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We study encodings from CSP into asynchronous CCS with name passing and matching, so in fact,
the asynchronousπ-calculus. By doing so, we discuss two different ways to map the multi-way
synchronisation mechanism of CSP into the two-way synchronisation mechanism of CCS. Both en-
codings satisfy the criteria of Gorla except for compositionality, as both use an additional top-level
context. Following the work of Parrow and Sjödin, the first encoding uses a centralised coordinator
and establishes a variant of weak bisimilarity between source terms and their translations. The sec-
ond encoding is decentralised, and thus more efficient, but ensures only a form of coupled similarity
between source terms and their translations.

1 Introduction

In the context of a scientific meeting on Expressiveness in Concurrency and Structural Operational Se-
mantics (SOS), likely very little needs to be said about the process algebras (or process calculi) CSP and
CCS. Too many papers have been written since their advent in the 70’s to be mentioned in our own pa-
per; it is instructive, though, and recommended to appreciate Jos Baeten’s historical overview [1], which
also places CSP and CCS in the context of other process algebras like ACP and the many extensions by
probabilities, time, mobility, etc. Here, we just select references that help to understand our motivation.

Differences. From the beginning, although CSP [8] and CCS [11] were intended to capture, describe
and analyse reactive and interactive concurrent systems, they were designed following rather different
philosophies. Tony Hoare described this nicely in his position paper [9] as follows: “A primary goal in the
original design of CCS was to discover and codify a minimal set of basic primitive agents and operators
. . . and a wide range of useful operators which have been studied subsequently are all definable in terms
of CCS primitives.” and “CSP was more interested in this broader range of useful operators, independent
of which of them might be selected as primitive.” So, at theirheart, the two calculi use two different
synchronisation mechanisms, one (CCS) using binary, i.e.,two-way, handshake via matching actions
and co-actions, the other (CSP) using multiway synchronisation governed by explicit synchronisation
sets that are typically attached to parallel composition. Another difference is the focus on Structural
Operational Semantics in CCS, and the definition of behavioural equivalences on top of this, while CSP
emphasised a trace-based denotational model, enhanced with failures, and the question on how to design
models such that they satisfy a given set of laws of equivalence.

Comparisons. From the early days, researchers were interested in more or less formal comparisons
between CSP and CCS. This was carried out by both Hoare [9] andMilner [12] themselves, where they
concentrate on the differences in the underlying design principles. But also other researchers joined the
game, but with different analysis tools and comparison criteria.

For example, Brookes [3] contributed a deep study on the relation between the underlying abstract
models, synchronisation trees for CCS and the failures model of CSP. Quite differently, Lanese and
Montanari [10] used the power to transform graphs as a measure for the expressiveness of the two calculi.
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Yet completely differently, Parrow and Sjödin [16,21] tried to find an algorithm to implement—best
in a fully distributed fashion—the multiway synchronisation operator of CSP (and its variant LOTOS
[2]) using the supposedly simpler two-way synchronisationof CCS. They came up with two candi-
dates—a reasonably simple centralised synchroniser, and aconsiderably less simple distributed syn-
chroniser1—and proved that the two are not weakly bisimilar, but rathercoupled similar, which is only
slightly weaker. Coupled simulation is a notion that Parrowand Sjödin invented for just this purpose,
but it has proved afterwards to be often just the right tool when analysing the correctness of distribution-
and divergence-sensitive encodings that involve partial commitments (whose only effect is to gradually
perform internal choices) [15].

The probably most recent comparison between CSP and CCS was provided by van Glabbeek [5].
As an example for his general framework to analyse the relative expressive power of calculi, he studied
the existence of syntactical translations from CSP into CCS, for which a common semantical domain is
provided via labelled transition systems (LTS) derived from respective sets of SOS rules. The comparison
is here carried out by checking whether a CSP term and its translation into CCS are distinguishable with
respect to a number of equivalences defined on top of the LTS. The concrete results are: (1) there is a
translation that is correct up to trace equivalence (and contains deadlocks), and (2) there is no translation
that is correct up to weak bisimilarity equivalence that also takes divergence into account.

Contribution. Given van Glabbeek’s negative result, and given Parrow and Sjödin’s algorithm, we
set out to check whether we can define a syntactical encoding from CSP into CCS—using Parrow and
Sjödin’s ideas—that is correct up to coupled similarity.2 We almost managed. In this paper, we report
on our current results along these lines: (1) Our encoding target is an asynchronous variant of CCS,
but enhanced with name-passing and matching, so it is in factan asynchronousπ-calculus; we kept
mentioning CCS in the title of this paper, as it clearly emphasises the origin and motivation of this work.
But, we couldnot do without name-passing. (2) We exhibit one encoding that isnot distributability-
preserving (so, it represents a centralised solution), butis correct up to weak bisimilarity and does not
introduce divergence. This does not contradict van Glabbeek’s results, but suggests that van Glabbeek’s
framework implies some form of distributability-preservation. (3) We exhibit another encoding thatis
distributability-preserving and divergence-reflecting,but is only correct up to coupled similarity.

Overview. We introduce the considered variants of CSP and CCS in§ 2. There we also introduce
the criteria—that are (variants of) the criteria in [6] and [20]—modulo which we prove the quality of
the considered encodings. In§ 3 we introduce the inner layer of our two encodings. It provides the
main machinery to encode synchronisations of CSP. We complete this encoding with an outer layer that
is either a centralised (§ 4) or a decentralised coordinator (§ 5). In § 6 we discuss the two encodings.
Missing proofs and some additional informations can be found in [7].

2 Technical Preliminaries

A process calculus(P, 7−→) consists of a setP of processes (syntax) and a reduction relation7−→⊆P2

(semantics). LetN be the countably-infinite set of names.τ 6∈ N denotes an internal unobservable ac-
tion. We usea,b,x, . . . to range over names andP,Q, . . . to range over processes. We useα ,β . . . to range
overN ∪{τ}. ã denotes a sequence of names. Let fn(P) and bn(P) denote the sets of free names and
bound names occurring inP, respectively. Their definitions are completely standard.We useσ ,σ ′,σ1, . . .

