
K. Peters and S. Tini (Eds.): Combined Workshop on Expressiveness in

Concurrency and Structural Operational Semantics (EXPRESS/SOS 2017).

EPTCS 255, 2017, pp. 83–97, doi:10.4204/EPTCS.255.6

c© J. Rot

This work is licensed under the

Creative Commons Attribution License.

Distributive Laws for Monotone Specifications∗

Jurriaan Rot

Radboud University, Nijmegen

jrot@cs.ru.nl

Turi and Plotkin introduced an elegant approach to structural operational semantics based on univer-

sal coalgebra, parametric in the type of syntax and the type of behaviour. Their framework includes

abstract GSOS, a categorical generalisation of the classical GSOS rule format, as well as its categor-

ical dual, coGSOS. Both formats are well behaved, in the sense that each specification has a unique

model on which behavioural equivalence is a congruence. Unfortunately, the combination of the

two formats does not feature these desirable properties. We show that monotone specifications—that

disallow negative premises—do induce a canonical distributive law of a monad over a comonad, and

therefore a unique, compositional interpretation.

1 Introduction

Structural operational semantics (SOS) is an expressive and popular framework for defining the opera-

tional semantics of programming languages and calculi. There is a wide variety of specification formats

that syntactically restrict the full power of SOS, but guarantee certain desirable properties to hold [1]. A

famous example is the so-called GSOS format [5]. Any GSOS specification induces a unique interpreta-

tion which is compositional with respect to (strong) bisimilarity.

In their seminal paper [22], Turi and Plotkin introduced an elegant mathematical approach to struc-

tural operational semantics, where the type of syntax is modeled by an endofunctor Σ and the type of

behaviour is modeled by an endofunctor B. Operational semantics is then given by a distributive law

of Σ over B. In this context, models are bialgebras, which consist of a Σ-algebra and a B-coalgebra

over a common carrier. One major advantage of this framework over traditional approaches is that it is

parametric in the type of behaviour. Indeed, by instantiating the theory to a particular functor B, one can

obtain well behaved specification formats for probabilistic and stochastic systems, weighted transition

systems, streams, and many more [14, 15, 4].

Turi and Plotkin introduced several kinds of natural transformations involving Σ and B, the most

basic one being of the form ΣB ⇒ BΣ. If B is a functor representing labelled transition systems, then a

typical rule that can be represented in this format is the following:

x
a
−→ x′ y

a
−→ y′

x⊗ y
a
−→ x′⊗ y′

(1)

This rule should be read as follows: if x can make an a-transition to x′, and y an a-transition to y′, then

x⊗ y can make an a-transition to x′⊗ y′. Any specification of the above kind induces a unique supported

∗The research leading to these results has received funding from the European Research Council under the European Union’s

Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement nr. 320571, and the Netherlands Organisation for

Scientific Research (NWO), CoRE project, dossier number: 612.063.920. Part of this research was carried out during a visit of

the author to the University of Warsaw, supported by the Warsaw Center of Mathematics and Computer Science (WCMCS).

http://dx.doi.org/10.4204/EPTCS.255.6
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

84 Distributive Laws for Monotone Specifications

model, which is a B-coalgebra over the initial algebra of Σ. If Σ represents a signature and B represents

labelled transition systems, then this model is a transition system of which the state space is the set of

closed terms in the signature, and, informally, a term makes a transition to another term if and only if

there is a rule in the specification justifying this transition.

A more interesting kind is an abstract GSOS specification, which is a natural transformation of

the form Σ(B× Id) ⇒ BΣ∗, where Σ∗ is the free monad for Σ (assuming it exists). If B is the functor

that models (image-finite) transition systems, and Σ is a functor representing a signature, then such

specifications correspond to classical GSOS specifications [22, 4]. As opposed to the basic format,

GSOS rules allow complex terms in conclusions, as in the following rule specifying a constant c:

c
a
−→ σ(c)

(2)

where σ is some other operator in the signature (represented by Σ), which can itself be defined by some

GSOS rules. The term σ(c) is constructed from a constant and a unary operator from the signature,

as opposed to the conclusion x′⊗ y′ of the rule in (1), which consists of a single operator and variables.

Indeed, the free monad Σ∗ occurring in an abstract GSOS specification is precisely what allows a complex

term such as σ(c) in the conclusion.

Dually, one can consider coGSOS specifications, which are of the form ΣB∞ ⇒ B(Σ+ Id), where B∞

is the cofree comonad for B (assuming it exists). In the case of image-finite labelled transition systems,

this format corresponds to the safe ntree format [22]. A typical coGSOS rule is the following:

x
a
−→ x′ x′ 6

a
−→

σ(x)
a
−→ x′

(3)

This rule uses two steps of lookahead in the premise; this is supported by the cofree comonad B∞ in the

natural transformation. The symbol x′ 6
a
−→ represents a negative premise, which is satisfied whenever x′

does not make an a-transition.

Both GSOS and coGSOS specifications induce distributive laws, and as a consequence they induce

unique supported models on which behavioural equivalence is a congruence. The two formats are in-

comparable in terms of expressive power: GSOS specifications allow rules that involve complex terms

in the conclusion, whereas coGSOS allows arbitrary lookahead in the arguments. It is straightforward to

combine GSOS and coGSOS as a natural transformation of the form ΣB∞ ⇒ BΣ∗, called a biGSOS speci-

fication, generalising both formats. However, such specifications are, in some sense, too expressive: they

do not induce unique supported models, as already observed in [22]. For example, the rules (2) and (3)

above (which are GSOS and coGSOS respectively) can be combined into a single biGSOS specification.

Suppose this combined specification has a model. By the axiom for c, there is a transition c
a
−→ σ(c) in

this model. However, is there a transition σ(c)
a
−→ σ(c)? If there is not, then by the rule for σ , there is;

but if there is such a transition, then it is not derivable, so it is not in the model! Thus, a supported model

does not exist. In fact, it was recently shown that, for biGSOS, it is undecidable whether a (unique)

supported model exists [17].

The use of negative premises in the above example (and in [17]) is crucial. In the present paper, we in-

troduce the notion of monotonicity of biGSOS specifications, generalising monotone abstract GSOS [8].

In the case that B is a functor representing labelled transition systems, this corresponds to the absence of

negative premises, but the format does allow lookahead in premises as well as complex terms in conclu-

sions. Monotonicity requires an order on the functor B—technically, our definition of monotonicity is

based on the similarity order [10] induced on the final coalgebra.

J. Rot 85

We show that if there is a pointed DCPO structure on the functor B, then any monotone biGSOS

specification yields a least model as its operational interpretation. Indeed, monotone specifications do

not necessarily have a unique model, but it is the least model which makes sense operationally, since this

corresponds to the natural notion that every transition has a finite proof. Our main result is that if the

functor B has a DCPO structure, then every monotone specification yields a canonical distributive law of

the free monad for Σ over the cofree comonad for B. Its unique model coincides with the least supported

model of the specification. As a consequence, behavioural equivalence on this model is a congruence.

