
D. Gebler and K. Peters (Eds.): Combined Workshop on Expressiveness in
Concurrency and Structural Operational Semantics (EXPRESS/SOS 2016).
EPTCS 222, 2016, pp. 15–29, doi:10.4204/EPTCS.222.2

Higher-order Processes with Parameterization over Names
and Processes

Xian Xu ∗

East China University of Science and Technology, China

xuxian@ecust.edu.cn

Parameterization extends higher-order processes with the capability of abstraction and application
(like those in lambda-calculus). This extension is strict, i.e., higher-order processes equipped with
parameterization is computationally more powerful. This paper studies higher-order processes with
two kinds of parameterization: one on names and the other on processes themselves. We present
two results. One is that in presence of parameterization, higher-order processes can encode first-
order (name-passing) processes in a quite neat fashion, in contrast to the fact that higher-order pro-
cesses without parameterization cannot encode first-order processes at all. In the other result, we
provide a simpler characterization of the (standard) context bisimulation for higher-order processes
with parameterization, in terms of the normal bisimulation that stems from the well-known normal
characterization for higher-order calculus. These two results demonstrate more essence of the param-
eterization method in the higher-order paradigm toward expressiveness and behavioural equivalence.
keywords: Parameterization, Context bisimulation, Higher-order, First-order, Processes

1 Introduction

In concurrent systems, higher-order means that processes communicate by means of process-passing
(i.e., program-passing), whereas first-order means that processes communicate through name-passing
(i.e., reference-passing). Parameterization originates from lambda-calculus (which is itself of higher-
order nature), and enables processes, in a concurrent setting, to do abstraction and application in a way
similar to that of lambda-calculus. Say P is a higher-order process, then an abstraction 〈U〉P means
abstracting the variable U in P to obtain somewhat a function (like λU.P in terms of lambda-calculus),
and correspondingly an application (〈U〉P)〈K〉 means applying process K to the abstraction and obtain-
ing an instantiation P{K/U} (i.e., replacing each variable U in P with K, like (λU.P)K in terms of
lambda-calculus). There are basically two kinds of parameterization: parameterization on names and
parameterization on processes. In the former, U is a name variable and K is a concrete name. In the
latter, U is a process variable and K is a concrete process. Parameterization is a natural way to extend the
capacity of higher-order processes and this extension is strict, that is, the computational power strictly in-
creases with the help of parameterization [12]. In this paper, we study higher-order processes in presence
of parameterization.

Comparison between higher-order and first-order processes is a frequent topic in concurrency theory.
Such comparison, for example, asks whether higher-order processes can correctly express first-order
processes, or vice versa. It is well known that first-order processes can elegantly encode higher-order
processes [19,22]; the converse is however not quite the case. As the first issue, this paper addresses how
to encode first-order processes with higher-order processes (equipped with parameterization).
∗This work has been supported by project ANR 12IS02001 PACE and NSF of China (61261130589, 61472239, 61572318).

http://dx.doi.org/10.4204/EPTCS.222.2

16 Higher-order Processes with Parameterization

The very early work on using higher-order process to interpret first-order ones is contributed by
Thomsen [24], who proposed a prototype encoding of first-order processes with higher-order processes
with the relabelling operator (like that in CCS [16]). This encoding uses a gadget called wire to mimic the
function of a name in the higher-order setting, and essentially employs the relabelling to make the wires
work properly so as to fulfill the role of names. Due to the arbitrary ability of changing names (e.g.,
from global to local), the encoding has a correct operational correspondence (i.e., the correspondence
between the processes before and after the encoding), but is very hard to analyze for full abstraction
(i.e., the first-order processes are equivalent if and only if their encodings are; the ‘if only’ direction is
called soundness and the other direction is called completeness). Unfortunately, without the relabelling
operator, the basic higher-order process (which has the elementary operators including input, output,
parallel composition and restriction) is not capable of encoding first-order processes [25]. In the litera-
ture, several variants of higher-order processes are exploited to encode first-order processes. In [22], an
asynchronous higher-order calculus with parameterization on names is used to compile the asynchronous
localized π-calculus (a variant of the first-order π-calculus [17]). This encoding depends heavily on the
notions of ‘localized’ which means only the output capability of a name can be communicated during
interactions, and ‘asynchronous’ which means the output is non-blocking. Though technically a nice ref-
erence, intuitively because this variant of π-calculus is less expressive than the full π-calculus, it is not
very surprising that the higher-order processes with parameterization on names can interpret it faithfully,
i.e., fully abstract with respect to barbed congruence. Then in [28], we explore the encoding of the full
π-calculus using higher-order processes with parameterization on names. In that effort, we construct an
encoding that harnesses the idea of Thomsen’s encoding and show that it is complete. In [2], Bundgaard
et al. use the HOMER to translate the name-passing π-calculus. This translation is possible because a
HOMER process can, in a way quite different from parameterization, operates names in the continuation
processes (resources), and this allows flexibility so that names can be communicated in an intermediate
fashion. In [11], Kouzapas et al. propose fully abstract encodings concerning first-order processes and
session typed higher-order processes. Their encodings use session types to govern communications and
show that in the context of session types, first-order and higher-order processes are equally expressive.
This work is well related to those mentioned above (and that in this paper), though the context is quite
different (i.e., session typed processes).

Despite the extensive research on encoding first-order processes with (variant) higher-order pro-
cesses, the following question has remained open: Is there an encoding of first-order processes by the
higher-order processes with the capability of parameterization? This question is important in two as-
pects. One is that parameterization brings about the core of lambda-calculus to higher-order concurrency,
so it appears reasonable for such an extension to be able to express first-order processes which has long
been shown to be capable of expressing the lambda-calculus. Knowing how this can be achieved would
be interesting. The other is that the converse has a almost standard encoding method, i.e., encoding
variants of higher-order processes with first-order processes. Yet higher-order processes are still short
of an effective way to express first-order ones. Resolving this can also provide (technical) reference for
practical work beyond the encoding itself.

Closely related with the first issue on expressiveness, the second issue this paper deals with is the
characterization of bisimulation on higher-order processes. Bisimulation theory is a pivotal part of a
process model, including the higher-order models, concerning which the almost standard behavioral
equivalence is the context bisimulation [19]. The central idea of context bisimulation is that when com-
paring output actions, the transmitted process and the residual process (i.e., the process obtained after
sending a process) are considered at the same time, rather than separately (like in the applicative higher-
order bisimulation proposed by Thomsen [23,24]). For example (for simplicity we do not consider local

Xian Xu 17

names), if P and Q are context bisimilar and P aA−→P′ (i.e., P outputs A on a and becomes P′), then Q aB
==⇒Q′

(i.e., Q outputs B on a possibly involving some internal actions and becomes Q′), and for every (receiv-
ing) environment E[·], P′ |E[A] and Q′ |E[B] are still context bisimilar (here | denotes concurrency, and
E[A] means putting A in the environment E). However, in its original form, context bisimulation suffers
from inconvenience to use, because it calls for checking with regard to every possible receiving envi-
ronment. This leads to works on the simpler characterization, called normal bisimulation, of the context
bisimulation. The central idea of normal bisimulation, proposed by Sangiorgi [19, 22], is that instead of
checking with a general process in input and a general context in output, one only needs to comply with
the matching of some special process or context, specifically a class of terms called triggers. To meet
this challenge, a crucial so-called factorization theorem is used to circumvent technical difficulty. We
briefly explain how normal bisimulation is designed in the basic higher-order processes. In particular,
the factorization states the following property, where≈ct denotes context bisimulation, and m.P and m.P
are CCS-like prefixes in which the communicated contents are not important [22].

