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We introduce event identifier logic (EIL) which extends Hennessy-Milner logic by the addition of
(1) reverse as well as forward modalities, and (2) identifiers to keep track of events. We show
that this logic corresponds to hereditary history-preserving (HH) bisimulation equivalence within
a particular true-concurrency model, namely stable configuration structures. We furthermore show
how natural sublogics of EIL correspond to coarser equivalences. In particular we provide logical
characterisations of weak history-preserving (WH) and history-preserving (H) bisimulation. Logics
corresponding to HH and H bisimulation have been given previously, but not to WH bisimulation
(when autoconcurrency is allowed), as far as we are aware. Wealso present characteristic formulas
which characterise individual structures with respect to history-preserving equivalences.

1 Introduction

The paper presents a modal logic that can express simple properties of computation in the true concur-
rency setting of stable configuration structures. We aim, like Hennessy-Milner logic (HML) [19] in the
interleaving setting, to characterise the main true concurrency equivalences and to develop characteristic
formulas for them. We focus in this paper on history-preserving bisimulation equivalences.

HML has a “diamond” modality〈a〉φ which says that an event labelleda can be performed, taking
us to a new state which satisfiesφ . The logic also contains negation (¬), conjunction (∧) and a base
formula which always holds (tt). HML is strong enough to distinguish any two processes which are not
bisimilar.

We are interested in making true concurrency distinctions between processes. These processes will
be event structures, where the current state is represented by the set of events which have occurred so
far. Such sets are calledconfigurations. Events have labels (ranged over bya,b, . . .), and different events
may have the same label. We shall refer to example event structures using a CCS-like notation, with
a|b denoting an event labelled witha in parallel with another labelled withb, a.b denoting two events
labelleda andb where the first causes the second, anda+b denoting two events labelleda andb which
conflict.

In the true concurrency setting bisimulation is referred toasinterleaving bisimulation, or IB for short.
The processesa|b anda.b+b.a are interleaving bisimilar, but from the point of view of true concurrency
they should be distinguished, and HML is not powerful enoughto do this.

We therefore look for a more powerful logic, and we base this logic on adding reverse moves. Instead
of the one modality〈a〉φ we have two:forward diamond〈a〉〉φ (which is just a new notation for the〈a〉φ
of HML) and reverse diamond〈〈a〉φ . The latter is satisfied if we can reverse some event labelledwith
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a and get to a configuration whereφ holds. Such an event would have to bemaximalto enable us to
reverse it, i.e. it could not be causing some other event thathas already occurred.

With this new reverse modality we can now distinguisha|b anda.b+b.a: a|b satisfies〈a〉〉〈b〉〉〈〈a〉tt,
while a.b+b.a does not. The formula expresses the idea thata andb areconcurrent. Alternatively we
see thata.b+b.a satisfies〈a〉〉〈b〉〉¬〈〈a〉tt, while a|b does not. This latter formula expresses the idea that
a causes b.

The new logic corresponds toreverse interleaving bisimulation[31], or RI-IB for short. In the ab-
sence of autoconcurrency, Bednarczyk [3] showed that this is as strong ashereditary history-preserving
bisimulation[3], or HH for short, which is usually regarded as the strongest desirable true concurrency
equivalence. HH was independently proposed in [21], under the name of strong history-preserving bisim-
ulation.

Auto-concurrency is where events can occur concurrently and have the same label. To allow for
this, we need to strengthen the logic. For instance, we want to distinguisha|a from a.a, which is not
possible with the logic as it stands:〈a〉〉〈a〉〉〈〈a〉tt is satisfied by both processes. We need some way of
distinguishing the two events labelled witha. We change our modalities so that when we make a forward
move wedeclareanidentifier(ranged over byx,y, . . .) which stands for that event, allowing us to refer to
it again when reversing it. Now we can write〈x : a〉〉〈y : a〉〉〈〈x〉tt, and this is satisfied bya|a, but not by
a.a. Declaration is an identifier-binding operation, so thatx andy are both bound in the formula. Baldan
and Crafa [2] also used such declarations in their forward-only logic.

With this simple change we now have a logic which is as strong as HH, even with autoconcurrency.
We have to be careful that our logic does not become too strong. For instance, we want to ensure that

processesa anda+a are indistinguishable. One might think thata+a satisfies〈x : a〉〉〈〈x〉〈y : a〉〉¬〈〈x〉tt,
while a does not. To avoid this, we need to ensure thatx is forgotten about once it is reversed, and so
cannot be used again. One could make a syntactic restrictionthat in a formula〈〈x〉φ the identifierx is not
allowed to occur (free) inφ . However this is not actually necessary, as our semantics will ensure that all
identifiers must be assigned to events in the current configuration. So in fact〈x : a〉〉〈〈x〉〈y : a〉〉¬〈〈x〉tt is
not satisfied bya+a, since we are not allowed to reversex as it would take us to a configuration wherex
is mentioned in〈y : a〉〉¬〈〈x〉tt but x is assigned to an event outside the current configuration. Baldan and
Crafa [2] also had to deal with this issue.

Our logic is not quite complete, since we wish to express certain further properties. For instance, we
would like to express a reverse move labelled witha, i.e. 〈〈a〉φ . Instead of adding this directly, we add
declarations(x : a)φ . We can now express〈〈a〉φ by the formula(x : a)〈〈x〉φ (wherex does not occur
(free) inφ ).

