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We study encodings from CSP into asynchronous CCS with nas&ing and matching, so in fact,
the asynchronoug-calculus. By doing so, we discuss two different ways to nfegp rmulti-way
synchronisation mechanism of CSP into the two-way syndlation mechanism of CCS. Both en-
codings satisfy the criteria of Gorla except for compositility, as both use an additional top-level
context. Following the work of Parrow and Sjodin, the firsteding uses a centralised coordinator
and establishes a variant of weak bisimilarity betweenaoterms and their translations. The sec-
ond encoding is decentralised, and thus more efficient,sures only a form of coupled similarity
between source terms and their translations.

1 Introduction

In the context of a scientific meeting on Expressiveness incGwency and Structural Operational Se-
mantics (SOS), likely very little needs to be said about tlee@ss algebras (or process calculi) CSP and
CCS. Too many papers have been written since their adveheii@'s to be mentioned in our own pa-
per; it is instructive, though, and recommended to appredias Baeten’s historical overview [1], which
also places CSP and CCS in the context of other process afglike ACP and the many extensions by
probabilities, time, mobility, etc. Here, we just selederences that help to understand our motivation.

Differences. From the beginning, although CSE [8] and CCS [11] were irgdnt capture, describe
and analyse reactive and interactive concurrent systdmag,were designed following rather different
philosophies. Tony Hoare described this nicely in his pasipaper([9] as follows: “A primary goal in the
original design of CCS was to discover and codify a minimabédasic primitive agents and operators
...and a wide range of useful operators which have beenestslibsequently are all definable in terms
of CCS primitives.” and “CSP was more interested in this devaange of useful operators, independent
of which of them might be selected as primitive.” So, at thedart, the two calculi use two different
synchronisation mechanisms, one (CCS) using binary, twe-way, handshake via matching actions
and co-actions, the other (CSP) using multiway synchrdinisagoverned by explicit synchronisation
sets that are typically attached to parallel compositiomothAer difference is the focus on Structural
Operational Semantics in CCS, and the definition of behaslaquivalences on top of this, while CSP
emphasised a trace-based denotational model, enhandefhilites, and the question on how to design
models such that they satisfy a given set of laws of equicalen

Comparisons. From the early days, researchers were interested in momssifbrmal comparisons
between CSP and CCS. This was carried out by both Hoare [9}&ndr [12] themselves, where they
concentrate on the differences in the underlying designcipies. But also other researchers joined the
game, but with different analysis tools and comparisoreget

For example, Brookes [3] contributed a deep study on the¢ioaldetween the underlying abstract
models, synchronisation trees for CCS and the failures mafdESP. Quite differently, Lanese and
Montanari [10] used the power to transform graphs as a medsuthe expressiveness of the two calculi.
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Yet completely differently, Parrow and Sjodin [16] 21ktlito find an algorithm to implement—best
in a fully distributed fashion—the multiway synchronisatioperator of CSP (and its variant LOTOS
[2]) using the supposedly simpler two-way synchronisatidilCCS. They came up with two candi-
dates—a reasonably simple centralised synchroniser, amhgiderably less simple distributed syn-
chronisel—and proved that the two are not weakly bisimilar, but rattarpled similar, which is only
slightly weaker. Coupled simulation is a notion that Paraovd Sjodin invented for just this purpose,
but it has proved afterwards to be often just the right toodmhnalysing the correctness of distribution-
and divergence-sensitive encodings that involve partiimitments (whose only effect is to gradually
perform internal choices) [15].

The probably most recent comparison between CSP and CCSrawddqul by van Glabbeek[5].
As an example for his general framework to analyse the velaxpressive power of calculi, he studied
the existence of syntactical translations from CSP into J&Swvhich a common semantical domain is
provided via labelled transition systems (LTS) derivecdrfnespective sets of SOS rules. The comparison
is here carried out by checking whether a CSP term and itslttion into CCS are distinguishable with
respect to a number of equivalences defined on top of the L& .concrete results are: (1) there is a
translation that is correct up to trace equivalence (antbdom deadlocks), and (2) there is no translation
that is correct up to weak bisimilarity equivalence thabdikes divergence into account.

Contribution.  Given van Glabbeek’s negative result, and given Parrow gadir8 algorithm, we
set out to check whether we can define a syntactical encoding €SP into CCS—using Parrow and
Sjodin’s ideas—that is correct up to coupled simila@ityve almost managed. In this paper, we report
on our current results along these lines: (1) Our encodirgetds an asynchronous variant of CCS,
but enhanced with name-passing and matching, so it is inala@synchronousr-calculus; we kept
mentioning CCS in the title of this paper, as it clearly engib@s the origin and motivation of this work.
But, we couldnot do without name-passing. (2) We exhibit one encoding thabisdistributability-
preserving (so, it represents a centralised solution)jsbabrrect up to weak bisimilarity and does not
introduce divergence. This does not contradict van Glaidbeesults, but suggests that van Glabbeek’s
framework implies some form of distributability-presetiea. (3) We exhibit another encoding that
distributability-preserving and divergence-reflectibgt is only correct up to coupled similarity.