E[A]≈ct (m)(E[m.0] | !m.A)
One can clearly identify the reposition of the process A of interest, which in fact captures the core of
the property: move A to a new position as a repository, which in turn can be retrieved as many times
as needed in the original environment E, with the help of the pointer undertaken by the fresh channel m
(called trigger). Inspired by the factorization, normal bisimulation can be developed. We take the output
as an example (input is similar), and restriction operation in output is omitted for the sake of simplicity.
As stated above, context bisimulation requires the following chasing diagram, which is now extended
with an application of the factorization.

P ≈ct

aA
��

Q

aB
��

P′ |(m)(E[m.0] | !m.A) ≈ct P′ |E[A]
≈ct

P′ Q′ Q′ |E[B] ≈ct Q′ |(m)(E[m.0] | !m.B)

Since context bisimulation ≈ct is a congruence, one can cancel the common part of (the leftmost)
P′ |(m)(E[m.0] | !m.A) and (the rightmost) Q′ |(m)(E[m.0] | !m.B), and simply requires that P′ | !m.A and
Q′ | !m.B are related, without fearing losing any discriminating power. This in turn leads to the following
requirement in normal bisimulation (assuming R is a normal bisimulation).

P R

aA
��

Q

aB
��

P′ | !m.A

R

P′ Q′ Q′ | !m.B

Subsequent works attempt to extend the normal bisimulation to variants of higher-order processes.
In Sangiorgi’s initial work [19], normal bisimulation is also obtained for higher-order processes with
parameterization. That characterization , however, is made in the presence of first-order processes (i.e.,
name-passing), and thus not very convincing with regard to the inner complexity of context bisimulation
in presence of parameterization. In [26], we revisited this issue and show that in a purely higher-order
setting (viz., no name-passing at all), parameterization on processes does not deprive one of the conve-
nience of normal bisimulation. Although the idea is inspired by the original work of Sangiorgi, the proof
approach is more direct. In [14,15], Lenglet et al. study higher-order processes with passivation (i.e., the
process in the output position may evolve), and report a normal bisimulation for a sub-calculus without
the restriction operator, but that characterization has somewhat a different flavor, since the higher-order

18 Higher-order Processes with Parameterization

bisimulation [24] rather than the context bisimulation is taken. Though these works carry out insightful
research and give meaningful references, it is currently still not clear how to construct a simple charac-
terization of context bisimulation based on parameterization over names, and this raises the following
fundamental question: Does higher-order processes with parameterization on names have a normal
bisimulation? In the second part of this paper, we move further from [19, 26], and offer a normal bisim-
ulation for higher-order processes in the setting of parameterization over both names and processes.

Contribution In summary, our contribution of this work is as follows.

• We show that the extension with parameterization (on both names and processes) allows higher-
order processes to interpret first-order processes in a surprisingly concise yet elegant manner. Such
kind of encoding is of a somewhat dissimilar flavor, and moreover not possible in absence of pa-
rameterization. We give the detailed encoding strategy, and prove that it satisfies a number of
desired properties well-known in the field.
The idea of the encoding in this paper is quite different from our abovementioned work in [28],
where we build an encoding that allows parameterization merely on names (i.e., no parameteriza-
tion on processes). The soundness of that encoding is not very satisfying, which in a sense defeats
some purpose of the encoding, and this actually precipitates the work here.

• We establish the normal bisimulation, as an effectively simpler characterization of context bisim-
ulation, for higher-order processes with both kinds of parameterization. This normal bisimulation
extends those for higher-order processes without parameterization, particularly in the manipula-
tion of abstractions on names. As far as we are concerned, similar characterization has not been
reported before.
That the processes are purely higher-order (that is, without name-passing) improves the result
in [19], and articulates that the characterization based on normal bisimulation is a property inde-
pendent of first-order name-passing. Moreover, this does not contradict the argument in [26] that
there is little hope that normal bisimulation exists in higher-order processes with (only) parameter-
ization on names, because here the processes are capable of parameterization on processes as well
(though still higher-order).

Organization The remainder of this paper is organized as below. In Section 2, we introduce the calculi
and a notion of encoding used in this paper. In Section 3, we present the encoding from first-order
processes to higher-order processes with parameterization, and discuss its properties. In Section 4, we
define the normal bisimulation for higher-order processes with parameterization, and prove that it truly
characterizes context bisimulation. Section 5 concludes this work and point out some further directions.

2 Preliminary

In this section we present the basic definitions and notations used in this work.

2.1 Calculus π

The first-order (name-passing) pi-calculus, π , is proposed by Milner et al. [17]. For the sake of
simplicity, throughout the paper, names (ranged over by m,n,u,v,w) are divided into two classes: name
constants (ranged over by a,b,c,d,e) and name variables (ranged over by x,y,z) [3, 4, 6]. The grammar
is as below with the constructs having their standard meaning. We note that guarded input replication is
used instead of general replication, and this does not decrease the expressiveness [21] [7].

P,Q := 0
∣∣∣m(x).P

∣∣∣mn.P
∣∣∣(c)P ∣∣∣P |Q ∣∣∣ !m(x).P

Xian Xu 19

A name constant a is bound (or local) in (a)P and free (or global) otherwise. A name variable x is
bound in a(x).P and free otherwise. Respectively fn(·),bn(·),n(·), fnv(·),bnv(·),nv(·) denote free name
constants, bound name constants, names, free name variables, bound name variables, and name variables
in a set of processes. A name is fresh if it does not appear in any process under discussion. By default,
closed processes are considered, i.e., those having no free variables. As usual, here are a few derived
operators: a(d).P def

= (d)ad.P, a.P def
= a(x).P (x /∈ f v(P)), a.P def

= a(d).P (d /∈ f n(P)); τ.P def
= (a)(a.P |a.0)

(a fresh). A trailing 0 process is usually omitted. We denote tuples by a tilde. For tuple ñ: |ñ| denotes
its length; mñ denotes incorporating m. Multiple restriction (c1)(c2) · · ·(ck)E is abbreviated as (c̃)E.
Substitution P{n/m} is a mapping that replaces m with n in P while keeping the rest unchanged. A
context C is a process with some subprocess replaced by the hole [·], and C[A] is the process obtained by
filling in the hole by A.