We also wish to express so-calledstep transitions, which are transitions consisting of multiple events
occurring concurrently. For instance a forward step〈a,a〉〉φ of two events labelled witha can be achieved
by 〈x : a〉〉〈y : a〉〉(φ ∧〈〈x〉tt) and a reverse step〈〈a,a〉φ can be achieved by(x : a)(y : a)(〈〈x〉〈〈y〉φ ∧〈〈y〉tt)
(both formulas withx and y not free inφ ). Thus the reverse steps employ declarations. As well as
expressing reverse steps, declarations allow us to obtain asublogic which corresponds toweak history-
preserving bisimulation(WH).

This completes a brief introduction of our logic, which we call Event Identifier Logic, or EIL for
short. Apart from corresponding to HH, EIL has natural sublogics for several other true concurrency
equivalences. Figure 1 shows a hierarchy of equivalences that we are able to characterise, where arrows
denote proper set inclusion. Apart from the mentioned HH andWH, history-preserving bisimulation(H)
is a widely studied equivalence that employs history isomorphism. Hereditary weak-history preserving
bisimulation (HWH) is WH with the hereditary property [3] that deals with reversing of events. The
definitions of these equivalences can be found in [12, 31], and are outlined in Section 3.2.
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Figure 1: The hierarchy of history-preserving equivalences.

It is natural to ask if, at least for a finite structure, there is a single logical formula which captures all
of its behaviour, up to a certain equivalence. Such formulasare calledcharacteristicformulas. They have
been investigated previously for HML and other logics [16, 35, 1]. We look at characteristic formulas
with respect to three of the equivalences we consider, namely HH, H and WH.

The main contribution of the paper is a logic EIL. It could be argued that EIL is a natural and
canonical logic for the true concurrency equivalences considered here in the following sense. Firstly, its
forward and reverse modalities capture faithfully the information of the forward and reverse transitions
in the definitions of the equivalences, Secondly, event identifier environments and event declarations give
rise naturally to order isomorphisms for HH, H, HWH and WH. Finally, EIL extends HML and keeps
with its spirit of having simple modalities defined seamlessly over a general computation model.

Other contributions include the first to our knowledge logics for WH and HWH. Finally, we present
the first to our knowledge characteristic formulas for HH, H and WH.

The paper is organised as follows. We look at related work in Section 2. Then we recall the definitions
of configuration structures and the bisimulation-based equivalences that we shall need in Section 3. We
then introduce EIL in Section 4, giving examples of its usage. Next we look at how to characterise
various equivalences using EIL and its sublogics (Section 5). In Section 6 we investigate characteristic
formulas. We finish with conclusions and future work.

2 Related work

Previous work on logics for true concurrency can be categorised loosely according to the type of semantic
structure (model) that the satisfaction relation of the logic is defined for. There are logics over config-
urations (sets of consistent events) [15, 2] and logics overpaths (or computations) [5, 27, 28, 29, 32],
although logics in [27, 28, 29] can be seen also as logics overconfigurations. Other structures such as
trees, graphs and Kripke frames are used as models in, for example, [26, 25, 17, 18].

The logic in this paper uses simple forward and reverse eventidentifier modalities that are sufficient
to characterise HH. In contrast, Baldan and Crafa [2] achieved an alternative characterisation of HH
with a different modal logic that uses solely forward-only event identifier modalities〈x〉 and(xxx, ȳyy< az).
The formula(xxx, ȳyy< az)φ holds in a configuration if in its future there is ana-labelled evente that can
be bound toz, andφ holds. Additionally,e must be (1) caused at least by the events already bound
to the events inxxx and (2) concurrent with at least the events already bound to the events inyyy. Several
interesting sublogics were also identified in [2] that characterise H, pomset bisimulation [4, 12] and step
bisimulation [33, 12] respectively.

Goltz, Kuiper and Penczek [15] researched configurations ofprime event structureswithout autocon-
currency. In such a setting HH coincides with reverse interleaving bisimulation RI-IB (shown in [3]).
Moreover, H coincides with WH.Partial Order Logic (POL) is proposed in [15]. POL contains past
modalities and the authors stated that it characterises RI-IB (and thus HH). Also, it is conjectured that if
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one restricts POL in such a way that no forward modalities canbe nested in a past modality, then such a
logic characterises H (and thus WH).

Cherief [5] defined a pomset bisimulation relation over paths and shows that it coincides with H (de-
fined over configurations). The author then predicted that anextension of HML with forward and reverse
pomset modalities characterises H. This idea was then developed further by Pinchinat, Laroussinie and
Schnoebelen in [32].

Nielsen and Clausen defined aδ -bisimulation relation (δb) over paths [27, 29]. Unlike in [5, 32], one
is allowed to reverse independent maximal events in any order. This seemingly small change has a pro-
found effect on the strength of the equivalence:δb coincides with HH. It was shown that an extension of
HML with a reverse modality characterises HH when there is noautoconcurrency [27, 29]. Additionally,
it was stated (without a proof) [28] that an extension of HML with a reverseevent indexmodality char-
acterises HH even in the presence of autoconcurrency. The notion of paths used in [27, 28, 29] induces
a notion of configuration. Hence, their logics could be understood as logics over configurations and re-
verse index modality could be seen as a form of our reverse event identifier modality. We would argue,
however, that many properties of configurations related to causality and concurrency between events are
expressed more naturally with reverse identifier modalities.

Past or reverse modalities, which are central to our logic, were used before in a number of modal
logics and temporal logics [20, 7, 6, 26, 15, 23, 24, 30] but only [26, 15] proposed logical characterisa-
tions of true concurrency equivalences. Among the rest, HMLwith backward modalities in [7, 6] defined
over paths is shown to characterise branching bisimulation. Finally, Gutierrez introduced a modal logic
for transition systems with independence [17, 18] that has two diamond modalities: one for causally
dependent transitions and the other for concurrent transitions with respect to a given transition.