Overview. We introduce the considered variants of CSP and CC&Zh There we also introduce
the criteria—that are (variants of) the criteria in [6] ai@@F—modulo which we prove the quality of
the considered encodings. #13 we introduce the inner layer of our two encodings. It presidhe
main machinery to encode synchronisations of CSP. We cdentiies encoding with an outer layer that
is either a centralised; @) or a decentralised coordinatdy[). In §[@ we discuss the two encodings.
Missing proofs and some additional informations can be doar7].

2 Technical Preliminaries

A process calculugZ,—) consists of a se” of processes (syntax) and a reduction relation C 972
(semantics). Lett” be the countably-infinite set of namas¢ .4~ denotes an internal unobservable ac-
tion. We usea, b, x, ... to range over names aftlQ, ... to range over processes. We usg . .. to range
over.# U{t}. &denotes a sequence of names. LéPjrand br{P) denote the sets of free names and
bound names occurring Py, respectively. Their definitions are completely stand&vd.useo, o’, 03, ...

1Recently [4], a slight variant of the protocol behind thigaithm was used to implement the distributed compiler DLC
for a substantial subset of LNT (successor of LOTOS New Teldyy) that yields reasonably efficient C code.
2The idea and a first draft of the encoding were developed bynies and van Glabbeek during a stay at NICTA, Sydney.
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to range over substitutions. A substitution is a mapgttg, , ..., ] from names to names. The appli-
cation of a substitution on a terR{*/y,,...,* /| is defined as the result of simultaneously replacing all
free occurrences of by x; fori € { 1,...,n }. Forall names in/"\ { y1,...,Yn } the substitution behaves
as the identity mapping. The relatier~ as defined in the semantics below defines the reduction steps
processes can perform. We wrke— P’ if (P,P’) € — and callP’ aderivativeof P. Let = denote
the reflexive and transitive closure wof+. P is divergentif it has an infinite sequence of steps—®.
We usebarbsor observabledo distinguish between processes with different behasgiowe writeP | 4
if P has a bartwr, where the predicate]. can be defined differently for each calculus. Moredvdras a
weak barba, if P may reach a process with this barb, iRl £ IP.P= P' AP’ |4.

As source calculus we use the following variant of CSP [8].

Definition 1. The processes?cspare given by
P:=P|aP | DIV | STOP | PP | P/b | f(P) | X | uX-P | Sicsa—P

whereX € 2 is a process variabléy C .47, and.¢# is a finite index set.

P||aQ is the parallel composition d? andQ, whereP andQ can proceed independently except for
actionsa € A, on which they have to synchronise. DIV descrilégergence STOP denotesaction
Internal choice P1Q reduces to eitheP or Q within a single internal stepConcealment Pb hides an
actionb and masks it as. Renaming {P) for somef : 4" — .4 extended byf (1) = 1 behaves aP,
wherea is replaced byf(a) for all a€ .#". RecursionuX - P describes a process behaving IRavith
every occurrence of being replaced by X - P. External choicey ;. » 3 — B offers a selection of one
of theaction prefixes a— - followed by the corresponding continuatiéy so it may perform ang; and
then behave liké3. Note that we enforce action prefixes to be syntactically paan external choice
construct. As usual, we udé O N to denote binary external choice.

The CSP semantics is given by the following rules, usinglladesteps& to define—:

E-2E E-%E (a#b) E-5E Mj -5 M (je.s)
E/b—E'/b E/b-"E'/b f(E) " £(E) Sicsr M = M

(amE)-%E uX-E — E[uX-E/X]

E-LE (adA) F-SF (agA E-5E F-5F (acA) RN~
E|laF -5 E/||aF E|laF -5 E|[aF’ E|aF = E/||aF’ P— P

DIV -5 DIV ENF-SE ENF -5 F

A barb of CSP is the possibility of a term, to perform an actian,Pl. £ 3P". P -2 P. Following the
definition of distributability in[[20] a CSP terfais distributable intd~y, ..., R, if Py,..., P, are unguarded
subterms oP such that every action prefix i occurs in exactly one of the,, ..., R,, where different
but equally-named action prefixes are distinguished andandigd occurrences piX - P* may result in
several copies d? within thePy,...,P,.

As target calculus we use an asynchronous variant of COS\ith jhame-passing and matching.

Definition 2. The processes’ccsare given by

Pi:=P|P | (vOP | *cX).P | cX.P | TX | [c=4P | O
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P | Q is the parallel composition d® andQ, whereP andQ can either proceed independently or
synchronise on matching channels nanie€) P restricts the visibility of actions using namescto™P.
c(X).P denotes input on channel tT(X) is output on channet. Since there is no continuation, we
interpret this calculus as asynchronous. We+&#).P to denotereplicated inputon channet with the
continuationP. [x = y] P is the matching operator, =y thenP is enabled0 denotes inaction.

The CCS semantics is given by following transition rules:

P— P P— P P=P P—Q Q@=0Q
PIQ—P|Q (VE)P+— (VE) P P—Q

*C(X).P | T(y) — +c(X).P| P[y/X]  T(Y) | c(X).Q— P| Q[Y/X]
where= denotes structural congruence given by the rdlO=P,P|Q=Q|P,P|(Q|R) =(P| Q) |

R (v8)0=0,P|(vd) Q= (va)(P| Q) ifbn(d) ¢ fn(P), and[x = x| P = P. As discussed in [20], a CCS
termP is distributable intd?y,...,Pyif P= (VX)(PL| ... | Pn).

