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In this paper we analyze the computational power of variants of population protocols (PP), a formal-

ism for distributed systems with anonymous agents having very limited capabilities. The capabilities

of agents are enhanced in mediated population protocols (MPP) by recording the states in the edges

of the interaction graph. Restricting the interactions to the communication model of immediate

observation (IO) reduces the computational power of the resulting formalism. We show that this en-

hancement and restriction, when combined, yield a model (IOMPP) at least as powerful as the basic

PP. The proof requires a novel notion of configurations in the MPP model allowing differentiation

of agents and uses techniques similar to methods of analyzing encoding criteria, namely operational

correspondence. The constructional part of the proof is generic in a way that all protocols can be

translated into the new model without losing the desirable properties they might have besides a sta-

ble output. Furthermore, we illustrate how this approach could be utilized to prove our conjecture

of IOMPP model being even as expressive as the MPP model. If our conjecture holds, this would

result in a sharp characterization of the computational power and reveal the nonnecessity of two-way

communication in the context of mediated population protocols.

1 Introduction

Population protocols have been introduced in 2004 as a computational model for passively mobile fi-

nite state sensors by Angluin et al. [2, 3]. They feature a finite state space, making them suitable for

computation units with very limited capabilities and full anonymity, resulting directly from this restric-

tion. Since the number of possible states that each agent could be in may not grow with the number of

participating agents, there is no space for memorizing the ids of already met communication partners or

similar constructs. Therefore, the outcome of any binary communication does not depend on whether

the participants have communicated before. Another feature is the fully distributed approach of the base

version for population protocols that does not need a base station, leader, or scheduler of any kind. The

impact of such extensions has been studied [5, 7, 1].

It is well known that predicates computable by population protocols are exactly the semilinear pred-

icates. The first study on the computational power of this model was in 2007 by Angluin et al. [4]. In

this context, also several different communication patterns have been modeled in population protocols

and their computational power have been studied as well. One of those mechanisms has been the imme-

diate observation model, which is a special kind of one-way communication as opposed to the two-way

communication that comes with the base model. The idea is that an agent may observe another agent

without it noticing being observed. Clearly the observed agent cannot change its state in such an in-

teraction whereas the observer can use the information given by its own and the observed agent’s state.

In contrast to stronger mechanisms no synchronization between the communication partners is needed.

Consequently the communication in such a model is asynchronous and applicable to a broader variety

of systems. With the fully distributed setting in mind the immediate observation communication seems

to be a desirable feature. But these qualities come with a price. Protocols with this limitation to the
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communication can only compute predicates in COUNT∗, i.e. predicates that count multiplicities of input

values and compare them to previously given thresholds.

Another approach to altering population protocols has been the work of Michail et al. [12]. In their

model agents are allowed to store distinct information for different communication partners. To achieve

this they extended the base formalism by states for each pair of agents residing in the edges of the

interaction graph. Some previous work on mediated population protocols modelled directed interaction

graphs with one state per edge [12] and others used undirected graphs where each edge has a state

for each of its two endpoints [8]. This extension is a reasonable compromise between maintaining the

anonymity of each agent and being able to memorize the already met communication partners. An

agent is capable of telling an agent, that it has not yet communicated with, apart from one it has already

met. But two other agents being in the same state and with the same communication history are still

indistinguishable. Aside from this the edge states can be used for storing several other information. This

mediated population protocols are able to compute all symmetric predicates in NSPACE(n2).

We now present a model in this paper that combines the extended storage possibilities of mediated

population protocols and the limited communication model of immediate observation protocols. The

computational power of our resulting formalism has to be studied as it is unclear how this extension and

restriction interact.