3 Configuration structures and equivalences

In this section we define our computational model (stable configuration structures) and the various bisim-
ulation equivalences for which we shall present logical characterisations.

3.1 Configuration structures

We work with stable configuration structures [13, 14, 12], which are equivalent to stable event struc-
tures [36].

Definition 3.1. A configuration structure(over an alphabetAct) is a pairC = (C, ℓ) whereC is a family
of finite sets (configurations) andℓ :

⋃
X∈C X → Act is a labelling function.

We useCC , ℓC to refer to the two components of a configuration structureC . Also we letEC =⋃
X∈C X, theeventsof C . We lete, . . . range over events, andE,F, . . . over sets of events. We leta,b,c, . . .

range over labels inAct.

Definition 3.2 ([12]). A configuration structureC = (C, ℓ) is stableif it is

• rooted: /0∈C; connected: /06= X ∈C implies∃e∈ X : X \{e} ∈C;

• closed under bounded unions: ifX,Y,Z ∈C thenX∪Y ⊆ Z impliesX∪Y ∈C;

• closed under bounded intersections: ifX,Y,Z ∈C thenX∪Y ⊆ Z impliesX∩Y ∈C.

Any stable configuration structure is the set of configurations of a stable event structure [12, Thm 5.3].

Definition 3.3. Let C = (C, ℓ) be a stable configuration structure, and letX ∈C.
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• Causality:d ≤X e iff for all Y ∈C with Y ⊆ X we havee∈Y impliesd ∈Y. Furthermored <X e
iff d ≤X eandd 6= e.

• Concurrency:d coX e iff d 6<X eande 6<X d.

It is shown in [12] that<X is a partial order and that the sub-configurations ofX are precisely those
subsetsY which are left-closed w.r.t.<X, i.e. if d <X e∈ Y thend ∈Y. Furthermore, ifX,Y ∈C with
Y ⊆ X, then<Y =<X↾Y.

Recall that a prime event structure is a set of events with a labelling function, together with a causality
relation and a conflict relation (between events that cannotbe members of the same configuration) [36].
The set of configurations of a prime event structure forms a stable configuration structure; prime event
structures are a proper subclass of stable event structures. All of our examples are given as prime event
structures or the corresponding CCS expressions. When drawing diagrams of prime event structures we
shall, as usual, depict the causal relation with arrows, andthe conflict relation with dotted lines. We shall
also suppress the actual events and write their labels instead. Thus if we have two eventse1 ande2, both
labelled witha, in diagrams we shall denote them asa1 anda2, respectively, when we wish to distinguish
between them. This is justified, since all the notions of equivalence we shall discuss depend on the labels
of the events, rather than the events themselves.

Example 3.4. Consider a prime event structure with eventse1,e2,e3 all labelled witha, wheree1 causes
e2 ande1,e2 are concurrent withe3. The corresponding CCS expression is(a.a) |a. The set of configu-
rations consists of /0,{e1},{e3},{e1,e2},{e1,e3} and{e1,e2,e3}.

Definition 3.5. Let C = (C, ℓ) be a stable configuration structure and leta∈ Act. We letX
e
→C X′ iff

X,X′ ∈C, X ⊆ X′ andX′ \X = {e}. Furthermore we letX
a
→C X′ iff X

e
→C X′ for someewith ℓ(e) = a.

We also define reverse transitions:X
e
 C X′ iff X′ e

→C X, andX
a
 C X′ iff X′ a

→C X. The overloading of
notation whereby transitions can be labelled with events orwith event labels should not cause confusion.

For a set of eventsE, let ℓ(E) be the multiset of labels of events inE. We define asteptransition
relation where concurrent events are executed in a single step:

Definition 3.6. Let C = (C, ℓ) be a stable configuration structure and letA∈ N
Act (A is a multiset over

Act). We letX
A
→C X′ iff X,X′ ∈C, X ⊆ X′, andX′ \X = E with d coX′ e for all d,e∈ E andℓ(E) = A.

We shall assume in what follows that stable configuration structures areimage finitewith respect to
forward transitions, i.e. for any configurationX and any labela, the set{X′ : X

a
→C X′} is finite.

3.2 Equivalences

We define history-preserving bisimulations and illustratethe differences between them with examples.

Definition 3.7. Let X = (X,<X, ℓX) andY = (Y,<Y, ℓY) be partial orders which are labelled overAct.
We say thatX andY areisomorphic(X ∼=Y) iff there is a bijection fromX toY respecting the ordering
and the labelling. The isomorphism class[X ]∼= of a partial order labelled overAct is called apomset
overAct.

Definition 3.8 ([8, 12]). Let C ,D be stable configuration structures. A relationR ⊆CC ×CD is aweak
history-preserving (WH) bisimulationbetweenC andD if R( /0, /0) and ifR(X,Y) anda∈ Act then:

• (X,<X, ℓC ↾ X)∼= (Y,<Y, ℓD ↾Y);

• if X
a
→C X′ then∃Y′. Y

a
→D Y′ andR(X′,Y′);

• if Y
a
→D Y′ then∃X′. X

a
→C X′ andR(X′,Y′).
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E F

a1a1 a2a2 a3a3 a4a4

b1b1 b2b2 b3b3 b4b4

Figure 2: Example 3.12.

We say thatC andD are WH equivalent (C ≈wh D) iff there is a WH bisimulation betweenC andD .

