
J.A. Pérez and S. Tini (Eds.): Combined Workshop on Expressiveness in

Concurrency and Structural Operational Semantics (EXPRESS/SOS 2018).

EPTCS 276, 2018, pp. 69–86, doi:10.4204/EPTCS.276.7

c© J. Hoey, I. Ulidowski & S. Yuen

This work is licensed under the

Creative Commons Attribution License.

Reversing Parallel Programs with Blocks and Procedures

James Hoey Irek Ulidowski

Department of Informatics
University of Leicester, UK

jbh11@leicester.ac.uk iu3@leicester.ac.uk

Shoji Yuen

Graduate School of Informatics
Nagoya University, Japan

yuen@i.nagoya-u.ac.jp

We show how to reverse a while language extended with blocks, local variables, procedures and the

interleaving parallel composition. Annotation is defined along with a set of operational semantics

capable of storing necessary reversal information, and identifiers are introduced to capture the in-

terleaving order of an execution. Inversion is defined with a set of operational semantics that use

saved information to undo an execution. We prove that annotation does not alter the behaviour of the

original program, and that inversion correctly restores the initial program state.

1 Introduction

Reverse execution of programs is the ability to take the final program state of an execution, undo all ef-

fects that were the result of that execution, and restore the exact initial program state. This is a desirable

capability as it has applications to many active research areas, including debugging [3] and Parallel Dis-

crete Event Simulation [2]. When combined with parallelism, reverse execution removes issues relating

to non-deterministic execution orders, allowing specific execution interleavings to be analysed easily.

In our previous work [10], we described a state-saving approach to reversible execution of an impera-

tive while language. Similarly to RCC [14], we generated two versions of a program, the augmented for-

wards version to save all necessary reversal information alongside its execution, and the inverted version

that uses this saved data to undo all changes. We proved that augmentation did not alter the behaviour of

our program, and that inversion correctly restores the initial program state. We then experimented with

reversing a tiny language containing assignments and interleaving parallel composition.

In this paper, we extend the while language with blocks, local variables and procedures, as well as

the parallel composition operator. Local variables mean we must recognise scope, for example different

versions of a shared name used in parallel. Issues arise with the traditional approach, specifically with

recursion, and calls to the same procedure executing in parallel. Annotation and inversion are defined, al-

lowing this extended language to be executed forwards with state-saving, as well as in reverse using this

saved information. The process of assigning identifiers to statements as we execute them is described,

focusing on backtracking order, where statements are undone in the inverted order of the forwards exe-

cution. We mention future work on causal-consistent reversibility [1, 13, 15] in the conclusion.

Consider the example shown in Figure 1, where w1.0 and λ can be ignored. This is a simple model of

a restaurant with two entrances. One where a single person is continually allowed to enter, increasing the

number of current single guests (c), until the total capacity (c + r) reaches the maximum (m). The other

allows a reserved group of two to enter, increasing the number of reserved guests (r). Let the initial state

be that m = 4, c = 0 and r = 0. The execution begins with two full iterations of the while loop, allowing

two people to enter meaning c = 2. Next, the condition of the loop is evaluated, but the body is not yet

executed. Interleaving now occurs, setting r to 2. Finally, the body of the loop is now executed, before

the condition evaluates to false and the loop finishes. The final state is m = 4, c = 3 and r = 2, which should

be invalid as the total number of guests (c + r) > m. This executed version of the annotated program is

http://dx.doi.org/10.4204/EPTCS.276.7
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

70 Reversing Parallel Programs with Blocks and Procedures

1 par {
2 while w1.0 ((m - c - r - 1) >= 0) do

3 c = c + 1 λ ;

4 end λ ; }
5 { r = 2 λ ; }

Figure 1: Original program

1 par {
2 while w1.0 ((m - c - r - 1) >= 0) do

3 c = c + 1 (λ, [2,4,7]) ;

4 end (λ, [1,3,5,8,9]) ; }
5 { r = 2 (λ, [6]) ; }

Figure 2: Executed annotated program

shown in Figure 2, where each statement now has a stack populated with identifiers in the order in which

the statement occurred (starting at 1). One solution to finding this bug is reverse execution. The inverted

version we generate (which, coincidentally is identical to Figure 2) allows step-by-step reversal, using

identifiers to remove non-determinism. Backtracking through this execution removes the difficulties of

cyclic debugging where different interleavings can occur. Using this, we can see that we wrongly commit

to allowing the third single person to enter, meaning the condition gave true when expected to give false.

Examining this further, we can see that the reserved guests are not considered until they have arrived,

meaning this condition is not aware that the maximum capacity is actually m - 2. This is an example of a

race between the writing and reading of r. This is fixed using the condition ((m-c-2-1) >= 0).

Our main contributions are

1. The definition of three sets of operational semantics for our language, namely for traditional for-

wards only execution, annotated forwards execution, and for reverse execution.

2. Annotation allows all necessary state-saving, and the use of identifiers to record the interleaving

order of execution. Inversion then uses the saved information to reverse via backtracking order.

3. Results showing that annotation does not alter the behaviour of the original program, and that

inversion correctly restores to the initial program state.

We also have a prototype simulator under development. This will be capable of implementing both the

forwards and reverse execution, and used for both performance evaluation and validation of our results.

1.1 Related Work

Program inversion has been the focus of many works for many years, including Jefferson [12], Gries [8]

and Glück and Kawabe [4, 5]. The Reverse C Compiler (RCC) by Perumalla [14] describes a state-saving

approach to reversibility of C programs. The Backstroke framework [19] and extensions of it by Schor-

dan et al [17] describe an approach to reversing C++ in the setting of Parallel Discrete Event Simulation

[2]. The reversible programming language Janus, worked on in [20, 21], adds additional information into

the source code, making all programs reversible. More recent work on reversible imperative programs by

Glück and Yokoyama [6, 7] introduce the languages R-WHILE and R-CORE. Reversibility of algebraic

process calculi is the focus of work by Phillips and Ulidowski [15, 16], where the notion of identifiers

was introduced. There has been work on reversible object oriented programming languages, including

that of Schultz [18] and the language ROOPL [9]. The application of reverse computation to debugging

of message passing concurrent programs is considered by Giachino et al [3].

2 Programming Language, Environments and Scope

Let P be the set of all programs and S be the set of all statements. Each program P will be either a

statement S, the sequential composition of programs P;Q or the parallel composition of programs P par Q

J. Hoey, I. Ulidowski & S. Yuen 71

(sometimes written as par {P}{Q}). Each statement will either be a skip operation (empty statement),

an assignment, a conditional, a loop, a block, a variable or procedure declaration, a variable or procedure

removal or a call. A block consists of the declaration of both local variables DV and procedures DP,

a body that uses these, and then the removal of local procedures RP and variables RV. Procedures do

not have arguments, static scope is assumed and recursion is permitted. The syntax of this language is

shown below, including arithmetic and boolean expressions. Note that the constructs runC and runB are

reserved words that appear in our syntax, but not in original programs, and will be explained in Section

3. These allow static operational semantics to be defined, needed to aid state-saving and in our results.

Many statements contain a path pa that is explained in Section 2.2. Each conditional, loop, block,

procedure and procedure call statement has a unique identifier named In, Wn, Bn, Pn and Cn respectively,

each of which is an element of the sets In, Wn, Bn, Pn and Cn respectively. The set union of these gives

us the set of construct identifiers CI. Note a procedure has a name from the set n (appears in code, and

is potentially duplicated), as well as a unique identifier Pn.

P ::= ε | S | P; P | P par P

S ::= skip | X = E pa | if In B then P else Q end pa |

while Wn B do P end pa | begin Bn DV DP P RP RV end |

call Cn n pa | runC Cn P end | runB P end

DV ::= ε | var X = v pa; DV DP ::= ε | proc Pn n is P pa; DP

RV ::= ε | remove X = v pa; RV RP ::= ε | remove Pn n is P pa; RP

E ::= Var | n | (E) | E Op E B ::= T | F | ¬B | (B) | E == E | E > E | B ∧ B

2.1 Environments

We complete our setting with the definition of several environments. Let V be the set of all program

variables, Loc be the set of all memory locations, and Num be the set of integers.

