurrency model, namely stable cordign structures. We furthermore show
how natural sublogics of EIL correspond to coarser equiads. In particular we provide logical
characterisations of weak history-preserving (WH) antbinyspreserving (H) bisimulation. Logics
corresponding to HH and H bisimulation have been given presly, but not to WH bisimulation
(when autoconcurrency is allowed), as far as we are awareal$epresent characteristic formulas
which characterise individual structures with respectistdny-preserving equivalences.

1 Introduction

The paper presents a modal logic that can express simplentiexpof computation in the true concur-
rency setting of stable configuration structures. We aike, Hennessy-Milner logic (HML) [19] in the
interleaving setting, to characterise the main true caetuly equivalences and to develop characteristic
formulas for them. We focus in this paper on history-preisgrbisimulation equivalences.

HML has a “diamond” modalitya)¢@ which says that an event labellaccan be performed, taking
us to a new state which satisfigs The logic also contains negation)(conjunction {) and a base
formula which always holds (t). HML is strong enough to bligtiish any two processes which are not
bisimilar.

We are interested in making true concurrency distincticgtsvben processes. These processes will
be event structureswhere the current state is represented by the set of evénth Wwave occurred so
far. Such sets are callebnfigurations Events have labels (ranged overd, ...), and different events
may have the same label. We shall refer to example eventigtescusing a CCS-like notation, with
a|b denoting an event labelled within parallel with another labelled with, a.b denoting two events
labelleda andb where the first causes the second, ardb denoting two events labelledandb which
conflict.

In the true concurrency setting bisimulation is referredgimterleaving bisimulationor 1B for short.
The processes| b anda.b+ b.a are interleaving bisimilar, but from the point of view of éraoncurrency
they should be distinguished, and HML is not powerful enotagtio this.

We therefore look for a more powerful logic, and we base thggc on adding reverse moves. Instead
of the one modalitya) ¢ we have twoforward diamonda)) ¢ (which is just a new notation for th@) ¢
of HML) and reverse diamond(a)@. The latter is satisfied if we can reverse some event labelldd

B. Luttik and F. D. Valencia (Eds.): 18th International Wshlkop on
Expressiveness in Concurrency (EXPRESS 2011) © I.C.C. Phillips & I. Ulidowski
EPTCS 64, 2011, pp. 104=1118, d0i:10.4204/EPTCS.64.8

http://dx.doi.org/10.4204/EPTCS.64.8

I.C.C. Phillips & I. Ulidowski 105

a and get to a configuration wheggholds. Such an event would have to ts@ximalto enable us to
reverse it, i.e. it could not be causing some other eventihslready occurred.

With this new reverse modality we can now distinguigb anda.b+ b.a: a|b satisfiega)) (b)) ((a)t,
while a.b+ b.a does not. The formula expresses the idea éhedb areconcurrent Alternatively we
see that.b+ b.a satisfies(a)) (b)) —((a)tt, while a| b does not. This latter formula expresses the idea that
acauseshb

The new logic corresponds teverse interleaving bisimulatiof81], or RI-IB for short. In the ab-
sence of autoconcurrency, Bednarczyk [3] showed that$has istrong akereditary history-preserving
bisimulation[3], or HH for short, which is usually regarded as the stratgkesirable true concurrency
equivalence. HH was independently proposed in [21], utkename of strong history-preserving bisim-
ulation.

Auto-concurrency is where events can occur concurrentt llave the same label. To allow for
this, we need to strengthen the logic. For instance, we veadistinguisha|a from a.a, which is not
possible with the logic as it standéa)) (a)) ((a)tt is satisfied by both processes. We need some way of
distinguishing the two events labelled wahWe change our modalities so that when we make a forward
move wedeclareanidentifier (ranged over by, y, ...) which stands for that event, allowing us to refer to
it again when reversing it. Now we can write: a))(y : a)) (x)t, and this is satisfied bg|a, but not by
a.a. Declaration is an identifier-binding operation, so thahdy are both bound in the formula. Baldan
and Crafal[2] also used such declarations in their forwanig--tmgic.

With this simple change we now have a logic which is as strangld, even with autoconcurrency.

We have to be careful that our logic does not become too stfemgnstance, we want to ensure that
processea anda+ aare indistinguishable. One might think theat a satisfies(x : a)) ((x)(y : a))~{((X)t,
while a does not. To avoid this, we need to ensure thist forgotten about once it is reversed, and so
cannot be used again. One could make a syntactic restritizin a formul&(x) ¢ the identifierxis not
allowed to occur (free) ip. However this is not actually necessary, as our semantitengure that all
identifiers must be assigned to events in the current comtfiigar. So in factx : a)) ((x)(y : a))~ (Xt is
not satisfied by+ a, since we are not allowed to reversas it would take us to a configuration where
is mentioned inly : &))—((x)tt butx is assigned to an event outside the current configuratioliaBand
Crafa [2] also had to deal with this issue.

Our logic is not quite complete, since we wish to expressagefurther properties. For instance, we
would like to express a reverse move labelled vaithe. ((a) . Instead of adding this directly, we add
declarations(x: a)p. We can now expresga) @ by the formula(x: a){(x)@ (wherex does not occur
(free) in@).

We also wish to express so-callstdp transitionswhich are transitions consisting of multiple events
occurring concurrently. For instance a forward stag@)) @ of two events labelled wita can be achieved
by (x:a))(y:a) (@A ((X)t) and a reverse stefa, a)@ can be achieved bk : a)(y: a)((X) (V)@ A (y)tt)
(both formulas withx andy not free in@). Thus the reverse steps employ declarations. As well as
expressing reverse steps, declarations allow us to obtsimblagic which corresponds teeak history-
preserving bisimulatiofWH).

This completes a brief introduction of our logic, which wel davent Identifier Logicor EIL for
short. Apart from corresponding to HH, EIL has natural sglde for several other true concurrency
equivalences. Figufd 1 shows a hierarchy of equivalen@swh are able to characterise, where arrows
denote proper set inclusion. Apart from the mentioned HH\A] history-preserving bisimulatio(H)
is a widely studied equivalence that employs history isgghimm. Hereditary weak-history preserving
bisimulation (HWH) is WH with the hereditary property [3] that deals witkversing of events. The
definitions of these equivalences can be found in[[12, 31 ,aaa outlined in Sectidn 3.2.