The semantics of π is defined by the LTS (Labelled Transition System) below.

a(x).P
a(b)−−→P{b/x} ab.P ab−→P !a(x).P

a(b)−−→P{b/x}| !a(x).P
P λ−→P′

(c)P λ−→P′
c 6∈n(λ)

P ac−→P′

(c)P
a(c)−−→P′

c 6=a P λ−→P′

P |Q λ−→P′ |Q
bn(λ)∩ f n(Q)= /0 P

a(b)−−→P′ Q ab−→Q′

P |Q τ−→P′ |Q′
P

a(b)−−→P′ Q
a(b)−−→Q′

P |Q τ−→(b)(P′ |Q′)
Actions, ranged over by λ ,α , comprise internal move τ , and visible ones: input (a(b)), output (ab) and
bound output (a(c)). We note that actions occur only on name constants, and a communicated name
is also a constant. We denote by ≡ the standard structural congruence [17] [22], which is the smallest
relation satisfying the monoid laws for parallel composition, commutative laws for both composition
and restriction, and a distributive law (c)(P |Q) ≡ (c)P |Q (if c /∈ f n(Q)). We use ==⇒ for the reflexive

transitive closure of τ−→ , λ
==⇒ for ==⇒ λ−→==⇒, and λ̂

==⇒ for λ
==⇒ if λ is not τ , and ==⇒ otherwise. A process

P is divergent, denoted P⇑, if it has an infinite sequence of τ actions.
Throughout the paper, we use the following standard notion of ground bisimulation [4, 17, 22].

Definition 1. A ground bisimulation is a symmetric relation R on π processes s.t. whenever PR Q

the following property holds: If P α−→P′ where α is a(b), ab, a(b), or τ , then Q α̂
==⇒Q′ for some Q′ and

P′R Q′. Ground bisimilarity, ≈g, is the largest ground bisimulation.

We denote by ∼g the strong ground bisimilarity (i.e., replacing α̂
==⇒ with α−→ in the definition). It is

well-known that≈g is a congruence [4,22], and coincides with the so-called local bisimilarity as defined
below [5, 25].
Definition 2. Local bisimilarity≈l is the largest symmetric local bisimulation relation R on π processes

such that: (1) if P λ−→P′, λ is not bound output, then Q λ̂
==⇒Q′ and P′R Q′; (2) if P

a(b)−−→P′, then Q
a(b)
==⇒Q′,

and for every R, (b)(P′ |R)R (b)(Q′ |R).

2.2 Calculus ΠD,d

For the sake of conciseness, we first define the basic higher-order calculus and then the extension
with parameterizations.

2.2.1 Calculus Π

The basic higher-order (process-passing) calculus, Π, is defined by the following grammar in which
the operators have their standard meaning. We denote by X ,Y,Z process variables.

T,T ′ ::= 0
∣∣∣X ∣∣∣u(X).T

∣∣∣uT ′.T
∣∣∣T |T ′ ∣∣∣(c)T ∣∣∣ !u(X).T

∣∣∣ !uT ′.T

20 Higher-order Processes with Parameterization

We use a.0 for a(X).0, a.0 for a0.0, τ.P for (a)(a.P |a.0), and sometimes a[A].T for aA.T . Like π ,
a tilde represents a tuple. We reuse the notations for names in π and additionally use fpv(·), bpv(·),
pv(·) respectively to denote free process variables, bound process variables and process variables in a set
of processes. Closed processes are those having no free variables. A higher-order substitution T{A/X}
replaces variable X with A and can be extended to tuples in the usual way. E[X̃] denotes E with (possibly)
variables X̃ , and E[Ã] stands for E{Ã/X̃}. The guarded replications used in the grammar can actually be
derived [13, 24], and we make them primitive for convenience. The semantics of Π is as below.

a(X).T
a(A)−−→T{A/X} aA.T aA−→T

T λ−→T ′

(c)T λ−→(c)T ′
c 6∈n(λ) T λ−→T ′

T |T1
λ−→T ′ |T1 !aA.T aA−→T | !aA.T

T
(c̃)a[A]−−−−→T ′

(d)T
(d)(c̃)a[A]−−−−−→T ′

d∈ f n(A)−{c̃,a}
T1

a(A)−−→T ′1,T2
(c̃)a[A]−−−−→T ′2

T1 |T2
τ−→(c̃)(T ′1 |T ′2) !a(X).T

a(A)−−→T{A/X}| !a(X).T

We denote by α,λ the actions: internal move (τ), input (a(A)), output ((c̃)aA) in which c̃ is some local
names carried by A during the output. We always assume no name capture with resort to α-conversion.

The notations ==⇒, λ
==⇒ and λ̂

==⇒ are similar to those in π . We also reuse ≡ for the structural congruence
in Π (and also ΠD,d to be defined shortly) [22], and this shall not raise confusion under specific context.

2.2.2 Calculus ΠD,d

Parameterization extends Π with the syntax and semantics below. Symbol Ui (respectively, Ki) (i =
1, ...,n) is used as a meta-parameter of an abstraction (respectively, meta-instance of an application), and
stands for a process variable or name variable (respectively, a process or a name).

Extension of syntax: 〈U1,U2, ...,Un〉T
∣∣∣ T ′〈K1,K2, ...,Kn〉

Extension of semantics: Q≡ P P λ−→P′ P′ ≡ Q′

Q λ−→Q′

Extension of structural congruence (≡): F〈K̃〉 ≡ T{K̃/Ũ} where F def
= 〈Ũ〉T and |Ũ |=|K̃|

We denote by 〈U1,U2, ...,Un〉T an n-ary abstraction in which U1,U2, ...,Un are the parameters to be
instantiated during the application T ′〈K1,K2, ...,Kn〉 in which the parameters are replaced by instances
K1,K2, ...,Kn. This application is modelled by an extensional rule for structural congruence as above,
in combination with the usual LTS rule for structural congruence as well, so as to make the process
engaged in application evolve effectively. The condition |Ũ |=|K̃| requires that the parameters and the
instantiating objects should be equal in length.

Now parameterization on process is obtained by taking Ũ , K̃ as X̃ , T̃ ′ respectively, and parameter-
ization on names is obtained by taking Ũ , K̃ as x̃, ũ respectively. The corresponding abstractions are
sometimes called process abstraction and name abstraction respectively. For convenience, names are
handled in the same way as that in π (so are the related notations). We denote by ΠD,d the calculus Π

extended with both kinds of parameterizations. Calculus ΠD,d can be made more precise with the help
of a type system [19] which however is not important for this work and not presented. We note that in
〈U1,U2, ...,Un〉T , variables U1,U2, ...,Un are bound.

Throughout the paper, we reply on the following notion of context bisimulation [19, 20].

Definition 3. A symmetric relation R on ΠD,d processes is a context bisimulation, if PR Q implies the

following properties: (1) if P α−→P′ and α is a(A) or τ , then Q α̂
==⇒Q′ for some Q′ and P′R Q′;

(2) if P
(c̃)aA−−−→P′ and A is a process abstraction or name abstraction or not an abstraction, then Q

(d̃)aB
===⇒Q′

Xian Xu 21

for some B that is accordingly a process abstraction or name abstraction or not an abstraction, and
moreover for every E[X] s.t. {c̃, d̃}∩ f n(E) = /0 it holds that (c̃)(E[A] |P′) R (d̃)(E[B] |Q′). Context
bisimilarity, written ≈ct , is the largest context bisimulation.

We note that the matching for output in context bisimulation is required to bear the same kind of
communicated process as compared to the simulated action. Relation ∼ct denotes the strong context
bisimilarity. As is well-known, ≈ct is a congruence [19, 20].