However, the conditions of these results are a bit too restrictive: they rule out labelled transition

systems, the main example. The problem is that the functors typically used to model transition systems

either fail to have a cofree comonad (the powerset functor) or to have a DCPO structure (the finite or

countable powerset functor). In the final section, we mitigate this problem using the theory of (countably)

presentable categories and accessible functors. This allows us to relax the requirement of DCPO structure

only to countable sets, given that the functor B is countably accessible (this is weaker than being finitary, a

standard condition in the theory of coalgebras) and the syntax consists only of countably many operations

each with finite arity. In particular, this applies to labelled transition systems (with countable branching)

and certain kinds of weighted transition systems.

Related work The idea of studying distributive laws of monads over comonads that are not induced

by GSOS or coGSOS specifications has been around for some time (e.g., [4]), but, according to a recent

overview paper [15], general bialgebraic formats (other than GSOS or coGSOS) which induce such dis-

tributive laws have not been proposed so far. In fact, it is shown by Klin and Nachyła that the general

problem of extending biGSOS specifications to distributive laws is undecidable [16, 17]. The current

paper shows that one does obtain distributive laws from biGSOS specifications when monotonicity is as-

sumed (negative premises are disallowed). A fundamentally different approach to positive formats with

lookahead, not based on the framework of bialgebraic semantics but on labelled transition systems mod-

eled very generally in a topos, was introduced in [21]. It is deeply rooted in labelled transition systems,

and hence seems incomparable to our approach based on generic coalgebras for ordered functors. An

abstract study of distributive laws of monads over comonads and possible morphisms between them is

in [18], but it does not include characterisations in terms of simpler natural transformations.

Structure of the paper Section 2 contains the necessary preliminaries on bialgebras and distributive

laws. In Section 3 we recall the notion of similarity on coalgebras, which we use in Section 4 to define

monotone specifications and prove the existence of least supported models. Section 5 contains our main

result: canonical distributive laws for monotone biGSOS specifications. In Section 6, this is extended to

countably accessible functors.

Notation We use the categories Set of sets and functions, PreOrd of preorders and monotone functions,

and DCPO⊥ of pointed DCPOs and continuous maps. By P we denote the (contravariant) power set

functor; Pc is the countable power set functor and P f the finite power set functor. Given a relation R ⊆
X ×Y , we write π1 : R → X and π2 : R → Y for its left and right projection, respectively. Given another

relation S ⊆Y ×Z we denote the composition of R and S by R◦S. We let Rop = {(y,x) | (x,y) ∈ R}. For a

set X , we let ∆X = {(x,x) | x ∈ X}. The graph of a function f : X →Y is Graph(f) = {(x, f (x)) | x ∈ X}.

The image of a set S ⊆ X under f is denoted simply by f (S) = { f (x) | x ∈ S}, and the inverse image of

V ⊆Y by f−1(V) = {x | f (x) ∈V}. The pairing of two functions f ,g with a common domain is denoted

by 〈 f ,g〉 and the copairing (for functions f ,g with a common codomain) by [f ,g]. The set of functions

86 Distributive Laws for Monotone Specifications

from X to Y is denoted by Y X . Any relation R ⊆ Y ×Y can be lifted pointwise to a relation on Y X ;

in the sequel we will simply denote such a pointwise extension by the relation itself, i.e., for functions

f ,g : X →Y we have f Rg iff f (x)Rg(x) for all x ∈ X , or, equivalently, (f ×g)(∆X)⊆ R.

Acknowledgements The author is grateful to Henning Basold, Marcello Bonsangue, Bartek Klin and

Beata Nachyła for inspiring discussions and suggestions.

2 (Co)algebras, (co)monads and distributive laws

We recall the necessary definitions on algebras, coalgebras, and distributive laws of monads over comon-

ads. For an introduction to coalgebra see [20, 12]. All of the definitions and results below and most of the

examples can be found in [15], which provides an overview of bialgebraic semantics. Unless mentioned

otherwise, all functors considered are endofunctors on Set.

2.1 Algebras and monads

An algebra for a functor Σ : Set → Set consists of a set X and a function f : ΣX → X . An (algebra)

homomorphism from f : ΣX → X to g : ΣY → Y is a function h : X → Y such that h ◦ f = g ◦Σh. The

category of algebras and their homomorphisms is denoted by alg(Σ).
A monad is a triple T = (T,η ,µ) where T : Set→ Set is a functor and η : Id⇒ T and µ : T T ⇒ T

are natural transformations such that µ ◦T η = id= µ ◦ηT and µ ◦µT = µ ◦T µ . An (Eilenberg-Moore,

or EM)-algebra for T is a T -algebra f : T X → X such that f ◦ηX = id and f ◦µX = f ◦T f . We denote

the category of EM-algebras by Alg(T).
We assume that a free monad (Σ∗

,η ,µ) for Σ exists. This means that there is a natural transformation

ι : ΣΣ∗ ⇒ Σ∗ such that ιX is a free algebra on the set X of generators, that is, the copairing of

ΣΣ∗X
ιX // Σ∗X X

ηXoo

is an initial algebra for Σ+X . By Lambek’s lemma, [ιX ,ηX] is an isomorphism. Any algebra f : ΣX → X

induces a Σ+X -algebra [f , id], and therefore by initiality a Σ∗-algebra f ∗ : Σ∗X → X , which we call the

inductive extension of f . In particular, the inductive extension of ιX is µX . This construction preserves

homomorphisms: if h is a homomorphism from f to g, then it is also a homomorphism from f ∗ to g∗.

Example 1. An algebraic signature (a countable collection of operator names with finite arities) induces

a polynomial functor Σ, meaning here a countable coproduct of finite products. The free monad Σ∗

constructs terms, that is, Σ∗X is given by the grammar t ::= σ(t1, . . . , tn) | x where x ranges over X and

σ ranges over the operator names (and n is the arity of σ), so in particular Σ∗ /0 is the set of closed terms

over Σ.

2.2 Coalgebras and comonads

A coalgebra for the functor B consists of a set X and a function f : X → BX . A (coalgebra) homomor-

phism from f : X → BX to g : Y → BY is a function h : X →Y such that Bh◦ f = g◦h. The category of

B-coalgebras and their homomorphisms is denoted by coalg(B).
A comonad is a triple D = (D,ε ,δ) consisting of a functor D : Set→ Set and natural transformations

ε : D ⇒ Id and δ : D ⇒ DD satisfying axioms dual to the monad axioms. The category of Eilenberg-

Moore coalgebras for D , defined dually to EM-algebras, is denoted by CoAlg(D).