As in [11], we first have a variable environment γ , responsible for mapping a variable name and the

block to which it is local (λ in the case of global variables) to its bound memory location. This is defined

as γ : (V×Bn) 7→ Loc. The notation γ[(X,Bn)⇒ l] indicates that the pair (X,Bn) maps to the memory

location l, while γ[(X,Bn)] represents an update to γ with the mapping for the pair (X,Bn) removed.

We have a data store σ , responsible for mapping each memory location to the value it currently

holds, defined as σ : (Loc 7→ Num). The notion σ [l 7→ v] indicates location l now holds the value v.

The procedure environment µ is responsible for mapping either a procedure or call identifier to both

the actual procedure name (used in code) and (a copy of) the body. This environment is defined as

µ : (Pn∪Cn) 7→ (n×P). The notation µ[Pn ⇒ (n,P)] represents that Pn maps to the pair (n,P),

µ[refC(Pn,P)] represents the updating of the mapping for Pn with changes retrieved from P, and µ[Pn]

indicates the removal of the mapping for Pn (in each case, Pn could also be Cn).

Finally, the while environment β is responsible for mapping a unique loop identifier to a copy of that

loop. This serves the purpose of storing both the original condition and program, allowing our semantics

to be static. This is defined as β : Wn 7→ P. The notation β [Wn ⇒ P] indicates that Wn now maps to the

program P, β [refW(Wn,P)] represents the updating of the mapping for Wn with changes retrieved from P,

and the notation β [Wn] shows the removal of the mapping for Wn.

We now combine all environments, and use the notation � to represent the set {σ ,γ ,µ ,β}. Each

environment has a prime version, indicating a potential and arbitrary change.

72 Reversing Parallel Programs with Blocks and Procedures

2.2 Scope

Local variables can share their name with a global variable, as well as local variables declared in different

blocks. The traditional method of handling this, as described for example in [11], is to implement a stack

of environments, storing a copy for each scope. This is not suitable when we use parallel composition as

there can be several active scopes in an execution at once. We therefore implement a single environment

that will store all versions of variables. Variables will either be global, or local to a specific block. Using

λ to represent the empty block name (a global variable), associating a variable with the identifier of the

block in which it is declared is sufficient. Now all versions of a variable name are stored distinctly.

We must be able to access the correct version of a given variable name. Under the traditional ap-

proach, each environment will have only one mapping of any variable, something we do not have. We

must be able to determine the block identifier in which the variable was defined, which will not neces-

sarily be the current block. We achieve this by assigning a path to each statement. Each path will be

the sequence of the block identifiers Bn, for blocks in which this statement resides, separated using ‘*’.

Consider statement F = S (b2*b1,A) (from Figure 4) that has a path b2*b1, meaning it occurs within

a block b2, which is nested within b1. Therefore we have the function evalV(), that takes a variable

name and a path, traverses the sequence of block names until the first is found that has a local variable

of this name, and uses this block name (or λ if no match) to return the desired memory location. A

similar reasoning, and function evalP(), exists to evaluate potentially shared procedure names, returning

the correct unique procedure identifier.

One complication is code reuse, where the same program code is executed multiple times, with the

two cases being procedure and loop bodies. Consider two calls to the same procedure in parallel. Both

may create a local variable of a block, where on each side the block has the same name, meaning both

will incorrectly use the same version of the local variable. A similar case exists for recursive calls, as

shown in Example 1. Therefore, we rename any reused code prior to its execution. This must make all

constructs unique, a task achieved using the unique call identifier Cn. All construct names are modified

to now start with the unique call identifier, with paths also updated to reflect changes made to block

identifiers. Consider again the statement for F from Figure 4. When block b2 is renamed to c1:c2:b2,

the path becomes c1:c2:b2*b1 (Figure 7). This removes the issue described above, as each version

of the variable will have a different block identifier. This process must modify the call identifier of any

recursive call statement similarly. Therefore we have the function reP() that implements this renaming

of procedure bodies, and as renaming occurs in reverse, we have IreP().

The reuse of loop bodies is different, as it is not possible for the same code (with same construct

names) to be executed in parallel when not in a procedure body (handled above). However, in order

to keep all identifiers unique, and to aid future extensions to causal-consistent reversibility, we version

each construct name, incrementing it by 1 for each loop iteration. For example, a conditional statement

i1.0 will become i1.1. These versions are maintained via the function nextID(), used in reL() that

performs this renaming, and the function previousID(), used in the reverse renaming function IreL().

3 Forwards Only Operational Semantics

We now define the traditional, forwards only semantics of our language. We give a set of transition rules

for each construct of our language and a set of environments. These rules specify how configurations

(namely, pairs containing a program and a set of environments) compute by performing single transition

steps. The transition rules define our small step transition relation configuration →֒ configuration. The

transitive closure →֒∗ represents executions of programs. The forwards only semantics do not perform

J. Hoey, I. Ulidowski & S. Yuen 73

any state-saving, thus making them irreversible. Transitions labelled with a or b are steps of arithmetic

or boolean expression evaluation respectively, while →֒∗
a

and →֒∗
b

are the transitive closure of each.

Semantics of both are omitted as they are as expected, see [11]. By abuse of notation, we now use � to

represent all environments of the set {σ ,γ ,µ ,β} that are not modified via the specific rule. For example,

if a rule only changes the procedure environment µ , then � will be the set {σ ,γ ,β}. The semantics listed

below are static, necessary for later sections including state-saving and our results.

Sequential and Parallel Composition Programs can be of the form S;P or P par Q. As such, programs

either execute sequentially, or allow each side of a parallel statement to interleave their execution.

[S1]
(S |�) →֒ (S′ |�′)

(S; P |�) →֒ (S′; P |�′)
[S2]

(skip; P |�) →֒ (P |�)

[P1]
(P |�) →֒ (P′ |�′)

(P par Q |�) →֒ (P′ par Q |�′)
[P2]

(Q |�) →֒ (Q′ |�′)

(P par Q |�) →֒ (P par Q′ |�′)

[P3]
(P par skip |�) →֒ (P |�)

[P4]
(skip par Q |�) →֒ (Q |�)

Assignment All assignments are considered destructive, with the overwritten value being lost. A single

atomic rule both evaluates the expression and assigns the new value to the appropriate memory location.

Arithmetic expressions do not contain side effects, meaning evaluation of these does not change the

environments, as shown in rule [D1]. Similarly, this is also the case for boolean expressions, as shown

in rule [I1] and there after.

[D1]
(e pa | σ ,γ,�) →֒∗

a
(v | σ ,γ,�) evalV(γ,pa,X) = l

(X = e pa | σ ,γ,�) →֒ (skip | σ [l 7→ v],γ,�)

Conditional Condition evaluation is atomic via [I1], before the appropriate branch is executed com-

pletely to skip (potentially interleaved).

[I1]
(b pa |�) →֒∗

b
(V |�)

(if In b then P else Q end pa |�) →֒ (if In V then P else Q end pa |�)

[I2]
(P |�) →֒ (P′ |�′)

(if In T then P else Q end pa |�) →֒ (if In T then P′ else Q end pa |�′)

[I3]
(Q |�) →֒ (Q′ |�′)

(if In F then P else Q end pa |�) →֒ (if In F then P else Q′ end pa |�′)

[I4]
(if In T then skip else Q end pa |�) →֒ (skip |�)

[I5]
(if In F then P else skip end pa |�) →֒ (skip |�)

While Loop Evaluation of the condition is always atomic. [W1] handles the first iteration of a loop,

where no mapping for Wn is present in β . The mapping Wn⇒ R is inserted, and the condition is evaluated.

[W2] handles any other iteration, evaluating the condition and updating the mapping within β to Wn⇒ R′.

Both rules rename the body, making constructs unique. [W3] executes the body. [W4] continues the loop

using the program P, retrieved from β for Wn, until the condition is false, when [W5] will conclude the

statement. The premise β (Wn) = R indicates an arbitrary mapping exists. This is necessary as the rule

[W5] requires the removal of some mapping via β [Wn]. Note that these semantics (and the semantics

defined in Sections 4 and 5) are correct for all while loops with conditions that require evaluation. In the

case of b initially being T or F, there may be ambiguity in our rules.