106 A Logic with Reverse Modalities

HH
N
H HWH

WH
Figure 1: The hierarchy of history-preserving equivalence

It is natural to ask if, at least for a finite structure, thexya isingle logical formula which captures all
of its behaviour, up to a certain equivalence. Such formattagalleccharacteristicformulas. They have
been investigated previously for HML and other logics! [15,[B]. We look at characteristic formulas
with respect to three of the equivalences we consider, nahtid| H and WH.

The main contribution of the paper is a logic EIL. It could bgwed that EIL is a natural and
canonical logic for the true concurrency equivalences idened here in the following sense. Firstly, its
forward and reverse modalities capture faithfully the infation of the forward and reverse transitions
in the definitions of the equivalences, Secondly, eventtifienenvironments and event declarations give
rise naturally to order isomorphisms for HH, H, HWH and WHnd#lly, EIL extends HML and keeps
with its spirit of having simple modalities defined seamlgsser a general computation model.

Other contributions include the first to our knowledge Isdgior WH and HWH. Finally, we present
the first to our knowledge characteristic formulas for HH,rdl &VH.

The paper is organised as follows. We look at related worletiSBri2. Then we recall the definitions
of configuration structures and the bisimulation-basedvatgnces that we shall need in Sectidn 3. We
then introduce EIL in Sectionl 4, giving examples of its usafext we look at how to characterise
various equivalences using EIL and its sublogics (SetfjorirbSectiorf 6 we investigate characteristic
formulas. We finish with conclusions and future work.

2 Related work

Previous work on logics for true concurrency can be categdrioosely according to the type of semantic
structure (model) that the satisfaction relation of thadag defined for. There are logics over config-
urations (sets of consistent even(s)|[15, 2] and logics pedns (or computations) |[5, 27,128,129] 32],
although logics in[[2]7, 28, 29] can be seen also as logics caefigurations. Other structures such as
trees, graphs and Kripke frames are used as models in, forpea[26/ 25, 117, 18].

The logic in this paper uses simple forward and reverse adentifier modalities that are sufficient
to characterise HH. In contrast, Baldan and Crafa [2] aedean alternative characterisation of HH
with a different modal logic that uses solely forward-omeet identifier modalitiegx) and(X,y < az).
The formula(x,y < az)@ holds in a configuration if in its future there is afabelled evene that can
be bound taz, and ¢ holds. Additionally,e must be (1) caused at least by the events already bound
to the events ix and (2) concurrent with at least the events already bounbei@vents iry. Several
interesting sublogics were also identifiedlin [2] that ckhtedse H, pomset bisimulatioh![4,112] and step
bisimulation [33| 12] respectively.

Goltz, Kuiper and Penczek [[15] researched configuratiopsiofe event structuresithout autocon-
currency In such a setting HH coincides with reverse interleavirgnbulation RI-IB (shown in[[B]).
Moreover, H coincides with WHPartial Order Logic (POL) is proposed in_[15]. POL contains past
modalities and the authors stated that it characterisdB Rdnd thus HH). Also, it is conjectured that if

I.C.C. Phillips & I. Ulidowski 107

one restricts POL in such a way that no forward modalitieskEnested in a past modality, then such a
logic characterises H (and thus WH).

Cherief [5] defined a pomset bisimulation relation over pathd shows that it coincides with H (de-
fined over configurations). The author then predicted thax#ension of HML with forward and reverse
pomset modalities characterises H. This idea was thenajeselfurther by Pinchinat, Laroussinie and
Schnoebelen in [32].

Nielsen and Clausen definedeabisimulation relation §b) over paths [27, 29]. Unlike in [5, 32], one
is allowed to reverse independent maximal events in anyr.ofides seemingly small change has a pro-
found effect on the strength of the equivalendb:coincides with HH. It was shown that an extension of
HML with a reverse modality characterises HH when there iaumoconcurrency [27, 29]. Additionally,
it was stated (without a proof) [28] that an extension of HMithaa reverseevent indexmodality char-
acterises HH even in the presence of autoconcurrency. Tienraf paths used in [27, 28, 29] induces
a notion of configuration. Hence, their logics could be ustierd as logics over configurations and re-
verse index modality could be seen as a form of our reversat @entifier modality. We would argue,
however, that many properties of configurations relatectesality and concurrency between events are
expressed more naturally with reverse identifier modalitie

Past or reverse modalities, which are central to our logerewised before in a number of modal
logics and temporal logics [20] [7, (6,126 15] 23,,[24, 30] buy ¢26|, [15] proposed logical characterisa-
tions of true concurrency equivalences. Among the rest, MWNth backward modalities in [7,/ 6] defined
over paths is shown to characterise branching bisimulattamally, Gutierrez introduced a modal logic
for transition systems with independencel[17), 18] that as diamond modalities: one for causally
dependent transitions and the other for concurrent tiansiwith respect to a given transition.

3 Configuration structures and equivalences

In this section we define our computational model (stabldéigoration structures) and the various bisim-
ulation equivalences for which we shall present logicarab&risations.

3.1 Configuration structures

We work with stable configuration structures [13] 14), 12],ckbhare equivalent to stable event struc-
tures [36].

Definition 3.1. A configuration structurgover an alphabeAct) is a pairé = (C,¢) whereC is a family
of finite sets (configurations) ard [Jx.c X — Act is a labelling function.

We useCy, {4 to refer to the two components of a configuration structéite Also we letEy =
Uxec X, theeventof €. We lete, ... range over events, arigl F, . .. over sets of events. We latb,c, ...
range over labels iAct.

Definition 3.2 ([12]). A configuration structur& = (C, /) is stableif it is

e rooted: 0c C; connected: B X € CimpliesJdec X : X\ {e} €C;

e closed under bounded unionsXfY,Z € C thenX UY C Z impliesXUY € C;

e closed under bounded intersectionsXifY,Z € C thenXUY C Z impliesXNY €C.

Any stable configuration structure is the set of configuretiof a stable event structure [12, Thm 5.3].
Definition 3.3. Let ¢ = (C,¢) be a stable configuration structure, and{et C.

108 A Logic with Reverse Modalities

e Causality:d <y eiffforall Y e CwithY C X we haveec Y impliesd € Y. Furthermored <x e
iff d <y eandd #e.

e Concurrencyd cox eiff d £x eande £x d.

It is shown in [12] that<y is a partial order and that the sub-configurationX @fre precisely those
subsetsy which are left-closed w.r.kx, i.e. if d <x e€ Y thend € Y. Furthermore, iiX,Y € C with
Y C X, then<y = <xY.