Definition 3.9 ([34, 12]). Let C ,D be stable configuration structures. A relationR ⊆ CC ×CD ×
P(EC ×ED) is ahistory-preserving (H) bisimulationbetweenC andD iff R( /0, /0, /0) and ifR(X,Y, f )
anda∈ Act

• f is an isomorphism between(X,<X, ℓC ↾ X) and(Y,<Y, ℓD ↾Y);

• if X
a
→C X′ then∃Y′, f ′.Y

a
→D Y′, R(X′,Y′, f ′) and f ′ ↾ X = f ;

• if Y
a
→D Y′ then∃X′, f ′. X

a
→C X′, R(X′,Y′, f ′) and f ′ ↾ X = f .

We say thatC andD are H equivalent (C ≈h D) iff there is an H bisimulation betweenC andD .

Both H and WH have associated hereditary versions:

Definition 3.10 ([3, 21, 12]). Let C ,D be stable configuration structures and leta ∈ Act. ThenR ⊆
CC ×CD ×P(EC ×ED) is a hereditary H (HH) bisimulation iffR is an H bisimulation and ifR(X,Y, f )
then for anya∈ Act,

• if X
a
 C X′ then∃Y′, f ′.Y

a
 D Y′, R(X′,Y′, f ′) and f ↾ X′ = f ′;

• if Y
a
 D Y′ then∃X′, f ′. X

a
 C X′, R(X′,Y′, f ′) and f ↾ X′ = f ′.

We say thatC andD are HH equivalent (C ≈hh D) iff there is an HH bisimulation betweenC andD .

Definition 3.11. Let C ,D be stable configuration structures and leta ∈ Act. ThenR ⊆ CC ×CD ×
P(EC ×ED) is a hereditary WH (HWH) bisimulation ifR( /0, /0, /0) and ifR(X,Y, f ) anda∈ Act then:

• f is an isomorphism between(X,<X, ℓC ↾ X) and(Y,<Y, ℓD ↾Y);

• if X
a
→C X′ then∃Y′, f ′.Y

a
→D Y′ andR(X′,Y′, f ′);

• if Y
a
→D Y′ then∃X′, f ′. X

a
→C X′ andR(X′,Y′, f ′);

• if X
a
 C X′ then∃Y′, f ′.Y

a
 D Y′, R(X′,Y′, f ′) and f ↾ X′ = f ′;

• if Y
a
 D Y′ then∃X′, f ′. X

a
 C X′, R(X′,Y′, f ′) and f ↾ X′ = f ′.

Also C andD are HWH equivalent (C ≈hwh D) iff there is an HWH bisimulation betweenC andD .

The inclusions in Figure 1 are immediate from the definitions. They are strict inclusions:

Example 3.12([31]). Consider event structuresE , F in Figure 2, where each event structure has four
a-labelled and fourb-labelled events.E = F holds for≈hwh , and hence for≈wh , but not for≈h , and
hence not for≈hh . We now show this.E , F have the same configurations except that{a2,a3,b3} is
missing inF . We define a bisimulation by relating all isomorphic states,and check that it is an HWH.
To see thatE andF are not H-equivalent, consider /0

a2→
a3→ {a2,a3} in F . This must be matched by

moving to configuration{ai ,ai+1} in E , wherei ∈ {1,2,3}. But then bothbi and bi+1 are possible.
However{a2,a3} in F can only dob2. Hence one of thebi andbi+1 in E cannot be matched tob2 in
such way that the resulting isomorphism contains the already established pairs (either(a2,ai),(a3,ai+1)
or (a2,ai+1),(a3,ai)) and is history-preserving.
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Example 3.13. The Absorption Law [4, 3, 12]

(a| (b+c))+ (a|b)+ ((a+c) |b) = (a| (b+c))+ ((a+c) |b)

holds for≈h , and thus for≈wh , but not for≈hwh .

4 Event Identifier Logic

We now introduce our logic, which we call Event Identifier Logic (EIL). We assume an infinite set of
identifiersId, ranged over byx,y,z, . . .. The syntax of EIL is as follows:

φ ::= tt | ¬φ | φ ∧φ ′ | 〈x : a〉〉φ | (x : a)φ | 〈〈x〉φ

We include the usual operators of propositional logic: truth tt, negation¬φ and conjunctionφ ∧ φ ′. We
then haveforward diamond〈x : a〉〉φ , which says that it is possible to perform an event labelled with a
and reach a new configuration whereφ holds. In the formula〈x : a〉〉φ , the modality〈x : a〉〉 binds all free
occurrences ofx in φ . Next we havedeclaration(x : a)φ . This says that there is some event with label
a in the current configuration which can be bound tox, in such a way thatφ holds. Here the declaration
(x : a) binds all free occurrences ofx in φ . Finally we havereverse diamond〈〈x〉φ . This says that it
is possible to perform the reverse event bound to identifierx, and reach a configuration whereφ holds.
Note that〈〈x〉 does not bindx. Clearly any occurrences ofx that get bound by(x : a) must be of the form
〈〈x〉. We allow alpha-conversion of bound names. We useφ ,ψ , . . . to range over formulas of EIL.

Example 4.1. The formula〈x : a〉〉〈y : a〉〉〈〈x〉tt says that there are events with labela, saye1 ande2, that
can be bound tox andy such that, after performinge1 and thene2, we can reversee1. Obviously, after
performinge1 followed bye2, we can always reversee2. This formula could be interpreted as saying that
an event bound tox is concurrentwith an event bound toy. Next, consider〈x : a〉〉〈y : a〉〉¬〈〈x〉tt. The
formula expresses that an event bound tox causesan event bound toy (because if we could reversex
beforey, we would reach a configuration containingy and notx, which contradictsx being a cause ofy).