74 Reversing Parallel Programs with Blocks and Procedures

[W1]
β (Wn) = und (b pa | β ,�) →֒∗

b
(V | β ,�)

(while Wn b do P end pa | β ,�) →֒ (while Wn V do reL(P) end pa | β [Wn⇒ R],�)

where R= while Wn b do reL(P) end pa

[W2]
β (Wn) = while Wn b do P end pa (b pa | β ,�) →֒∗

b
(V | β ,�)

(while Wn b do P end pa | β ,�) →֒ (while Wn V do reL(P) end pa | β [Wn⇒ R′],�)

where R′ = while Wn b do reL(P) end pa

[W3]
(R |�) →֒ (R′ |�′)

(while Wn T do R end pa |�) →֒ (while Wn T do R′ end pa |�′)

[W4]
β (Wn) = P

(while Wn T do skip end pa | β ,�) →֒ (P | β ,�)

[W5]
β (Wn) = R

(while Wn F do P end pa | β ,�) →֒ (skip | β [Wn],�)

Block Blocks begin with [B1] that creates the runB construct. This then executes the block body via

[B2], beginning with the declaration of local variables and procedures. The program then executes using

these local definitions, before all such information is removed. Finally [B3] concludes the statement.

[B1]
(begin Bn P end |�) →֒ (runB P end |�)

where P = DV;DP;Q;RP;RV

[B2]
(P |�) →֒ (P′ |�′)

(runB P end |�) →֒ (runB P′ end |�′)
[B3]

(runB skip end |�) →֒ (skip |�)

Variable and Procedure Declaration A variable declaration [L1] associates the given variable name and

current block name Bn (first element of the sequence pa, written Bn*pa′) to the next available memory

location l (via nextLoc()) in γ , while also mapping this location to the value v in σ (via the notation

l 7→ v). A procedure declaration [L2] inserts the basis mapping between the unique procedure identifier

Pn and a pair containing both the procedure name and the procedure body (n,P). A call statement uses

this mapping to create a renamed version.

[L1]
nextLoc() = l pa= Bn*pa′

(var X = v pa | σ ,γ,�) →֒ (skip | σ [l 7→ v],γ[(X,Bn)⇒ l],�)

[L2]
(proc Pn n is P pa | µ ,�) →֒ (skip | µ [Pn⇒ (n,P)],�)

Procedure Call [G1] evaluates the procedure name to Pn, and retrieves the basis entry (n,P) from µ .

The renamed version of P, written P′, is then inserted into µ via the mapping Cn⇒ (n,P′), and the runC

construct is formed. [G2] executes the body of the call statement, before [G3] concludes the statement

by removing the mapping for Cn within µ , written µ[Cn].

[G1]
evalP(n,pa) = Pn µ(Pn) = (n,P) reP(P,Cn) = P′

(call Cn n pa | µ ,�) →֒ (runC Cn P′ end | µ [Cn⇒ (n,P′)],�)

[G2]
(P |�) →֒ (P′ |�′)

(runC Cn P end |�) →֒ (runC Cn P′ end |�′)

[G3]
(runC Cn skip end | µ ,�) →֒ (skip | µ [Cn],�)

J. Hoey, I. Ulidowski & S. Yuen 75

Variable and Procedure Removal A local variable X is local to the inner most block Bn of its path, writ-

ten as Bn*pa′. Removal of a variable [H1] removes the mapping of (X,Bn) from γ , written γ[(X,Bn)].

The location associated with this mapping is set to 0 (l 7→ 0) and marked free for future use. A procedure

removal [H2] removes the mapping for the given procedure identifier Pn, written as µ[Pn].

[H1]
pa= Bn*pa′ γ(X,Bn) = l

(remove X = v pa | σ ,γ,�) →֒ (skip | σ [l 7→ 0],γ[(X,Bn)],�)

[H2]
(remove Pn n is P pa | µ ,�) →֒ (skip | µ [Pn],�)

4 Forwards Semantics of Annotated Programs

Annotation is the process of generating our annotated version of a program. This will make small changes

to the syntax of our program, adding the capability of storing necessary reversal information. Before

defining this in detail, we must have an environment for storing this information, keeping it separate from

the program state. To do this, we use an updated version of our auxiliary store δ [10]. There is a stack for

each program variable name, storing any overwritten values the variable holds throughout the execution,

whether the variable is global, local or both. Using one stack for all versions of a variable helps us to

devise a technique to handle races on that variable. There is a single stack B for all conditional statements.

After completion of the conditional, a pair containing an identifier and a boolean value indicating which

branch was executed will be saved. Identifiers allow us to resolve any races, meaning all pairs for all

conditionals can be pushed to a single stack. There is a single stack W for all while loops. As explained

and illustrated in our previous work [10], this stack will contain pairs of an identifier and a boolean value.

These pairs produce a sequence of boolean values necessary for inverse execution. Stack WI stores all

annotation information (order of identifiers) of a while loop, before it’s removed from β . Stack Pr

performs a similar task for procedure bodies. Let V be the set of all variables, S(V) be a set of stacks,

one for each element of V, B be the set of boolean values, C be the annotation information and K be the

set of identifiers. Then δ : (S(V) 7→ (K×Num))∪ (S(B) 7→ (K×B))∪ (S(W) 7→ (K×B))∪ (S(WI) 7→
(K×C))∪ (S(Pr) 7→ (K×C)). The notation δ [el ⇀ st] pushes el to the stack st, while δ [st/st′]

pops the top element of stack st, leaving the remaining stack st′.

We now define annotation. Each statement, excluding blocks and parallel, receives a stack A for

identifiers. The association of a statement to its stack persists throughout the execution. Each time a

statement executes, the (global and atomic) function next() retrieves the next available identifier, which

is pushed to that statements stack (and δ if necessary). The functions ann() and a() are defined below.

ann(ε) = ε ann(S;P) = a(S);ann(P) ann(P par Q) = ann(P) par ann(Q)

a(skip) = skip I

a(X = e pa) = X = e (pa,A)

a(if In b then P else Q end pa) = if In b then ann(P) else ann(Q) end (pa,A)

a(while Wn b do P end pa) = while Wn b do ann(P) end (pa,A)

a(begin Bn DV DP P RP RV end) = begin Bn ann(DV) ann(DP) ann(P) ann(RP) ann(RV) end

a(var X = v pa) = var X = v (pa,A)

a(proc Pn n is P pa) = proc Pn n is ann(P) (pa,A)

a(call Cn n pa) = call Cn n (pa,A)

a(remove X = v pa) = remove X = v (pa,A)

a(remove Pn n is P pa) = remove Pn n is ann(P) (pa,A)

76 Reversing Parallel Programs with Blocks and Procedures

1 begin b1

2 proc p1 fib is

3 begin b2

4 var T = 0 b2 ;

5 if i1 (N - 2 > 0) then

6 T = F + S b2 ;

7 F = S b2 ;

8 S = T b2 ;

9 N = N - 1 b2 ;

10 call c2 fib b2 ;

11 end b2

12 remove T = 0 b2 ;

13 end

14 end b1

15 call c1 fib b1 ;

16 remove p1 fib is P b1 ;

17 end

Figure 3: Original program

1 begin b1

2 proc p1 fib is

3 begin b2

4 var T = 0 (b2*b1,A) ;

5 if i1 (N - 2 > 0) then

6 T = F + S (b2*b1,A) ;

7 F = S (b2*b1,A) ;

8 S = T (b2*b1,A) ;

9 N = N - 1 (b2*b1,A) ;

10 call c2 fib (b2*b1,A) ;

11 end (b2*b1,A)

12 remove T = 0 (b2,A) ;

13 end

14 end (b1,A)

15 call c1 fib (b1,A) ;

16 remove p1 fib is AP (b1,A) ;

17 end

Figure 4: Renamed and annotated program

We use I to represent either nothing, a path, an identifier stack, or a pair consisting of both a path and an

identifier stack. After application of these functions, the resulting annotated version is of the following,

modified syntax (with expressions omitted as they match Section 2). We note that a(runB P end) is

runB ann(P) end, and a(runC Cn P end) is runC Cn ann(P) end A. Execution of the annotated

version produces the executed annotated version, an identical copy but with populated identifier stacks.