Simulation Relations. The semantics of a process is usually considered modulo setmavioural
equivalence. For many calcuthe standard reference equivalence is some form of weak béasiityil

In the context of encodings, the source and target langutigie differ in their relevant obervables, i.e.,
barbs. In this case, it is advantageous to use a variant ottied bisimilarity. With Gorla/[6], we add a
succes®peratory to the syntax of both CSP and CCS. Sinteannot be further reduced, the semantics
is left unchanged in both cases. The test for the reachabfléuccess is standard in both languages, i.e.,
Pl, 2 3P.P= v |P. To obtain a non-trivial equivalence, we require that therbulation respects
success and the reachability of barbs. We use the standandide of barbs in CSP, i.e., action prefixes.
Our encoding function will translate all source terms inkosed terms, thus the standard definition of
CCS barbs would not provide any information. Instead we uset@n of translated barb {.) that
reflects how the encoding function translates source tertrsbits definition is given in Sectidn 3.

Definition 3 (Bisimulation) A relation# C 272 is a(success-sensitive, [translated-]barb-respecting,
weak, reduction) bisimulatioif, whenever(P,Q) € #, then:

e P— P impliesdQ.Q—= QA (P,Q)eZ#

e Q— Q impliesIP.P=P A (P,Q)eZ

e Py iff Ql,

e P andQ reach the same (translated) barbs, where we lgéor CSP and |} 5 for CCS
Two termsP,Q € & arebisimilar, denoted a® ~ Q, if there exists a bisimulation that relatesindQ.

We use the symbak to denote either bisimilarity on our target language CCSrothe disjoint union
of CSP and CCS that allows us to describe the relationshipdset source terms and their translations.
In the same way we define a corresponding variant of coupieisity.

Definition 4 (Coupled Simulation) A relation # C 22 is a (success-sensitive, [translated-]barb-
respecting, weak, reduction) coupled simulatifnvhenever(P,Q) € #, then:

e P— P impliesiQ. Q= QA (P,Q)eZ and3Q". Q= Q' A (Q",P) e Z

e PU,iff QU,

e PandQ reach the same (translated) barbs, where we lséor CSP and |} 5 for CCS
Two termsP,Q € &2 arecoupled similay denoted a® ~.s Q, if there exists a coupled simulation that
relatesP andQ in both directions.

Encodings and Quality Criteria. We consider two different translations from (the abovera=fivari-
ant of) CSP into (the above-defined variant of) CCS with naassimg and matching. In this context, we
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refer to CSP terms aurce terms¥s and to CCS terms darget terms2?r. Encodings often translate

single source steps into a sequence or pomset of target S¥epsall such a sequence or pomsstrau-

lation of the corresponding source term step. Moreover, we assoneath encoding the existence of a

so-called renaming policy, i.e., a mapping of names from the source into vectors oétdegm names.
To analyse the quality of encodings and to rule out triviaheaningless encodings, Gotla [6] provide

a general framework comprising five quality criteria, whitdwve afterwards been used in many papers.

In addition to our above-mentioned definition of processwals, whough, Gorla requires the target

calculus to be equipped with a notion of behavioural eqeived= on target terms. Its purpose is to

describe the *abstract’ behaviour of a target process, evtadastract’ refers to an observer at the source
level. In [6], the equivalencex is often defined as a barbed equivalence (cfl [13]) or can birede
directly from the reduction semantics, and it typically isagruence, at least with respect to parallel
composition. Bisimilarity and coupled similarity are sueations on CCS terms. The criteria are:

(1) Compositionality The translation of an operator op is the same for all ocogee of that oper-
ator in a term, i.e., it can be captured by a contéyt such that en@p(xq,...,%,S,...,Sn)) =
Gop (XL, %n,€NASy) ,...,endSy)) for fn(Sp) U...Ufn(Sy) = N.

(2) Name InvarianceThe encoding does not depend on particular names, i.ey&ySandag, it holds
that enco (S)) = o’ (end9)) if o is injective and en@ (S)) < g’ (endS)) otherwise, wher@” is
such thatp (o (n)) = o’ (¢(n)) for everyne 4.

(3) Operational Correspondencdevery computation of a source term can be simulated byatssta-
tion, i.e.,S=>s S implies en¢S) =1 end S) (completeness), and every computation of a target
term corresponds to some computation of the correspondingees term (soundness, compare to
Sectiorb).

(4) Divergence ReflectiorThe encoding does not introduce divergence, i.e (8ne—% impliesS—¥.

(5) Success Sensitivenesds source term and its encoding answer the tests for sucnessaictly the
same way, i.e S| iff enc(S) . .

Our encodings will satisfy all of these criteria except fongositionality, because both encodings
consists of two layers. [20] shows that the above criteriaatcensure that an encoding preserves distri-
bution and proposes an additional criterion for the prest@m of distributability.

Definition 5 (Preservation of Distributability)An encoding eng) preserves distributabilityf for every
Sand for all termsS,, . . ., S, that are distributable withiBthere are somé, ..., T, that are distributable
within end S) such thafl; < endS) forall 1 <i <n.