J. Rot 87

We assume that a cofree comonad (B∞
,δ ,ε) for B exists. This means that there is a natural transfor-

mation θ : B∞ ⇒ BB∞ such that θX is a cofree coalgebra on the set X , that is, the pairing of

BB∞X B∞X
εX //θXoo X

is a final coalgebra for B×X . Any coalgebra f : X → BX induces a B×X -coalgebra 〈 f , id〉, and therefore

by finality a B∞-coalgebra f ∞ : X → B∞X , which we call the coinductive extension of f . In particular, the

coinductive extension of θX is δX . This construction preserves homomorphisms: if h is a homomorphism

from f to g, then it is also a homomorphism from f ∞ to g∞.

Example 2. Consider the Set functor BX = A×X for a fixed set A. Coalgebras for B are called stream

systems. There exists a final B-coalgebra, whose carrier can be presented as the set Aω of all streams

over A, i.e., Aω = {σ | σ : ω → A} where ω is the set of natural numbers. For a set X , B∞X = (A×X)ω .

Given f : X → A×X , its coinductive extension f ∞ : X → B∞X maps a state x ∈X to its infinite unfolding.

The final coalgebra of GX = A×X +1 consists of finite and infinite streams over A, that is, elements of

A∗∪Aω . For a set X , G∞X = (A×X)ω ∪ (A×X)∗×X .

Example 3. Labelled transition systems are coalgebras for the functor (P−)A, where A is a fixed set

of labels. Image-finite transition systems are coalgebras for the functor (P f−)A, and coalgebras for

(Pc−)A are transition systems which have, for every action a ∈ A and every state x, a countable set of

outgoing a-transitions from x. A final coalgebra for (P−)A does not exist (so there is no cofree comonad

for it). However, both (P f−)A and (Pc−)A have a final coalgebra, consisting of possibly infinite rooted

trees, edge-labelled in A, modulo strong bisimilarity, where for each label, the set of children is finite

respectively countable. The cofree comonad of (P f−)A respectively (Pc−)A, applied to a set X , consist

of all trees as above, node-labelled in X .

Example 4. A complete monoid is a (necessarily commutative) monoid M together with an infinitary

sum operation consistent with the finite sum [7]. Define the functor M : Set → Set by M (X) = {ϕ |
ϕ : X → M} and, for f : X →Y , M (h)(ϕ) = λy.∑x∈ f−1(y) ϕ(x). A weighted transition system over a set

of labels A is a coalgebra f : X → (M X)A. Similar to the case of labelled transition systems, we obtain

weighted transition systems whose branching is countable for each label as coalgebras for the functor

(Mc−)A, where Mc is defined by Mc(X) = {ϕ : X → M | ϕ(x) 6= 0 for countably many x ∈ X}. We

note that this only requires a countable sum on M to be well-defined and, by further restricting to finite

support, weighted transition systems are defined for any commutative monoid (see, e.g., [14]). Labelled

transition systems are retrieved by taking the monoid with two elements and logical disjunction as sum.

Another example arises by taking the monoid M = R
+∪{∞} of non-negative reals extended with a top

element ∞, with the supremum operation.

2.3 GSOS, coGSOS and distributive laws

Given a signature, a GSOS rule [5] σ of arity n is of the form

{xi j

a j
→ y j} j=1..m {xik

bk

6→}k=1..l

σ(x1, . . . ,xn)
c
→ t

(4)

where m and l are the number of positive and negative premises respectively; a1, . . . ,am,b1, . . . ,bl,c ∈ A

are labels; x1, . . . ,xn, y1, . . . ,ym are pairwise distinct variables, and t is a term over these variables. An

abstract GSOS specification is a natural transformation of the form

Σ(B× Id)⇒ BΣ∗
.

88 Distributive Laws for Monotone Specifications

As first observed in [22], specifications in the GSOS format are generalised by abstract GSOS specifica-

tions, where Σ models the signature and BX = (P f X)A.

A safe ntree rule (as taken from [15]) for σ is of the form
{zi

ai→yi}i∈I {w j

b j

6→} j∈J

σ(x1,...,xn)
c
→t

where I and J are

countable possibly infinite sets, the zi, yi, w j, xk are variables, and b j,c,ai ∈A; the xk and yi are all distinct

and they are the only variables that occur in the rule; the dependency graph of premise variables (where

positive premises are seen as directed edges) is well-founded, and t is either a variable or a term built of a

single operator from the signature and the variables. A coGSOS specification is a natural transformation

of the form

ΣB∞ ⇒ B(Σ+ Id) .

As stated in [22], every safe ntree specification induces a coGSOS specification where Σ models the

signature and BX = (P f X)A.

A distributive law of a monad T = (T,η ,µ) over a comonad D = (D,ε ,δ) is a natural transforma-

tion λ : T D ⇒ DT so that λ ◦Dη = ηD, εT ◦λ = T ε , λ ◦ µT = Dµ ◦λT ◦T λ and Dλ ◦λD ◦T δ =
δT ◦ λ . A λ -bialgebra is a triple (X , f ,g) where X is a set, f is an EM-algebra for T and g is an

EM-coalgebra for D , such that g◦ f = D f ◦λX ◦T g.

Every distributive law λ induces, by initiality, a unique coalgebra h : T /0 → DT /0 such that (T /0,µ /0,h)
is λ -bialgebra. If D is the cofree comonad for B, then h is the coinductive extension of a B-coalgebra

m : T /0 → BT /0, which we call the operational model of λ . Behavioural equivalence on the operational

model is a congruence. This result applies in particular to abstract GSOS and coGSOS specifications,

which both extend to distributive laws of monad over comonad.

A lifting of a functor T : Set→ Set to CoAlg(D) is a functor T making the following commute:

CoAlg(D)

��

T // CoAlg(D)

��
Set

T // Set

where the vertical arrows represent the forgetful functor, sending a coalgebra to its carrier. Further,

a monad (T ,η ,µ) on CoAlg(D) is a lifting of a monad T = (T,η ,µ) on Set if T is a lifting of T ,

Uη = ηU and U µ = µU . A lifting of T to coalg(B) is defined similarly.

Distributive laws of T over D are in one-to-one correspondence with liftings of (T,η ,µ) to CoAlg(D)
(see [13, 22]). If D is the cofree comonad for B, then CoAlg(D) ∼= coalg(B), hence a further equivalent

condition is that T lifts to coalg(B). In that case, the operational model of a distributive law can be

retrieved by applying the corresponding lifting to the unique coalgebra ! : /0 → B /0.

3 Similarity

In this section, we recall the notion of simulations of coalgebras from [10], and prove a few basic results

concerning the similarity preorder on final coalgebras.

An ordered functor is a pair (B,⊑) of functors B : Set→ Set and ⊑ : Set→ PreOrd such that

PreOrd

��
Set

B //

⊑
::
✉
✉
✉
✉
✉
✉
✉
✉
✉

Set

J. Rot 89

commutes, where the arrow from PreOrd to Set is the forgetful functor. Thus, given an ordered functor,

there is a preorder ⊑BX⊆ BX ×BX for any set X , and for any map f : X →Y , B f is monotone.