1Recently [4], a slight variant of the protocol behind this algorithm was used to implement the distributed compiler DLC
for a substantial subset of LNT (successor of LOTOS New Technology) that yields reasonably efficient C code.

2The idea and a first draft of the encoding were developed by Nestmann and van Glabbeek during a stay at NICTA, Sydney.
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to range over substitutions. A substitution is a mapping[x1/y1, . . . ,
xn/yn] from names to names. The appli-

cation of a substitution on a termP[x1/y1, . . . ,
xn/yn] is defined as the result of simultaneously replacing all

free occurrences ofyi by xi for i ∈{ 1, . . . ,n }. For all names inN \{ y1, . . . ,yn } the substitution behaves
as the identity mapping. The relation7−→ as defined in the semantics below defines the reduction steps
processes can perform. We writeP 7−→ P′ if (P,P′) ∈ 7−→ and callP′ a derivativeof P. Let Z=⇒ denote
the reflexive and transitive closure of7−→. P is divergentif it has an infinite sequence of stepsP 7−→ω .
We usebarbsor observablesto distinguish between processes with different behaviours. We writeP↓α
if P has a barbα , where the predicate·↓· can be defined differently for each calculus. MoreoverP has a
weak barbα , if P may reach a process with this barb, i.e.,P⇓α , ∃P′. P Z=⇒ P′∧P′↓α .

As source calculus we use the following variant of CSP [8].

Definition 1. The processesPCSPare given by

P ::= P‖AP | DIV | STOP | P⊓P | P/b | f (P) | X | µX ·P | �∑ i∈I ai → P

whereX ∈ X is a process variable,A⊆ N , andI is a finite index set.

P‖AQ is the parallel composition ofP andQ, whereP andQ can proceed independently except for
actionsa∈ A, on which they have to synchronise. DIV describesdivergence. STOP denotesinaction.
Internal choice P⊓Q reduces to eitherP or Q within a single internal step.Concealment P/b hides an
actionb and masks it asτ . Renaming f(P) for some f : N → N extended byf (τ) = τ behaves asP,
wherea is replaced byf (a) for all a∈ N . RecursionµX ·P describes a process behaving likeP with
every occurrence ofX being replaced byµX ·P. External choice�∑i∈I ai → Pi offers a selection of one
of theaction prefixes ai → · followed by the corresponding continuationPi, so it may perform anyai and
then behave likePi. Note that we enforce action prefixes to be syntactically part of an external choice
construct. As usual, we useM � N to denote binary external choice.

The CSP semantics is given by the following rules, using labelled steps
α

−→ to define7−→:

E
b

−→ E′

E/b
τ

−→ E′/b

E
α

−→ E′ (α 6= b)

E/b
α
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E
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M j
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A barb of CSP is the possibility of a term, to perform an action, i.e.,P↓a , ∃P′. P
a

−→ P′. Following the
definition of distributability in [20] a CSP termP is distributable intoP1, . . . ,Pn if P1, . . . ,Pn are unguarded
subterms ofP such that every action prefix inP occurs in exactly one of theP1, . . . ,Pn, where different
but equally-named action prefixes are distinguished and unguarded occurrences ofµX ·P′ may result in
several copies ofP′ within theP1, . . . ,Pn.

As target calculus we use an asynchronous variant of CCS [11]with name-passing and matching.

Definition 2. The processesPCCS are given by

P ::= P | P | (ν c̃)P | ∗c(x̃).P | c(x̃).P | c〈x̃〉 | [c= z]P | 0
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P | Q is the parallel composition ofP andQ, whereP andQ can either proceed independently or
synchronise on matching channels names.(ν c̃)P restricts the visibility of actions using names in ˜c to P.
c(x̃).P denotes input on channelc. c〈x̃〉 is output on channelc. Since there is no continuation, we
interpret this calculus as asynchronous. We use∗c(x̃).P to denotereplicated inputon channelc with the
continuationP. [x= y]P is the matching operator, ifx= y thenP is enabled.0 denotes inaction.

The CCS semantics is given by following transition rules:

P 7−→ P′

P | Q 7−→ P′ | Q
P 7−→ P′

(ν c̃)P 7−→ (ν c̃)P′

P≡ P′ P′ 7−→ Q′ Q′ ≡ Q
P 7−→ Q

∗c(x̃).P | c〈ỹ〉 7−→ ∗c(x̃).P | P[ỹ/x̃] c〈ỹ〉 | c(x̃).Q 7−→ P | Q[ỹ/x̃]

where≡ denotes structural congruence given by the rules:P | 0≡P, P | Q≡ Q | P, P | (Q | R)≡ (P | Q) |
R, (ν ã)0≡ 0, P | (ν ã)Q≡ (ν ã)(P | Q) if bn(ã) /∈ fn(P), and[x= x]P≡ P. As discussed in [20], a CCS
termP is distributable intoP1, . . . ,Pn if P≡ (ν x̃)(P1 | . . . | Pn).

Simulation Relations. The semantics of a process is usually considered modulo somebehavioural
equivalence. For many calculi,the standard reference equivalence is some form of weak bisimilarity.
In the context of encodings, the source and target language often differ in their relevant obervables, i.e.,
barbs. In this case, it is advantageous to use a variant of reduction bisimilarity. With Gorla [6], we add a
successoperatorX to the syntax of both CSP and CCS. SinceXcannot be further reduced, the semantics
is left unchanged in both cases. The test for the reachability of success is standard in both languages, i.e.,
P↓X , ∃P′. P ≡ X | P′. To obtain a non-trivial equivalence, we require that the bisimulation respects
success and the reachability of barbs. We use the standard definition of barbs in CSP, i.e., action prefixes.
Our encoding function will translate all source terms into closed terms, thus the standard definition of
CCS barbs would not provide any information. Instead we use anotion of translated barb (· ⇓T·U) that
reflects how the encoding function translates source term barbs. Its definition is given in Section 3.