Here, because of the choice of the source and the targetdgagan encoding preserves distributability
if for each sequence of distributable source term stepsghilations are pairwise distributable. In both
languages two alternative steps of a term areanflict with each other if—for CSP—they reduce the
same action-prefix or—for CCS—they either reduce the sap unsing two outputs or they reduce the
same output using two [replicated] inputs. Two alternasiteps that are not in conflict adéstributable

3 Translating the CSP Synchronisation Mechanism

CSP and CCS—or tha-calculus—differ fundamentally in their communicationdasynchronisation
mechanisms. In CSP there is only a single kind of actien -, wherec is a name. Synchronisation is
implemented by the parallel operatdji- that in CSP is augmented with a set of namAe®ntaining the
names that need to be synchronised at this point. By neséirajl@l operators arbitrarily many actions
on the same name can be synchronised. In CCS there are tweediffkkinds of actions: inpusand
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outputsc. Again synchronisation is implemented by the parallel afmar but in CCS only a single input
and a single matching output can ever be synchronised wothgnstep.

To encode the CSP communication and synchronisation mischain CCS with name passing we
make use of a technique already used in[[1]7, 19] to transitteden different variants of the-calculus.
CSP actions are translated into action announcements adggneith a lock indicating, whether the
respective action was already used in the simulation of g sféhe other operators of CSP are then
translated into handlers for these announcements and. Iddhkes translation of sum combines several
actions under the same lock and thus ensures that only omeofethe sum can ever be used. The
translation of the parallel operator combines announcé&nehactions that need to be synchronised
into a single announcement under a fresh lock, whose valdetegmined by the combination of the
respective underlying locks at its left and right side. Amncements of actions that do not need to be
synchronised are simply forwarded. A second layer—cointgirither a centralised or a decentralised
coordinator—then triggers and coordinates the simulaifsource term steps.

Action announcements are of the foftc,r,|,r'): cis the translation of the source term action.
is used to trigger the computation of the Boolean valué dfhe lock| evaluates tol” as long as the
respective translated action was not successfully usdwkisimulation of a step! is used to guard the
encoded continuation of the respective source term adtiathe case of a successful simulation attempt
involving this announcement, an outptT) allows to unguard the encoded source term continuation
and ensures that all following evaluations| oéturn L. The message(_L) indicates an aborted simula-
tion attempt and allows to restoréor later simulation attempts. Once a lock becomesll request for
its computation return._.

Abbreviations. We introduce some abbreviations to simplify the presesmati the encodings. We use
[xe AP = Maca[x=a]P
to test, whether an action belongs to the set of synchrorastidns in the encoding of the parallel
operator. As already done in [14,)15] we use Boolean-valaekislto ensure that every translation of an
action is only used once to simulate a stBpolean locksre channels on which only the Boolean values
T (true) or_L (false) are transmitted. An unguarded output over a Bodleaawith valueT represents a
positive instantiation of the respective lock, whereasraguarded output sendingrepresents a negative
instantiation. At the receiving end of such a channel, thel®an value can be used to make a binary
decision, which is done here within arconstruct This construct and according instantiations of locks
are implemented as ih [14,115] using restriction and therasfiransmitted values.

Ty =16 00 (L) =1 6).T
I(b).IFbTHENPELSEQ £ (vt, f)(I(t, ) |[tP] f.Q)
We observe that the Boolean valuésand L are realised by a pair of links without parameters. Both

cases of therF-construct operate as guard for its subtePrendQ. The renaming policy reserves the
nameg and f to implement the Boolean valudsand L.

The Algorithm. The encoding functions introduce some fresh names, thateasrved for special
purposes. In Tablel1 we list the reserved nam@snd provide a hint on their purpose. Moreover
we reserve the namgsx | i € N } and assume an injective mappitg: 2" — { X | i € N } that maps
process variables of CSP to distinct names. The renamingypplfor our encodings is then a function
that reserves the namesdAU { x; | i € N } and translates every source term name into three target term
names. More precisely, chooge .+ — .4 such that:

1. No name is mapped onto a reserved namedi@),N(ZU{x |[ieN})=0forallne .+

2. No two different names are mapped to overlapping sets misai.e.,¢ (n) N ¢(m) = 0 for all

n,me .4 with n#m.



M. Hatzel, C. Wagner, K. Peters, U. Nestmann 67

reserved names purpose
a,a announce the ability to perform an action
C,C,Cr,Z (translated) source term channel, channel from the Igiit!of a parallel operatoy
LI, IR lock, lock from the left/right of a parallel operator
I’ re-instantiate a positive sum lock
r,rL, R request the computation of the value of a lock
v, ri, L, PR simulate a source term step and unguard the correspondigeations
n order left announcements for the same channel that needsynicronised
s, s distribute right announcements that need to be synchmbnise
b Boolean value ( or T)
T fresh name used to announcesteps that result from concealment
once used by the centralised encoding to avoid overlapping sitiu attempts
m fresh names used to encode internal choice
d fresh names used to encode divergence
t,f used to encode Boolean values

Table 1: Reserved Names.

We naturally extend the renaming policy to sets of names, ¢.6X) = {¢(x) [xe X }if X C 4.
Let ((X1,...,%)).i = x denote the projection of a-tuple to itsith element, if 1< i < n. Moreover
(X).i & {(x).i|x€ X} for asetX of n-tuples and K i <n.