The (canonical) relation lifting of B is defined on a relation R ⊆ X ×Y by

Rel(B)(R) = {(b,c) ∈ BX ×BY | ∃d ∈ BR.Bπ1(d) = b and Bπ2(d) = c} .

For a detailed account of relation lifting, see, e.g., [11]. Let (B,⊑) be an ordered functor. The lax relation

lifting Rel⊑ is defined as follows:

Rel⊑(B)(R ⊆ X ×Y) =⊑BX ◦Rel(B)(R)◦⊑BY .

Let (X , f) and (Y,g) be B-coalgebras. A relation R ⊆ X ×Y is a simulation (between f and g) if R ⊆
(f ×g)−1(Rel⊑(B)(R)). The greatest simulation between coalgebras f and g is called similarity, denoted

by .
g
f , or . f if f = g, or simply . if f and g are clear from the context.

Given a set X and an ordered functor (B,⊑), we define the ordered functor (B×X ,⊑̃) by

(b,x)⊑̃BX(c,y) iff b ⊑BX c and x = y .

The induced notion of simulation can naturally be expressed in terms of the original one:

Lemma 1. Let . be the similarity relation between coalgebras 〈 f , f ′〉 : X → BX ×Z and 〈g,g′〉 : X →
BX × Z. Then for any relation R ⊆ X ×X, we have R ⊆ (〈 f , f ′〉× 〈g,g′〉)−1(Rel⊑̃(B× Z)(R)) iff R ⊆

(f ×g)−1(Rel⊑(B)(R)) and for all (x,y) ∈ R: f ′(x) = g′(x).

Given an ordered functor (B,⊑) we write

.B∞X

for the similarity order induced by (B×X ,⊑̃) on the cofree coalgebra (B∞X ,〈θX ,εX〉). We discuss a few

examples of ordered functors and similarity—see [10] for many more.

Example 5. For the functor L f X = (P f X)A ordered by (pointwise) subset inclusion, a simulation as

defined above is a (strong) simulation in the standard sense. For elements p,q ∈ L∞
f X , we have p .L∞

f X q

iff there exists a (strong) simulation between the underlying trees of p and q, so that related pairs agree

on labels in X .

Example 6. For any G : Set→ Set, the functor B = G+ 1, where 1 = {⊥}, can be ordered as follows:

x ≤ y iff x =⊥ or x = y, for all x,y ∈ BX . If G = A× Id then B∞X consists of finite and infinite sequences

of the form x0
a0−→ x1

a1−→ x2
a2−→ . . . with xi ∈ X and ai ∈ A for each i (cf. Example 2). For σ ,τ ∈ B∞X we

have σ .B∞X τ if σ does not terminate before τ does, and σ and τ agree on labels in X and A on each

position where σ is defined.

Lemma 2. Coalgebra homomorphisms h,k preserve similarity: if x . y then h(x) . k(y).

In the remainder of this section we state a few technical properties concerning similarity on cofree

comonads, which will be necessary in the following sections. The proofs use Lemma 2 and a few basic,

standard properties of relation lifting.

Pointwise inequality of coalgebras implies pointwise similarity of coinductive extensions:

Lemma 3. Let (B,⊑) be an ordered functor, and let f and g be B-coalgebras on a common carrier X. If

(f ×g)(∆X)⊆⊑BX then (f ∞ ×g∞)(∆X)⊆.B∞X .

Recall from Section 2 that any B-homomorphism yields a B∞-homomorphism between coinductive

extensions. A similar fact holds for inequalities.

Lemma 4. Let (B,⊑) be an ordered functor where B preserves weak pullbacks, and let f : X → BX,

g : Y → BY and h : X →Y .

• If Bh◦ f ⊑BY g◦h then B∞h◦ f ∞ .B∞Y g∞ ◦h, and conversely,

• if Bh◦ f ⊒BY g◦h then B∞h◦ f ∞ &B∞Y g∞ ◦h.

90 Distributive Laws for Monotone Specifications

4 Monotone biGSOS specifications

As discussed in the introduction, GSOS and coGSOS have a straightforward common generalisation,

called biGSOS specifications. Throughout this section we assume (B,⊑) is an ordered functor, B has a

cofree comonad and Σ has a free monad.

Definition 1. A biGSOS specification is a natural transformation of the form ρ : ΣB∞ ⇒ BΣ∗. A triple

(X ,a, f) consisting of a set X , an algebra a : ΣX → X and a coalgebra f : X → BX (i.e., a bialgebra) is

called a ρ-model if the following diagram commutes:

ΣX
a //

Σ f ∞

��

X

f

��
ΣB∞X

ρX // BΣ∗X
Ba∗ // BX

If BX = (P f X)A, then one can obtain biGSOS specifications from concrete rules in the ntree format,

which combines GSOS and safe ntree, allowing lookahead in premises, negative premises and complex

terms in conclusions.

Of particular interest are ρ-models on the initial algebra ι /0 : ΣΣ∗ /0 → Σ∗ /0:

ΣΣ∗ /0
ι /0 //

Σ f ∞

��

Σ∗ /0

f

��
ΣB∞Σ∗ /0

ρΣ∗ /0 // BΣ∗Σ∗ /0
Bµ /0 // BΣ∗ /0

(5)

(Notice that ι∗/0 = µ /0.) We call these supported models. Indeed, for labelled transition systems, this notion

coincides with the standard notion of the supported model of an SOS specification (e.g., [1]).

In the introduction, we have seen that biGSOS specifications do not necessarily induce a supported

model. But even if they do, such a model is not necessarily unique, and behavioural equivalence is not

even a congruence, in general, as shown by the following example.

Example 7. In this example we consider a signature with constants c and d, and unary operators σ and

τ . Consider the specification (represented by concrete rules) on labelled transition systems where c and

d are not assigned any behaviour, and σ and τ are given by the following rules:

x
a
−→ x′ x′

a
−→ x′′

σ(x)
a
−→ x′′ τ(x)

a
−→ σ(τ(x))

The behaviour of τ(x) is independent of its argument x. Which transitions can occur in a supported

model? First, for any t there is a transition τ(t)
a
−→ σ(τ(t)). Moreover, a transition σ(τ(t))

a
−→ t ′′ can be

in the model, although it does not need to be. But if it is there, it is supported by an infinite proof.

In fact, one can easily construct a model in which the behaviour of σ(τ(c)) is different from that

of σ(τ(d))—for example, a model where σ(τ(c)) does not make any transitions, whereas σ(τ(d))
a
−→ t

for some t. Then behavioural equivalence is not a congruence; c is bisimilar to d, but σ(τ(c)) is not

bisimilar to σ(τ(d)).

The above example features a specification that has many different interpretations as a supported

model. However, there is only one which makes sense: the least model, which only features finite

proofs. It is sensible to speak about the least model of this specification, since it does not contain any

negative premises. More generally, absence of negative premises can be defined based on an ordered

functor and the induced similarity order.