Recall that a prime event structure is a set of events withalliag function, together with a causality
relation and a conflict relation (between events that cahaahembers of the same configuration) [36].
The set of configurations of a prime event structure formsblstconfiguration structure; prime event
structures are a proper subclass of stable event structilesf our examples are given as prime event
structures or the corresponding CCS expressions. Whernrgyaliagrams of prime event structures we
shall, as usual, depict the causal relation with arrows taadonflict relation with dotted lines. We shall
also suppress the actual events and write their labelsathsihus if we have two evengs ande,, both
labelled witha, in diagrams we shall denote themaasanday, respectively, when we wish to distinguish
between them. This is justified, since all the notions of e@jence we shall discuss depend on the labels
of the events, rather than the events themselves.

Example 3.4. Consider a prime event structure with evesite,, e; all labelled witha, wheree; causes
e andey, e, are concurrent witkes. The corresponding CCS expressiorfasa) | a. The set of configu-

rations consists of @e;1 },{es},{e1,e},{e1,e3} and{e;, e, e3}.

Definition 3.5. Let 4 = (C, /) be a stable configuration structure anddet Act. We letX S X' iff
X, X" €C, X C X" andX’\ X = {e}. Furthermore we leX 5, X' iff X 5 X’ for someewith /(e) = a.
We also define reverse transitionés>4 X' iff X' >4 X, andX 3¢ X' iff X’ 24 X. The overloading of
notation whereby transitions can be labelled with eventsithr event labels should not cause confusion.

For a set of eventg, let /(E) be the multiset of labels of events ih We define asteptransition
relation where concurrent events are executed in a singje st

Definition 3.6. Let ¥ = (C,¢) be a stable configuration structure andAet NAt (A is a multiset over
Act). We letX Aﬂg X"iff X, X" € C, X C X/, andX’\ X = E with d cog efor alld,e € E and/(E) = A.

We shall assume in what follows that stable configurationcttires arémage finitewith respect to
forward transitions, i.e. for any configuratidhand any labed, the set{ X" : X By X'} is finite.

3.2 Equivalences

We define history-preserving bisimulations and illustithie differences between them with examples.

Definition 3.7. Let 2" = (X, <x,/x) and¥? = (Y, <y, ¢y) be partial orders which are labelled oveut.
We say thatZ™ and%/ areisomorphic(X 22Y) iff there is a bijection fronX toY respecting the ordering
and the labelling. The isomorphism clgds&’|~ of a partial order labelled ovéXct is called apomset
overAct.

Definition 3.8 ([8,[12]). Let %, Z be stable configuration structures. A relati@ghC C, x Cy is aweak
history-preserving (WH) bisimulatiopetweerfs and 7 if 2(0,0) and if Z(X,Y) anda € Act then:

o (X,<x,le [X)= (Y, <yl [Y),
o it X 34 X thenaY’. Y 3, Y andZ(X',Y");
e if Y 3, Y thenaX’. X 34 X and2(X',Y').

I.C.C. Phillips & I. Ulidowski 109

E Fooo
T T. .T T T T: .T T
R R R by by by by

Figure 2: Example 3.12.

We say that’ and2 are WH equivalent® ~.,,, 2) iff there is a WH bisimulation betwee# and 2.
Definition 3.9 (|34, [12]). Let ¥, 2 be stable configuration structures. A relatighC C, x Cy x
P (Ey x Eg) is ahistory-preserving (H) bisimulatiobetweerfs and 7 iff #(0,0,0) and if Z(X,Y, f)
anda € Act

e f is anisomorphism betwediX, <x, /s [X) and(Y,<v,l4 ['Y);

o if X 34 X thendY’ .Y 3, Y, Z(X.,Y f')andf | X = f;

o if Y 3, Y thenaX/ . X 34 X/, Z2(X',Y', f') andf' | X = f.
We say that’ and2 are H equivalent® ~, 2) iff there is an H bisimulation betwee#i and 2.

Both H and WH have associated hereditary versions:
Definition 3.10 ([3} 21,[12]) Let ¥, 2 be stable configuration structures anddet Act. ThenZ C
Cy xCy x Z(Ey x Ey) is a hereditary H (HH) bisimulation if#? is an H bisimulation and i#Z(X,Y, f)
then for anya € Act,

o if X 24 X thenaY’ £.Y 3, Y, (XY, f')andf | X' = f/;

o if Y 55 Y thenaX/, /. X 5y X!, Z(X',Y', ') and f | X' = f'.
We say thats andZ are HH equivalent® ~,, 2) iff there is an HH bisimulation betweeti and 2.
Definition 3.11. Let ¥, 2 be stable configuration structures anddet Act. ThenZ C Cy x Cgy x
P (E¢ x Eg) is a hereditary WH (HWH) bisimulation #(0,0,0) and if Z(X.,Y, f) anda € Act then:
f is an isomorphism betwedX, <x,ls | X) and(Y,<y,l% [Y);

o if X 34 X thenaY’, £.Y %, Y and2(X,Y', ');

e if Y 3, Y thenaX’ f'. X 34 X' and2(X',Y', f');

o if X35y X thendY’ £.Y 3, Y/, (XY, f')andf | X' = f/;

o if Y 3, Y thenaX/, . X gy X!, 2(X',Y', #') and f | X' = f'.
Also ¥ and2 are HWH equivalent® ~n. 2) iff there is an HWH bisimulation betwee#i and 2.

The inclusions in Figurel1 are immediate from the definitioFisey are strict inclusions:

Example 3.12([31]). Consider event structure$, .# in Figure[2, where each event structure has four
a-labelled and foub-labelled events& = % holds for=,,,, and hence fore,,, , but not forxy,, and
hence not fore,,. We now show this.&, .# have the same configurations except tfet as,bs} is
missing in.%. We define a bisimulation by relating all isomorphic statex] check that it is an HWH.
To see that¢ and.Z are not H-equivalent, consider B3 {ap,a3} in .#. This must be matched by
moving to configuration{a;,a1} in &, wherei € {1,2,3}. But then bothl; andb;,; are possible.
However{ayz,a3} in .7 can only dob,. Hence one of thé; andb;;; in & cannot be matched to, in
such way that the resulting isomorphism contains the ayreathblished pairs (eithéay, &), (as,a+1)

or (ap,8i+1), (as,&)) and is history-preserving.