The inner part of our two encodings is presented in Figlirenk. mMiost complex case is the translation
of the parallel operatdfP|| Q|| that is based on the following four steps:

Step 1: Action announcements for channelg A
In the case of actions on channelg A—that do not need to be synchronised here—the encoding
of the parallel operator acts like a forwarder and transdet®n announcements of both its subtrees
further up in the parallel tree. Two different restrictioofsthe channel for action announcements
a from the left sidd| P|| and the right sidd Q||, allow to trace action announcements back to their
origin as it is necessary in the following case. In the presase we use’ to bridge the action
announcement over the restrictionsaon

Step 2: Action announcements for channels A
Actions ¢ € A need to be synchronised, i.e., can be performed only if bio#s<of the parallel
operator cooperate on this action. Simulating this kindyoichronisation is the main purpose of
the encoding of the parallel operator. The renaming pafidyanslates each source term name
into three target term names. The first target term name @ aseeference to the original source
term name and transferred in announcements. The other tmesare used to simulate the
synchronisation of the parallel operator in CSP. Annourezgs) from the left are translated to
outputs on the respective second name and announcememtshieaight to the respective third
name. Restriction ensures that these outputs can only bputethby the current parallel operator
encoding. The translations of the announcements intordifteoutputs for different source term
names allows us to treat announcements of different nammesicently using the terrBynch(c),
wherec is a source term name.

Step 3: The termSynch(c)
In Synch(c) all announcements for the same source term nafram the left are ordered in order
to combine each left and each right announcement on the same reveral such announcements
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[PIaQY £ (va', (8(A)) 2,(6 () 3) (
(va)(ILPJ | a(c.%)- (e
(va)(LQU | sa(c.%).(fc < (¢

| MecaSynch(c) | +2'(%).3(%))

Synch(c) 2 (vn) (A((#(c)) 3
en(s) ((@(c)) 2(r o) ((v8) (

rs(rmlrarR)- (VL) (3((8(0) Lr, L) | Sim) | 31, lr, i)

[ (vs)((s) |+ (R)5(5) ) )))
Sim = ( ( _( (rL\IL b).(IF b THEN (rR]IR (IFb
THEN (I(T) | F'(b).(FL(b) | F'r(b) | IF D THEN xr.(L) ELSET))

'>)

(9(A).1](¢(0).2(%) | [c ¢ ($(A)).1]a'(c. %)
(A)-1](¢(0) -3(%) | [c ¢ ($(A)) . 1]a’(c. %)

\_/\_/
— —

)
)

ELSE( J_>]r|_ ))

Er
ELSE (I(L) | *rI(L) ))))

[Sicrt =Rl 2 (vr,l, V1, Fn) (£I(T)

| Mie.r (3((ci).1,r,1,¢i) | #ri(b) .IF bTHEN (UPJJ | *rI(L)) ELSE[.T(T>)>
L(P)/z] £ (va')((va,2)(lP] | *a(c.®).([c= )| [c#7a'(c, X)) | x2/(%).3(X))
LE(P)] = (va') ((va,2) ([P | *a(c,%) (ﬂz/xef c=( (X)).1]?<(¢(Z))'1,>?>
| [c¢ dom(f)]a’(c, %) )) | xa'(R).3(X))
DIV || £ (vd)(d | xd.d
LuX-PJ 2 (ve'(X)) (870X | 4" (X).[PI})
IX] £ ¢'(X)
[PMQY = (vm)(m/[[P]| | m[lQ] | ™)
|STOP| 20
vl =v

where¢ (¢ (A)).1is short fore (fn(P) Utn(Q))\ (¢ (A)).1, ¢ dom(f) is short fore fn(P) \ dom(f), and
# zis short fore fn(P)\ { z}.

Figure 1: An encoding from CSP into CCS with value passingdirpart).
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may result from underlying parallel operators, sums withilsir summands, and junk left over
from already simulated source term steps. For each leftiamo@ment a fresh instance ofs
generated and restricted. The namesnds’ are used to transfer right announcements to the
respective next left announcement, whe'res used to bridge over the restriction enThis way
each right announcement will eventually be transferredatthdeft announcement on the same
name. Note that this kind of forwarding is not done concutydout in the source language a term
P||aQ also cannot perform two steps on the same namd concurrently. After combining a left
and a right announcement on the same source term name a dteshasixiliary variables, |, r’

is generated and a corresponding announcement is traedmihe ternim reacts to requests
regarding this announcement and is used to simulate a st @ynchronised action.

Step 4: The termSim
If a request reacheSim it starts questioning the left and the right side. First tbi side is
requested to compute the current value of the lock of themactOnly if T is returned, the right
side is requested to compute its lock as well. This avoidsdideks that would result from blindly
requesting the computation of locks in the decentralisaem@ing. If the locks of both sides are
still valid the fresh locK returnsT else L is returned. For each caSen ensures that subsequently
requests will obtain an answer by looping withor returning L to all requests, respectively. The
messages’| (1) andr'r{L) cause the respective underlying subterms on the left andghe
side to do the same, whereds(T) andr'r(T) cause the unguarding of encoded continuations as
result of a successful simulation of a source term synchabion step.

Basic Properties and Translated Observables.The protocol introduced by the encoding function in
Figure[1 (and its outer parts introduced later) simulatéaglessource term step by a sequence of target
term steps. Most of these steps are merely pre- and postgsiog steps, i.e., they do not participate in
decisions regarding the simulation of conflicting sourecmtsteps but only prepare and complete simula-
tions. Accordingly we distinguish betweanxiliary steps—that are pre- and post-processing steps—and
simulation steps-that mark a point of no return by deciding which source tetap $s simulated. Note
that the points of no return and thus the definition of ausiliand simulation steps is different in the two
variants of our encoding.