AP ::= ε | AS | AP; AP | AP par AP

AS ::= skip I | X = E (pa,A) | if In B then AP else AQ end (pa,A) |

while Wn B do AP end (pa,A) | begin Bn ADV ADP AP ARP ARV end |

call Cn n (pa,A) | runC Cn AP end A | runB AP end

ADV ::= ε | var X = v (pa,A); ADV ADP ::= ε | proc Pn n is AP (pa,A); ADP

ARV ::= ε | remove X = v (pa,A); ARV ARP ::= ε | remove Pn n is AP (pa,A); ARP

As all statements within an annotated version will be of this syntax, this must be reflected in our

environments, specifically µ and β that store programs. As a result, we now use � to represent the set

of annotated environments, unless explicitly stated otherwise.

Example 1. We now consider the example implementation of a Fibonacci sequence using our program-

ming language above, shown in Figure 3. Note that version numbers are omitted due to the absence of

while loops, and all paths are initially just the most direct block name. Let P denote the procedure body

shown in the declaration statement, namely lines 3-13 of Figure 3. The procedure removal statement

on line 16 then uses this. Assume global variables F=3, S=4 and N=4. This program calculates the Nth

element of the Fibonacci sequence beginning with the first and second elements F and S. After execution,

the Nth element will be the value held by S. Before we execute this program forwards, it must first be

both annotated and renamed, shown in Figure 4. All paths have now been updated to include all block

identifiers necessary for execution, and all appropriate statements now have a stack A for storing iden-

tifiers. Line 7 of Figure 3 has become line 7 of Figure 4, which now has the path b2*b1, meaning this

statement appears directly within b2, and indirectly within b1.

J. Hoey, I. Ulidowski & S. Yuen 77

Prior to defining the operational semantics of this, we must first introduce three functions. The first,

getAI(), returns the order and application of identifiers to a given program. This allows us to extract the

annotation information that would otherwise be lost when a while or procedure environment mapping is

removed. The second, refW(), reflects a given annotation change to the copy of the program mapped to

the given while identifier. The third, refC(), is identical, but will reflect a change made to a procedure

body using a given call identifier. Recall functions reL() and reP() from Section 2.2.

We are now ready to give the operational semantics. The transition rules are those in Section 3, but

with →֒ replaced with →, and with all state-saving performed. We introduce m-rules, the name given to

each transition rule that assigns an identifier. All other rules that do not use identifiers are now named

non m-rules. Transitions
m
→ are also called identifier transitions.

Sequential and Parallel Composition These are identical to Section 3, but with the annotated syntax.

[S1a]
(AS |�)

◦
→ (AS′ |�′)

(AS; AP |�)
◦
→ (AS′; AP |�′)

[S2a]
(skip I; AP |�)→ (AP |�)

[P1a]
(AP |�)

◦
→ (AP′ |�′)

(AP par AQ |�)
◦
→ (AP′ par AQ |�′)

[P2a]
(AQ |�)

◦
→ (AQ′ |�′)

(AP par AQ |�)
◦
→ (AP par AQ′ |�′)

[P3a]
(AP par skip I |�)→ (AP |�)

[P4a]
(skip I par AQ |�)→ (AQ |�)

Assignment This is an m-rule, saving the old value and the next available identifier m, retrieved via the

function next(), onto this variables stack on δ .

[D1a]
(e pa | δ ,σ ,γ,�) →֒∗

a
(v | δ ,σ ,γ,�) m = next() evalV(γ,pa,X) = l

(X = e (pa,A) | δ ,σ ,γ,�)
m
→ (skip m:A | δ [(m,σ(l)) ⇀ X],σ [l 7→ v],γ,�)

Conditional All rules follow as in Section 3, but with annotated programs, and [I4a] and [I5a] both being

m-rules. These save the next available identifier m (via next()) and a boolean value indicating which

branch was executed (after execution of the branch) onto stack B on δ .

[I1a]
(b pa |�) →֒∗

b
(V |�)

(if In b then AP else AQ end (pa,A) |�)→ (if In V then AP else AQ end (pa,A) |�)

[I2a]
(AP |�)

◦
→ (AP′ |�′)

(if In T then AP else AQ end (pa,A) |�)
◦
→ (if In T then AP′ else AQ end (pa,A) |�′)

[I3a]
(AQ |�)

◦
→ (AQ′ |�′)

(if In F then AP else AQ end (pa,A) |�)
◦
→ (if In F then AP else AQ′ end (pa,A) |�′)

[I4a]
m = next()

(if In T then skip I else AQ end (pa,A) | δ ,�)
m
→ (skip m:A | δ [(m,T) ⇀ B],�)

[I5a]
m = next()

(if In F then AP else skip I end (pa,A) | δ ,�)
m
→ (skip m:A | δ [(m,F) ⇀ B],�)

While Loop The first two rules are m-rules, saving the next available identifier m (via next()) and an

element of the boolean sequence onto stack W on δ . [W1a] handles the first iteration of a loop, creating

a mapping on β as in Section 3 (but with annotated programs), and saving the first element F of the

boolean sequence (see [10]). [W2a] handles any other iteration, updating the current mapping as before

and saving the next element T of the boolean sequence (see [10]). Both rules rename the loop body. The

78 Reversing Parallel Programs with Blocks and Procedures

body executes via [W3a], now reflecting all annotation changes of AR′ into the stored copy, written using

β ′[refW(Wn,AR′)]. Finally, a loop either continues via [W4a], or finishes via the m-rule [W5a]. This final

rule stores the next available identifier m and all annotation information (getAI()) onto stack WI, before

removing the mapping, written β [Wn].

[W1a]
m = next() β (Wn) = und (b pa | β ,�) →֒∗

b
(V | β ,�)

(S | δ ,β ,�)
m
→ (while Wn V do reL(AP) end (pa,m:A) | δ [(m,F) ⇀ W],β [Wn⇒ AR],�)

where S= while Wn b do AP end (pa,A) and AR= while Wn b do reL(AP) end (pa,m:A)

[W2a]
m = next() β (Wn) = while Wn b do AQ end (pa,A) (b pa | β ,�) →֒∗

b
(V | β ,�)

(S | δ ,β ,�)
m
→ (while Wn V do reL(AQ) end (pa,m:A) | δ [(m,T) ⇀ W],β [Wn⇒ AR′],�)

where S= while Wn b do AP end (pa,A) and AR′ = while Wn b do reL(AQ) end (pa,m:A)

[W3a]
(AR | β ,�)

◦
→ (AR′ | β ′,�′)

(while Wn T do AR end (pa,A) | β ,�)
◦
→ (while Wn T do AR′ end (pa,A) | β ′′,�′)

where β ′′ = β ′[refW(Wn,AR′)]

[W4a]
β (Wn) = AP

(while Wn T do skip I end (pa,A) | β ,�)→ (AP | β ,�)

[W5a]
m = next() β (Wn) = AR

(while Wn F do AP end (pa,A) | δ ,β ,�)
m
→ (skip m:A | δ [(m,getAI(β (Wn))) ⇀ WI],β [Wn],�)

Block These are identical to before, but using the annotated syntax.

[B1a]
(begin Bn AP end |�)→ (runB AP end |�)

where AP = ADV;ADP;AQ;ARP;ARV

[B2a]
(AP |�)

◦
→ (AP′ |�′)

(runB AP end |�)
◦
→ (runB AP′ end |�′)

[B3a]
(runB skip I end |�)→ (skip |�)

Variable and Procedure Declaration Variable declarations [L1a] are as before, but are now m-rules

without state-saving. Procedure declarations [L2a] are also as before, but is also an m-rule without

state-saving, and all programs are now annotated.