Definition 4.2. We definefi(φ), the set of free identifiers ofφ , by induction on formulas:.

fi(tt) = /0 fi(φ1∧φ2) = fi(φ1)∪fi(φ2) fi((x : a)φ) = fi(φ)\{x}
fi(¬φ) = fi(φ) fi(〈x : a〉〉φ) = fi(φ)\{x} fi(〈〈x〉φ) = fi(φ)∪{x}

We say thatφ is closedif fi(φ) = /0; otherwiseφ is open.

In order to assign meaning to open formulas, as usual we employ environments which tell us what
events the free identifiers are bound to.

Definition 4.3. An environmentρ is a partial mapping fromId to events. We say thatρ is a permissible
environment forφ and X if fi(φ)⊆ dom(ρ) andrge(ρ ↾ fi(φ))⊆ X.

We let /0 denote the empty environment. We letρ [x 7→ e] denote the environmentρ ′ which agrees
with ρ except possibly onx, whereρ ′(x) = e (and ρ(x) may or may not be defined). We abbreviate
/0[x 7→ e] by [x 7→ e]. We letρ \x denoteρ with the assignment tox deleted (if defined inρ).

Now we can formally define the semantics of EIL:

Definition 4.4. Let C be a stable configuration structure. We define a satisfactionrelationC ,X,ρ |= φ
whereX is a configuration ofC , and ρ is a permissible environment forφ and X, by induction on
formulas as follows (we suppress theC where it is clear from the context):
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• X,ρ |= tt always

• X,ρ |= ¬φ iff X,ρ 6|= φ

• X,ρ |= φ1∧φ2 iff X,ρ |= φ1 andX,ρ |= φ2

• X,ρ |= 〈x : a〉〉φ iff ∃X′,e such thatX
e
→C X′ with ℓ(e) = a andX′,ρ [x 7→ e] |= φ

• X,ρ |= (x : a)φ iff ∃e∈ X such thatℓ(e) = a andX,ρ [x 7→ e] |= φ

• X,ρ |= 〈〈x〉φ iff ∃X′,e such thatX
e
 C X′ with ρ(x) = e andX′,ρ |= φ (andρ is a permissible

environment forφ andX′)

For closedφ we further defineC ,X |= φ iff C ,X, /0 |= φ , andC |= φ iff C , /0 |= φ .

In the case of〈〈x〉φ , note that even though according to the syntaxx is allowed to occur free inφ , if
x does occur free inφ thenX,ρ |= 〈〈x〉φ can never hold: ifρ(x) = eandX

e
 C X′ thenX′,ρ |= φ cannot

hold, sinceρ is not a permissible environment forφ andX′, asρ assigns a free identifier ofφ to an event
outsideX′.

Example 4.5. Consider the configuration structure from Example 3.4. The empty configuration sat-
isfies 〈x : a〉〉〈y : a〉〉〈〈x〉tt: we have /0, /0 |= 〈x : a〉〉〈y : a〉〉〈〈x〉tt since{e1,e3}, [x 7→ e1,y 7→ e3] |= 〈〈x〉tt;
the latter holds because{e1,e3}

e1
 {e3} and ρ(x) = e1. Also, /0, /0 |= 〈x : a〉〉〈y : a〉〉¬〈〈x〉tt. We have

/0, /0 |= 〈x : a〉〉〈y : a〉〉¬〈〈x〉tt since{e1,e2}, [x 7→ e1,y 7→ e2] |= ¬〈〈x〉tt. This is because{e1,e2} 6
e1
 {e2} as

{e2} is not a configuration.
The closed formula(x : a)tt says that there is some event labelled witha in the current configuration:

X |= (x : a)tt iff ∃e∈ X. ℓ(e) = a. Returning to Example 3.4, note that as well as{e1,e2}, [x 7→ e1,y 7→
e2] |= ¬〈〈x〉tt this also holds:{e1,e2}, [x 7→ e1,y 7→ e2] |= (x : a)〈〈x〉tt. By the definition of(x : a), the
current environment is updated to[x 7→ e2,y 7→ e2] and we obtain{e1,e2}, [x 7→ e2,y 7→ e2] |= 〈〈x〉tt. Cor-
respondingly,{e1,e2}, [x 7→ e1,y 7→ e2] |= (x : a)〈〈x〉(y : a)〈〈y〉tt. However,{e1,e2}, [x 7→ e1,y 7→ e2] 6|=
(x : a)〈〈x〉〈〈y〉tt since{e1}, [x 7→ e2,y 7→ e2] 6|= 〈〈y〉tt.

We introduce further operators as derived operators of EIL:

Notation4.6 (Derived operators). Let A= {a1, . . . ,an} be a multiset of labels.

• ff
df
= ¬tt, [x : a]] φ df

= ¬〈x : a〉〉¬φ , φ1∨φ2
df
= ¬(¬φ1∧¬φ2)

• Forward step〈A〉〉φ df
= 〈x1 : a1〉〉 · · · 〈xn : an〉〉(φ ∧

∧n−1
i=1 〈〈xi〉tt) wherex1, . . . ,xn are fresh and distinct

(and in particular are not free inφ ). We write〈a1, . . . ,an〉〉φ instead of〈{a1, . . . ,an}〉〉φ . In the case

n= 1 we have〈a〉〉φ df
= 〈x : a〉〉φ wherex is fresh.

• Reverse step〈〈A〉φ df
= (x1 : a1) · · · (xn : an)(〈〈x1〉 · · · 〈〈xn〉φ ∧

∧n
i=2〈〈xi〉tt) wherex1, . . . ,xn are fresh

and distinct (and in particular are not free inφ ). We write〈〈a1, . . . ,an〉φ instead of〈〈{a1, . . . ,an}〉φ .

In the casen= 1 we have〈〈a〉φ df
= (x : a)〈〈x〉φ wherex is fresh.