Auxiliary steps do not influence the choice of source terrapsthat are simulated. Moreover they
operate on restricted channels, i.e., are unobservableordingly they do not change the state of the

target term modulo the considered reference relatioamd~s. We introduce some auxiliary lemmata
to support this claim.

The encoding| - || translates source term barbmto free announcements with (c)) .1 as first value
and a lock as third value that computes Ta The two coordinators, i.e., outer encodings, we introduce
later, restrict the free-channel of] - ||.

Definition 6 (Translated Barbs)Let T € &1 such thaBlS ||S|| =1 T,3S [§ =1 T, 0r3S (Y =7
T. T has a translated badydenoted byl LM, if
e there is an unguarded outpaf(¢(c)).1,r,l,r')—on a free channed in the case of|-|| or the
outermost variant o in the case of the later introduced encodifigsand(-)—in T or
e such an announcement was consumed to unguairl@mstruct testingand this construct is still
not resolved int
such that all locks that are necessary to instantiate positively instantiated.

Analysing the encoding function in Figure 1 we observe thatrgcoded source term has a translated
barb iff the corresponding source term has the correspgrabarce term barb.
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[P] £ (va,once)(|[P]| | once | xonce.a(c,r,I,r').(F | I(b).(once | IF b THEN F(T))))
Figure 2: Acentralised encoding from CSP into CCS with value passing.

Observation 7. For all Se s, it holds S iff [|S]| /¢y -

All instances of success in the translation result from ssgdn the source. More precisely the only
way to obtainy in the translation is by v'|| = v.

Observation 8. For allSe Zs, it holdsS|/ iff || S]||..

The encoding propagates announcements through the texthglarallel structure. In the translation
of parallel operators it combines all left and right ann@ments w.r.t. to the same channel name, if this
channel needs to be synchronised. Therefore we copy anamemts. We use locks carrying a Boolean
value to indicate whether an announcement was already as@thtilate a source term step. These locks
carry T in the beginning and are swapped_toas soon as the announcement was used. In each state
there is at most one positive instantiation of each lock anslo®n as a lock is instantiated negatively it
never becomes positive again.

Lemma 9. Let T € &7 such thatdS ||S|| =1 T. Then for each variant | of the namks§ , Ir
1. there is at most one positive instantiation of I in T,
2. ifthere is a positive instantiation of | in T then there s ather instantiation of | in T,
3. if there is a negative instantiation of | in T then no detiva of T contains a positive instantiation
of I.

4 The Centralised Encoding

Figure[1 describes how to translate CSP actions into aneowugicts augmented with locks and how the
other operators are translated to either forward or comthiase announcements and locks. With that
||l-|] provides the basic machinery of our encoding from CSP int& @@&h name passing and matching.
However it does not allow to simulate any source term stegerdfbre we need a second (outer) layer
that triggers and coordinates the simulation of source w&aps. We consider two ways to implement
this coordinator: a centralised and a decentralised coatali. The centralised coordinator is depicted in
Figure2.

The channebnce is used to ensure that simulation attempts of different@@term steps cannot
overlap each other. For each simulation attempt exactlyammeuncement is consumed. The coordina-
tor then triggers the computation of the respective lock Wes transmitted in the announcement. This
request for the computation of the lock is propagated albegtrallel structure induced by the transla-
tions of parallel operators until—in the leafs—encodinfiswoms are reached. There the request for the
computation yields the transmission of the current valutefrespective lock. While being transmitted
back to the top of the tree, different locks that refer to $yonisation in the source terms are combined.
If the computation of the lock results with at the top of the tree, the respective source term step is sim-
ulated. Else the encoding aborts the simulation attemptrestdres the consumed informations about
the values of the respective locks. In both cases a new irestafidnce allows to start the next simulation
attempt. Accordingly only some post-processing steps garlap with a new simulation attempt.

As we prove below, the points of no return in the centraligecbding can result from the consump-
tion of action announcements by the outer encoding in Figlifehe corresponding lock computes to
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T. Moreover the encoding of internal choice and divergentediuces simulation steps, namely all
steps on variants of the channets d, and¢’(X). All remaining steps of the centralised encoding are
auxiliary.

Definition 10 (Auxiliary and Simulation Steps)A stepT ——1 T’ such thaSe Zs. [J =T is
called asimulation stepdenoted byT ~— T’, if T — T’ is a step on the outermost chanaeind the
computation of the value of the received Idakill return T or it is a step on a variant of, d, or ¢’(X).

Else the ste@ —— T’ is called arauxiliary step denoted byl — T’.
Let == denote the reflexive and transitive closure-6% and let==> £ ==+ —»==. Auxiliary steps do
not change the state moduta

Lemma 11. T —— T’ implies T~ T’ for all target terms TT".
By distinguishing auxiliary and simulation steps, we caovgra condition stronger than operational

correspondence, namely that each source term step is siahliya exactly one simulation step.
Lemma 12. For all S, S, it holds S—»g S iff IT. [ = TA[S] A~ T.
This direct correspondence between source term steps arubthts of no return of their translation
allows us to prove a variant of operational correspondehatis$ significantly stricter than the variant
proposed in[[B].
Definition 13 (Operational Correspondence)
An encoding eng) : #s — 7 is operationally correspondingv.r.t. ~ C 22 if it is:

Complete:VS S. S5 S impliesdT. [§ =1 TA[S]~T

Sound: VS T. [§ =1 T implies3S. S=sSA[S]~T
The ‘if’-part of Lemma12 implies operational completenasst. ~ and the ‘only-if’-part contains the
main argument for operational soundness wst.tHence[] is operationally corresponding w.r.t. e

Theorem 1. The encoding-] is operationally corresponding w.r.t. ts.