[L1a]
m = next() nextLoc() = l pa= Bn*pa′

(var X = v (pa,A) | σ ,γ,�)
m
→ (skip m:A | σ [l 7→ v],γ[(X,Bn)⇒ l],�)

[L2a]
m = next()

(proc Pn n is AP (pa,A) | µ ,�)
m
→ (skip m:A | µ [Pn⇒ (n,AP)],�)

Procedure Call [G1a] inserts a renamed copy of the basis entry onto µ , exactly as in Section 3, but with

an annotated program. [G2a] uses the runC construct to execute this renamed copy, but now reflects

any annotation changes to the stored copy, written µ ′[refC(Cn,AP′)]. [G3a] is now an m-rule, saving all

annotation changes from the copy to the stack Pr, alongside the next available identifier m (via next()).

The renamed copy is removed from µ , written as µ[Cn].

[G1a]
evalP(n,pa) = Pn µ(Pn) = (n,AP) reP(AP,Cn) = AP′

(call Cn n (pa,A) | µ ,�)→ (runC Cn AP′ end A | µ [Cn⇒ (n,AP′)],�)

[G2a]
(AP | µ ,�)

◦
→ (AP′ | µ ′

,�
′)

(runC Cn AP end A | µ ,�)
◦
→ (runC Cn AP′ end A | µ ′[refC(Cn,AP′)],�′)

J. Hoey, I. Ulidowski & S. Yuen 79

[G3a]
m = next() µ(Cn) = AP

(runC Cn skip I end A | δ ,µ ,�)
m
→ (skip m:A | δ [(m,getAI(µ(Cn))) ⇀ Pr],µ [Cn],�)

Variable and Procedure Removal Variable removal [H1a] is now an m-rule, saving the final value of

that variable and the next available identifier m (via next()) onto that variables stack on δ . The mapping

is removed as in Section 3. Procedure removal [H2a] is as before, but an m-rule without state-saving.

[H1a]
m = next() pa= Bn*pa′ γ(X,Bn) = l

(remove X = v (pa,A) | δ ,σ ,γ,�)
m
→ (skip m:A | δ [(m,σ(l)) ⇀ X],σ [l 7→ 0],γ[(X,Bn)],�)

[H2a]
m = next() µ(Pn) = AQ

(remove Pn n is AP (pa,A) | µ ,�)
m
→ (skip m:A | µ [Pn],�)

4.1 Results

We first define equivalence between traditional and annotated environments.

Definition 4.1. Let σ be a data store, σ1 be an annotated data store, γ be a variable environment and γ1

be an annotated variable environment. We have (σ ,γ) is equivalent to (σ1,γ1), written (σ ,γ)≈S (σ1,γ1),
if and only if dom(γ) = dom(γ1) and σ(γ(X,Bn)) = σ1(γ1(X,Bn)) for all X ∈ dom(γ) and block names Bn.

Definition 4.2. Let µ be a procedure environment, and µ1 be an annotated procedure environment. We

have that µ is equivalent to µ1, written µ ≈P µ1, if and only if dom(µ) = dom(µ1), µ(Pn) = (n,P),

µ1(Pn) = (n,AP) and removeAnn(AP) = P for all Pn ∈ dom(µ). (Note Pn could be Cn here).

Definition 4.3. Let β be a while environment, and β1 be an annotated while environment. We have that

β is equivalent to β1, written β ≈W β1, if and only if dom(β) = dom(β1), β (Wn) = P, β1(Wn) = AP and

removeAnn(AP) = P for all Wn ∈ dom(β).

Definition 4.4. Let δ be an auxiliary store, and δ1 be an annotated auxiliary store. Firstly, we define the

equivalence of stacks St and St′, written as St ≈ST St′, as true if both stacks have matching elements.

We have that δ is equivalent to δ1, written δ ≈A δ1, if and only if for each stack St ∈ dom(δ), we have

δ (St)≈ST δ1(ST).

Definition 4.5. Let � represent the set of environments {σ ,γ ,µ ,β} and �1 represent the set of anno-

tated environments {σ1,γ1,µ1,β1}. We have that � is equivalent to �1, written � ≈ �1, if and only if

(σ ,γ) ≈S (σ1,γ1), µ ≈P µ1 and β ≈W β1.

We now present our results. Theorem 1 states that identifiers are used in ascending order. Theorem 2

below states if an original program terminates, the annotated version will also, and annotation does not

change the behaviour of the program w.r.t the stores �, but does produce a populated auxiliary store δ ′.

Theorem 1. Let AP and AQ be annotated programs, � be the set of environments and δ be an auxiliary

store. If (AP | �, δ)
◦
→

∗
(AP′ | �′, δ ′)

n
→ (AQ | �′′, δ ′′)→∗ (AQ′ | �′′′, δ ′′′)

m
→ (AQ′′ | �′′′′, δ ′′′′), and the

computation (AQ | �′′, δ ′′)→∗ (AQ′ | �′′′, δ ′′′) does not have any identifier transitions, then m = n + 1.

Proof. The order of identifiers used during execution is maintained using next(). The program AP

will begin with any number of steps. At some point, a transition occurs that will use the next available

identifier n, while simultaneously incrementing next() by one to m. Any number of non m-rules can

then apply, before the next m-action uses next() to get m. Hence, m = n + 1.

Lemma 1. Let P be a program, � be the set {σ ,γ ,µ ,β} of all environments, �1 be the set {σ1,γ1,µ1,β1}
of annotated environments such that �≈�1 and δ be the auxiliary store. If (P | �,δ) →֒ (P′ | �′,δ), for

some�′, then there exists an execution (ann(P) | �1,δ)
◦
→ (P′′ | �′

1,δ ′), for some�′
1, δ ′ and P′′ = ann(P′)

such that �′ ≈ �′
1.

80 Reversing Parallel Programs with Blocks and Procedures

Theorem 2. Let P be an original program, � be the set {σ ,γ ,µ ,β} of all environments, �1 be the set

{σ1,γ1,µ1,β1} of annotated environments such that �≈�1 and δ be the auxiliary store. If (P | �,δ) →֒∗

(skip | �′,δ), for some �′, then there exists an execution (ann(P) | �1,δ)
◦
→

∗
(skip I | �′

1,δ ′), for

some I, �′
1 and δ ′, such that �′ ≈ �′

1.

Proof. The proof is by induction on the length of the sequence (P |�,δ) →֒∗ (skip |�′,δ ′). We consider

P being either a sequential or parallel composition of programs. Both cases hold using Lemma 1.

We note the implication holds in the opposite direction, but defer proof to future work.

5 Reverse Semantics of Inverted Programs

Inversion is the process of generating the inverted version of a given program, produced from the ex-

ecuted annotated version, as the populated identifier stacks are necessary. As the inverted version is a

program that executes forwards, inversion inverts the overall statement order. The functions that performs

this, namely inv() and the supplementary i(), are defined below.

inv(ε) = ε inv(AS;AP) = inv(AP); i(AS) inv(AP par AQ) = inv(AP) par inv(AQ)

i(skip I) = skip I

i(X = e (pa,A)) = X = e (pa,A)

i(if In b then AP else AQ end (pa,A)) = if In b then inv(AP) else inv(AQ) end (pa,A)

i(while Wn b do AP end (pa,A)) = while Wn b do inv(AP) end (pa,A)

i(begin Bn ADV ADP AP ARP ARV end) = begin Bn inv(ARV) inv(ARP) inv(AP) inv(ADP)

inv(ADV) end

i(var X = v (pa,A)) = remove X = v (pa,A)

i(proc Pn n is AP (pa,A)) = remove Pn n is inv(AP) (pa,A)

i(call Cn n (pa,A)) = call Cn n (pa,A)

i(remove X = v (pa,A)) = var X = v (pa,A)

i(remove Pn n is AP (pa,A)) = proc Pn n is inv(AP) (pa,A)

All inverted programs are of the annotated syntax in Section 4, but with IP and IS used for inverted

programs and statements respectively. The inverse of runB and runC constructs simply invert the body.