110 A Logic with Reverse Modalities

Example 3.13. The Absorption Lawi[4], 3, 12]
(al(b+c)) +(alb)+ ((a+c)|b) = (a] (b+c)) + ((a+c)|b)

holds foras;,, and thus fors,,;, , but not foras,,p -

4 Event Identifier Logic

We now introduce our logic, which we call Event Identifier lo@EIL). We assume an infinite set of
identifiersld, ranged over by, y,z,.... The syntax of EIL is as follows:

pu=t|-@[ord | (x:a)e|(x:a)](Xe

We include the usual operators of propositional logic:hrtitnegation-¢@ and conjunctionp A ¢. We
then haveorward diamond(x : a)) @, which says that it is possible to perform an event labell@t &
and reach a new configuration whegéolds. In the formulax : a)) @, the modality(x : &)) binds all free
occurrences oX in ¢. Next we haveleclaration(x : a)¢@. This says that there is some event with label
ain the current configuration which can be boundcia such a way thap holds. Here the declaration
(x:a) binds all free occurrences afin @. Finally we havereverse diamond(x)@. This says that it

is possible to perform the reverse event bound to identifiand reach a configuration whegeholds.
Note that((x) does not binc. Clearly any occurrences &fthat get bound byx : a) must be of the form
({(x). We allow alpha-conversion of bound names. We@g$, . .. to range over formulas of EIL.

Example 4.1. The formula(x: @))(y : a)) (X)tt says that there are events with labebaye; ande,, that
can be bound ta andy such that, after performing and thene,, we can reverse;. Obviously, after
performinge; followed bye,, we can always revers. This formula could be interpreted as saying that
an event bound ta is concurrentwith an event bound tg. Next, considerx: a))(y: a))—({(X)tt. The
formula expresses that an event bound ttausesan event bound tg (because if we could reverse
beforey, we would reach a configuration containipgnd notx, which contradictx being a cause of).

Definition 4.2. We definefi(¢), the set of free identifiers @b, by induction on formulas:.

f()=0 filg A @) =fi(@) Ufi(@) fi((x:a)p) =fi(p)\ {x}
fi(-@) =fi(p) fi((x:a)p) =fi(@)\{x} fi({(xe)=fi(p)U{x}

We say thatp is closedif fi(¢) = 0; otherwiseyp is open

In order to assign meaning to open formulas, as usual we gnaplironments which tell us what
events the free identifiers are bound to.

Definition 4.3. An environmenp is a partial mapping frond to events. We say thatis a permissible
environment forp and Xif fi(@) C dom(p) andrge(p | fi(@p)) C X.

We let 0 denote the empty environment. Wegdét — €| denote the environmemt’ which agrees
with p except possibly ox, wherep’(x) = e (and p(x) may or may not be defined). We abbreviate
Ox— €] by [x— €]. We letp \ x denotep with the assignment todeleted (if defined ip).

Now we can formally define the semantics of EIL:

Definition 4.4. Let ¥ be a stable configuration structure. We define a satisfactiations,X,p = ¢
where X is a configuration ofg, and p is a permissible environment fagg and X, by induction on
formulas as follows (we suppress tiewhere it is clear from the context):

I.C.C. Phillips & I. Ulidowski 111

e X,p [t always
e X,pE—oiff X,p = ¢

e X,pE@A@iff X,p =@ andX,pl= @
e X,p = (x:a)@iff IX’,esuch thatX S X’ with £(e) =aandX’,p[x— €| = ¢

e X,p = (x:a)@iff Jee X such that(e) = aandX,p[x— € = ¢

o X,p = (X @ iff 3X’ e such thatX ~>¢ X’ with p(x) = eandX’,p |= ¢ (andp is a permissible
environment forp andX’)

For closedp we further defineg’, X = @ iff €,X,0 = @, and¥ = @iff €,0 = ¢.

In the case of(x) ¢, note that even though according to the syntaxallowed to occur free i, if
x does occur free i thenX, p = ((x)@ can never hold: ip(x) = eandX ~~ X' thenX’, p = ¢ cannot
hold, sincep is not a permissible environment fgrandX’, asp assigns a free identifier gfto an event
outsideX’.

Example 4.5. Consider the configuration structure from Exaniplé 3.4. Tin@tg configuration sat-
isfies (x: a))(y: a)((Xt: we have 00 = (x:a)(y:a)) (Xt since {e1,e3},[X — e,y — &3] = (Xt;
the latter holds becausge;,es} ~> {e3} andp(x) = e1. Also, 0.0 = (x: a))(y:a)—{(X)t. We have
0,0 = (x: a))(y: a)~((Xt since{er, &}, X €1,y — & = —((X)t. This is becausées, e;} /» {&} as
{ex} is not a configuration.

The closed formul@x :)t says that there is some event labelled vaith the current configuration:
X E (x:a)tiff Jee X. ¢(e) = a. Returning to Example_3.4, note that as wellas, e;},[x — €1,y —
e] E —((X)t this also holds:{e;,e},[x — e,y —] = (x: a){(x)t. By the definition of(x: a), the
current environment is updated [to— e,y — €] and we obtaife;, e}, [x — e,y +—] = ((X)tt. Cor-
respondingly,{er, &}, [X — e,y — €] [= (x:a){(X)(y 1 a){(y)t. However,{e;, e}, [X— ey] [~
(x: @) (O (y)t since{er},[x— e,y — €] = (Y)t.

We introduce further operators as derived operators of EIL:
Notation4.6 (Derived operators)Let A = {ay,...,an} be a multiset of labels.

o ffd—t, x:aloL-(x:a)-0, @aveL-(-or-)

e Forward steﬁA>>(pg (X)) (% an)) (@ A AMLH((x)t) wherexy, . .., X, are fresh and distinct

(and in particular are not free). We write(ay, ..., a,)) @ instead of({ay, . ..,an}))@. In the case
d

n=1we havea)) @ a (x: &))@ wherex s fresh.
e Reverse step(A)@ a (X a1) - (%t an) (%) - (%)@ A AlLo{((Xi)tt) wherexq, ..., X, are fresh
and distinct (and in particular are not freegh We write((ay, ..., a,)@instead of({ay,...,a.}) Q.

In the casen = 1 we have((a) @ a (x:a){((x)p wherex s fresh.

Example 4.7. Consider&’, .% in Figure[2 andp =[x: a]][y: a]] ((z: b))= (Xt A (w: b)={(y)t). We
easily check that’ satisfiesp and.# does not. Next, considey = (x: a))([w: c|] ff A{y: b)) ((X) [z: c]]
ff). Then the LHS structure of the Absorption Law in Examlple Bsafsfiesy and the RHS does
not. Strictly speaking, event identifiers are not necestadistinguish the two pairs of configuration
structures. A formula with simple label modalitiés)) ([c]] ff A (b))((a) [c]] ff) is sufficient for the the
Absorption Law, ands, .Z in Figure[2 can be distinguished by a logic with pomset maéali(both
reverse and forward) defined over runs [5, 32].