Definition 3 (Bisimulation). A relationR ⊆ P2 is a (success-sensitive, [translated-]barb-respecting,
weak, reduction) bisimulationif, whenever(P,Q) ∈ R, then:

• P 7−→ P′ implies∃Q′. Q Z=⇒ Q′∧ (P′,Q′) ∈ R

• Q 7−→ Q′ implies∃P′. P Z=⇒ P′∧ (P′,Q′) ∈ R

• P⇓X iff Q⇓X

• P andQ reach the same (translated) barbs, where we use·⇓a for CSP and·⇓TaU for CCS

Two termsP,Q∈ P arebisimilar, denoted asP
�
≈ Q, if there exists a bisimulation that relatesP andQ.

We use the symbol
�
≈ to denote either bisimilarity on our target language CCS or on the disjoint union

of CSP and CCS that allows us to describe the relationship between source terms and their translations.
In the same way we define a corresponding variant of coupled similarity.

Definition 4 (Coupled Simulation). A relation R ⊆ P2 is a (success-sensitive, [translated-]barb-
respecting, weak, reduction) coupled simulationif, whenever(P,Q) ∈ R, then:

• P 7−→ P′ implies∃Q′. Q Z=⇒ Q′∧ (P′,Q′) ∈ R and∃Q′′. Q Z=⇒ Q′′∧ (Q′′,P′) ∈ R

• P⇓X iff Q⇓X

• P andQ reach the same (translated) barbs, where we use·⇓a for CSP and·⇓TaU for CCS

Two termsP,Q∈ P arecoupled similar, denoted asP
�
≈cs Q, if there exists a coupled simulation that

relatesP andQ in both directions.

Encodings and Quality Criteria. We consider two different translations from (the above-defined vari-
ant of) CSP into (the above-defined variant of) CCS with name passing and matching. In this context, we
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refer to CSP terms assource termsPS and to CCS terms astarget termsPT. Encodings often translate
single source steps into a sequence or pomset of target steps. We call such a sequence or pomset asimu-
lation of the corresponding source term step. Moreover, we assume for each encoding the existence of a
so-called renaming policyϕ , i.e., a mapping of names from the source into vectors of target term names.

To analyse the quality of encodings and to rule out trivial ormeaningless encodings, Gorla [6] provide
a general framework comprising five quality criteria, whichhave afterwards been used in many papers.
In addition to our above-mentioned definition of process calculus, whough, Gorla requires the target
calculus to be equipped with a notion of behavioural equivalence≍ on target terms. Its purpose is to
describe the ‘abstract’ behaviour of a target process, where ‘abstract’ refers to an observer at the source
level. In [6], the equivalence≍ is often defined as a barbed equivalence (cf. [13]) or can be derived
directly from the reduction semantics, and it typically is acongruence, at least with respect to parallel
composition. Bisimilarity and coupled similarity are suchrelations on CCS terms. The criteria are:
(1) Compositionality: The translation of an operator op is the same for all occurrences of that oper-

ator in a term, i.e., it can be captured by a contextCop such that enc(op(x1, . . . ,xn,S1, . . . ,Sm)) =
C N

op(x1, . . . ,xn,enc(S1) , . . . ,enc(Sm)) for fn(S1)∪ . . .∪ fn(Sm) = N.
(2) Name Invariance: The encoding does not depend on particular names, i.e., foreverySandσ , it holds

that enc(σ (S)) ≡ σ ′ (enc(S)) if σ is injective and enc(σ (S)) ≍ σ ′ (enc(S)) otherwise, whereσ ′ is
such thatϕ(σ (n)) = σ ′ (ϕ(n)) for everyn∈ N .

(3) Operational Correspondence: Every computation of a source term can be simulated by its transla-
tion, i.e.,S Z=⇒S S′ implies enc(S) Z=⇒T≍ enc(S′) (completeness), and every computation of a target
term corresponds to some computation of the corresponding source term (soundness, compare to
Section 5).

(4) Divergence Reflection: The encoding does not introduce divergence, i.e., enc(S) 7−→ω
T impliesS 7−→ω

S .
(5) Success Sensitiveness: A source term and its encoding answer the tests for success in exactly the

same way, i.e.,S⇓X iff enc(S)⇓X.
Our encodings will satisfy all of these criteria except for compositionality, because both encodings

consists of two layers. [20] shows that the above criteria donot ensure that an encoding preserves distri-
bution and proposes an additional criterion for the preservation of distributability.

Definition 5 (Preservation of Distributability). An encoding enc(·) preserves distributabilityif for every
Sand for all termsS1, . . . ,Sn that are distributable withinSthere are someT1, . . . ,Tn that are distributable
within enc(S) such thatTi ≍ enc(Si) for all 1≤ i ≤ n.

Here, because of the choice of the source and the target language, an encoding preserves distributability
if for each sequence of distributable source term steps their simulations are pairwise distributable. In both
languages two alternative steps of a term are inconflict with each other if—for CSP—they reduce the
same action-prefix or—for CCS—they either reduce the same input using two outputs or they reduce the
same output using two [replicated] inputs. Two alternativesteps that are not in conflict aredistributable.

3 Translating the CSP Synchronisation Mechanism

CSP and CCS—or theπ-calculus—differ fundamentally in their communication and synchronisation
mechanisms. In CSP there is only a single kind of actionc→ ·, wherec is a name. Synchronisation is
implemented by the parallel operator·‖A· that in CSP is augmented with a set of namesA containing the
names that need to be synchronised at this point. By nesting parallel operators arbitrarily many actions
on the same name can be synchronised. In CCS there are two different kinds of actions: inputsc and
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outputsc. Again synchronisation is implemented by the parallel operator, but in CCS only a single input
and a single matching output can ever be synchronised withinone step.