Starting with the final state of all environments from the forwards execution, the inverted program

will no longer perform any expression evaluation, offering potential time saving when compared to

traditional cyclic debugging. The result of any expression evaluation that happened during forwards

execution is retrieved from the appropriate stack on δ . For example, a while loop will iterate until the

top element of stack W on δ is no longer true. The non-determinism that possibly occurred during the

forwards execution will also not feature in the inverted execution. The identifiers assigned to statements

ensure that any statement can only execute provided it has the highest unseen identifier. Using the

function previous(), and starting it with the final value of next(), all m-rules will be reversed in

backtracking order. There is freedom in the order of non m-rules, with examples being parallel skip

operations, or parallel block closings. Reversing these in any order produces no adverse effects.

We recognise that all environments will now store inverted programs wherever necessary. Since an

inverted program is of the same syntax as an annotated program, our current environments are sufficient.

We now return to our example discussed in Section 4.

J. Hoey, I. Ulidowski & S. Yuen 81

1 begin b1

2 proc p1 fib is

3 begin b2

4 var T = 0 (b2*b1,A) ;

5 if i1 (N - 2 > 0) then

6 T = F + S (b2*b1,A) ;

7 F = S (b2*b1,A) ;

8 S = T (b2*b1,A) ;

9 N = N - 1 (b2*b1,A) ;

10 call c2.0 fib (b2*b1,A) ;

11 end (b2*b1,A)

12 remove T = 0 (b2,A) ;

13 end

14 end (b1,[1])

15 call c1 fib (b1,[21]) ;

16 remove p1 fib is AP (b1,[22]) ;

17 end

Figure 5: Executed annotated version

1 begin b1

2 proc p1 fib is

3 begin b2

4 var T = 0 (b2*b1,A) ;

5 if i1 (N - 2 > 0) then

6 call c2 fib (b2*b1,A) ;

7 N = N - 1 (b2*b1,A) ;

8 S = T (b2*b1,A) ;

9 F = S (b2*b1,A) ;

10 T = F + S (b2*b1,A) ;

11 end (b2*b1,A)

12 remove T = 0 (b2,A) ;

13 end

14 end (b1,[22])

15 call c1 fib (b1,[21]) ;

16 remove p1 fib is IP (b1,[1]) ;

17 end

Figure 6: Inverted version

Example 2. We now execute the annotated version of our original program (Figure 4), producing the final

annotated version shown in Figure 5. The initial value of next() is 1. We enter block b1, and perform the

procedure declaration, assigning the identifier 1 to its stack. The call statement then happens, performing

a renamed copy of the procedure body. This will execute lines 3-9 using identifiers 2-6, before hitting the

recursive call. This call will then execute another renamed copy of the procedure body. This renamed

copy for the second call is shown in Figure 7, where the unique call name c1:c2 has been used to

rename all constructs. Lines 1-7 are executed using identifiers 7-11, before again hitting a recursive call.

This renamed version is then executed, with the conditional on line 5 evaluating to false, meaning the

recursion is now finished. This version uses the identifiers 12-14, before the recursive calls begin to

close. The second call (Figure 7) then concludes, executing lines 8-11 using identifiers 15-17. The first

call then concludes using the identifiers 18-20. Finally, the original program concludes, using identifier

21 to finish the call statement, and then the last identifier 22 (meaning next() = 23) to remove the

procedure declaration. This concludes our execution, producing the final state F=7, S=11 and N=2.

We now consider the inverted execution. Application of the function inv() to the executed annotated

version (Figure 5) produces the inverted version shown in Figure 6. The initial value of previous()will

be 22 (next() - 1). Inverse execution begins by opening the outer block and performing the procedure

declaration (the inverse of the procedure removal) using identifier 22. The call statement is then entered

using identifier 21. A renamed copy of the procedure body is then executed, performing lines 3-6 using

identifiers 20-18. The recursive call is then hit, beginning the execution of another renamed copy, shown

in Figure 8. Lines 1-4 are executed using identifiers 17-15, before the recursive call is hit again. The third

renamed version now executes, and since the condition will be false (retrieved from the stack B on δ),

recursion now stops. This call concludes using identifiers 14-12, before the second call (Figure 8) now

concludes lines 5-11 using identifiers 11-7. The first call then concludes using identifiers 6-2. Finally, the

original program concludes with the removal of the procedure (inverse of declaration) using identifier 1.

This execution order restores the initial program state.

Prior to defining the inverse operational semantics, we must introduce the function setAI(). This takes

82 Reversing Parallel Programs with Blocks and Procedures

1 begin c1:c2:b2

2 var T = 0 (c1:c2:b2*b1,[7]) ;

3 if c1:c2:i1 (N - 2 > 0) then

4 T = F + S (c1:c2:b2*b1,[8]);

5 F = S (c1:c2:b2*b1,[9]) ;

6 S = T (c1:c2:b2*b1,[10]) ;

7 N = N - 1 (c1:c2:b2*b1,[11]) ;

8 call c1:c2:c2 fib (c1:c2:b2*b1,[15]) ;

9 end (c1:c2:b2*b1,[16])

10 remove T = 0 (c1:c2:b2*b1,[17]) ;

11 end

Figure 7: Executed annotated version of 2nd call

1 begin c1:c2:b2

2 var T = 0 (c1:c2:b2*b1,[17]) ;

3 if c1:c2:i1 (N - 2 > 0) then

4 call c1:c2:c2 fib (c1:c2:b2*b1,[15]) ;

5 N = N - 1 (c1:c2:b2*b1,[11]) ;

6 S = T (c1:c2:b2*b1,[10]) ;

7 F = S (c1:c2:b2*b1,[9]) ;

8 T = F + S (c1:c2:b2*b1,[8]) ;

9 end (c1:c2:b2*b1,[16])

10 remove T = 0 (c1:c2:b2*b1,[7]) ;

11 end

Figure 8: Inverted version of 2nd call

the output of the function getAI() from Section 4 and a program, and returns a copy of this program with

the given annotation information inserted. Recall the functions IreP and IreL from Section 2.2.

We now give the operational semantics of inverted programs. We introduce reverse m-rules, the

name given to all statements of the inverse execution that use an identifier. Transitions
m
 are also called

reverse identifier transitions. All other rules remain non m-rules. We note a correspondence between

each m-rule and the matching reverse m-rule.

Sequential and Parallel Composition The inverted program is still executed forwards, meaning these

are like those in Section 4, but with replacing →, and IP and IS replacing AP and AS respectively.

Each rule is named correspondingly to Section 4, but with the appended ‘a’ replaced with ‘r’. For

example, rule [S1a] is now [S1r].

Assignment The inverse of an assignment will be a reverse m-rule, allowed to execute provided the top

element of stack A is m (written A = m:A′), and m is the last used identifier (via previous()). This

retrieves the old value, with matching identifier m, from the stack on δ for this variable, and assigns it to

the corresponding location (evaluated as in Section 4).

[D1r]
A = m:A′ m = previous() evalVar(γ,pa,X) = l δ (X) = (m,v):X′

(X = e (pa,A) | δ ,σ ,�)
m
 (skip A′ | δ [X/X′],σ [l 7→ v],�)

Conditional This will begin with the reverse m-rule [I1r] that, provided this statement has the next

identifier to invert (via previous() and A = m:A′) retrieves the boolean value from the stack B with

matching identifier m on δ . Rules [I2r] and [I3r] follow Section 4, but with inverted programs. Finally,

[I4r] and [I5r] simply concludes the statement.