112 A Logic with Reverse Modalities

£d Toa a A
a & a..& @ @

Figure 3: Examplé 418.

Example 4.8. Consider&, .# in Figure[3. There is a non-binary conflict among the thregaina-
events (indicated by a dashed ellipsis) defined by requihiagjat most two of these events can appear
in any configuration.&” and.# are H equivalent: we define a bisimulation by relating confitions
of identically labelled events (including wheeg is matched withe);) and check that it is an H. The
structures are also HWH equivalent. This time we define arhikition between order isomorphic
configurations (of which there only five isomorphism classs{a}, {a,a}, {a < a} and{a < a,a},
where events separated by commas are concurrent) and d¢tadkis an HWH. Howeverg and .7
are not HH equivalent and event identifiers are indeed napeds distinguish them. The formula
(x:a)(y:a) (=t (z:a){(y)(w: a2t A (Z :a)((y)—(W : a)~((Z)t) is only satisfied bys’. It
requires thak causes and thatz andZ are bound to different events becaygea)) and (Z : a)) are
followed by mutually contradictory behaviours. This is e in& (a;,a4 can be followed by either
az or ay) but not in.%#: none of the pairs of causally dependent events offers tiferdnt a-events.

5 Using EIL to characterise equivalences
We wish to show that EIL and its various sublogics charasteifie equivalences defined in Secfion 3.2.
Each sublogic of EIL induces an equivalence on configurattanctures in a standard fashion:

Definition 5.1. Let L be any sublogic of EIL. Theh induces an equivalence on stable configuration
structures as followsz” ~| Z iff for all closed @ € L we have? = ¢iff 2 = ¢.

First we introduce a simple sublogic that allows us to chiarege order isomorphism.

5.1 Reverse-only logic and order isomorphism

We define sublogics of EIL, consisting of formulas where aelerse transitions are allowed.
Definition 5.2. Reverse-onhjogic ElL:

pi=t|-@| AP | (x:a)p] (X)@

We further definaleclaration-freereverse-only logic Elko:

Qu=t[-@|pAg | (Xe
These logics are preserved between isomorphic configngtamd characterise configurations up to
isomorphism.

Lemma 5.3. Let %, Z be stable configuration structures, and lef¥Xbe configurations of’, ¥ respec-
tively. Suppose that :fX =Y. Then for anyp € EIL,,, and anyp (permissible environment fa and

X), we have Xp = @iff Y, fopy = .

I.C.C. Phillips & I. Ulidowski 113

Recall thatp, is an abbreviation fop | fi(¢). Function composition is in applicative rather than
diagrammatic order.

Given any configuratioiX we can create a closed formua € EIL, which gives the order structure
of X. We make this precise in the following lemma:

Lemma 5.4. Let X be a configuration of a stable configuration structéfe There is aclosedformula
6x € ElL,o, such that if Y is any configuration of a stable configuratibtmaure 2 and |Y| = |X|, then
Y =X iffY | 6x.

The next lemma follows fairly immediately from the proof oéinmd 5.4 and from Lemniab.3:
Lemma 5.5. Let X be a configuration of a stable configuration structédfeLet{z : e € X} be distinct
identifiers. Let the environmepk be defined byx (z) = e (e€ X). There is a formul& € ElL o

with fi(6') = {z: e € X}, such that Xpx = 6% and if Y is any configuration of a stable configuration
structureZ and|Y| = |X|, then Y= X iff 3p. Y, p = 6.

5.2 Logics for history-preserving bisimulations

We start by showing that EIL characterises HH-bisimulati@e then present sublogics of EIL which
correspond to H-bisimulation, WH-bisimulation and HWHsibiulation.

Our first result is related to the result 0f [28] that a logi¢hwieverse event index modality (discussed
above in Sectioh]2) characterises HH.

Theorem 5.6. Let ¢, 2 be stable configuration structures. Thé&h~,, Z if and only if ¢ ~g,. 2.

Remarks5.7. In fact Theoreni 516 would hold with the logic restricted by nsing declarationéx : a) .
However we include declarations in EIL because they areuugefefining sublogics for WH, among
other things.

We define a sublogic of EIL which characterises history-@maag bisimulation:
Definition 5.8. ElL is given as follows, where is a formula of EllL,:

pi=t|-@loA@ [(x: Q)| (x:a)p| @

ElILp is just EIL with ((x: a)¢ replaced byg € EIL;,. Thus one is not allowed to go forward after
going in reverse. This concept of disallowing forward moeesbedded inside reverse moves appears
in [15].

Theorem 5.9. Let ¢, 2 be stable configuration structures. Théfixy, Z if and only if€ ~g, 2.
Remark5.10 Just as for Theorem 8.6, Theorem]5.9 would still hold if welliisv declarationgx : a) .

This gives the following more minimal logic, whege € EIL 4fro.
Qu=t]-@|pN¢ | (x:2)0| @

We define a sublogic Ells, of EIL which characterises weak history-preserving bisimutatid/e
get from ElL, to EIL,, by simply requiring that all formulas of Ell, areclosed

Definition 5.11. ElL is given as follows, where. is aclosedformula of ElL,, (Definition[5.2):

pi=t|-@|o g | (@)0]| @c

In the above definition we writéa)) @ rather thanx : a)) @ sinceg is closed and in particulacdoes
not occur free inp (Notation[4.6). Also we omit declaratiorig : a) @ since they have no effect whem
is closed. Of course declarations can occugin

114 A Logic with Reverse Modalities

Theorem 5.12. Let %, 7 be stable configuration structures. Théh~, Z iff € ~g,, Z-

We believe that Ell,, is the first logic proposed for weak history-preserving rhoigiation with au-
toconcurrency allowed. Goltz et al. [15] described a logic Wweak history-preserving bisimulation
with no autoconcurrency allowed, but in this case, wealohyspreserving bisimulation is as strong as
history-preserving bisimulation [12].

Just as we weakened Ellto get ElL,, we can weaken EIL by requiring that forward transitions
(x: &))@ are only allowed ifp is closed. Again instead dk : a)) ¢ we write (a)) @. This gives us Elkyn:

Definition 5.13. ElLnwnh is given below, wheregg. ranges over closed formulas of Ell.

pu=t[-plond [@)@|(x:a)e| (X

Plainly ElLy is a sublogic of Elln as well as of Ell,.
Theorem 5.14.Let %, 2 be stable configuration structures. Théh~n,n Z iff € ~giL,,, Z-

With no (equidepth) autoconcurrency, we know that,, is as strong aszy,;, [31[31]. So Ellwh is
as strong as EIL in this case.