To obtain divergence reflection we show that there is no tefisequence of only auxiliary steps.
Then divergence reflection follows from the combinationhi$ fact and Lemma_12.

Theorem 2. The encodind-] reflects divergence.

The encoding function ensures tH&] has an unguarded occurrence wfiff S has such an un-
guarded occurrence. Operational correspondence ensat&and[S] also answer the question for the
reachability ofv” in the same way.

Theorem 3. The encodind-] is success sensitive.

In a similar way we can prove that a source term reaches a thitbtianslation reaches the respec-
tive translated barb.

Theorem 4. For all S,c, it holds S iff [§] -

As proved in [18], Theorernl 1, the fact thatis success sensitive and respects (translated) barbs,
TheorenlB, and Theorem 4 imply that for &8lit holds S and [S] are (success sensitive, (translated)

barb respecting, weak, reduction) bisimilar, i®s [S. Bisimilarity is a strong relation between source
terms and their translation. On the other hand, becausé@éety, distributability preserving encodings
are more interesting. Because @fce the encoding]-] obviously does not preserve distributability.
As discussed in_[16] bisimulation often forbids distritbditencodings. Instead they propose coupled
simulation as a relation that still provides a strong cotinadetween source terms and their translations
but is more flexible. Following the approach in [16] we coesid decentralised coordinator next.
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(P) = (va)(IP]l | *a(c,r,1,r").(F| I(b).IF b THEN F(T)))
Figure 3: Adecentralisedencoding from CSP into CCS with value passing.

5 The Decentralised Encoding

Figure[3 presents a decentralised variant of the coordiiratéigure[2. The only difference between the
centralised and the decentralised version of the coomlimathat the latter can request to check different
locks concurrently. Technicallf] and(:) differ only by the use obnce. As a consequence the steps of
different simulation attempts can overlap and even (poegssing) steps of simulations of conflicting
source term steps can interleave to a certain degree. Beobtiss effect,|-) does not satisfy the version
of operational correspondence used abovd fprbut (-) satisfies weak operational correspondence that
was proposed ir [6] as part of a set of quality criteria.

Since several announcements can be processed concubretity decentralised coordinator, here all
consumptions of announcements are auxiliary steps. h$keaconsumption of positive instantiations
of locks can mark a point of no return. In contrasf 4pnot every point of no return ift) unambiguously
marks a simulation of a single source term step, becauseninast to[-] the encoding(-) introduces
partial commitment§l7,19].

Consider the examplé = (0 — PLOpP— P2) [[{op} (0= PsOp— P4Oq— B).

%0 ~ [Pi] /o Py /Pcli ~ (Py)

) ~ [Py Ps %, ~ (P3)

In the example, two sides of a parallel operator have to symige on either actiop, or actiono, or
actionq happens without synchronisation. In the centralised engdE] the use obonce ensures that
different simulation attempts cannot overlap. Thus, offfgrdinishing the simulation of a source term
step, the simulation of another source term step can beaavoks a consequence each state reachable
from encoded source terms can unambiguously be mapped hgle sitate of the source term. This
allows us to use a stronger version of operational corredgroee and, thus, to prove that source terms
and their translations are bisimilar. The corresponding-1-correspondence between source terms and

their translations is visualised by the first two graphs apehereT ~ [E].

The decentralised encodirfg) introduces partial commitments. Assume the translatice sfurce
term that offers several alternative ways to be reduced.n Hoene encodings—as our decentralised
one—do not always decide on which of the source term stepgsasbe simulated next. More precisely a
partial commitment refers to a state reachable from theskation of a source term in that already some
possible simulations of source term steps are ruled outihaué is still more than a single possibility
left.

In the decentralised encoding announcements can be pedcesacurrently and parts of different
simulation attempts can interleave. The only blocking pathe decentralised encoding are conflicting
attempts to consume the same positive instantiation ofla locthe presented example above there are
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two locks; one for each side of the parallel operator. Thaikitions of the step oa and p need both of
these locks, whereas to simulate the stegamly a positive instantiation of the right lock needs to be
consumed. By consuming the positive instantiation of tfiddek in an attempt to simulate the step on
0, the simulation of the step gmis ruled out, but the simulation of the step giis still possible. Since
either the simulation of the step @nor the simulation of the step apsucceeds, the simulation of the
step onp is not only blocked but ruled out. But the consumption of teantiation of the left lock does
not unambiguously decide between the remaining two sinounist The intermediate state that results
from consuming the instantiation of the left lock and repres a partial commitment is visualised in the
right graph above by the staRe;.

Partial commitments forbid a 1-to-1 mapping between thiestaf a source term and its translations
by a bisimulation. But, as shown in [16], partial commitnsedb not forbid to relate source terms and
their translations by coupled similarity.