[I1r]
A = m:A′ m = previous() δ (B) = (m,V):B′

(S | δ ,�)
m
 (if In V then IP else IQ end (pa,A′) | δ [B/B′],�)

where S= if In b then IP else IQ end (pa,A)

[I2r]
(IP |�)

◦
 (IP′ |�′)

(if In T then IP else IQ end (pa,A) |�)
◦
 (if In T then IP′ else IQ end (pa,A) |�′)

[I3r]
(IQ |�)

◦
 (IQ′ |�′)

(if In F then IP else IQ end (pa,A),�)
◦
 (if In F then IP else IQ′ end (pa,A) |�′)

[I4r]
(if In T then skip I else IQ end (pa,A) |�) (skip |�)

J. Hoey, I. Ulidowski & S. Yuen 83

[I5r]
(if In F then IP else skip I end (pa,A) |�) (skip |�)

While Loop The reverse m-rule [W1r] handles the first iteration of a loop, retrieving either the T or F

from the stack B on δ , and creating a mapping on β . This mapping is similar to that of [W1a] but with an

inverted copy of the loop IP′ that is both renamed and updated with annotated information C, retrieved

from the stack WI (via setAI()). The reverse m-rule [W2r] handles all iterations except the first, meaning

the renaming is applied to the current mapping, written β [Wn ⇒ IR′]. Both rules only execute provided

they have the last used identifier (via previous() and A = m:A′). The body is then executed repeatedly

with changes reflected to the stored copy, written β ′[Wn ⇒ IR′], via rule [W3r]. The loop continues

through the rule [W4r], until the condition is false and thus the mapping removed by rule [W5r].

[W1r]
m = previous() A = m:A′ β (Wn) = und δ (WI)=(m,C):WI′ IP′ = IreL(setAI(IP,C))

(S | δ ,β ,�)
m
 (while Wn b do IP′ end (pa,A′) | δ [WI/WI′],β [Wn⇒ IR],�)

where S= while Wn b do IP end (pa,A)and IR= while Wn b do IP′ end (pa,A′)

[W2r]
m = previous() A = m:A′ β (Wn) = while Wn b do IQ end (pa,A) δ (W) = (m,V):W′

(S | δ ,β ,�)
m
 (while Wn V do IreL(IQ) end (pa,A′) | δ [W/W′],β [Wn⇒ IR′],�)

where S= while Wn b do IP end (pa,A) and IR′ = while Wn b do IreL(IQ) end (pa,A′)

[W3r]
(IR | δ ,β ,�)

◦
 (IR′ | δ ′

,β ′
,�

′)

(while Wn T do IR end (pa,A) | δ ,β ,�)
◦
 (while Wn T do IR′ end (pa,A) | δ ′,β ′′,�′)

where β ′′ = β ′[refW(Wn,IR′)]

[W4r]
β (Wn) = IP

(while Wn T do skip I end (pa,A) | β ,�) (IP | β ,�)

[W5r]
β (Wn) = IR

(while Wn F do IP end (pa,A) | β ,�) (skip | β [Wn],�)

Block The inversion of a block is very similar to that of Section 4, but with the inverted syntax. Recall

that a variable declaration in the inverted syntax is the inverse of a variable removal, and similarly for

procedures. This means an inverted block has a body of the form shown below as IP in [B1r].

[B1r]
(begin Bn IP end |�) (runB IP end |�)

where IP = IDV;IDP;IQ;IRP;IRV

[B2r]
(IP |�)

◦
 (IP′ |�′)

(runB IP end |�)
◦
 (runB IP′ end |�′)

[B3r]
(runB skip I end |�) (skip |�)

Variable and Procedure Declaration Reverse variable declaration [L1r] is a reverse m-rule, allowed

to execute provided it has the last used identifier (via previous() and A = m:A′). The given value is

ignored, and the variable is instead set to its final value retrieved from the corresponding stack on δ

(written δ (X) = (m,v′):X′). The location l is used as in Section 4. A procedure declaration [L2r] creates

the basis mapping as in Section 4, but with inverted programs, provided its identifiers allow this.

[L1r]
A = m:A′ m = previous() δ (X) = (m,v′):X′ nextLoc() = l pa= Bn*pa′

(var X = v (pa,A) | δ ,σ ,γ,�)
m
 (skip A′ | δ [X/X′],σ [l 7→ v′],γ[(X,Bn)⇒ l],�)

84 Reversing Parallel Programs with Blocks and Procedures

[L2r]
A = m:A′ m = previous()

(proc Pn n is IP (pa,A) | µ ,�)
m
 (skip A′ | µ [Pn⇒ (n,IP)],�)

Procedure Call The reverse m-rule [G1r] creates a renamed copy IP′ of the basis procedure body IP,

that has annotated changes C from stack WI inserted. This is inserted into µ via µ[Cn⇒ (n,IP′)]. Rule

[G2r] follows Section 4 but uses inverted programs, while [G3r] removes the mapping.

[G1r]
m = previous() A = m:A′ µ(evalP(n,pa)) = (n,IP) δ (Pr) = (m,C):Pr′

(call Cn n (pa,A) | µ ,�)
m
 (runC Cn IP′ end A′ | µ [Cn⇒ (n,IP′)],�)

where IP′ = IreP(setAI(IP,C),Cn)

[G2r]
(IP | µ ,�)

◦
 (IP′ | µ ′,�′)

(runC Cn IP end A | µ ,�)
◦
 (runC Cn IP′ end A | µ ′[refC(Cn,IP′)],�′)

[G3r]
µ(Cn) = IP

(runC Cn skip I end A | µ ,�) (skip A | µ [Cn],�)

Variable and Procedure Removal Variable removal [H1r] is similar to Section 3, as no state-saving is

required. But it is a reverse m-rule and can execute provided A = m:A′ and m = previous(). Procedure

removal [H2r] is a reverse m-rule with no state-saving, removing the mapping.

[H1r]
A = m:A′ m = previous() pa= Bn*pa′ γ(X,Bn) = l

(remove X = v (pa,A) | δ ,σ ,γ,�)
m
 (skip A′ | δ ,σ [l 7→ 0],γ[(X,Bn)],�)

[H2r]
A = m:A′ m = previous() µ(Pn) = IQ

(remove Pn n is IP (pa,A) | µ ,�)
m
 (skip A′ | µ [Pn],�)

5.1 Results

Prior to describing our inversion results, we first note that the definitions in Section 4.1 are now used

to relate annotated environments with inverted environments, instead of traditional. As an example,

Definition 4.2 would no longer have that P = removeAnn(AP), but instead that IP = inv(P).
Theorem 3 states that identifiers are used in descending order throughout a reverse execution (oppo-

site of Theorem 1). Theorem 4 shows that if an original sequential program and its annotated execution

terminate, then the reverse execution will also, and that the reverse execution beginning in the final state

can restore the initial state.

Theorem 3. Let P and Q be original programs, AP and AQ be the annotated versions producing the ex-

ecuted versions AP′ and AQ′ respectively, and IP and IQ be the inverted versions inv(AP′) and inv(AQ′)

respectively. Further let � be the set of all environments and δ be the auxiliary store. If (IP | �, δ)
◦

∗

(IP′ | �′, δ ′)
n
 (IQ | �′′, δ ′′) ∗ (IQ′ | �′′′, δ ′′′)

m
 (IQ′′ | �′′′′, δ ′′′′), and provided that the computa-

tion (IQ | �′′, δ ′′) ∗ (IQ′ | �′′′, δ ′′′) does not include any identifier transitions, then m = n - 1.

Proof. The order of identifiers is maintained using the function previous(). This proof follows closely

to the argument within the proof of Theorem 1, but uses
◦
 in place of

◦
→.

Theorem 4. Let P be a sequential program (does not contain par) and AP be ann(P). Further let �

be the set {σ ,γ ,µ ,β} of all environments, �1 be the set {σ1,γ1,µ1,β1} of annotated environments such

that � ≈ �1, �′
1 be the set {σ ′

1,γ ′1,µ ′
1,β ′

1} of final annotated environments, �2 be the set {σ2,γ2,µ2,β2}
of inverted environments such that �2 ≈ �

′
1, δ be the auxiliary store, δ ′ be the final auxiliary store and

δ2 be the inverted auxiliary store such that δ2 ≈A δ ′.

J. Hoey, I. Ulidowski & S. Yuen 85

1) If (P | �,δ) →֒∗ (skip | �′,δ), for some�′, and there exists an annotated execution (AP | �1,δ)
◦
→

∗

(skip I | �′
1,δ ′), for some I, �′

1 and δ ′ such that the executed annotated version of AP produced

by its execution is AP′, then there also exists (IP | �2,δ2)
◦

∗
(skip I′ | �′

2,δ ′
2), for IP = inv(AP′)

and some I′, �′
2 and δ ′

2. (Termination)

2) If (P | �,δ) →֒∗ (skip | �′,δ), for some�′, and there exists an annotated execution (AP | �1,δ)
◦
→

∗

(skip I | �′
1,δ ′), for some I,�′

1 and δ ′, such that�′ ≈�′
1 and that the executed annotated version

of AP produced by its execution is AP′, then there also exists (IP | �2,δ2)
◦

∗
(skip I′ | �′

2,δ ′
2), for

IP = inv(AP′) and some I′, �′
2 and δ ′

2, such that �′
2 ≈� and δ ′

2 ≈A δ .