6 Characteristic formulas

In this section we investigate characteristic formulastifivee of the equivalences we have considered,
namely HH, H and WH. The idea is that we reduce checking whéthend 2 satisfy the same formulas
in a logic such as EIL to the question of whetligrsatisfies a particular formuba,, the characteristic
formula of ¥, which completely expresses the behaviourggfat least as far as the particular logic
is concerned. As pointed out in/[1], this means that checlwhgther two structures are equivalent is
changed from the problem of potentially having to check itélg many formulas into a single model-
checking problen? = x¢.

Characteristic formulas for models of concurrent systerageMirst investigated in [16], and subse-
quently in [35] and other papers—see [1] for further refeeen As far as we are aware, characteristic
formulas have not previously been investigated for any¢areurrency logic, although we should men-
tion that in [1] characteristic formulas are studied for gitowith both forward and reverse modalities,
related to the back and forth simulation of [6].

We shall confine ourselves faite stable configuration structures in this section. Even whiih t
assumption, it is not obvious that an equivalence such as#lith employs both forward and reverse
transitions, can be captured by a single finite-depth foamtb show that forward and reverse transitions
need not alternate for ever, we first relate HH to a simple game

Definition 6.1. Let ¢, 7 be finite stable configuration structures. The g&(®’, 7) has two playersA
(attacker) andD (defender). The set of game stateS(i&’, 2) af {(X,Y,f): XeCysYeCy, f: XY}
The start state i€, 0,0). At each state of the gamfechooses a forward (resp. reverse) mew# either
¢ or 9. ThenD must reply with a corresponding forward (resp. reverse)ewbby the other structure.
Going forwards we extenél to f’ and going in reverse we restrittto f/, as in the definition of HH. The
two moves produce a new game staxé,Y’ f’). ThenD wins if we get to a previously visited state.
Conversely A wins if D cannot find a move. (Als® wins if A cannot find a move, but that can only
happen if bothg” and 2 have only the empty configuration.)

It is reasonable thdd wins if a state is repeated, sinceAithen chooses a different and better move
at the repeated stat&,could have chosen that on the previous occasion.

I.C.C. Phillips & I. Ulidowski 115

Definition 6.2. Given finite stable configuration structuré$ 2, let s(¢, 2) a |IS(€¢,2)|, letc(¥) =
max{|X|: X € Cy}, and letc(¢, Z) = min{c(¥),c(2)}.

Clearly any play of the gam@&(%’, 2) finishes after no more thas{¢’,) moves. We can place an
upper bound o18(%’,) as follows:

Proposition 6.3. Let%’, Z be finite stable configuration structures. Thé#@'s?) < |Cy

Note that if there is no autoconcurrency, any isomorphisr{ =Y is unique, and so we can improve
the upper bound on the number of states(t§,) < |C¢|.|Cy|.

Proposition 6.4. Let %, Z be finite stable configuration structures. Th€ry,, Z iff defender D has a
winning strategy for the game(&’, 2).

Remark6.5. Certainly game characterisations of HH equivalence haga beed many times before; see
e.g. [9,/10[11, 22, 17]. However defender is usually saiditoifithe play continues for ever, whereas
we say that defender wins if a state is repeated. This is kseo&a are working with finite configuration
structures, rather than, say, Petri nets.

Definition 6.6. Let ¢ € EIL. Themodal depthmd (@) of ¢ is defined as follows:
md(t) < 0 md(@A @) £ max(md(@),md(¢) md((x:a)9) £ md(9)

md(~¢) L md(g) md((x:a)g) L 1+ md(e) md((x: 2)p) L 1+ md(g)

==

We can use the game characterisation of HH to bound the meg#h @f EIL formulas needed to
check whether finite structures are HH equivalent:

Theorem 6.7. Let %, Z be finite stable configuration structures. Thémne,, Z iff ¥ and 2 satisfy the
sameEIL formulas of modal depth no more thaf¥§) +c(¢, 2).

We now define a family of characteristic formulas for HH e@lénce, parametrised on modal depth.
Definition 6.8. Suppose thalct is finite. Let% be a finite stable configuration structure. We define
formulasx{', (X a configuration of¢’) by induction onn:

df .
S

AL N @ l@ONXEIACA kedl xaxzDAC A (2 xR

XS X! acAct XS X t(e)=a XS X!

hh
XX.,0

hh df
XXnt1 =

Here 6} € ElL o is as in Lemmab]5 anti(x2h,) = {z: e € X}. We further lety", df X,
Note thatx?, € EIL andmd(x%",) < n+c(%).

Theorem 6.9. Suppose thafct is finite. Let%’, 2 be finite stable configuration structures. Lef's
S(€,2). Then® ~u, 2 iff 7 1= X3P

Thus we do not have a single characteristic formuladorbut we can deal uniformly with aly
up to a certain size. This is almost as good as having a sifgleacteristic formula fof%’, since we
can generate a formula of the appropriate size once we hiledsen &, so that we have still reduced
equivalence checking to checking a single formula. Singbracteristic formulas are certainly possible
for some%’s; there remains an open question of whether for all fidfitehere is a single formula\f%h
which works for allZ.

Matters are simpler for H and WH equivalences, since onlyéod transitions are employed.

116 A Logic with Reverse Modalities

Definition 6.10. Suppose thafct is finite. Let% be a finite stable configuration structure. We define
formulast (X a configuration of¢’) as follows:

XREGACN @ t@XIACA xall xRz

XS X! acAct XS X 0(e)=a

Here 8} € ElLgpo is as in Lemmas]s. We further gt} daf X5

Note thatx% € EILy; it is well-defined, since maximal configurations form thesdaases of the
recursion. Alsand(x¥) < 2.¢(%).

Proposition 6.11. Suppose thafct is finite. Let%’, 2 be finite stable configuration structures. Then
D=, Ciff 2 = X8

WH is even easier as formulas are closed:

Definition 6.12. Suppose thafct is finite. Let% be a finite stable configuration structure. We define
formulasx}?’h (X a configuration of¢’) as follows:

X e A (A @XM A CA [X
X3 X! acAct X3 X

Here6x € ElL is as in Lemmasl4. We further Igt" g Xy,

Note thaty!" € ElLwn andmd(x¥") < 2.¢(%).

Proposition 6.13. Suppose thafct is finite. Let%, Z be finite stable configuration structures. Then
.@mwh%iﬁ.@):)()gh.