Whether the consumption of a positive instantiation of & lizcan auxiliary step—does not change
the state of the term moduks—, is a partial commitment, or unambiguously marks a sinmutadf a
single source term step depends on the surrounding terpgarnot be determined without the context.
For simplicity we consider all steps that reduce a positigtantiation of a lock as simulation steps. Also
steps on variants of the channelisd, and¢’(X) are simulation steps, because they unambiguously mark
a simulation of a single source term step. All remaining stefithe decentralised encoding are auxiliary.

Definition 14 (Auxiliary and Simulation Steps)A stepT —1 T’ such thatiSe Hs. (§ =1 T is
called asimulation stepdenoted byl ——s T, if T — T’ reduces a positive instantiation of a lock or is
a step on a variant ofy, d, or ¢’(X).

Else the ste@ ——t T’ is called arauxiliary step denoted byl —— T".
Again let== denote the reflexive and transitive closure-6% and let==> £ ==+—"==. Since aux-
iliary steps do not introduce partial commitments, they dbahange the state modufe. The proof of
this lemma is very similar to the centralised case.
Lemma 15. T —— T’ implies T~ T’ for all target terms TT".

In contrast to the centralised encoding, the simulation ebarce term step in the decentralised
encoding can require more than a single simulation step aihthbe simulation step not unambiguously
refers to the simulation of a particular source term steg Jdrtial commitments described above forbid
operational correspondence, but the weaker variant peahing€] is satisfied. We call this variant weak
operational correspondence.

Definition 16 (Weak Operational Correspondence)
An encoding eng) : Zs — 7 is weakly operationally corresponding.r.t. ~s C @% if it is:
Complete:vS S. Se=-s S implies3T. (Y =1 T A (S) s T
Weakly Sound:vVS T. (9 =1 T implies3S, T". Se=sSAT =1 T/ A(S) ~es T’
The only difference to operational correspondence is thekermvariant of soundness that allows for

T to be an intermediate state that does not need to be relatedaarce term directly. Instead there has
to be a way froml' to someT’ such thafl’ is related to a source term.

Theorem 5. The encoding-) is weakly operational corresponding w.r.t. 4a

As in the encoding-], there is no infinite sequence of only auxiliary stepg3h Moreover each
simulation of a source term requires only finitely many siatioh steps (to consume the respective
positive instantiations of locks). Thyg) reflects divergence.
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Theorem 6. The encoding)-) reflects divergence.

The encoding function ensures tfj§} has an unguarded occurrence/aff Shas such an unguarded
occurrence. Operational correspondence again ensureS #mal (S) also answer the question for the
reachability ofv” in the same way.

Theorem 7. The encoding-) is success sensitive.
Similarly, a source term reaches a barb iff its translatesches the respective translated barb.
Theorem 8. For all Sc, it holds Sjc iff (S) |-

Weak operational correspondence does not suffice to edtablisimulation between source terms

and their translations. But, as proved[in/[18], Theorfém & félct thatx is success sensitive and respects
(translated) observables, Theorein 7, and Thedrem 8 implyvth S and [S] are (success sensitive,

(translated) barbs respecting, weak, reduction) coupieis, i.e., S~ ().
It remains to show, that:) indeed preserves distributability. Therefore we prove #tiablocking
parts of the encoding) refer to simulations of conflicting source term steps.

Theorem 9. The encodind-) preserves distributability.

6 Conclusions

We introduced two encodings from CSP into asynchronous Citthame passing and matching. Asin
[16] we had to encode the multiway synchronisation mechnaisCSP into binary communications and,
similarly to [16], we did so first using a centralised conipthat was then modified into a decentralised
controller. By doing so we were able to transfer the obsamatof [16] to the present case:

1. The centralised solution allows to prove a stronger cotimre between source terms and their
translations, namely by bisimilarity. Our decentralisetuson does not relate source terms and
their translations that strongly and we doubt that any deaksed solution can do so.

2. Nonetheless, decentralised solutions are possibleesgmed by the second encoding and they
still relate source terms and their translations in an aging way, namely by coupled similarity.

Thus as inl[156] we observed a trade-off betweentralisedout bisimilar solutions on the one-hand side
anddecentralisedbut only coupled similarsolutions on the other side.

More technically we showed here instead a trade-off betvoemtralised bubperationally corre-
spondingsolutions on the one-hand side amdakly operationally correspondirtgut decentralised solu-
tions on the other side. The mutual connection between bpesh correspondence and bisimilarity as
well as between weak operational correspondence and ebsiphdlarity is proved in[[18].

Both encodings make strict use of the renaming policy antslate into closed terms. Hence the
criterion name invariancas trivially satisfied in both cases. Moreover we showed bwh encodings
aresuccess-sensitiyeeflect divergenceand evenespect barbsv.r.t. to the standard source term (CSP)
barbs and a notion of translated barbs on the target. Theatisatl encoding-] additionally satisfies a
variant ofoperational correspondendéat is stricter than the variant proposed(inh [6]. The daedised
encoding(-) satisfiesweak operational correspondenes proposed i [6] andistributability preser-
vation as proposed in_[20]. Thus both encodings satisfy all of therg proposed in[[6] except for
compositionality. However in both cases the inner part igi@isly compositional and the outer part
only adds a fixed context.
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