Proof. This proof is by induction on the length of the sequence (P |�,δ) →֒∗ (skip |�′,δ ′).

The full version of Theorem 4, where programs can contain parallel composition, is currently being

considered. We note the implication in the other direction would be valid, but defer proof to future work.

6 Conclusion

We have presented an approach to reversing a language containing blocks, local variables, procedures

and the interleaving parallel composition. We defined annotation, the process of creating a state-saving

annotated version capable of assigning identifiers to capture the interleaving order. This was proved to

not alter the behaviour of the original program and to populate the auxiliary store. Inversion creates

an inverted version that uses this saved information to restore the initial program state, with this being

proved to hold. The auxiliary store is also restored, meaning it is garbage free.

We are also currently developing a simulator capable of implementing this approach, with one appli-

cation being to aid the proof of our results. The current prototype is capable of simulating the annotated

forwards execution, with the simulation of the inverted execution currently being worked on. This will

be used to evaluate the performance overhead and costs associated with our approach to reversibility.

Our future work will continue the development of this simulator, as well as modify the approach

allowing for causal-consistent reversibility.

Acknowledgements

We are grateful to the referees for their detailed and helpful comments and suggestions. The authors

acknowledge partial support of COST Action IC1405 on Reversible Computation - extending horizons of

computing. The third author is supported by JSPS KAKENHI grant numbers 17H01722 and 17K19969.

References

[1] V. Danos & J. Krivine (2004): Reversible Communicating Systems. In: CONCUR 2004, Proceedings, pp.

292–307, doi:10.1007/978-3-540-28644-8 19.

[2] R. Fujimoto (1990): Parallel Discrete Event Simulation. Communications of the ACM 33(10), pp. 30–53,

doi:10.1145/84537.84545.

[3] E. Giachino, I. Lanese & C.A. Mezzina (2014): Causal-Consistent Reversible Debugging. In: Proceedings

of FASE 2014, pp. 370–384, doi:10.1007/978-3-642-54804-8 26.

[4] R. Glück & M. Kawabe (2004): Derivation of Deterministic Inverse Programs Based on LR Parsing. In:

FLOPS 2004, LNCS 2998, Springer, pp. 291–306, doi:10.1007/978-3-540-24754-8 21.

http://dx.doi.org/10.1007/978-3-540-28644-8_19
http://dx.doi.org/10.1145/84537.84545
http://dx.doi.org/10.1007/978-3-642-54804-8_26
http://dx.doi.org/10.1007/978-3-540-24754-8_21

86 Reversing Parallel Programs with Blocks and Procedures

[5] R. Glück & M. Kawabe (2005): Revisiting an Automatic Program Inverter for LISP. SIGPLAN Notices

40(5), pp. 8–17, doi:10.1145/1071221.1071222.

[6] R. Glück & T. Yokoyama (2016): A Linear-Time Self-Interpreter of a Reversible Imperative Language. Com-

puter Software 33(3), pp. 3 108–3 128, doi:10.11309/jssst.33.3 108.

[7] R. Glück & T. Yokoyama (2017): A Minimalist’s Reversible While Language E100.D, pp. 1026–1034.

doi:10.1587/transinf.2016EDP7274.

[8] D. Gries (1981): The Science of Programming. Springer, doi:10.1007/978-1-4612-5983-1.

[9] T. Haulund (2017): Design and Implementation of a Reversible Object-Oriented Programming Language.

CoRR abs/1707.07845. Available at http://arxiv.org/abs/1707.07845.

[10] J. Hoey, I. Ulidowski & S. Yuen (2017): Reversing Imperative Parallel Programs. In: Proceedings of Ex-

press/SOS, 2017, EPTCS 255, pp. 51–66, doi:10.4204/EPTCS.255.4.

[11] H. Hüttel (2010): Transitions and Trees - An Introduction to Structural Operational Semantics. Cambridge

University Press, doi:10.1017/CBO9780511840449.

[12] D.R. Jefferson (1985): Virtual Time. ACM Transactions on Programming Languages and Systems 7(3), pp.

404–425, doi:10.1145/3916.3988.

[13] I. Lanese, C.A. Mezzina & F. Tiezzi (2014): Causal-Consistent Reversibility. Bulletin of the EATCS 114.

[14] K. Perumalla (2014): Introduction to Reversible Computing. CRC Press, doi:10.1201/b15719.

[15] I.C.C. Phillips & I. Ulidowski (2007): Reversing Algebraic Process Calculi. J. Log. Algebr. Program. 73(1-

2), pp. 70–96, doi:10.1016/j.jlap.2006.11.002.

[16] I.C.C. Phillips, I. Ulidowski & S. Yuen (2012): A Reversible Process Calculus and the Modelling of the ERK

Signalling Pathway. In: RC2012, LNCS 7581, Springer, pp. 218–232, doi:10.1007/978-3-642-36315-3 18.

[17] M. Schordan, D.R. Jefferson, P.D. Barnes Jr., T. Oppelstrup & D.J. Quinlan (2015): Reverse Code

Generation for Parallel Discrete Event Simulation. In: RC 2015, LNCS 9138, Springer, pp. 95–110,

doi:10.1007/978-3-319-20860-2 6.

[18] U.P. Schultz & H.B. Axelsen (2016): Elements of a Reversible Object-Oriented Language - Work-in-Progress

Report. In: Reversible Computation - 8th International Conference, RC 2016, Proceedings, pp. 153–159,

doi:10.1007/978-3-319-40578-0 10.

[19] G. Vulov, C. Hou, R.W. Vuduc, R. Fujimoto, D.J. Quinlan & D.R. Jefferson (2011): The Backstroke Frame-

work for Source Level Reverse Computation Applied to Parallel Discrete Event Simulation. In: WSC 2011,

WSC, doi:10.1109/WSC.2011.6147998.

[20] T. Yokoyama, H.B. Axelsen & R. Glück (2008): Principles of a Reversible Programming Language. In: Pro-

ceedings of the 5th Conference on Computing Frontiers, ACM, pp. 43–54, doi:10.1145/1366230.1366239.

[21] T. Yokoyama & R. Glück (2007): A Reversible Programming Language and its Invertible Self-interpreter.

In: Proceedings of the 2007 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-based Program

Manipulation, ACM, pp. 144–153, doi:10.1145/1244381.1244404.

http://dx.doi.org/10.1145/1071221.1071222
http://dx.doi.org/10.11309/jssst.33.3_108
http://dx.doi.org/10.1587/transinf.2016EDP7274
http://dx.doi.org/10.1007/978-1-4612-5983-1
http://arxiv.org/abs/1707.07845
http://dx.doi.org/10.4204/EPTCS.255.4
http://dx.doi.org/10.1017/CBO9780511840449
http://dx.doi.org/10.1145/3916.3988
http://dx.doi.org/10.1201/b15719
http://dx.doi.org/10.1016/j.jlap.2006.11.002
http://dx.doi.org/10.1007/978-3-642-36315-3_18
http://dx.doi.org/10.1007/978-3-319-20860-2_6
http://dx.doi.org/10.1007/978-3-319-40578-0_10
http://dx.doi.org/10.1109/WSC.2011.6147998
http://dx.doi.org/10.1145/1366230.1366239
http://dx.doi.org/10.1145/1244381.1244404

	1 Introduction
	1.1 Related Work

	2 Programming Language, Environments and Scope
	2.1 Environments
	2.2 Scope

	3 Forwards Only Operational Semantics
	4 Forwards Semantics of Annotated Programs
	4.1 Results

	5 Reverse Semantics of Inverted Programs
	5.1 Results

	6 Conclusion