7 Conclusions and future work

We have introduced a logic which uses event identifiers ttktevents in both forwards and reverse
directions. As we have seen, this enables it to express ligiusmad concurrency between events. The
logic is strong enough to characterise hereditary hisppegerving (HH) bisimulation equivalence. We
are also able to characterise weaker equivalences usitaggtsh In particular we can characterise weak
history-preserving bisimulation, which has not been dorevipusly as far as we are aware. We also
investigated characteristic formulas for our logic witBpect to HH and other equivalences. Again we
are not aware of previous work on characteristic formulasdgics for true concurrency.

Baldan and Craféd [2] gave logics for pomset bisimulation stegh bisimulation; we have also been
able to characterise these equivalences in our settingwéuiad to omit this material for reasons of
space.

In future work we would like to (1) investigate general lawkigh hold for the logic, (2) look at
sublogics characterising other true concurrency equieale, including equivalences involving reverse
transitions from([3[_31], and (3) answer the open questi@edain Section6 about whether there is a
single characteristic formula for a finite structure witspect to HH equivalence.

Acknowledgements. We are grateful to lan Hodkinson and the anonymous refemrdasetpful com-
ments and suggestions.

I.C.C. Phillips & I. Ulidowski 117

References

[1]

(2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

L. Aceto, A. Ingolfsdéttir & J. Sack (2009)Characteristic Formulae for Fixed-Point Semantics: A Graihe
Framework In: Proceedings 16th International Workshop on Expressiweme€oncurrency, EXPRESS
2009 Electronic Proceedings in Theoretical Computer Sciéi@p. 1-15, doit0.4204/EPTCS.8. 1.

P. Baldan & S. Crafa (2010A Logic for True Concurrencyn: Proceedings of 21st International Conference
on Concurrency Theory, CONCUR 2Q1ecture Notes in Computer ScienB269, Springer-Verlag, pp.
147-161, doit0.1007/978-3-642-15375-4_11.

M.A. Bednarczyk (1991):Hereditary history preserving bisimulations or what is thewer of the future
perfect in program logics Technical Report, Institute of Computer Science, Polislademy of Sciences,
Gdansk.

G. Boudol & I. Castellani (1987)On the semantics of concurrency: partial orders and traogisystems
In: Proceedings of TAPSOFT’8T ecture Notes in Computer Scien2d9, Springer-Verlag, pp. 123-137,
doi:10.1007/3-540-17660-8_52.

F. Cherief (1992): Back and forth bisimulations on prime event structuresin: Proceedings of
PARLE '92 Lecture Notes in Computer Scien€&®5, Springer-Verlag, pp. 843-858, dd-.1007/
3-540-55599-4_128.

R. De Nicola, U. Montanari & F. Vaandrager (199ack and forth bisimulationsIn: Proceedings of
CONCUR 90, Theories of Concurrency: Unification and ExtensLecture Notes in Computer Science
458, Springer-Verlag, pp. 152-165, dd@i: 1007/BFb0039058.

R. De Nicola & F. Vaandrager (1990fhree Logics for Branching Bisimulation (Extended Abdiradn:
Proceedings, Fifth Annual IEEE Symposium on Logic in Conep@ciencelEEE, Computer Society Press,
pp. 118-129.

P. Degano, R. De Nicola & U. Montanari (198Mpbservational equivalences for concurrency modéts
M. Wirsing, editor: Formal Descriptions of Programming Concepts — Ill, Progegslof the 3rd IFIP WG
2.2 ConferenceNorth-Holland, pp. 105-129.

S.B. Froschle (1999)Decidability of Plain and Hereditary History-PreservingsBnilarity for BPP. In:
Proceedings of Express’9Blectronic Notes in Theoretical Computer Sciefde Elsevier, doit0.1016/
S1571-0661(05)80297-X

S.B. Froschle (2005)Composition and Decomposition in True-Concurrenby. Foundations of Software
Science and Computational Structures, 8th Internatiomaiféence, FOSSACS 200kecture Notes in
Computer Sciencg441, Springer-Verlag, pp. 333—347, d@i: 1007/978-3-540-31982-5_21.

S.B. Froschle & S. Lasota (2009)ecomposition and Complexity of Hereditary History Presgg Bisimu-
lation on BPP In;: CONCUR 2005Lecture Notes in Computer Scier@@53, Springer-Verlag, pp. 263-277,
doi:10.1007/11539452_22.

R.J. van Glabbeek & U. Goltz (2001refinement of actions and equivalence notions for concusyestems
Acta Informatica837(4/5), pp. 229-327, ddi0.1007/s002360000041.

R.J. van Glabbeek & G.D. Plotkin (1995Fonfiguration structuresin: Proceedings of 10th Annual IEEE
Symposium on Logic in Computer Science, LICS 19%FE Computer Society Press, pp. 199-209,1dni:
1109/LICS.1995.523257

R.J. van Glabbeek & G.D. Plotkin (2009Fonfiguration structures, event structures and Petri néiseo-
retical Computer Sciencel0(41), pp. 4111-4159, dod.1016/j.tcs.2009.06.014.

U. Goltz, R. Kuiper & W. Penczek (1992ropositional temporal logics and equivalencés. Proceedings
of 3rd International Conference on Concurrency Theory, OOR 1992 Lecture Notes in Computer Science
630, Springer-Verlag, pp. 222—-236, ddi- 1007 /BFb0084794.

S. Graf & J. Sifakis (1986)A Modal Characterization of Observational Congruence amtéi Terms of CCS
Information and Contrd@8(1-3), pp. 125-145, ddi0.1016/30019-9958(86) 80031-6.

http://dx.doi.org/10.4204/EPTCS.8.1
http://dx.doi.org/10.1007/978-3-642-15375-4_11
http://dx.doi.org/10.1007/3-540-17660-8_52
http://dx.doi.org/10.1007/3-540-55599-4_128
http://dx.doi.org/10.1007/3-540-55599-4_128
http://dx.doi.org/10.1007/BFb0039058
http://dx.doi.org/10.1016/S1571-0661(05)80297-X
http://dx.doi.org/10.1016/S1571-0661(05)80297-X
http://dx.doi.org/10.1007/978-3-540-31982-5_21
http://dx.doi.org/10.1007/11539452_22
http://dx.doi.org/10.1007/s002360000041
http://dx.doi.org/10.1109/LICS.1995.523257
http://dx.doi.org/10.1109/LICS.1995.523257
http://dx.doi.org/10.1016/j.tcs.2009.06.014
http://dx.doi.org/10.1007/BFb0084794
http://dx.doi.org/10.1016/S0019-9958(86)80031-6

118 A Logic with Reverse Modalities

[17] J. Gutierrez (2009)1ogics and Bisimulation Games for Concurrency, Causalitg £onflict In: Pro-
ceedings of the 12th International Conference on Founagtié Software Science and Computation Struc-
tures, FOSSACS Q%.ecture Notes in Computer Sciensb04, Springer-Verlag, pp. 48—62, dd:. 1007/
978-3-642-00596-1_5.