To encode the CSP communication and synchronisation mechanisms in CCS with name passing we
make use of a technique already used in [17,19] to translate between different variants of theπ-calculus.
CSP actions are translated into action announcements augmented with a lock indicating, whether the
respective action was already used in the simulation of a step. The other operators of CSP are then
translated into handlers for these announcements and locks. The translation of sum combines several
actions under the same lock and thus ensures that only one term of the sum can ever be used. The
translation of the parallel operator combines announcements of actions that need to be synchronised
into a single announcement under a fresh lock, whose value isdetermined by the combination of the
respective underlying locks at its left and right side. Announcements of actions that do not need to be
synchronised are simply forwarded. A second layer—containing either a centralised or a decentralised
coordinator—then triggers and coordinates the simulationof source term steps.

Action announcements are of the forma〈c, r, l, r′〉: c is the translation of the source term action.r

is used to trigger the computation of the Boolean value ofl. The lock l evaluates to⊤ as long as the
respective translated action was not successfully used in the simulation of a step.r′ is used to guard the
encoded continuation of the respective source term action.In the case of a successful simulation attempt
involving this announcement, an outputr′〈⊤〉 allows to unguard the encoded source term continuation
and ensures that all following evaluations ofl return⊥. The messager′〈⊥〉 indicates an aborted simula-
tion attempt and allows to restorel for later simulation attempts. Once a lock becomes⊥, all request for
its computation return⊥.

Abbreviations. We introduce some abbreviations to simplify the presentation of the encodings. We use
[x∈ A]P , ∏a∈A [x= a]P

to test, whether an action belongs to the set of synchronisedactions in the encoding of the parallel
operator. As already done in [14,15] we use Boolean-valued locks to ensure that every translation of an
action is only used once to simulate a step.Boolean locksare channels on which only the Boolean values
⊤ (true) or⊥ (false) are transmitted. An unguarded output over a Booleanlock with value⊤ represents a
positive instantiation of the respective lock, whereas an unguarded output sending⊥ represents a negative
instantiation. At the receiving end of such a channel, the Boolean value can be used to make a binary
decision, which is done here within anIF-construct. This construct and according instantiations of locks
are implemented as in [14,15] using restriction and the order of transmitted values.

l〈⊤〉 , l(t, f ).t l〈⊥〉 , l(t, f ). f

l(b).IF b THEN P ELSE Q , (νt, f )
(

l〈t, f 〉 | t.P | f.Q
)

We observe that the Boolean values⊤ and⊥ are realised by a pair of links without parameters. Both
cases of theIF-construct operate as guard for its subtermsP andQ. The renaming policyϕ reserves the
namest and f to implement the Boolean values⊤ and⊥.

The Algorithm. The encoding functions introduce some fresh names, that arereserved for special
purposes. In Table 1 we list the reserved namesR and provide a hint on their purpose. Moreover
we reserve the names{ xi | i ∈ N } and assume an injective mappingϕ ′ : X → { xi | i ∈ N } that maps
process variables of CSP to distinct names. The renaming policy ϕ for our encodings is then a function
that reserves the names inR∪{ xi | i ∈ N } and translates every source term name into three target term
names. More precisely, chooseϕ : N → N 3 such that:

1. No name is mapped onto a reserved name, i.e.,ϕ(n)∩ (R∪{ xi | i ∈ N }) = /0 for all n∈ N .
2. No two different names are mapped to overlapping sets of names, i.e.,ϕ(n)∩ϕ(m) = /0 for all

n,m∈ N with n 6= m.
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reserved names purpose
a, a′ announce the ability to perform an action

c, cL , cR, z (translated) source term channel, channel from the left/right of a parallel operator
l, lL , lR lock, lock from the left/right of a parallel operator

l′ re-instantiate a positive sum lock
r, rL , rR request the computation of the value of a lock

r′, r′ i , r′L , r′R simulate a source term step and unguard the corresponding continuations
n order left announcements for the same channel that need to besynchronised
s, s′ distribute right announcements that need to be synchronised
b Boolean value (⊥ or⊤)
τ fresh name used to announceτ-steps that result from concealment

once used by the centralised encoding to avoid overlapping simulation attempts
m fresh names used to encode internal choice
d fresh names used to encode divergence

t, f used to encode Boolean values

Table 1: Reserved Names.

We naturally extend the renaming policy to sets of names, i.e., ϕ(X) , { ϕ(x) | x∈ X } if X ⊆ N .
Let ((x1, . . . ,xn)) .i , xi denote the projection of an-tuple to itsith element, if 1≤ i ≤ n. Moreover
(X) .i , { (x) .i | x∈ X } for a setX of n-tuples and 1≤ i ≤ n.

The inner part of our two encodings is presented in Figure 1. The most complex case is the translation
of the parallel operatorTP‖AQU that is based on the following four steps:

Step 1: Action announcements for channelsc /∈ A
In the case of actions on channelsc /∈ A—that do not need to be synchronised here—the encoding
of the parallel operator acts like a forwarder and transfersaction announcements of both its subtrees
further up in the parallel tree. Two different restrictionsof the channel for action announcements
a from the left sideTPU and the right sideTQU, allow to trace action announcements back to their
origin as it is necessary in the following case. In the present case we usea′ to bridge the action
announcement over the restrictions ona.

Step 2: Action announcements for channelsc∈ A
Actions c ∈ A need to be synchronised, i.e., can be performed only if both sides of the parallel
operator cooperate on this action. Simulating this kind of synchronisation is the main purpose of
the encoding of the parallel operator. The renaming policyϕ translates each source term name
into three target term names. The first target term name is used as reference to the original source
term name and transferred in announcements. The other two names are used to simulate the
synchronisation of the parallel operator in CSP. Announcements from the left are translated to
outputs on the respective second name and announcements from the right to the respective third
name. Restriction ensures that these outputs can only be computed by the current parallel operator
encoding. The translations of the announcements into different outputs for different source term
names allows us to treat announcements of different names concurrently using the termSynch(c),
wherec is a source term name.