In section 2 the basic formalisms and existing models are defined. We are using a representation of

population that allows the distinction of agents from a global point of view. This does not interfere with

the anonymity of the agents and is for analysis purposes only. Based on this we define our model of

immediate observation mediated population protocols (IOMPP) in section 3. Subsequently we study the

computational power of our model in section 4. We take the approach simulating population protocols

in immediate observation mediated population protocols in 3.1. Additionally, we give a translation of

configurations from one model to the other and define criteria such a translation has to meet for it to

express desirable attributes in 4.1. Our work is inspired by and makes use of the encodability criteria

stated by Gorla in [11]. To the best of our knowledge this technique is novel to population protocols in

the way we utilize it in 4.2 to prove that immediate observation mediated population protocols are at least

as expressive as the base model of population protocols. In 4.3 we conjecture that our approach could

also be used to show that immediate observation does not restrict the computational power of mediated

population protocols. We conclude our paper by a discussion on the given results and possible application

of the used techniques in section 5. We also give an outlook on future work and open questions.

2 Technical preliminaries

First we introduce populations, which form the base of all population protocols. They are often modeled

as multisets to emphasize the indistinguishability of the participating agents. We will use vectors where

each entry represents the state of a specific agent, because we want to efficiently compare populations

in different models from a global viewpoint. Note that this will not give agents a distinct id they could

make use from their local point of view. A different kind of vector representation can be found in [10]

and is not to be confused with ours. They use vectors where each entry describes for an agent state the

multiplicities of agents in that state. Their vector representation efficiently stores sets of agents with their

states, making it easy to identify equivalent protocol states. In contrast to this, our representation can

be used to compare sets of agents in population protocols with sets of agents in extended variants like

mediated population protocols.
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Definition 1 (Populations). Let A be a nonempty finite set and n ∈ N. Then An describes the set of

n-tuples over A also referred to as vectors of length n. A population over A, denoted by POP(A), is the

set of all vectors of arbitrary but finite length over A. If v ∈ An we use |v| = n to denote the length of v

and (v)i to reference the ith element of v (with i ∈ N
+
≤n).

Next we define how calculations in population protocols are modeled from a local point of view. Each

agent has the same set of states and rules how to change states according to a communication partner’s

state. Additionally, functions to map input to an initial state and a state to some output are defined to be

identical for each agent.

Definition 2 (Population Protocols [6]). A population protocol P is a 5-tuple P = (Q,Σ, I,O,δ ) where

Q is a finite set of agent states, Σ a finite input alphabet, I : Σ → Q describes the input function, O :

Q →{0,1} is the output function, and δ : Q2 → Q2 is referred to as transition function and describes all

possible pairwise interactions. We also making use of a set representation of δ ⊆ Q4 whenever we write

t = (p,q)→δ (p′,q′) referring to a specific transition t ∈ δ .

To analyze protocols we need a global perspective. Here states are configurations holding state

information for each agent. This kind of global view has been used to study the computational power of

population protocols [4].

Definition 3 (Global Protocols [4]). Let P = (Q,Σ, I,O,δ ) be a population protocol. The global protocol

to P is a 5-tuple GP = (C,Σ,I,O,−→) where C = POP(Q) is the set of configurations, i.e., vectors of

agent states Q, I : POP(Σ) → C maps input vectors to initial configurations, O : C → {0,1,⊥} maps

configurations to outputs, and −→: C→ C is the global transition function with −→∗ being its reflexive

and transitive closure. For C,C′ ∈ C it holds that C −→ C′ iff there is a transition t ∈ δ and i, j ∈ N
+

with i 6= j such that t = ((C)i ,(C) j)→δ ((C′)i ,(C
′) j) and (C)k = (C′)k for every k ∈N

+\{i, j}. We also

write C
ti, j
−→C′ and call agent i the initiator of t and j the responder or (if the state of i is not changed by

t) observer. The global input function takes use of I to get an agent state for each single value in its input

and O aggregates the outputs of the agents according to O. It holds that O(C) = x ∈ {0,1} iff O((C)i) = x

for each i ∈ N
+
≤|C| and O(C) = ⊥ in every other case. When the underlying protocol P is clear from the

context we often omit the index of GP and simply state that G is the global protocol to P.

Based on a global protocol we can describe what it means for a protocol to compute some predicate.

For this we need to define executions and fairness.