J. Rot 91

Definition 2. A biGSOS specification ρ : ΣB∞ ⇒ BΣ∗ is monotone if the restriction of ρX × ρX to

Rel(Σ)(.B∞X) corestricts to ⊑BΣ∗X , for any set X .

If Σ represents an algebraic signature, then monotonicity can be conveniently restated as follows

(c.f. [6], where monotone GSOS is characterised in a similar way). For every operator σ :

b1 .B∞X c1 . . . bn .B∞X cn

ρX(σ(b1, . . . ,bn))⊑BΣ∗X ρX(σ(c1, . . . ,cn))

for every set X and every b1, . . . ,bn,c1, . . . ,cn ∈ B∞X . Thus, in a monotone specification, if ci simulates

bi for each i, then the behaviour of σ(b1, . . . ,bn) is “less than” the behaviour of σ(c1, . . . ,cn).

In the case of labelled transition systems, it is straightforward that monotonicity rules out (non-trivial

use of) negative premises. Notice that the example specification in the introduction consisting of rules (2)

and (3), which does not have a model, is not monotone. This is no coincidence: every monotone biGSOS

specification has a model, if BΣ∗ /0 is a pointed DCPO, as we will see next. In fact, the proper canonical

choice is the least model, corresponding to behaviour obtained in finitely many proof steps.

4.1 Models of monotone specifications

Let ρ be a monotone biGSOS specification. Suppose BΣ∗ /0 is a pointed DCPO. Then the set of coalgebras

coalg(B)Σ∗ /0 = { f | f : Σ∗ /0 → BΣ∗ /0}, ordered pointwise, is a pointed DCPO as well.

Consider the function ϕ : coalg(B)Σ∗ /0 → coalg(B)Σ∗ /0, defined as follows:

ϕ(f) = Bµ /0 ◦ρΣ∗ /0 ◦Σ f ∞ ◦ ι−1
/0 (6)

Since ι /0 is an isomorphism, a function f is a fixed point of ϕ if and only if it is a supported model of ρ

(Equation (5)). We are interested in the least supported model. To show that it exists, since coalg(B)Σ∗ /0

is a pointed DCPO, it suffices to show that ϕ is monotone.

Lemma 5. The function ϕ is monotone.

Proof. Suppose f ,g : Σ∗ /0 → BΣ∗ /0 and f ⊑BΣ∗ /0 g. By Lemma 3, we have f ∞ .B∞Σ∗ /0 g∞. From standard

properties of relation lifting we derive Σ f ∞ Rel(Σ)(.B∞Σ∗ /0) Σg∞ and now the result follows by mono-

tonicity of ρ (assumption) and monotonicity of Bµ /0 (B is ordered).

Corollary 1. If BΣ∗ /0 is a pointed DCPO and ρ is a monotone biGSOS specification, then ρ has a least

supported model.

The condition of the Corollary is satisfied if B is of the form B = G+1 (c.f. Example 6), that is, B =
G+1 for some functor G (where the element in the singleton 1 is interpreted as the least element of the

pointed DCPO). Consider, as an example, the functor BX = A×X +1 of finite and infinite streams over

A. Any specification that does not mention termination (i.e., a specification for the functor GX = A×X)

yields a monotone specification for B.

Example 8. Consider the following specification (in terms of rules) for the functor BX = N×X + 1 of

(possibly terminating) stream systems over the natural numbers. It specifies a unary operator σ , a binary

operator ⊕, infinitely many unary operators m⊗− (one for each m ∈ N), and constants ones,pos, c:

x
n
−→ x′ x′

m
−→ x′′

σ(x)
n
−→ n⊗ (m⊗σ(x′′))

x
n
−→ x′ y

m
−→ y′

x⊕ y
n+m
−−→ x′⊕ y′

x
n
−→ x′

m⊗ x
m×n
−−→ m⊗ x′

92 Distributive Laws for Monotone Specifications

ones
1
−→ ones pos

1
−→ ones⊕pos c

1
−→ σ(c)

where + and × denote addition and multiplication of natural numbers, respectively. This induces a

monotone biGSOS specification; the rule for σ is GSOS nor coGSOS, since it uses both lookahead and

a complex conclusion. By the above Corollary, it has a model. The coinductive extension maps pos to

the increasing stream of positive integers, and σ(pos) is the stream (1,6,120, . . .) = (1!,3!,5!, . . .). But

c does not represent an infinite stream, since σ(c) is undefined.

The case of labelled transition systems is a bit more subtle. The problem is that (P f Σ∗ /0)A and

(PcΣ∗ /0)A are not DCPOs, in general, whereas the functor (P−)A does not have a cofree comonad.

However, if the set of closed terms Σ∗ /0 is countable, then (PcΣ∗ /0)A is a pointed DCPO, and thus Corol-

lary 1 applies. The specification in Example 7 can be viewed as a specification for the functor (Pc−)A,

and it has a countable set of terms. Therefore it has, by the Corollary, a least supported model. In this

model, the behaviour of σ(t) is empty, for any t ∈ Σ∗ /0.

5 Distributive laws for biGSOS specifications

In the previous section we have seen how to construct a least supported model of a monotone biGSOS

specification, as the least fixed point of a monotone function. In the present section we show that, given

a monotone biGSOS specification, the construction of a least model generalizes to a lifting of the free

monad Σ∗ to the category of B-coalgebras. It then immediately follows that there exists a canonical

distributive law of the monad Σ∗ over the comonad B∞, and that the (unique) operational model of this

distributive law corresponds to the least supported model as constructed above.

In order to proceed we define a DCPO⊥-ordered functor as an ordered functor (Section 3) where

PreOrd is replaced by DCPO⊥. Below we assume that (B,⊑) is DCPO⊥-ordered, and Σ and B are as

before (having a free monad and cofree comonad respectively).

Example 9. A general class of functors that are DCPO⊥-ordered are those of the form B+ 1, where

the singleton 1 is interpreted as the least element and all other distinct elements are incomparable (see

Example 6). Another example is the functor (P−)A of labelled transition systems with arbitrary branch-

ing, but this example can not be treated here because there exists no cofree comonad for it. The case of

labelled transition systems is treated in Section 6.

Let coalg(B)Σ∗X be the set of B-coalgebras with carrier Σ∗X , pointwise ordered as a DCPO by the

order on B. The lifting of Σ∗ to coalg(B) that we are about to define maps a coalgebra c : X → BX to the

least coalgebra c : Σ∗X → BΣ∗X , w.r.t. the above order on coalg(B)Σ∗X , making the following diagram

commute.

ΣB∞Σ∗X
ρΣ∗X // BΣ∗Σ∗X

BµX // BΣ∗X BX
BηXoo

ΣΣ∗X
ιX

//

Σ(c)∞

OO

Σ∗X

c

OO

X
ηX

oo

c

OO

Equivalently, c is the least fixed point of the operator ϕc : coalg(B)Σ∗X → coalg(B)Σ∗X defined by

ϕc(f) = [BµX ◦ρΣ∗ /0 ◦Σ f ∞
,BηX ◦ c]◦ [ιX ,ηX]

−1
.