Example 4.7. ConsiderE , F in Figure 2 andφ ≡ [x : a]] [y : a]] (〈z : b〉〉¬〈〈x〉tt ∧ 〈w : b〉〉¬〈〈y〉tt). We
easily check thatE satisfiesφ andF does not. Next, considerψ ≡ 〈x : a〉〉( [w : c]] ff ∧〈y : b〉〉〈〈x〉 [z : c]]
ff ). Then the LHS structure of the Absorption Law in Example 3.13satisfiesψ and the RHS does
not. Strictly speaking, event identifiers are not necessaryto distinguish the two pairs of configuration
structures. A formula with simple label modalities〈a〉〉( [c]] ff ∧ 〈b〉〉〈〈a〉 [c]] ff) is sufficient for the the
Absorption Law, andE , F in Figure 2 can be distinguished by a logic with pomset modalities (both
reverse and forward) defined over runs [5, 32].
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E F a1a1 a2a2 a3a3

a4a4 a5a5 a6a6 a′4

Figure 3: Example 4.8.

Example 4.8. ConsiderE , F in Figure 3. There is a non-binary conflict among the three initial a-
events (indicated by a dashed ellipsis) defined by requiringthat at most two of these events can appear
in any configuration.E andF are H equivalent: we define a bisimulation by relating configurations
of identically labelled events (including wherea4 is matched witha′4) and check that it is an H. The
structures are also HWH equivalent. This time we define a bisimulation between order isomorphic
configurations (of which there only five isomorphism classes: /0, {a}, {a,a}, {a < a} and{a < a,a},
where events separated by commas are concurrent) and check that it is an HWH. However,E andF

are not HH equivalent and event identifiers are indeed necessary to distinguish them. The formula
〈x : a〉〉〈y : a〉〉(¬〈〈x〉tt∧ 〈z : a〉〉〈〈y〉〈w : a〉〉¬〈〈z〉tt∧ 〈z′ : a〉〉〈〈y〉¬〈w′ : a〉〉¬〈〈z′〉tt) is only satisfied byE . It
requires thatx causesy and thatz andz′ are bound to different events because〈z : a〉〉 and〈z′ : a〉〉 are
followed by mutually contradictory behaviours. This is possible inE (a1,a4 can be followed by either
a3 or a2) but not inF : none of the pairs of causally dependent events offers two differenta-events.

5 Using EIL to characterise equivalences

We wish to show that EIL and its various sublogics characterise the equivalences defined in Section 3.2.
Each sublogic of EIL induces an equivalence on configurationstructures in a standard fashion:

Definition 5.1. Let L be any sublogic of EIL. ThenL induces an equivalence on stable configuration
structures as follows:C ∼L D iff for all closedφ ∈ L we haveC |= φ iff D |= φ .

First we introduce a simple sublogic that allows us to characterise order isomorphism.

5.1 Reverse-only logic and order isomorphism

We define sublogics of EIL, consisting of formulas where onlyreverse transitions are allowed.

Definition 5.2. Reverse-onlylogic EILro:

φ ::= tt | ¬φ | φ ∧φ ′ | (x : a)φ | 〈〈x〉φ

We further definedeclaration-freereverse-only logic EILdfro:

φ ::= tt | ¬φ | φ ∧φ ′ | 〈〈x〉φ

These logics are preserved between isomorphic configurations, and characterise configurations up to
isomorphism.

Lemma 5.3. LetC ,D be stable configuration structures, and let X,Y be configurations ofC ,D respec-
tively. Suppose that f: X ∼=Y. Then for anyφ ∈ EILro, and anyρ (permissible environment forφ and
X), we have X,ρ |= φ iff Y, f ◦ρφ |= φ .
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Recall thatρφ is an abbreviation forρ ↾ fi(φ). Function composition is in applicative rather than
diagrammatic order.

Given any configurationX we can create a closed formulaθX ∈EILro which gives the order structure
of X. We make this precise in the following lemma:

Lemma 5.4. Let X be a configuration of a stable configuration structureC . There is aclosedformula
θX ∈ EILro, such that if Y is any configuration of a stable configuration structureD and |Y|= |X|, then
Y ∼= X iff Y |= θX.

The next lemma follows fairly immediately from the proof of Lemma 5.4 and from Lemma 5.3:

Lemma 5.5. Let X be a configuration of a stable configuration structureC . Let{ze : e∈ X} be distinct
identifiers. Let the environmentρX be defined byρX(ze) = e (e∈ X). There is a formulaθ ′

X ∈ EILdfro

with fi(θ ′) = {ze : e∈ X}, such that X,ρX |= θ ′
X and if Y is any configuration of a stable configuration

structureD and |Y|= |X|, then Y∼= X iff ∃ρ .Y,ρ |= θ ′
X .

5.2 Logics for history-preserving bisimulations

We start by showing that EIL characterises HH-bisimulation. We then present sublogics of EIL which
correspond to H-bisimulation, WH-bisimulation and HWH-bisimulation.

Our first result is related to the result of [28] that a logic with reverse event index modality (discussed
above in Section 2) characterises HH.

Theorem 5.6. LetC ,D be stable configuration structures. Then,C ≈hh D if and only ifC ∼EIL D .

Remark5.7. In fact Theorem 5.6 would hold with the logic restricted by not using declarations(x : a)φ .
However we include declarations in EIL because they are useful in defining sublogics for WH, among
other things.