Definition 4 (Computation). Let G = (C,Σ,I,O,−→) be a global protocol. A configuration C ∈ C is

output stable with output x ∈ {0,1} iff O(C′) = x for each C′ ∈ C with C −→∗ C′. We call a sequence of

configurations C0,C1,C2, · · · ∈ C with Ci −→Ci+1 for each i ∈N an execution. An execution is fair iff for

each C ∈ C with Ci =C for infinitely many i ∈ N it holds that if there is a transition C −→C′ then also

C j =C′ for infinitely many j ∈N. A population protocol P is well-specified if for each input Inp, it holds

that all fair executions of P starting in I(Inp) reach a configuration that is output stable. P computes a

predicate if this reached configuration is output stable with output 1 if Inp satisfies the predicate and with

output 0 otherwise.

In the context of population protocols several communication mechanisms have been studied [4].

Immediate observation is one of those mechanisms. It reduces the class of computable predicates to

predicates counting multiplicities of input values COUNT∗. To model this kind of communication, restric-

tions to the allowed form of transitions are made.

Definition 5 (Immediate Observation). Let P = (Q,Σ, I,O,δ ) be a population protocol. P is an immedi-

ate observation protocol, if there is no transition that changes the state of the initiator. In other words, all

transitions t ∈ δ have to be of the form t = (p,q)→δ (p,q′).
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Another extension to population protocols is the mediated variant. The idea is to introduce states in

all edges of the communication graph. Since the most general graph is the complete graph, each pair of

agents is given such a state. In the context of an immediate observation communication mechanism, it is

not reasonable to assume a storage that both agents can write to. Therefore, we introduce a pair of edge

states for each pair of agents. Edge states are always initialized with the same value.

Definition 6 (Mediated Population Protocols [12]). A mediated population Protocol P is a 7-tuple P =
(Q,Σ,S,s0, I,O,δ ) where Q,Σ, I and O are analogous to population protocols. The set of edge states S

includes the initial edge state s0 ∈ S and the transition function δ : (Q×S)2 → (Q×S)2
incorporates the

edge states for each pair of agents.

Configurations in mediated population protocols cannot be represented by simple vectors. We need

to introduce matrices as configurations containing the agent states on the diagonal and the states of the

edge between agents a and b in fields Ca,b (side of agent a) and Cb,a (side of agent b).

Definition 7 (Mediated Populations). An×n describes the set of square matrices over A of size n× n. A

mediated population over A denoted by POPM (A) is the set of all matrices of arbitrary but finite length

over A. If m ∈ An×n we use (m)i, j to reference the element of m at column i and row j with i, j ∈ N
+
≤n

and |m|= n to denote the length as well as the height of a square matrix m.

We can now proceed with lifting our global protocol definitions to represent mediated population

protocols as well.

Definition 8 (Global Protocols for Mediated Population Protocols). Let P = (Q,Σ,S,s0, I,O,δ ) be a

mediated population protocol. The global protocol to P is again a 5-tuple G = (C,Σ,I,O,−→). In

contrast to global protocols for simple population protocols C = POPM (Q) is the set of configurations

and I : POP(Σ) → C maps input vectors to initial configurations, initializing the diagonal fields with

the corresponding agent states and every other field with s0. The output function O : C → {0,1,⊥}
ignores all fields not on the diagonal and −→: C → C now also changes the respective edge states.

For C,C′ ∈ C it holds that C −→ C′ iff there is a transition t ∈ δ and i, j ∈ N
+ with i 6= j such that

t = ((C)i,i ,(C)i, j ,(C) j, j ,(C) j,i) →δ ((C′)i,i ,(C
′)i, j ,(C

′) j, j ,(C
′) j,i) and (C′)k,l = (C′)k,l for every k, l ∈

N
+ \{i, j}.

3 Modelling immediate observation in mediated population protocols

From the technical preliminaries in section 2 we can easily combine the models for mediated population

protocols and immediate observation conform communication. We get our model of population protocols

with two edge states in every edge, one per communication partner, and transitions that keeps the states

of the initiator unaltered and changes the states of the observer.