Step 3: The termSynch(c)
In Synch(c) all announcements for the same source term namec from the left are ordered in order
to combine each left and each right announcement on the same name. Several such announcements
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TP‖AQU ,
(

νa′,(ϕ(A)) .2,(ϕ(A)) .3
)

(

(νa)
(

TPU | ∗a(c, x̃).
(

[c∈ (ϕ(A)) .1] (ϕ(c)) .2〈x̃〉 | [c /∈ (ϕ(A)) .1]a′〈c, x̃〉
))

(νa)
(

TQU | ∗a(c, x̃).
(

[c∈ (ϕ(A)) .1] (ϕ(c)) .3〈x̃〉 | [c /∈ (ϕ(A)) .1]a′〈c, x̃〉
))

| ∏c∈ASynch(c) | ∗a
′(x̃).a〈x̃〉

)

Synch(c) , (νn)
(

n〈(ϕ(c)) .3〉

| ∗n(s)
(

(ϕ(c)) .2
(

rL , lL, r
′
L
)

.
(

(

νs′
)

(

∗ s
(

rR, lR, r
′
R
)

.
((

νr, l, r′
)(

a
〈

(ϕ(c)) .1, r, l, r′
〉

| Sim
)

| s′
〈

rR, lR, r
′
R
〉)

| (νs)
(

n〈s〉 | ∗s′(x̃).s〈x̃〉
)

))))

Sim ,
(

ν l′
)

(

l′ | ∗l′.
(

r.
(

rL | lL(b) .
(

IF b THEN
(

rR | lR(b) .
(

IF b

THEN
(

l〈⊤〉 | r′(b).
(

r′L〈b〉 | r′R〈b〉 | IF b THEN ∗ r.l〈⊥〉 ELSE l′
))

ELSE
(

l〈⊥〉 | r′L〈⊥〉
)

| ∗r.l〈⊥〉
))

ELSE
(

l〈⊥〉 | ∗r.l〈⊥〉
)

))))

T�∑i∈I ci → PiU ,
(

νr, l, r′1, . . . , r′n
)

(

r.l〈⊤〉

| ∏i∈I

(

a〈(ci) .1, r, l, r′ i〉 | ∗r′ i(b) .IF b THEN
(

TPiU | ∗r.l〈⊥〉
)

ELSE r.l〈⊤〉
)

)

T(P)/zU ,
(

νa′
)(

(νa,z)
(

TPU | ∗a(c, x̃).
(

[c= z]a′〈τ , x̃〉 | [c 6= z]a′〈c, x̃〉
))

| ∗a′(x̃).a〈x̃〉
)

T f (P)U ,
(

νa′
)(

(νa,z)
(

TPU | ∗a(c, x̃)
(

∏z/x∈ f [c= (ϕ(x)) .1]a′〈(ϕ(z)) .1, x̃〉

| [c /∈ dom( f )]a′〈c, x̃〉
))

| ∗a′(x̃).a〈x̃〉
)

TDIVU , (νd)
(

d | ∗d.d
)

TµX ·PU ,
(

νϕ ′(X)
)

(

ϕ ′(X) | ∗ϕ ′(X).TPU
)

TXU , ϕ ′(X)

TP⊓QU , (νm)(m.TPU |m.TQU |m)

TSTOPU , 0

TXU ,X

where/∈ (ϕ(A)) .1 is short for∈ (fn(P)∪ fn(Q))\(ϕ(A)) .1, /∈ dom( f ) is short for∈ fn(P)\dom( f ), and
6= z is short for∈ fn(P)\{ z}.

Figure 1: An encoding from CSP into CCS with value passing (inner part).
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may result from underlying parallel operators, sums with similar summands, and junk left over
from already simulated source term steps. For each left announcement a fresh instance ofs is
generated and restricted. The namess and s′ are used to transfer right announcements to the
respective next left announcement, wheres′ is used to bridge over the restriction ons. This way
each right announcement will eventually be transferred to each left announcement on the same
name. Note that this kind of forwarding is not done concurrently but in the source language a term
P‖AQ also cannot perform two steps on the same namec∈ A concurrently. After combining a left
and a right announcement on the same source term name a fresh set of auxiliary variablesr, l, r′

is generated and a corresponding announcement is transmitted. The termSim reacts to requests
regarding this announcement and is used to simulate a step onthe synchronised action.

Step 4: The termSim

If a request reachesSim it starts questioning the left and the right side. First the left side is
requested to compute the current value of the lock of the action. Only if ⊤ is returned, the right
side is requested to compute its lock as well. This avoids deadlocks that would result from blindly
requesting the computation of locks in the decentralised encoding. If the locks of both sides are
still valid the fresh lockl returns⊤ else⊥ is returned. For each caseSim ensures that subsequently
requests will obtain an answer by looping withl′ or returning⊥ to all requests, respectively. The
messagesr′L〈⊥〉 and r′R〈⊥〉 cause the respective underlying subterms on the left and theright
side to do the same, whereasr′L〈⊤〉 andr′R〈⊤〉 cause the unguarding of encoded continuations as
result of a successful simulation of a source term synchronisation step.

Basic Properties and Translated Observables.The protocol introduced by the encoding function in
Figure 1 (and its outer parts introduced later) simulates a single source term step by a sequence of target
term steps. Most of these steps are merely pre- and post-processing steps, i.e., they do not participate in
decisions regarding the simulation of conflicting source term steps but only prepare and complete simula-
tions. Accordingly we distinguish betweenauxiliary steps—that are pre- and post-processing steps—and
simulation steps—that mark a point of no return by deciding which source term step is simulated. Note
that the points of no return and thus the definition of auxiliary and simulation steps is different in the two
variants of our encoding.

Auxiliary steps do not influence the choice of source terms steps that are simulated. Moreover they
operate on restricted channels, i.e., are unobservable. Accordingly they do not change the state of the

target term modulo the considered reference relations
�
≈ and

�
≈cs. We introduce some auxiliary lemmata

to support this claim.
The encodingT·U translates source term barbsc into free announcements with(ϕ(c)) .1 as first value

and a lockl as third value that computes to⊤. The two coordinators, i.e., outer encodings, we introduce
later, restrict the freea-channel ofT·U.