Following the proof of Lemma 5 it is easy to verify:

Lemma 6. For any c : X → BX, the function ϕc is monotone.

J. Rot 93

For the lifting of Σ∗, we need to show that the above construction preserves coalgebra morphisms.

Theorem 1. The functor Σ∗ : coalg(B)→ coalg(B) defined by

Σ∗(X ,c) = (Σ∗X ,c) and Σ∗(h) = Σ∗h

is a lifting of the functor Σ∗.

Proof. Let (X ,c) and (Y,d) be BΣ∗-coalgebras. We need to prove that, if h : X → Y is a coalgebra

homomorphism from c to d, then Σ∗h is a homomorphism from c to d.

The proof is by transfinite induction on the iterative construction of c and d as limits of the ordinal-

indexed initial chains of ϕc and ϕd respectively. For the limit (and base) case, given a (possibly empty)

directed family of coalgebras fi : Σ∗X → BΣ∗X and another directed family gi : Σ∗Y → BΣ∗Y , such that

BΣ∗h ◦ fi = gi ◦ Σ∗h for all i, we have BΣ∗h ◦
∨

i fi =
∨

i(BΣ∗h ◦ fi) =
∨

i(gi ◦ Σ∗h) = (
∨

i gi) ◦ Σ∗h by

continuity of BΣ∗h and assumption.

Let f : Σ∗X → BΣ∗X and g : Σ∗Y → BΣ∗Y be such that BΣ∗h◦ f = g◦Σ∗h. To prove: BΣ∗h◦ϕc(f) =
ϕd(g)◦Σ∗h, i.e., commutativity of the outside of:

Σ∗X
[ιX ,ηX]

−1

//

Σ∗h
��

ΣΣ∗X +X
Σ f ∞+c //

ΣΣ∗h+h
��

ΣB∞Σ∗X +BX
ρΣ∗X+id //

ΣB∞Σ∗h+Bh
��

BΣ∗Σ∗X +BX
[BµX ,BηX]//

BΣ∗Σ∗h+Bh
��

BΣ∗X

BΣ∗h
��

Σ∗Y
[ιY ,ηY]

−1

// ΣΣ∗Y +Y
Σg∞+d

// ΣB∞Σ∗Y +BY
ρΣ∗Y+id

// BΣ∗Σ∗Y +BY
[BµY ,BηY]

// BΣ∗Y

From left to right, the first square commutes by naturality of [ι ,η] (and the fact that it is an isomorphism),

the second by assumption that Σ∗h is a B-coalgebra homomorphism from f to g (and therefore a B∞-

coalgebra homomorphism) and the assumption that h is a coalgebra homomorphism from c to d, the

third by naturality of ρ , and the fourth by naturality of µ and η .

We show that the (free) monad (Σ∗
,η ,µ) lifts to coalg(B). This is the heart of the matter. The main

proof obligation is to show that µX is a coalgebra homomorphism from Σ∗(Σ∗(X ,c)) to Σ∗(X ,c), for any

B-coalgebra (X ,c).

Theorem 2. The monad (Σ∗
,η ,µ) on Set lifts to the monad (Σ∗

,η ,µ) on coalg(B), if B preserves weak

pullbacks.

The lifting gives rise to a distributive law of monad over comonad.

Theorem 3. Let ρ : ΣB∞ ⇒ BΣ∗ be a monotone biGSOS specification, where B is DCPO⊥-ordered and

preserves weak pullbacks. There exists a distributive law λ : Σ∗B∞ ⇒ B∞Σ∗ of the free monad Σ∗ over

the cofree comonad B∞ such that the operational model of λ is the least supported model of ρ .

Proof. By Theorem 2, we obtain a lifting of (Σ∗
,η ,µ) to coalg(B). As explained in the preliminaries,

such a lifting corresponds uniquely to a distributive law of the desired type. The operational model of λ

is obtained by applying the lifting to the unique coalgebra ! : /0 → B /0. But that coincides, by definition

of the lifting, with the least supported model as defined in Section 4.

It follows from the general theory of bialgebras that the unique coalgebra morphism from the least

supported model to the final coalgebra is an algebra homomorphism, i.e., behavioural equivalence on the

least supported model of a monotone biGSOS specification is a congruence.

94 Distributive Laws for Monotone Specifications

Labelled transition systems The results above do not apply to labelled transition systems. The prob-

lem is that the cofree comonad for the functor (P−)A does not exist. A first attempt would be to restrict

to the finitely branching transition systems, i.e., coalgebras for the functor (P f−)A. But this functor is

not DCPO⊥-ordered, and indeed, contrary to the case of GSOS and coGSOS, even with a finite biGSOS

specification one can easily generate a least model with infinite branching, so that a lifting as in the

previous section can not exist.

Example 10. Consider the following specification on (finitely branching) labelled transition systems,

involving a unary operator σ and a constant c:

c
a
−→ σ(c) σ(x)

a
−→ σ(σ(x))

x
a
−→ x′

a
−→ x′′

a
−→ x′′′

σ(x)
a
−→ x′′′

The left rule for σ constructs an infinite chain of transitions from σ(x) for any x, so in particular for

σ(c). The right rule takes the transitive closure of transitions from σ(c), so in the least model there are

infinitely many transitions from σ(c).

The model in the above example has countable branching. One might ask whether it can be adapted

to generate uncountable branching, i.e., that we can construct a biGSOS specification for the functor

(Pc−)A, such that the model of this specification would feature uncountable branching. However, as it

turns out, this is not the case, at least if we assume Σ to be a polynomial functor (a countable coproduct

of finite products, modelling a signature with countably many operations each of finite arity), and the set

of labels A to be countable. This is shown more generally in the next section.

6 Liftings for countably accessible functors

In the previous section, we have seen that one of the most important instances of the framework—the

case of labelled transition systems—does not work, because of size issues: the functors in question either

do not have a cofree comonad, or are not DCPO-ordered. In the current section, we solve this problem by

showing that, if both functors B,Σ are reasonably well-behaved, then it suffices to have a DCPO-ordering

of B only on countable sets.

More precisely, let cSet be the full subcategory of countable sets, with inclusion I : cSet→ Set. We

assume that (B,⊑) is an ordered functor on Set, and that its restriction to countable sets is DCPO⊥-

ordered:

DCPO⊥
// PreOrd

��
cSet

⊑
::
t
t
t
t
t
t
t
t
t

I
// Set

⊑
99
r
r
r
r
r
r
r
r
r
r
r

B
// Set

This is a weaker assumption than in Section 5: before, every set BX was assumed to be a pointed DCPO,

whereas here, they only need to be pointed DCPOs when X is countable (and just a preorder otherwise).

Example 11. The functor (Pc−)A coincides with the DCPO⊥-ordered functor (P−)A when restricted

to countable sets, hence it satisfies the above assumption. Notice that (Pc−)A is not DCPO⊥-ordered.