2.3 A notion of encoding
We define a notion of encoding in this section. We assume a process model L is a triplet (P,−→ ,≈),

where P is the set of processes, −→ is the LTS with a set A of actions, and≈ is a behavioral equivalence.
Given Li

def
= (Pi,−→ i,≈i) (i=1,2), an encoding from L1 to L2 is a function [[·]] : P1 −→P2 that

satisfies some set of criteria. Notation [[P1]] stands for the image of the L1-processes inside L2 under
the encoding. It should be clear that [[P1]] ⊆P2. We use ≈̇2 to denote the behavioural equivalence ≈2
restricted to [[P1]] [10]. The following criteria set (Definition 4) used in this paper stems from [12] (the
variant [12] provides is based on [8]). As is known, encodability enjoys transitivity [12]. We will show
that the encoding in Section 3 satisfies all the criteria in Definition 4 except adequacy (1a).
Definition 4 (Criteria for encodings). Static criteria: (1) Compositionality. For any k-ary operator
op of L1, and all P1, ...,Pk ∈P1, [[op(P1, ...,Pk)]] = Cop[[[P1]], ..., [[Pk]]] for some (multihole) context
Cop[· · ·] ∈P2;
Dynamic criteria: (1a) Adequacy. P ≈1 P′ implies [[P]] ≈2 [[P′]]. This is also known as soundness.
The converse is known as completeness; (1b) Weak adequacy (or weak soundness). P ≈1 P′ implies
[[P]]≈̇2[[P′]]; (2) Divergence-reflecting. If [[P]] diverges, so does P.

Adequacy (1a) obviously entails weak adequacy (1b), since ≈2 allows more processes in the target
model L2 (thus more variety of contexts). Yet weak adequacy is still useful because it may be too strong
if one requires the encoding process to be compatible with all kinds of contexts in the target model.
For instance, in order to achieve first-order interactions in a higher-order target model, it appears quite
demanding to require equivalence under all kinds of input because the target higher-order model may
have more powerful computation ability (so it can feed a much involved input). So sometimes using
limited contexts in the target model may be sufficient to meet the goal of the encoding.

It is worthwhile to note that the criteria are short of those for operational correspondence. Although
generally soundness and completeness appear not very informative in absence of operational correspon-
dence (and the others) [9, 18], arguably we make this choice in this work out of the following consid-
eration. The criteria for operational correspondence used in [8], though proven useful in many models,
appear not quite convenient when discussing encodings into higher-order models [12], since (for exam-
ple) the case of input can be hard to comply with the criteria due to the increased complexity in the
environment (namely in the context of the target higher-order model). After all, here it seems more im-
portant to have the soundness and completeness properties eventually (w.r.t. the canonical bisimulation
equivalences in the source and target models), likely in a different manner of operational correspon-
dence. Notwithstanding, we will discuss the operational correspondence of the encoding in Section 3.
Moreover, as will be seen, the concrete operational correspondence in there somehow strengthens the
criteria of operational correspondence (and related concepts) used in [8, 12] (in [8] the criteria are not
action-labelled and thus the notion of success sensitiveness is contrived; in [12] a labelled variant criteria
is posited to its purpose). Beyond the scope of this paper, it would be intriguing to examine the possi-
bility of formally pinning down some variant criteria of operational correspondence having vantage for
higher-order (process) models.

22 Higher-order Processes with Parameterization

3 Encoding π into ΠD,d

We show that π can be encoded in ΠD,d .

3.1 The encoding

We have the encoding defined as below (being homomorphism on the other operators, except that the
encoding of input guarded replication is defined as J!m(x).PK def

=!Jm(x).PK).

Jm(x).PK def
= m(Y).Y 〈〈x〉JPK〉

Jmn.QK def
= m[〈Z〉(Z〈n〉)].JQK

The encoding above uses both name parameterization and process parameterization. Typically one can
assume that Y and Z are fresh for simplicity, but this is not essential, because these variables are bound
and can be α-converted whenever necessary, and moreover the encoded first-order process does not have
higher-order variables. Specifically, the encoding of an output ‘transmits’ the name to be sent (i.e., n)
in terms of a process parameterization (i.e., 〈Z〉(Z〈n〉)) that, once being received by the encoding of an
input, is instantiated by a name-parameterized term (i.e., 〈x〉JPK), which then can apply n on x in the
encoding of P, thus fulfilling ‘name-passing’. Below we give an example. Suppose P def

= (c)(a(x).xc.P1)

and Q def
= (d)(ad.d(y).Q1). So

P |Q τ−→ (d)((c)(dc.P1{d/x}) |d(y).Q1)
τ−→ (dc)(P1{d/x}|Q1{c/y})

The encoding and interactions of JP |QK are as below. For clarity, we use bold font to indicate the
evolving part during a communication.

JP |QK ≡ (c)(a(Y).Y 〈〈x〉Jxc.P1K〉) | (d)(a[〈Z〉(Z〈d〉)].Jd(y).Q1K)
τ−→ (d)

(
(c)((((〈ZZZ〉(((ZZZ〈ddd〉))))))〈〈xxx〉Jxccc...PPP111K〉) | Jd(y).Q1K

)
≡ (d)

(
(c)(Jxccc...PPP111K{ddd///xxx}) | Jd(y).Q1K

)
≡ (d)

(
(c)((((x[[[〈ZZZ〉(((ZZZ〈ccc〉)))]]]...JPPP111K))){ddd///xxx}) | d(Y).Y 〈〈y〉JQ1K〉

)
≡ (d)

(
(c)((((d[[[〈ZZZ〉(((ZZZ〈ccc〉)))]]]...JPPP111K{ddd///xxx})))) | d(Y).Y 〈〈y〉JQ1K〉

)
τ−→ (dc)

(
JP1K{d/x} | (((〈ZZZ〉(((ZZZ〈ccc〉))))))(((〈〈yyy〉JQQQ111K〉)))

)
≡ (dc)

(
JP1K{d/x} | JQ1K{c/y}

)
≡ (dc)

(
JP1{d/x}K | JQ1{c/y}K

)
Apparently the encoding is compositional, preserves the (free) names, and moreover divergence-

reflecting (since the encoding does not introduce any extra internal action), as stated in the follow-up
lemma whose proof is a standard induction.

Lemma 5. Assume P is a π process. The encoding above from π to ΠD,d is compositional and divergence-
reflecting; moreover JPK{n/m} ≡ JP{n/m}K.

3.2 Operational correspondence

We have the following properties clarifying the correspondence of actions before and after the en-
coding. To delineate some case of the operational correspondence in terms of certain special input, i.e., a

Xian Xu 23

trigger, we define TrD
m

def
= 〈Z〉mZ in which m is assumed to be fresh (it will also be used in Section 4, but

here simply allows for more flexible characterization of the operational correspondence). We note that
sometimes existential quantification is omitted when it is clear from context.