Definition 6 (Translated Barbs). Let T ∈PT such that∃S. TSU Z=⇒T T, ∃S. JSK Z=⇒T T, or∃S. LSM Z=⇒T

T. T has a translated barbc, denoted byT ↓TcU, if
• there is an unguarded outputa〈(ϕ(c)) .1, r, l, r′〉—on a free channela in the case ofT·U or the

outermost variant ofa in the case of the later introduced encodingsJ·K andL·M—in T or
• such an announcement was consumed to unguard anIF-construct testingl and this construct is still

not resolved inT
such that all locks that are necessary to instantiatel are positively instantiated.

Analysing the encoding function in Figure 1 we observe that an encoded source term has a translated
barb iff the corresponding source term has the corresponding source term barb.
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JPK , (νa,once)
(

TPU | once | ∗once.a
(

c, r, l, r′
)

.
(

r | l(b).
(

once | IF b THEN r′〈⊤〉
)))

Figure 2: Acentralisedencoding from CSP into CCS with value passing.

Observation 7. For all S∈ PS, it holdsS↓c iff TSU↓TcU.

All instances of success in the translation result from success in the source. More precisely the only
way to obtainX in the translation is byTXU , X.

Observation 8. For all S∈ PS, it holdsS↓X iff TSU↓X.

The encoding propagates announcements through the translated parallel structure. In the translation
of parallel operators it combines all left and right announcements w.r.t. to the same channel name, if this
channel needs to be synchronised. Therefore we copy announcements. We use locks carrying a Boolean
value to indicate whether an announcement was already used to simulate a source term step. These locks
carry⊤ in the beginning and are swapped to⊥ as soon as the announcement was used. In each state
there is at most one positive instantiation of each lock and as soon as a lock is instantiated negatively it
never becomes positive again.

Lemma 9. Let T∈ PT such that∃S. TSU Z=⇒T T. Then for each variant l of the namesl, lL, lR
1. there is at most one positive instantiation of l in T ,
2. if there is a positive instantiation of l in T then there is no other instantiation of l in T ,
3. if there is a negative instantiation of l in T then no derivative of T contains a positive instantiation

of l.

4 The Centralised Encoding

Figure 1 describes how to translate CSP actions into announcements augmented with locks and how the
other operators are translated to either forward or combinethese announcements and locks. With that
T·U provides the basic machinery of our encoding from CSP into CCS with name passing and matching.
However it does not allow to simulate any source term step. Therefore we need a second (outer) layer
that triggers and coordinates the simulation of source termsteps. We consider two ways to implement
this coordinator: a centralised and a decentralised coordinator. The centralised coordinator is depicted in
Figure 2.

The channelonce is used to ensure that simulation attempts of different source term steps cannot
overlap each other. For each simulation attempt exactly oneannouncement is consumed. The coordina-
tor then triggers the computation of the respective lock that was transmitted in the announcement. This
request for the computation of the lock is propagated along the parallel structure induced by the transla-
tions of parallel operators until—in the leafs—encodings of sums are reached. There the request for the
computation yields the transmission of the current value ofthe respective lock. While being transmitted
back to the top of the tree, different locks that refer to synchronisation in the source terms are combined.
If the computation of the lock results with⊤ at the top of the tree, the respective source term step is sim-
ulated. Else the encoding aborts the simulation attempt andrestores the consumed informations about
the values of the respective locks. In both cases a new instance ofonce allows to start the next simulation
attempt. Accordingly only some post-processing steps can overlap with a new simulation attempt.

As we prove below, the points of no return in the centralised encoding can result from the consump-
tion of action announcements by the outer encoding in Figure2 if the corresponding lock computes to
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⊤. Moreover the encoding of internal choice and divergence introduces simulation steps, namely all
steps on variants of the channelsm, d, andϕ ′(X). All remaining steps of the centralised encoding are
auxiliary.

Definition 10 (Auxiliary and Simulation Steps). A stepT 7−→T T ′ such that∃S∈ PS. JSK Z=⇒T T is
called asimulation step, denoted byT

7→
7−→ T ′, if T 7−→ T ′ is a step on the outermost channela and the

computation of the value of the received lockl will return ⊤ or it is a step on a variant ofm, d, or ϕ ′(X).

Else the stepT 7−→T T ′ is called anauxiliary step, denoted byT
�

7−→ T ′.

Let
�

Z=⇒ denote the reflexive and transitive closure of
�

7−→ and let
7→

Z=⇒,
�

Z=⇒
7→
7−→

�
Z=⇒. Auxiliary steps do

not change the state modulo
�
≈.

Lemma 11. T
�

7−→ T ′ implies T
�
≈ T ′ for all target terms T,T′.

By distinguishing auxiliary and simulation steps, we can prove a condition stronger than operational
correspondence, namely that each source term step is simulated by exactly one simulation step.

Lemma 12. For all S,S′, it holds S7−→S S′ iff ∃T. JSK
7→

Z=⇒ T ∧ JS′K
�
≈ T.

This direct correspondence between source term steps and the points of no return of their translation
allows us to prove a variant of operational correspondence that is significantly stricter than the variant
proposed in [6].

Definition 13 (Operational Correspondence).

An encoding enc(·) : PS → PT is operationally correspondingw.r.t.
�
≈⊆ P2

T if it is:

Complete:∀S,S′. S Z=⇒S S′ implies∃T. JSK Z=⇒T T ∧ JS′K
�
≈ T

Sound: ∀S,T. JSK Z=⇒T T implies∃S′. S Z=⇒S S′∧ JS′K
�
≈ T

The ‘if’-part of Lemma 12 implies operational completenessw.r.t.
�
≈ and the ‘only-if’-part contains the

main argument for operational soundness w.r.t.
�
≈. HenceJ·K is operationally corresponding w.r.t. to

�
≈.