We define a sublogic of EIL which characterises history-preserving bisimulation:

Definition 5.8. EILh is given as follows, whereφr is a formula of EILro:

φ ::= tt | ¬φ | φ ∧φ ′ | 〈x : a〉〉φ | (x : a)φ | φr

EILh is just EIL with 〈〈x : a〉φ replaced byφr ∈ EILro. Thus one is not allowed to go forward after
going in reverse. This concept of disallowing forward movesembedded inside reverse moves appears
in [15].

Theorem 5.9. LetC ,D be stable configuration structures. Then,C ≈h D if and only ifC ∼EILh D .

Remark5.10. Just as for Theorem 5.6, Theorem 5.9 would still hold if we disallow declarations(x : a)φ .
This gives the following more minimal logic, whereφr ∈ EILdfro.

φ ::= tt | ¬φ | φ ∧φ ′ | 〈x : a〉〉φ | φr

We define a sublogic EILwh of EILh which characterises weak history-preserving bisimulation. We
get from EILh to EILwh by simply requiring that all formulas of EILwh areclosed.

Definition 5.11. EILwh is given as follows, whereφrc is aclosedformula of EILro (Definition 5.2):

φ ::= tt | ¬φ | φ ∧φ ′ | 〈a〉〉φ | φrc

In the above definition we write〈a〉〉φ rather than〈x : a〉〉φ sinceφ is closed and in particularx does
not occur free inφ (Notation 4.6). Also we omit declarations(x : a)φ since they have no effect whenφ
is closed. Of course declarations can occur inφrc.
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Theorem 5.12.LetC ,D be stable configuration structures. Then,C ≈wh D iff C ∼EILwh D .

We believe that EILwh is the first logic proposed for weak history-preserving bisimulation with au-
toconcurrency allowed. Goltz et al. [15] described a logic for weak history-preserving bisimulation
with no autoconcurrency allowed, but in this case, weak history-preserving bisimulation is as strong as
history-preserving bisimulation [12].

Just as we weakened EILh to get EILwh we can weaken EIL by requiring that forward transitions
〈x : a〉〉φ are only allowed ifφ is closed. Again instead of〈x : a〉〉φ we write〈a〉〉φ . This gives us EILhwh:

Definition 5.13. EILhwh is given below, whereφc ranges over closed formulas of EILhwh.

φ ::= tt | ¬φ | φ ∧φ ′ | 〈a〉〉φc | (x : a)φ | 〈〈x〉φ

Plainly EILwh is a sublogic of EILhwh as well as of EILh.

Theorem 5.14.LetC ,D be stable configuration structures. Then,C ≈hwh D iff C ∼EILhwh D .

With no (equidepth) autoconcurrency, we know that≈hwh is as strong as≈hh [3, 31]. So EILhwh is
as strong as EIL in this case.

6 Characteristic formulas

In this section we investigate characteristic formulas forthree of the equivalences we have considered,
namely HH, H and WH. The idea is that we reduce checking whether C andD satisfy the same formulas
in a logic such as EIL to the question of whetherD satisfies a particular formulaχC , thecharacteristic
formula of C , which completely expresses the behaviour ofC , at least as far as the particular logic
is concerned. As pointed out in [1], this means that checkingwhether two structures are equivalent is
changed from the problem of potentially having to check infinitely many formulas into a single model-
checking problemD |= χC .

Characteristic formulas for models of concurrent systems were first investigated in [16], and subse-
quently in [35] and other papers—see [1] for further references. As far as we are aware, characteristic
formulas have not previously been investigated for any trueconcurrency logic, although we should men-
tion that in [1] characteristic formulas are studied for a logic with both forward and reverse modalities,
related to the back and forth simulation of [6].

We shall confine ourselves tofinite stable configuration structures in this section. Even with this
assumption, it is not obvious that an equivalence such as HH,which employs both forward and reverse
transitions, can be captured by a single finite-depth formula. To show that forward and reverse transitions
need not alternate for ever, we first relate HH to a simple game.

Definition 6.1. Let C ,D be finite stable configuration structures. The gameG(C ,D) has two players:A

(attacker) andD (defender). The set of game states isS(C ,D)
df
= {(X,Y, f ) : X ∈CC ,Y ∈CD , f : X ∼=Y}.

The start state is( /0, /0, /0). At each state of the gameA chooses a forward (resp. reverse) moveeof either
C or D . ThenD must reply with a corresponding forward (resp. reverse) movee′ by the other structure.
Going forwards we extendf to f ′ and going in reverse we restrictf to f ′, as in the definition of HH. The
two moves produce a new game state(X′,Y′, f ′). ThenD wins if we get to a previously visited state.
Conversely,A wins if D cannot find a move. (AlsoD wins if A cannot find a move, but that can only
happen if bothC andD have only the empty configuration.)

It is reasonable thatD wins if a state is repeated, since ifA then chooses a different and better move
at the repeated state,A could have chosen that on the previous occasion.
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Definition 6.2. Given finite stable configuration structuresC ,D , let s(C ,D)
df
= |S(C ,D)|, let c(C ) =

max{|X| : X ∈CC }, and letc(C ,D) = min{c(C ),c(D)}.

Clearly any play of the gameG(C ,D) finishes after no more thans(C ,D) moves. We can place an
upper bound ons(C ,D) as follows:

Proposition 6.3. LetC ,D be finite stable configuration structures. Then s(C ,D)≤ |CC |.|CD |.c(C ,D)!.

Note that if there is no autoconcurrency, any isomorphismf : X ∼=Y is unique, and so we can improve
the upper bound on the number of states tos(C ,D)≤ |CC |.|CD |.

Proposition 6.4. LetC ,D be finite stable configuration structures. ThenC ≈hh D iff defender D has a
winning strategy for the game G(C ,D).