Lemma 6. Suppose P is a π process. (1) If P
a(b)−−→P′, then JPK

a(〈Z〉(Z〈b〉))−−−−−−−→T and T ∼ct JP′K; (2) If

P
a(b)−−→P′, then JPK

a(TrD
m)−−−−→T and (m)(T | !m(Y).Y 〈b〉)≈ct JP′K; (3) If P ab−→P′, then JPK

a[〈Z〉(Z〈b〉)]−−−−−−→T and

T ∼ct JP′K; (4) If P
a(b)−−→P′, then JPK

(b)a[〈Z〉(Z〈b〉)]−−−−−−−−→T and T ∼ct JP′K; (5) If P τ−→P′, then JPK τ−→T and
T ∼ct JP′K.

The converse is as below.

Lemma 7. Suppose P is a π process. (1) If JPK
a(〈Z〉(Z〈b〉))−−−−−−−→T , then P

a(b)−−→P′ and T ∼ct JP′K; (2) If

JPK
a(TrD

m)−−−−→T , then P
a(b)−−→P′ and (m)(T | !m(Y).Y 〈b〉)≈ct JP′K; (3) If JPK

a[〈Z〉(Z〈b〉)]−−−−−−→T , then P ab−→P′ and

T ∼ct JP′K; (4) If JPK
(b)a[〈Z〉(Z〈b〉)]−−−−−−−−→T , then P

a(b)−−→P′ and T ∼ct JP′K; (5) If JPK τ−→T , then P τ−→P′ and
T ∼ct JP′K.

Lemma 6 and Lemma 7 can be proven in a similar fashion (details can be found in [27]), and
moreover be lifted to the weak situation. That is, if one replaces strong transitions (single arrows) with
weak transitions (double arrows), the results still hold (∼ct retains because the encoding does not bring
any extra internal action); see [19,22] for a reference. We will however simply refer to these two lemmas
in related discussions.

3.3 Soundness

In this section, we discuss the soundness of the encoding. First of all, it is unfortunate that the
soundness of the encoding is not true. To see this, take the processes R1 and R2 below. We recall that the
CCS-like prefixes are defined as usual, i.e., a.P def

= a(x).P (x /∈ n(P)), a.P def
= (c)ac.P (c /∈ n(P)); sometimes

we trim the trailing 0, e.g., a stands for a.0 and a for a.0.

R1
def
= (b)(a.b |b.c) R2

def
= (b)(a.b |b.c |b.c)

Obviously, R1 and R2 are ground bisimilar. Now we examine their encodings.

JR1K ≡ (b)(a(Y).Y 〈〈x〉JbK〉 |b(Y).Y 〈〈x〉JcK〉)
JR2K ≡ (b)(a(Y).Y 〈〈x〉JbK〉 |b(Y).Y 〈〈x〉JcK〉 |b(Y).Y 〈〈x〉JcK〉)

We show that JR1K and JR2K are not context bisimilar. Define T def
= (m)(a[〈Z〉mZ] |m(X).(X〈d〉 |X〈d〉).

Then (a)(JR1K |T) and (a)(JR2K |T) can be distinguished. The latter can fire two output on c, whereas
the former cannot, as shown below.

(a)(JR1K |T)
τ−→ ∼ct (m)((b)(m[〈x〉JbK] |b(Y).Y 〈〈x〉JcK〉) |m(X).(X〈d〉 |X〈d〉))
τ−→ ∼ct (b)(b(Y).Y 〈〈x〉JcK〉 |JbK |JbK)
≡ (b)(b(Y).Y 〈〈x〉JcK〉 |(e)b[〈Z〉(Z〈e〉)] |JbK)

τ−→ ∼ct (b)(JcK |JbK)
≡ (b)((f)c[〈Z〉(Z〈 f 〉)] |JbK)

(f)c[〈Z〉(Z〈 f 〉)]−−−−−−−−→ ∼ct 0

24 Higher-order Processes with Parameterization

(a)(JR2K |T)
τ−→ ∼ct (m)((b)(m[〈x〉JbK] |b(Y).Y 〈〈x〉JcK〉 |b(Y).Y 〈〈x〉JcK〉) |m(X).(X〈d〉 |X〈d〉))
τ−→ ∼ct (b)(b(Y).Y 〈〈x〉JcK〉 |b(Y).Y 〈〈x〉JcK〉 |JbK |JbK)
≡ (b)(b(Y).Y 〈〈x〉JcK〉 |b(Y).Y 〈〈x〉JcK〉 |(e)b[〈Z〉(Z〈e〉)] |(e)b[〈Z〉(Z〈e〉)])

τ−→ τ−→ ∼ct JcK |JcK
≡ (f)c[〈Z〉(Z〈 f 〉)] |(f)c[〈Z〉(Z〈 f 〉)]

(f)c[〈Z〉(Z〈 f 〉)]−−−−−−−−→ ∼ct (f)c[〈Z〉(Z〈 f 〉)]
(f)c[〈Z〉(Z〈 f 〉)]−−−−−−−−→ ∼ct 0

Intuitively, the reason general soundness does not hold is that context bisimulation is somewhat more
discriminating in the target higher-order calculus, which can have more flexibility when dealing with
blocks of processes in presence of parameterization (e.g., some subprocess can be sent as needed). This
is however beyond the capability of a first-order process.

In spite of the falsity of soundness in general, we can have a somewhat weaker yet still sensible
soundness. Remember that our main goal is to achieve first-order concurrency in the higher-order model,
so maybe we do not need to be so demanding when coping with the encodings of first-order processes,
that is, when testing an encoding process with an input, one can focus on those representing a name
instead of a general one. Then it is expected that soundness will hold under this assumption. Fortunately,
this is indeed true.

We have the following lemma stating the weak soundness of the encoding. Recall that ≈̇ct is the ≈ct

restricted to the image of the encoding (i.e., the processes in the target model that have reverse-image
w.r.t. the encoding).
Lemma 8. Suppose P is a π process. Then P≈g Q implies JPK≈̇ct JQK.

Proof. We show that R
def
= {(JPK,JQK) |P ≈g Q}∪ ≈̇ct is a context bisimulation up-to context and ∼ct

(we refer the reader to, for example, [1, 22] and the references therein for the up-to proof technique for
establishing bisimulations; we note that using ∼ct here is sufficient since it is stronger than ∼̇ct , i.e., ∼ct

restricted to the image of the encoding).
Suppose JPKR JQK. There are several cases, where Lemma 6 and Lemma 7 play an important part.

• JPK
a(〈Z〉(Z〈b〉))
=======⇒T . By Lemma 7, P

a(b)
==⇒P′ and T ∼ct JP′K. Because P≈g Q, we know that Q

a(b)
==⇒Q′

≈g P′ and thus JP′KR JQ′K. Then by Lemma 6, JQK
a(〈Z〉(Z〈b〉))
=======⇒T ′ and T ′ ∼ct JQ′K. So we have

T ∼ct JP′KR JQ′K∼ct T ′.