Theorem 1. The encodingJ·K is operationally corresponding w.r.t. to
�
≈.

To obtain divergence reflection we show that there is no infinite sequence of only auxiliary steps.
Then divergence reflection follows from the combination of this fact and Lemma 12.

Theorem 2. The encodingJ·K reflects divergence.

The encoding function ensures thatJSK has an unguarded occurrence ofX iff S has such an un-
guarded occurrence. Operational correspondence ensures thatSandJSK also answer the question for the
reachability ofX in the same way.

Theorem 3. The encodingJ·K is success sensitive.

In a similar way we can prove that a source term reaches a barb iff its translation reaches the respec-
tive translated barb.

Theorem 4. For all S,c, it holds S⇓c iff JSK⇓TcU.

As proved in [18], Theorem 1, the fact that
�
≈ is success sensitive and respects (translated) barbs,

Theorem 3, and Theorem 4 imply that for allS it holds S and JSK are (success sensitive, (translated)

barb respecting, weak, reduction) bisimilar, i.e.,S
�
≈ JSK. Bisimilarity is a strong relation between source

terms and their translation. On the other hand, because of efficiency, distributability preserving encodings
are more interesting. Because ofonce the encodingJ·K obviously does not preserve distributability.
As discussed in [16] bisimulation often forbids distributed encodings. Instead they propose coupled
simulation as a relation that still provides a strong connection between source terms and their translations
but is more flexible. Following the approach in [16] we consider a decentralised coordinator next.
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LPM , (νa)
(

TPU | ∗a
(

c, r, l, r′
)

.
(

r | l(b).IF b THEN r′〈⊤〉
))

Figure 3: Adecentralisedencoding from CSP into CCS with value passing.

5 The Decentralised Encoding

Figure 3 presents a decentralised variant of the coordinator in Figure 2. The only difference between the
centralised and the decentralised version of the coordinator is that the latter can request to check different
locks concurrently. TechnicallyJ·K andL·M differ only by the use ofonce. As a consequence the steps of
different simulation attempts can overlap and even (pre-processing) steps of simulations of conflicting
source term steps can interleave to a certain degree. Because of this effect,L·M does not satisfy the version
of operational correspondence used above forJ·K, but L·M satisfies weak operational correspondence that
was proposed in [6] as part of a set of quality criteria.

Since several announcements can be processed concurrentlyby the decentralised coordinator, here all
consumptions of announcements are auxiliary steps. Instead the consumption of positive instantiations
of locks can mark a point of no return. In contrast toJ·K not every point of no return inL·M unambiguously
marks a simulation of a single source term step, because in contrast toJ·K the encodingL·M introduces
partial commitments[17,19].

Consider the exampleE = (o→ P1 � p→ P2)‖{ o,p } (o→ P3 � p→ P4 � q→ P5).

JEK T �
≈ JP2K

�
≈ JP1K

�
≈ JP3K

sim
o

simp

sim
q

E P2

P1

P3

o

p

q

LEM T · · ·

PC1

�
≈ LP3M

�
≈ LP1M

�
≈ LP3M

simo

sim
q

sim
q

In the example, two sides of a parallel operator have to synchronise on either actionp, or actiono, or
actionq happens without synchronisation. In the centralised encoding JEK the use ofonce ensures that
different simulation attempts cannot overlap. Thus, only after finishing the simulation of a source term
step, the simulation of another source term step can be invoked. As a consequence each state reachable
from encoded source terms can unambiguously be mapped to a single state of the source term. This
allows us to use a stronger version of operational correspondence and, thus, to prove that source terms
and their translations are bisimilar. The corresponding 1-to-1 correspondence between source terms and

their translations is visualised by the first two graphs above, whereT
�
≈ JEK.

The decentralised encodingLEM introduces partial commitments. Assume the translation ofa source
term that offers several alternative ways to be reduced. Then some encodings—as our decentralised
one—do not always decide on which of the source term steps should be simulated next. More precisely a
partial commitment refers to a state reachable from the translation of a source term in that already some
possible simulations of source term steps are ruled out, butthere is still more than a single possibility
left.

In the decentralised encoding announcements can be processed concurrently and parts of different
simulation attempts can interleave. The only blocking partof the decentralised encoding are conflicting
attempts to consume the same positive instantiation of a lock. In the presented example above there are
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two locks; one for each side of the parallel operator. The simulations of the step ono andp need both of
these locks, whereas to simulate the step onq only a positive instantiation of the right lock needs to be
consumed. By consuming the positive instantiation of the left lock in an attempt to simulate the step on
o, the simulation of the step onp is ruled out, but the simulation of the step onq is still possible. Since
either the simulation of the step ono or the simulation of the step onq succeeds, the simulation of the
step onp is not only blocked but ruled out. But the consumption of the instantiation of the left lock does
not unambiguously decide between the remaining two simulations. The intermediate state that results
from consuming the instantiation of the left lock and represents a partial commitment is visualised in the
right graph above by the statePC1.

Partial commitments forbid a 1-to-1 mapping between the states of a source term and its translations
by a bisimulation. But, as shown in [16], partial commitments do not forbid to relate source terms and
their translations by coupled similarity.

Whether the consumption of a positive instantiation of a lock is an auxiliary step—does not change

the state of the term modulo
�
≈—, is a partial commitment, or unambiguously marks a simulation of a

single source term step depends on the surrounding term, i.e., cannot be determined without the context.
For simplicity we consider all steps that reduce a positive instantiation of a lock as simulation steps. Also
steps on variants of the channelsm, d, andϕ ′(X) are simulation steps, because they unambiguously mark
a simulation of a single source term step. All remaining steps of the decentralised encoding are auxiliary.

Definition 14 (Auxiliary and Simulation Steps). A stepT 7−→T T ′ such that∃S∈ PS. LSM Z=⇒T T is
called asimulation step, denoted byT

7→
7−→ T ′, if T 7−→ T ′ reduces a positive instantiation of a lock or is

a step on a variant ofm, d, or ϕ ′(X).