The functor (P f−)A does not satisfy the above assumption.

The functor (M−)A, for the complete monoid R
+ ∪ {∞} (Example 4), is ordered as a complete

lattice [19], so also DCPO⊥-ordered. Similar to the above, the functor (Mc−)A is DCPO⊥-ordered

when restricted to countable sets, i.e., satisfies the above assumption.

J. Rot 95

We define coalgc(B) to be the full subcategory of B-coalgebras whose carrier is a countable set, with

inclusion I : coalgc(B)→ coalg(B). The associated forgetful functor is denoted by U : coalgc(B)→ cSet.

The pointed DCPO structure on each BX , for X countable, suffices to carry out the fixed point con-

structions from the previous sections for coalgebras over countable sets, if we assume that Σ∗ preserves

countable sets. Notice, moreover, that the (partial) order on the functor B is still necessary to define the

simulation order on B∞X , and hence speak about monotonicity of biGSOS specifications. The proof of

the following theorem is essentially the same as in the previous section.

Theorem 4. Suppose Σ∗ preserves countable sets, and B is an ordered functor which preserves weak pull-

backs and whose restriction to cSet is DCPO⊥-ordered. Let (Σ∗
c ,η

c
,µc) be the restriction of (Σ∗

,η ,µ)
to cSet. Any monotone biGSOS specification ρ : ΣB∞ ⇒ BΣ∗ gives rise to a lifting (Σ∗

c,η
c
,µc) of the

monad (Σ∗
c ,η

c
,µc) to coalgc(B).

In the remainder of this section, we will show that, under certain assumptions on B and Σ∗, the above

lifting extends to a lifting of the monad Σ∗ from Set to coalg(B), and hence a distributive law of the

monad Σ∗ over the cofree comonad B∞. It relies on the fact that, under certain conditions, we can present

every coalgebra as a (filtered) colimit of coalgebras over countable sets.

We use the theory of locally (countably, i.e., ω1-) presentable categories and (countably) accessible

categories. Because of space limits we can not properly recall that theory in detail here (see [3]); we

only recall a concrete characterisation of when a functor on Set is countably accessible, since that will be

assumed both for B and Σ∗ later on. On Set, a functor B : Set→ Set is countably accessible if for every

set X and element x ∈ BX , there is an injective function i : Y → X from a finite set Y and an element

y ∈ BY such that Bi(y) = x. Intuitively, such functors are determined by how they operate on countable

sets.

Example 12. Any finitary functor is countably accessible. Further, the functors (Pc−)A and (Mc−)A

(c.f. Example 11) are countably accessible if A is countable.

A functor is called strongly countably accessible if it is countably accessible and additionally pre-

serves countable sets, i.e., it restricts to a functor cSet → cSet. We will assume this for our “syntax”

functor Σ∗. If Σ correponds to a signature with countably many operations each of finite arity (so is a

countable coproduct of finite products) then Σ∗ is strongly countably accessible.

The central idea of obtaining a lifting to coalg(B) from a lifting to coalgc(B) is to extend the monad

on coalgc(B) along the inclusion I : coalgc(B)→ coalg(B). Concretely, a functor T : Set→ Set extends

Tc : cSet → cSet if there is a natural isomorphism α : ITc ⇒ T I. A monad (T,η ,µ) on Set extends

a monad (Tc,ηc,µc) on cSet if Tc extends T with some isomorphism α such that α ◦ Iηc = ηI and

α ◦ Iµc = µI ◦T α ◦αTc. This notion of extension is generalised naturally to arbitrary locally countably

presentable categories. Monads on the category of countably presentable objects can always be extended.

Lemma 7. Let C be a locally countably presentable category, with I : Cc →C the subcategory of count-

ably presentable objects. Any monad (Tc,η
c
,µc) on Cc extends uniquely to a monad (T,η ,µ) on C ,

along I : Cc → C .

Since B is countably accessible, coalg(B) is locally countably presentable and coalgc(B) is the asso-

ciated category of countably presentable objects [2]. This means every B-coalgebra can be presented as

a filtered colimit of B-coalgebras with countable carriers. The above lemma applies, so we can extend

the monad on coalgc(B) of Theorem 4 to a monad on coalg(B), resulting in Theorem 6 below. The latter

relies on Theorem 5, which ensures that, doing so, we will get a lifting of the monad on Set that we

started with.

96 Distributive Laws for Monotone Specifications

In the remainder of this section, we will consider a slightly relaxed version of functor liftings, up to

isomorphism, similar to extensions defined before. This is harmless—those still correspond to distribu-

tive laws—but since the monad on coalg(B) is constructed only up to isomorphism, it is more natural

to work with in this setting. We say (T ,η ,µ) lifts (T,η ,µ) (up to isomorphism) if there is a natural

isomorphism α : UT ⇒ TU such that α ◦Uη = ηU and α ◦Uµ = µU ◦T α ◦αT .

Theorem 5. Let B : Set→ Set be countably accessible. Suppose (Tc,η
c
,µc) is a monad on cSet, which

lifts to a monad (T c,η
c
,µc) on coalgc(B). Then

1. (Tc,η
c
,µc) extends to (T,η ,µ) along I : Setc → Set,

2. (T c,η
c
,µc) extends to (T ,η ,µ) along I : coalgc(B)→ coalg(B),

3. (T ,η ,µ) is a lifting (up to isomorphism) of (T,η ,µ).

By instantiating the above theorem with the lifting of Theorem 4, the third point gives us the desired

lifting to coalg(B). In particular Tc is instantiated to the restriction Σ∗
c of Σ∗, which means that the

extension in the first point is just Σ∗ itself.

Theorem 6. Let ρ : ΣB∞ ⇒ BΣ∗ be a monotone biGSOS specification, where B is an ordered functor

whose restriction to countable sets is DCPO⊥-ordered, B is countably accessible, B preserves weak

pullbacks, and Σ∗ is strongly countably accessible. There exists a distributive law λ : Σ∗B∞ ⇒ B∞Σ∗ of

the free monad Σ∗ over the cofree comonad B∞ such that the operational model of λ is the least supported

model of ρ .

As explained in Example 12 and Example 11, if B is either (Pc−)A or (Mc−)A (weighted in the

non-negative real numbers) with A countable, then it satisfies the above hypotheses (that Mc preserves

weak pullbacks follows essentially from [9]). So the above theorem applies to labelled transition systems

and weighted transition systems (of the above type) over a countable set of labels, as long as the syntax

is composed of countably many operations each with finite arity. Hence, behavioural equivalence on the

operational model of any biGSOS specification for such systems is a congruence.

7 Future work

In this paper we provided a bialgebraic foundation of positive specification formats over ordered functors,

involving rules that feature lookahead in the premises as well as complex terms in conclusions. From

a practical point of view, it would be interesting to find more concrete rules formats corresponding to

the abstract format of the present paper. In particular, concrete GSOS formats for weighted transition

systems exist [14]; they could be a good starting point.