Remark6.5. Certainly game characterisations of HH equivalence have been used many times before; see
e.g. [9, 10, 11, 22, 17]. However defender is usually said to win if the play continues for ever, whereas
we say that defender wins if a state is repeated. This is because we are working with finite configuration
structures, rather than, say, Petri nets.

Definition 6.6. Let φ ∈ EIL. Themodal depthmd(φ) of φ is defined as follows:

md(tt)
df
= 0 md(φ ∧φ ′)

df
= max(md(φ),md(φ ′)) md((x : a)φ) df

=md(φ)
md(¬φ) df

=md(φ) md(〈x : a〉〉φ) df
= 1+md(φ) md(〈〈x : a〉φ) df

= 1+md(φ)

We can use the game characterisation of HH to bound the modal depth of EIL formulas needed to
check whether finite structures are HH equivalent:

Theorem 6.7. LetC ,D be finite stable configuration structures. ThenC ≈hh D iff C andD satisfy the
sameEIL formulas of modal depth no more than s(C ,D)+c(C ,D).

We now define a family of characteristic formulas for HH equivalence, parametrised on modal depth.

Definition 6.8. Suppose thatAct is finite. LetC be a finite stable configuration structure. We define
formulasχhh

X,n (X a configuration ofC ) by induction onn:

χhh
X,0

df
= θ ′

X

χhh
X,n+1

df
= θ ′

X ∧ (
∧

X
e
→C X′

〈ze : ℓ(e)〉〉χhh
X′,n)∧ (

∧

a∈Act

[x : a]]
∨

X
e
→C X′,ℓ(e)=a

χhh
X′,n[x/ze])∧ (

∧

X
e
 C X′

〈〈ze〉χhh
X′,n)

Hereθ ′
X ∈ EILdfro is as in Lemma 5.5 andfi(χhh

X,n) = {ze : e∈ X}. We further letχhh
C ,n

df
= χhh

/0,n.

Note thatχhh
X,n ∈ EIL andmd(χhh

X,n)≤ n+c(C ).

Theorem 6.9. Suppose thatAct is finite. LetC ,D be finite stable configuration structures. Let s
df
=

s(C ,D). ThenC ≈hh D iff D |= χhh
C ,s .

Thus we do not have a single characteristic formula forC , but we can deal uniformly with allD
up to a certain size. This is almost as good as having a single characteristic formula forC , since we
can generate a formula of the appropriate size once we have settled onD , so that we have still reduced
equivalence checking to checking a single formula. Single characteristic formulas are certainly possible
for someC s; there remains an open question of whether for all finiteC there is a single formulaχhh

C

which works for allD .
Matters are simpler for H and WH equivalences, since only forward transitions are employed.
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Definition 6.10. Suppose thatAct is finite. LetC be a finite stable configuration structure. We define
formulasχh

X (X a configuration ofC ) as follows:

χh
X

df
= θ ′

X ∧ (
∧

X
e
→C X′

〈ze : ℓ(e)〉〉χh
X′)∧ (

∧

a∈Act

[x : a]]
∨

X
e
→C X′,ℓ(e)=a

χh
X′ [x/ze])

Hereθ ′
X ∈ EILdfro is as in Lemma 5.5. We further letχh

C

df
= χh

/0 .

Note thatχh
C
∈ EILh; it is well-defined, since maximal configurations form the base cases of the

recursion. Alsomd(χh
X)≤ 2.c(C ).

Proposition 6.11. Suppose thatAct is finite. LetC ,D be finite stable configuration structures. Then
D ≈h C iff D |= χh

C
.

WH is even easier as formulas are closed:

Definition 6.12. Suppose thatAct is finite. LetC be a finite stable configuration structure. We define
formulasχwh

X (X a configuration ofC ) as follows:

χwh
X

df
= θX ∧ (

∧

X
a
→C X′

〈a〉〉χwh
X′ ) ∧ (

∧

a∈Act

[a]]
∨

X
a
→C X′

χwh
X′ )

HereθX ∈ EILro is as in Lemma 5.4. We further letχwh
C

df
= χwh

/0 .

Note thatχwh
C

∈ EILwh andmd(χwh
X )≤ 2.c(C ).

Proposition 6.13. Suppose thatAct is finite. LetC ,D be finite stable configuration structures. Then
D ≈wh C iff D |= χwh

C
.

7 Conclusions and future work

We have introduced a logic which uses event identifiers to track events in both forwards and reverse
directions. As we have seen, this enables it to express causality and concurrency between events. The
logic is strong enough to characterise hereditary history-preserving (HH) bisimulation equivalence. We
are also able to characterise weaker equivalences using sublogics. In particular we can characterise weak
history-preserving bisimulation, which has not been done previously as far as we are aware. We also
investigated characteristic formulas for our logic with respect to HH and other equivalences. Again we
are not aware of previous work on characteristic formulas for logics for true concurrency.

Baldan and Crafa [2] gave logics for pomset bisimulation andstep bisimulation; we have also been
able to characterise these equivalences in our setting, butwe had to omit this material for reasons of
space.

In future work we would like to (1) investigate general laws which hold for the logic, (2) look at
sublogics characterising other true concurrency equivalences, including equivalences involving reverse
transitions from [3, 31], and (3) answer the open question raised in Section 6 about whether there is a
single characteristic formula for a finite structure with respect to HH equivalence.

Acknowledgements. We are grateful to Ian Hodkinson and the anonymous referees for helpful com-
ments and suggestions.
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[9] S.B. Fröschle (1999):Decidability of Plain and Hereditary History-Preserving Bisimilarity for BPP. In:
Proceedings of Express’99, Electronic Notes in Theoretical Computer Science27, Elsevier, doi:10.1016/
S1571-0661(05)80297-X.
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