Else the stepT 7−→T T ′ is called anauxiliary step, denoted byT
�

7−→ T ′.

Again let
�

Z=⇒ denote the reflexive and transitive closure of
�

7−→ and let
7→

Z=⇒,
�

Z=⇒
7→
7−→

�
Z=⇒. Since aux-

iliary steps do not introduce partial commitments, they do not change the state modulo
�
≈. The proof of

this lemma is very similar to the centralised case.

Lemma 15. T
�

7−→ T ′ implies T
�
≈ T ′ for all target terms T,T′.

In contrast to the centralised encoding, the simulation of asource term step in the decentralised
encoding can require more than a single simulation step and asingle simulation step not unambiguously
refers to the simulation of a particular source term step. The partial commitments described above forbid
operational correspondence, but the weaker variant proposed in [6] is satisfied. We call this variant weak
operational correspondence.

Definition 16 (Weak Operational Correspondence).

An encoding enc(·) : PS → PT is weakly operationally correspondingw.r.t.
�
≈cs⊆ P2

T if it is:

Complete:∀S,S′. S Z=⇒S S′ implies∃T. LSM Z=⇒T T ∧ LS′M
�
≈cs T

Weakly Sound:∀S,T. LSM Z=⇒T T implies∃S′,T ′. S Z=⇒S S′∧T Z=⇒T T ′∧ LS′M
�
≈cs T ′

The only difference to operational correspondence is the weaker variant of soundness that allows for
T to be an intermediate state that does not need to be related toa source term directly. Instead there has
to be a way fromT to someT ′ such thatT ′ is related to a source term.

Theorem 5. The encodingL·M is weakly operational corresponding w.r.t. to
�
≈.

As in the encodingJ·K, there is no infinite sequence of only auxiliary steps inLSM. Moreover each
simulation of a source term requires only finitely many simulation steps (to consume the respective
positive instantiations of locks). ThusL·M reflects divergence.
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Theorem 6. The encodingL·M reflects divergence.

The encoding function ensures thatLSM has an unguarded occurrence ofX iff Shas such an unguarded
occurrence. Operational correspondence again ensures that S andLSM also answer the question for the
reachability ofX in the same way.

Theorem 7. The encodingL·M is success sensitive.

Similarly, a source term reaches a barb iff its translation reaches the respective translated barb.

Theorem 8. For all S,c, it holds S⇓c iff LSM⇓TcU.

Weak operational correspondence does not suffice to establish a bisimulation between source terms

and their translations. But, as proved in [18], Theorem 5, the fact that
�
≈ is success sensitive and respects

(translated) observables, Theorem 7, and Theorem 8 imply that ∀S. S and JSK are (success sensitive,

(translated) barbs respecting, weak, reduction) coupled similar, i.e.,S
�
≈cs LSM.

It remains to show, thatL·M indeed preserves distributability. Therefore we prove that all blocking
parts of the encodingL·M refer to simulations of conflicting source term steps.

Theorem 9. The encodingL·M preserves distributability.

6 Conclusions

We introduced two encodings from CSP into asynchronous CCS with name passing and matching. As in
[16] we had to encode the multiway synchronisation mechanism of CSP into binary communications and,
similarly to [16], we did so first using a centralised controller that was then modified into a decentralised
controller. By doing so we were able to transfer the observations of [16] to the present case:

1. The centralised solution allows to prove a stronger connection between source terms and their
translations, namely by bisimilarity. Our decentralised solution does not relate source terms and
their translations that strongly and we doubt that any decentralised solution can do so.

2. Nonetheless, decentralised solutions are possible as presented by the second encoding and they
still relate source terms and their translations in an interesting way, namely by coupled similarity.

Thus as in [16] we observed a trade-off betweencentralisedbutbisimilar solutions on the one-hand side
anddecentralisedbut onlycoupled similarsolutions on the other side.

More technically we showed here instead a trade-off betweencentralised butoperationally corre-
spondingsolutions on the one-hand side andweakly operationally correspondingbut decentralised solu-
tions on the other side. The mutual connection between operational correspondence and bisimilarity as
well as between weak operational correspondence and coupled similarity is proved in [18].

Both encodings make strict use of the renaming policy and translate into closed terms. Hence the
criterion name invarianceis trivially satisfied in both cases. Moreover we showed thatboth encodings
aresuccess-sensitive, reflect divergence, and evenrespect barbsw.r.t. to the standard source term (CSP)
barbs and a notion of translated barbs on the target. The centralised encodingJ·K additionally satisfies a
variant ofoperational correspondencethat is stricter than the variant proposed in [6]. The decentralised
encodingL·M satisfiesweak operational correspondenceas proposed in [6] anddistributability preser-
vation as proposed in [20]. Thus both encodings satisfy all of the criteria proposed in [6] except for
compositionality. However in both cases the inner part is obviously compositional and the outer part
only adds a fixed context.
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[16] J. Parrow & P. Sjödin (1992):Multiway synchronization verified with coupled simulation. In: Proc. of
CONCUR, LNCS 630, Springer, pp. 518–533, doi:10.1007/bfb0084813.

[17] K. Peters (2012):Translational Expressiveness. Ph.D. thesis, TU Berlin.

[18] K. Peters & R. van Glabbeek (2015):Analysing and Comparing Encodability Criteria. In: Proc. of EX-
PRESS/SOS, EPTCS 190, pp. 46–60, doi:10.4204/EPTCS.190.4.

[19] K. Peters & U. Nestmann (2012):Is it a “Good” Encoding of Mixed Choice?In: Proc. of FoSSaCS, LNCS
7213, pp. 210–224, doi:10.1007/978-3-642-28729-914.

[20] K. Peters, U. Nestmann & U. Goltz (2013):On Distributability in Process Calculi. In: Proc. of ESOP, LNCS
7792, Springer, pp. 310–329, doi:10.1007/978-3-642-37036-6 18.
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