[18] J. Gutierrez & J.C. Bradfield (2009%odel-Checking Games for Fixpoint Logics with Partial Ordiéodels
In: Proceedings of the 20th International Conference on Ceeoay Theory, CONCUR 2008ecture Notes
in Computer Sciencg710, Springer-Verlag, pp. 354—368, d@: 1007/978-3-642-04081-8_24.

[19] M.C.B. Hennessy & R. Milner (1985Algebraic laws for nondeterminism and concurrendgurnal of the
Association for Computing MachineB2(1), pp. 137-161, ddi0.1145/2455.2460.

[20] M.C.B. Hennessy & C. Stirling (1985)fhe power of the future perfect in program logidefomation and
Control67, pp. 23-52, doi:0.1016/50019-9958 (85) 80025-5,

[21] A. Joyal, M. Nielsen & G. Winskel (1996)Bisimulation from Open Mapsinformation and Computation
127(2), pp. 164—185, ddi0 . 1006/inco.1996.0057.

[22] M. Jurdzinski, M. Nielsen & J. Srba (2003)indecidability of domino games and hhp-bisimilaritgforma-
tion and Computatioh84(2), pp. 343—-368, ddi0.1016/S0890-5401 (03) 00064-6.

[23] F. Laroussinie, S. Pinchinat & Ph. Schnoebelen (1995nslations between modal logics of reactive sys-
tems Theoretical Computer Scien@d0(1), pp. 53—-71, dain.1016/0304-3975(94) 00204-V.

[24] F. Laroussinie & Ph. Schnoebelen (199B)hierarchy of temporal logics with pasfTheoretical Computer
Sciencel48, pp. 303—-324, ddi0.1016/0304-3975(95) 00035-T.

[25] M. Mukund & P.S. Thiagarajan (1992A logical characterization of well branching event struetss Theo-
retical Computer Scien@6(1), pp. 35-72, doi0.1016/0304-3975(92) 90181-E.

[26] R. De Nicola & G.L. Ferrari (1990)Observational Logics and Concurrency Modells: FSTTCS Lecture
Notes in Computer Sciendd 2, Springer-Verlag, pp. 301-315, ddi: 1007/3-540-53487-3_53.

[27] M. Nielsen & C. Clausen (1994)Bisimulation for Models in ConcurrencyIn: Proceedings of 5th In-
ternational Conference on Concurrency Theory, CONCURI@tture Notes in Computer Scien8&6,
Springer-Verlag, pp. 385—-400, db@. 1007 /BFb0015021.

[28] M. Nielsen & C. Clausen (1994Bisimulation, games, and logicln: Results and Trends in Theoretical
Computer Sciencd.ecture Notes in Computer Scien8&2, Springer-Verlag, pp. 289-306, dai:. 1007/
3-540-58131-6_54.

[29] M. Nielsen & C. Clausen (1995)Y5ames and logics for a noninterleaving bisimulatiaxordic Journal of
Computing2(2), pp. 221-249.

[30] W. Penczek (1995)Branching time and partial order in temporal logict: Time and Logic: A Computa-
tional ApproachUCL Press Ltd., pp. 179-228.

[31] I.C.C. Phillips & I. Ulidowski (2011):A Hierarchy of Reverse Bisimulations on Stable ConfiguraBtruc-
tures Mathematical Structures in Computer Scieeilable athttp://www.doc.ic.ac.uk/~iccp/
papers/hierarchymscs.pdf. To appeatr.

[32] S. Pinchinat, F. Laroussinie & Ph. Schnoebelen (19Bdyical characterizations of truly concurrent bisim-
ulation. Technical Report 114, Grenoble.

[33] L. Pomello (1986): Some equivalence notions for concurrent systems — An eveniin: Advances in
Petri Nets 1985Lecture Notes in Computer Scieng2@2, Springer-Verlag, pp. 381-400, ddi. 1007/
BFb0016222.

[34] A. Rabinovich & B.A. Trakhtenbrot (1988Behavior structures and net&undamenta Informaticdéd (4),
pp. 357-403.

[35] B. Steffen & A. Ingolfsdottir (1994)Characteristic Formulae for Processes with Divergenéeformation
and Computatiofd10(1), pp. 149-163, ddi0.1006/inco.1994.1028.

[36] G. Winskel (1987)Event structuresin: Advances in Petri Nets 1986ecture Notes in Computer Science
255, Springer-Verlag, pp. 325—-392, didi- 1007/3-540-17906-2_31.

http://dx.doi.org/10.1007/978-3-642-00596-1_5
http://dx.doi.org/10.1007/978-3-642-00596-1_5
http://dx.doi.org/10.1007/978-3-642-04081-8_24
http://dx.doi.org/10.1145/2455.2460
http://dx.doi.org/10.1016/S0019-9958(85)80025-5
http://dx.doi.org/10.1006/inco.1996.0057
http://dx.doi.org/10.1016/S0890-5401(03)00064-6
http://dx.doi.org/10.1016/0304-3975(94)00204-V
http://dx.doi.org/10.1016/0304-3975(95)00035-U
http://dx.doi.org/10.1016/0304-3975(92)90181-E
http://dx.doi.org/10.1007/3-540-53487-3_53
http://dx.doi.org/10.1007/BFb0015021
http://dx.doi.org/10.1007/3-540-58131-6_54
http://dx.doi.org/10.1007/3-540-58131-6_54
http://www.doc.ic.ac.uk/~iccp/papers/hierarchymscs.pdf
http://www.doc.ic.ac.uk/~iccp/papers/hierarchymscs.pdf
http://dx.doi.org/10.1007/BFb0016222
http://dx.doi.org/10.1007/BFb0016222
http://dx.doi.org/10.1006/inco.1994.1028
http://dx.doi.org/10.1007/3-540-17906-2_31

	1 Introduction
	2 Related work
	3 Configuration structures and equivalences
	3.1 Configuration structures
	3.2 Equivalences

	4 Event Identifier Logic
	5 Using EIL to characterise equivalences
	5.1 Reverse-only logic and order isomorphism
	5.2 Logics for history-preserving bisimulations

	6 Characteristic formulas
	7 Conclusions and future work