• JPK
a[(b)〈Z〉(Z〈b〉)]
========⇒T . By Lemma 7, P

a(b)
==⇒P′ and T ∼ct JP′K. Because P ≈g Q, we know that

Q
a(b)
==⇒Q′ ≈g P′ and thus JP′KR JQ′K. Then by Lemma 6, JQK

(b)a[〈Z〉(Z〈b〉)]−−−−−−−−→T ′ and T ′ ∼ct JQ′K.
Consider the following pair

(b)(T |E[A]) , (b)(T ′ |E[A])

in which b /∈ fn(E[X]) and A def
= 〈Z〉(Z〈b〉). So

(b)(T |E[A])∼ct (b)(JP′K |E[A]) , (b)(JQ′K |E[A])∼ct (b)(T ′ |E[A])

By setting a context C def
= (b)([·] |E[A]), we have the following pair in which JP′KR JQ′K.

C[JP′K] , C[JQ′K]

This suffices to close this case in terms of the up-to context requirement.

Xian Xu 25

• JPK
a[〈Z〉(Z〈b〉)]
=======⇒T . This case is similar to the last case.

• JPK τ
==⇒T . By Lemma 7, P τ

==⇒P′ and T ∼ct JP′K. From P≈g Q, we know Q==⇒Q′ ≈g P′ and thus
JP′KR JQ′K. Then by Lemma 6, JQK==⇒T ′ and T ′ ∼ct JQ′K. So we have T ∼ct JP′KR JQ′K∼ct T ′.

3.4 Completeness

The completeness of the encoding is stated in the lemma below. We note that completeness is true
even if we do not constrain the domain to be the image of the encoded π processes.
Lemma 9. Suppose P is a π process. Then JPK≈ct JQK implies P≈g Q.

Proof. We show that R
def
= {(P,Q) |JPK≈ct JQK}∪ ≈g is a local bisimulation. Suppose PR Q. There are

several cases.

• P
a(b)
==⇒P′. By Lemma 6, JPK

a(〈Z〉(Z〈b〉))
=======⇒T and T ∼ct JP′K. Because JPK ≈ct JQK, we know that

JQK
a(〈Z〉(Z〈b〉))
=======⇒T ′ ≈ct T . By Lemma 7, Q

a(b)
==⇒Q′ and T ′ ∼ct JQ′K. Thus we have JP′K ∼ct T ≈ct

T ′ ∼ct JQ′K, so P′R Q′, which fulfills this case.

• P ab
==⇒P′. By Lemma 6, JPK

a[〈Z〉(Z〈b〉)]
=======⇒T and T ∼ct JP′K. Since JPK≈ct JQK, we know that JPK must

be able to be matched by JQK
a[〈Z〉(Z〈b〉)]
=======⇒T ′, because JQK can only output such shape of processes,

and if the matching is, e.g., JQK
a[〈Z〉(Z〈c〉)]
=======⇒T ′′ then a context can be designed to distinguish between

JPK and JQK. So for every E[X], we have T |E[〈Z〉(Z〈b〉)] ≈ct T ′ |E[〈Z〉(Z〈b〉)]. By Lemma 7,

Q ab
==⇒Q′ and T ′ ∼ct JQ′K. So we know

JP′K |E[〈Z〉(Z〈b〉))≈ct JQ′K |E[〈Z〉(Z〈b〉)] (1)

We want to show
P′RQ′ that is, JP′K≈ct JQ′K (2)

By setting E to be 0 in (1), we obtain (2), and thus close this case.

• P
a(b)
==⇒P′. By Lemma 6, JPK

(b)a[〈Z〉(Z〈b〉)]
========⇒T and T ∼ct JP′K. Since JPK≈ct JQK, we know that JPK

must be able to be matched by JQK
(b)a[〈Z〉(Z〈b〉)]
========⇒T ′ (apply α-conversion if needed). This is because

JQK can only emit such form of processes, and moreover if the matching does not have a bound

name (e.g., JQK
a[〈Z〉(Z〈c〉)]
=======⇒T ′′) then one can design a context to distinguish JPK and JQK. So for

every E[X] s.t. b /∈ fn(E), we have (b)(T |E[〈Z〉(Z〈b〉)])≈ct (b)(T ′ |E[〈Z〉(Z〈b〉)]). By Lemma 7,

Q
a(b)
==⇒Q′ and T ′ ∼ct JQ′K. So we know

(b)(JP′K |E[〈Z〉(Z〈b〉)])≈ct (b)(JQ′K |E[〈Z〉(Z〈b〉)]) (3)

In terms of local bisimulation [5, 25], for every π process R, we need to show

(b)(P′ |R)R (b)(Q′ |R) i.e., (b)(JP′K |JRK)≈ct (b)(JQ′K |JRK) (4)

Comparing equations (3) and (4), one can see that the different part is E[〈Z〉(Z〈b〉)] and JRK. Since
the inverse of the encoding is a surjection, if all possible forms of E is itinerated, JRK must be hit
somewhere (i.e., some choice of E makes E[〈Z〉(Z〈b〉)] and JRK equal). Therefore we infer that
(4) is true and thus complete this case.

26 Higher-order Processes with Parameterization

• P τ
==⇒P′. By Lemma 6, JPK τ

==⇒T and T ∼ct JP′K. Because JPK≈ct JQK, we know JQK==⇒T ′ ≈ct T .
Then by Lemma 7, Q==⇒Q′ and T ′ ∼ct JQ′K. So we have P′R Q′ because JP′K ∼ct T ≈ct T ′ ∼ct

JQ′K.

4 Normal bisimulation for ΠD,d

In this section, we show that context bisimulation in ΠD,d can be characterized by the much simpler
normal bisimulation.

The factorization theorem

Below is the factorization theorem in presence of parameterization on names (and on processes as
well). We recall that≡ is the structural congruence. As explained in Section 1, the upshot of establishing
the factorization theorem is to find the right small processes so-called triggers. Here we have three kinds
of triggers, to tackle different kinds of parameterizations. In particular, we stipulate that the triggers are
as follows: Trd

m
def
= 〈z〉m[〈Y 〉(Y 〈z〉)], TrD

m
def
= 〈Z〉mZ, and Trm

def
= m. These triggers are of somewhat a

similar flavor but quite different in shape, with the aim at factorizing out respectively a name abstraction,
a process abstraction and a non-abstraction process in certain context. The first trigger, i.e., Trd

m, is the
main contribution of this work, whereas the other two are inherited from [26] and [19] respectively.

Theorem 10 (Factorization). Given E[X] of ΠD,d , it holds for every A, fresh m (i.e., m /∈ f n(E,A)) that

(1) if E[X] is not an abstraction, then

(i) if A is not an abstraction, then E[A]≈ct (m)(E[Trm] | !m.A);
(ii) if A is an abstraction on process, then E[A]≈ct (m)(E[TrD

m] | !m(Z).A〈Z〉);
(iii) if A is an abstraction on name, then E[A]≈ct (m)(E[Trd

m] | !m(Z).Z〈A〉).

(2) else if E[X] is an abstraction, i.e., E[X] ≡ 〈̃U〉E ′ for some non-abstraction E ′ (here 〈̃U〉 denotes
the abstractions prefixing E ′), then

(i) if A is not an abstraction, then E[A]≈ct 〈̃U〉((m)(E ′[Trm] | !m.A));

(ii) if A is an abstraction on process, then E[A]≈ct 〈̃U〉((m)(E ′[TrD
m] | !m(Z).A〈Z〉));

(iii) if A is an abstraction on name, then E[A]≈ct 〈̃U〉((m)(E ′[Trd
m] | !m(Z).Z〈A〉)).