It is currently unclear to us whether the assumption of weak pullback preservation in the main results

is necessary. This assumption is used in our proof of Lemma 4, which in turn is used in the proof that the

free monad lifts to the category of coalgebras (Theorem 2). Finally, we would like to study continuous

specifications, as opposed to specifications that are only monotone, as in the current paper. Continuous

specifications should be better behaved than monotone ones. However, it is currently not yet clear how

to characterize continuity of a specification both at the concrete, syntactic level.

References

[1] L. Aceto, W. Fokkink & C. Verhoef (2001): Structural Operational Semantics. In: Handbook of Process

Algebra, Elsevier Science, pp. 197–292, doi:10.1016/B978-044482830-9/50021-7.

http://dx.doi.org/10.1016/B978-044482830-9/50021-7

J. Rot 97

[2] J. Adámek & H-E. Porst (2004): On tree coalgebras and coalgebra presentations. Theor. Comput. Sci.

311(1-3), pp. 257–283, doi:10.1016/S0304-3975(03)00378-5.

[3] J. Adámek & J. Rosický (1994): Locally Presentable and Accessible Categories. Cambridge Tracts in Math-

ematics, Cambridge University Press, doi:10.1017/CBO9780511600579.

[4] F. Bartels (2004): On generalised coinduction and probabilistic specification formats. Ph.D. thesis, CWI,

Amsterdam.

[5] B. Bloom, S. Istrail & A. Meyer (1995): Bisimulation Can’t be Traced. J. ACM 42(1), pp. 232–268,

doi:10.1145/200836.200876.

[6] F. Bonchi, D. Petrisan, D. Pous & J. Rot (2017): A general account of coinduction up-to. Acta Inf. 54(2), pp.

127–190, doi:10.1007/s00236-016-0271-4.

[7] M. Droste & W. Kuich (2009): Semirings and formal power series. In: Handbook of Weighted Automata,

Springer, pp. 3–28, doi:10/bj2xgm.

[8] M. Fiore & S. Staton (2010): Positive structural operational semantics and monotone distributive laws. In:

CMCS Short Contributions, p. 8.

[9] H. P. Gumm & T. Schröder (2001): Monoid-labeled transition systems. Electr. Notes Theor. Comput. Sci.

44(1), pp. 185–204, doi:10.1016/S1571-0661(04)80908-3.

[10] J. Hughes & B. Jacobs (2004): Simulations in coalgebra. Theor. Comput. Sci. 327(1-2), pp. 71–108,

doi:10.1016/j.tcs.2004.07.022.

[11] B. Jacobs (2016): Introduction to Coalgebra: Towards Mathematics of States and Observation. Cambridge

Tracts in Theoretical Computer Science 59, Cambridge University Press, doi:10.1017/CBO9781316823187.

[12] B. Jacobs & J. Rutten (2011): An introduction to (co)algebras and (co)induction. In:

Advanced Topics in Bisimulation and Coinduction, Cambridge University Press, pp. 38–99,

doi:10.1017/CBO9780511792588.003.

[13] P. T. Johnstone (1975): Adjoint lifting theorems for categories of algebras. Bulletin of the London Mathe-

matical Society 7(3), pp. 294–297, doi:10.1112/blms/7.3.294.

[14] B. Klin (2009): Structural Operational Semantics for Weighted Transition Systems. In J. Palsberg, editor:

Semantics and Algebraic Specification, LNCS 5700, Springer, pp. 121–139, doi:10/cxqzcf.

[15] B. Klin (2011): Bialgebras for structural operational semantics: An introduction. TCS 412(38), pp. 5043–

5069, doi:10.1016/j.tcs.2011.03.023.

[16] B. Klin & B. Nachyła (2014): Distributive Laws and Decidable Properties of SOS Specifications. In

Johannes Borgström & Silvia Crafa, editors: Proc. EXPRESS/SOS 2014, EPTCS 160, pp. 79–93,

doi:10.4204/EPTCS.160.8.

[17] B. Klin & B. Nachyła (2017): Some undecidable properties of SOS specifications. J. Log. Algebr. Meth.

Program. 87, pp. 94–109, doi:10.1016/j.jlamp.2016.08.005.

[18] J. Power & H. Watanabe (2002): Combining a monad and a comonad. Theor. Comput. Sci. 280(1-2), pp.

137–162, doi:10.1016/S0304-3975(01)00024-X.

[19] J. Rot & M. M. Bonsangue (2016): Structural congruence for bialgebraic semantics. J. Log. Algebr. Meth.

Program. 85(6), pp. 1268–1291, doi:10.1016/j.jlamp.2016.08.001.

[20] J. J. M. M. Rutten (2000): Universal coalgebra: a theory of systems. TCS 249(1), pp. 3–80. Available at

http://dx.doi.org/10.1016/S0304-3975(00)00056-6.

[21] S. Staton (2008): General Structural Operational Semantics through Categorical Logic. In: LICS, IEEE

Computer Society, pp. 166–177, doi:10.1109/LICS.2008.43.

[22] D. Turi & G. Plotkin (1997): Towards a Mathematical Operational Semantics. In: LICS, IEEE Computer

Society, pp. 280–291, doi:10.1109/LICS.1997.614955.

http://dx.doi.org/10.1016/S0304-3975(03)00378-5
http://dx.doi.org/10.1017/CBO9780511600579
http://dx.doi.org/10.1145/200836.200876
http://dx.doi.org/10.1007/s00236-016-0271-4
http://dx.doi.org/10/bj2xgm
http://dx.doi.org/10.1016/S1571-0661(04)80908-3
http://dx.doi.org/10.1016/j.tcs.2004.07.022
http://dx.doi.org/10.1017/CBO9781316823187
http://dx.doi.org/10.1017/CBO9780511792588.003
http://dx.doi.org/10.1112/blms/7.3.294
http://dx.doi.org/10/cxqzcf
http://dx.doi.org/10.1016/j.tcs.2011.03.023
http://dx.doi.org/10.4204/EPTCS.160.8
http://dx.doi.org/10.1016/j.jlamp.2016.08.005
http://dx.doi.org/10.1016/S0304-3975(01)00024-X
http://dx.doi.org/10.1016/j.jlamp.2016.08.001
http://dx.doi.org/10.1016/S0304-3975(00)00056-6
http://dx.doi.org/10.1109/LICS.2008.43
http://dx.doi.org/10.1109/LICS.1997.614955

	1 Introduction
	2 (Co)algebras, (co)monads and distributive laws
	2.1 Algebras and monads
	2.2 Coalgebras and comonads
	2.3 GSOS, coGSOS and distributive laws

	3 Similarity
	4 Monotone biGSOS specifications
	4.1 Models of monotone specifications

	5 Distributive laws for biGSOS specifications
	6 Liftings for countably accessible functors
	7 Future work