In Theorem 10, the clause (i) of (1) and (2) is actually Sangiorgi’s seminal work [19]. The clause
(ii) of (1) and (2) is analyzed in [26]. The clause (iii) of (1) and (2), which depicts the factorization for
abstraction on names, can be discussed through a technical routine almost the same as (ii). With regard
to more details we refer the reader to [19, 22, 26].

The method of trigger (including the technical approach) is well-developed in the field, due to the
fundamental framework by Sangiorgi [22]. So the key to establishing factorization for processes allowing
abstraction on names is the trigger, which is not known for a long time in contrast to the cases of
abstraction on processes and that without abstractions. Once a right trigger is found, the rest of discussion
is then almost standard. Below we give an example of the factorization concerning abstraction on names.
Example The basic idea of factorization concerning abstraction on names can be illustrated in the fol-
lowing example in which m is fresh (i.e., not in A〈d〉).

A〈d〉 ≈ct (m)((〈z〉m[〈Y 〉(Y 〈z〉)])〈d〉 | m(Z).Z〈A〉) ≡ (m)(m[〈Y 〉(Y 〈d〉)] | m(Z).Z〈A〉)

Xian Xu 27

For example, if A is 〈x〉xb, then A〈d〉 ≡ db, and

A〈d〉 ≈ct (m)(m[〈Y 〉(Y 〈d〉)] | m(Z).Z〈A〉) ≈ct (m)((〈Y 〉(Y 〈d〉))〈A〉) ≡ A〈d〉 ≡ db

Normal bisimulation for ΠD,d

Below is the definition of normal bisimulation whose clauses are designed with regard to the factor-
ization theorem. We recall that Trm

def
= m, TrD

m
def
= 〈Z〉mZ, and Trd

m
def
= 〈z〉m[〈Y 〉(Y 〈z〉)].

Definition 11. A symmetric binary relation R on closed processes of ΠD,d is a normal bisimulation, if
whenever PR Q the following properties hold:

1. If P
a(Trm)−−−−→P′ (m is fresh w.r.t. P and Q), then Q

a(Trm)
====⇒Q′ for some Q′ s.t. P′R Q′;

2. If P
a(TrD

m)−−−−→P′ (m is fresh w.r.t. P and Q), then Q
a(TrD

m)====⇒Q′ for some Q′ s.t. P′R Q′;

3. If P
a(Trd

m)−−−−→P′ (m is fresh w.r.t. P and Q), then Q
a(Trd

m)====⇒Q′ for some Q′ s.t. P′R Q′;

4. If P
(c̃)aA−−−→P′ and A is not an abstraction, then Q

(d̃)aB
===⇒Q′ for some d̃,Q′ and B that is not an ab-

straction, and it holds that (m is fresh) (c̃)(P′ | !m.A) R (d̃)(Q′ | !m.B).

5. If P
(c̃)aA−−−→P′ and A is an abstraction on process, then Q

(d̃)aB
===⇒Q′ for some d̃,Q′ and B that is an

abstraction on process, and it holds that (m is fresh) (c̃)(P′ | !m(Z).A〈Z〉)R (d̃)(Q′ | !m(Z).B〈Z〉).

6. If P
(c̃)aA−−−→P′ and A is an abstraction on name, then Q

(d̃)aB
===⇒Q′ for some d̃,Q′ and B that is an

abstraction on name, and it holds that (m is fresh) (c̃)(P′ | !m(Z).Z〈A〉) R (d̃)(Q′ | !m(Z).Z〈B〉).

7. If P τ−→P′, then Q==⇒Q′ for some Q′ s.t. P′R Q′;
Process P is normal bisimilar to Q, written P ≈nr Q, if PR Q for some normal bisimulation R. Relation
≈nr is called normal bisimilarity, and is a congruence (see [19] for a reference). The strong version of
≈nr is denoted by ∼nr .

Coincidence between normal bisimilarity and context bisimilarity in ΠD,d

Now we have the following theorem. The detailed proof is referred to [27].
Theorem 12. In ΠD,d , normal bisimilarity coincides with context bisimilarity; that is, ≈nr =≈ct .

5 Conclusion

In this paper, we have exhibited a new encoding of name-passing in the higher-order paradigm that
allows parameterization, and a normal bisimulation in that setting as well. In the former, we demonstrate
the conformance of the encoding to the well-established criteria in the literature. In the latter, we prove
the coincidence between normal and context bisimulation by pinpointing how to factorize an abstraction
on some name. The encoding of this work is inspired by the one proposed by Alan Schmitt during the
communication concerning another work. That encoding, as given below, somewhat swaps the roles
of input and output and treats a(x).P somehow as a.〈x〉P (like those calculi admitting abstractions and
concretions [19]).

Ja(x).PK def
= a[〈x〉JPK]

Jab.QK def
= a(Y).(Y 〈b〉 |JQK)

28 Higher-order Processes with Parameterization

From the angle of achieving first-order interaction, the encoding strategy above is truly interesting. How-
ever, it appears not to satisfy some usual operational correspondence (say, in [8] or [12]), and full ab-
straction is not quite clear. Based on the results in this paper, it is tempting to expect that this encoding
have some (nearly) same properties, and this is worthwhile for more investigation.

The results of this paper can be dedicated to facilitate further study on the expressiveness of higher-
order processes. The following questions, among others, are still open: whether π can be encoded in a
higher-order setting only allowing parameterization on processes; whether there is a better encoding of
π than the one in [28], using higher-order processes only capable of parameterization on names; whether
Πd afford a normal-like characterization of context bisimulation.

Acknowledgements We thank the anonymous referees for their useful comments on this article.

References

[1] F. Bonchi, D. Petrisan, D. Pous & J. Rot (2015): Lax Bialgebras and Up-To Techniques for
Weak Bisimulations. In: Proceedings of the 26th International Conference on Concurrency The-
ory (CONCUR 2015), Leibniz International Proceedings in Informatics (LIPICS) 42, pp. 240–253,
doi:10.4230/LIPIcs.CONCUR.2015.240.

[2] M. Bundgaard, T. Hildebrandt & J. C. Godskesen (2006): A CPS Encoding of Name-passing in
Higher-order Mobile Embedded Resources. Theoretical Computer Science 356(3), pp. 422–439,
doi:10.1016/j.tcs.2006.02.006.

[3] U. H. Engberg & M. Nielsen (1986): A Calculus of Communicating Systems with Label Passing. Technical
Report DAIMI PB-208, Computer Science Department, University of Aarhus. Available at http://www.
daimi.au.dk/PB/208/.

[4] U. H. Engberg & M. Nielsen (2000): A Calculus of Communicating Systems with Label Passing - Ten Years
After. In: Proof, Language, and Interaction: Essays in Honour of Robin Milner, MIT Press Cambridge, pp.
599–622.

[5] Yuxi Fu (2005): On Quasi Open Bisimulation. Theoretical Computer Science 338(1-3), pp. 96–126,
doi:10.1016/j.tcs.2004.10.041.

[6] Yuxi Fu (2015): Theory of interaction. Theoretical Computer Science, doi:10.1016/j.tcs.2015.07.043.

[7] Yuxi Fu & Hao Lu (2010): On the Expressiveness of Interaction. Theoretical Computer Science 411, pp.
1387–1451, doi:10.1016/j.tcs.2009.11.011.

[8] D. Gorla (2008): Towards a Unified Approach to Encodability and Separation Results for Process Calculi.
In: Proceedings of the 19th International Conference on Concurrency Theory (CONCUR 2008), LNCS 5201,
Springer Verlag, pp. 492–507, doi:10.1007/978-3-540-85361-9 38.

[9] D. Gorla & U. Nestmann (2016): Full Abstraction for Expressiveness: History, Myths and Facts. Mathemat-
ical Structures in Computer Scinece 26, pp. 639–654, doi:10.1017/S0960129514000279.

[10] Daniele Gorla (2009): On the Relative Expressive Power of Calculi for Mobility. Electronic Notes in Theo-
retical Computer Science 249, pp. 269–286, doi:10.1016/j.entcs.2009.07.094.

[11] D. Kouzapas, J. A. Pérez & Nobuko Yoshida (2016): On the Relative Expressiveness of Higher-Order Session
Processes. In: Proceedings of the 25th European Symposium on Programming (ESOP 2016), LNCS, pp.
446–475, doi:10.1007/978-3-662-49498-1 18.

[12] I. Lanese, J. A. Pérez, D. Sangiorgi & A. Schmitt (2010): On the Expressiveness of Polyadic and Syn-
chronous Communication in Higher-Order Process Calculi. In: Proceedings of the 36th International Col-
loquium on Automata, Languages and Programming (ICALP 2010), LNCS, Springer Verlag, pp. 442–453,
doi:10.1007/978-3-642-14162-1 37.

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.240
http://dx.doi.org/10.1016/j.tcs.2006.02.006
http://www.daimi.au.dk/PB/208/
http://www.daimi.au.dk/PB/208/
http://dx.doi.org/10.1016/j.tcs.2004.10.041
http://dx.doi.org/10.1016/j.tcs.2015.07.043
http://dx.doi.org/10.1016/j.tcs.2009.11.011
http://dx.doi.org/10.1007/978-3-540-85361-9_38
http://dx.doi.org/10.1017/S0960129514000279
http://dx.doi.org/10.1016/j.entcs.2009.07.094
http://dx.doi.org/10.1007/978-3-662-49498-1$_$18
http://dx.doi.org/10.1007/978-3-642-14162-1_37

Xian Xu 29

[13] I. Lanese, J.A. Pérez, D. Sangiorgi & A. Schmitt (2008): On the Expressiveness and Decidability of Higher-
Order Process Calculi. In: Proceedings of the 23rd Annual IEEE Symposium on Logic in Computer Science
(LICS 2008), IEEE Computer Society, pp. 145–155, doi:10.1109/LICS.2008.8. Journal version in [?].

[14] S. Lenglet, A. Schmitt & J.-B. Stefani (2009): Normal Bisimulations in Calculi with Passivation. In: Proceed-
ings of the 12th International Conference on Foundations of Software Science and Computational Structures
(FOSSACS 2009), LNCS 5504, Springer Verlag, pp. 257–271, doi:10.1007/978-3-642-00596-1 19.

[15] S. Lenglet, A. Schmitt & J.-B. Stefani (2011): Characterizing Contextual Equivalence in Calculi with Passi-
vation. Information and Computation 209, pp. 1390–1433, doi:10.1016/j.ic.2011.08.002.

[16] R. Milner (1989): Communication and Concurrency. Prentice Hall.
[17] R. Milner, J. Parrow & D. Walker (1992): A Calculus of Mobile Processes (Parts I and II). Information and

Computation 100(1), pp. 1–77, doi:10.1016/0890-5401(92)90008-4, 10.1016/0890-5401(92)90009-5.
[18] J. Parrow (2016): General Conditions for Full Abstraction. Mathematical Structures in Computer Science

26, pp. 655–657, doi:10.1017/s0960129514000280.
[19] D. Sangiorgi (1992): Expressing Mobility in Process Algebras: First-order and Higher-order Paradigms.

Phd thesis, University of Edinburgh.
[20] D. Sangiorgi (1996): Bisimulation for Higher-order Process Calculi. Information and Computation 131(2),

pp. 141–178, doi:10.1006/inco.1996.0096.
[21] D. Sangiorgi (1998): On the Bisimulation Proof Method. Mathematical Structures in Computer Science 8(6),

pp. 447–479, doi:10.1017/S0960129598002527.
[22] D. Sangiorgi & D. Walker (2001): The Pi-calculus: a Theory of Mobile Processes. Cambridge Universtity

Press.
[23] B. Thomsen (1990): Calculi for Higher Order Communicating Systems. Phd thesis, Department of Comput-

ing, Imperial College.
[24] B. Thomsen (1993): Plain CHOCS, a Second Generation Calculus for Higher-Order Processes. Acta Infor-

matica 30(1), pp. 1–59, doi:10.1007/BF01200262.
[25] Xian Xu (2012): Distinguishing and Relating Higher-order and First-order Processes by Expressiveness.

Acta Informatica 49(7-8), pp. 445–484, doi:10.1007/s00236-012-0168-9.
[26] Xian Xu (2013): On Context Bisimulation for Parameterized Higher-order Processes. In: Proceedings of the

6th Interaction and Concurrency Experience (ICE 2013), EPTCS 131, pp. 37–51, doi:10.4204/EPTCS.131.5.
[27] Xian Xu (2016): Higher-order Processes with Parameterization over Names and Processes (with appen-

dices). Available at http://basics.sjtu.edu.cn/~xuxian/express2016withappendices.pdf.
[28] Xian Xu, Qiang Yin & Huan Long (2015): On the Computation Power of Name Parameterization in Higher-

order Processes. In: Proceedings of 8th Interaction and Concurrency Experience (ICE 2015), EPTCS 189,
pp. 114–127, doi:10.4204/EPTCS.189.10.

http://dx.doi.org/10.1109/LICS.2008.8
http://dx.doi.org/10.1007/978-3-642-00596-1_19
http://dx.doi.org/10.1016/j.ic.2011.08.002
http://dx.doi.org/10.1016/0890-5401(92)90008-4, 10.1016/0890-5401(92)90009-5
http://dx.doi.org/10.1017/s0960129514000280
http://dx.doi.org/10.1006/inco.1996.0096
http://dx.doi.org/10.1017/S0960129598002527
http://dx.doi.org/10.1007/BF01200262
http://dx.doi.org/10.1007/s00236-012-0168-9
http://dx.doi.org/10.4204/EPTCS.131.5
http://basics.sjtu.edu.cn/~xuxian/express2016withappendices.pdf
http://dx.doi.org/10.4204/EPTCS.189.10

	1 Introduction
	2 Preliminary
	3 Encoding into D,d
	3.1 The encoding
	3.2 Operational correspondence
	3.3 Soundness
	3.4 Completeness

	4 Normal bisimulation for D,d
	5 Conclusion