Definition 9 (Immediate Observation Mediated Population Protocols). An immediate observation me-

diated population protocol P is a 7-tuple P = (Q,Σ,S,s0, I,O,δ ) where Q is a finite set of agent states,

Σ a finite input alphabet, I : Σ → Q describes the input function, O : Q → {0,1} is the output func-

tion, and δ : (Q×S)2 → (Q×S)2
is referred to as transition function and describes all possible pair-

wise interactions. We also making use of a set representation of δ ⊆ (Q×S)4
whenever we write

t = (p,s,q,r) →δ (p′,s′,q′,r′) referring to a specific transition t ∈ δ . Since our model uses the im-

mediate observation communication mechanism, all transitions t = (p,s,q,r) →δ (p′,s′,q′,r′) have to

satisfy p = p′ and s = s′.
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3.1 Simulating population protocols by immediate observation mediated population pro-

tocols

We can now simulate protocols in the basic population protocol model by immediate observation me-

diated population protocols. The main idea is to split every two-way communication with an initiator

and a responder into 4 steps. Two steps are required to signal the request and the acknowledgement of a

communication and another two steps are needed to finish the communication resolving all pending state

changes. Additionally, a reset transition is given for the case of an unsuccessful communication.

Simulation 10. Let P = (Q,Σ, I,O,δ ) be a population protocol. The following immediate observation

mediated population protocol P′ simulates the protocol P and is given by the tuple (Q′
,Σ′

,S′,s′0, I
′
,O′

,δ ′)
where

Σ
′ := Σ,

Q′ := {L,U}×Q,

S′ := {sinit ,sponr}∪Q,

s′0 := sinit ,

I′(σ) := (U, I(σ)) for all σ ∈ Σ,

O′(l,q) := O(q) for all (l,q) ∈ Q′
.

The states of the agents are of the form (l,q) where l ∈ {L,U} indicates whether the agent is locked or

unlocked and q ∈ Q is the computation state according to the original population protocol P. For easier

referencing we call the first component of an agent state (l,q) the locking state l of this agent and the

second component its computation state q. We use the formulation of an agent being locked whenever its

locking state is L and say this agent is unlocked otherwise. W.l.o.g. we assume that {sinit ,sponr}∩Q = /0.

The input function I maps each input symbol σ ∈ Σ to the state (U, I(σ)). The output function O′

maps each state (l,q) ∈ Q to O(q) independent of the locking indicator l. We specify for each transition

t = (p,q)→δ (p′,q′) of δ with p,q, p′,q′ ∈ Q the following transitions for δ ′.

t(1) = ((U, p),sinit ,(U,q),sinit ) →δ ′ ((U, p),sinit ,(L,q
′),q) (1)

t(2) = ((L,q′),q,(U, p),sinit ) →δ ′ ((L,q′),q,(L, p′),sponr) (2)

t(3) = ((L, p′),sponr,(L,q
′),q) →δ ′ ((L, p′),sponr,(U,q′),sinit) (3)

t(4) = ((x,y),sinit ,(L, p′),sponr) →δ ′ ((x,y),sinit ,(U, p′),sinit) (4)

for every (x,y) ∈ Q′

t(5) = ((x,y),z,(L,q′),q) →δ ′ ((x,y),z,(U,q),sinit ) (5)

for every (x,y) ∈ Q′

and z ∈ S′ \{sponr}

The locking state of each agent prohibits simultaneous participation in several different communi-

cations. Whenever an agent took part in a two-way communication t in the original protocol, it could

be the observer of a transition of type (1) in the simulation. A t(1) transition locks the observing agent

and puts its old computation state in the edge state this agent controls on the edge with the observed

agent. This has two reasons: First it signals the interest in a communication with the other agent and

second it backups the old state for a potential future reset. If the other agent observes the change in the

edge state, it may signal the acknowledgement of requested communication by locking itself, changing
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its computation state according to the transition t and putting sponr in its edge state. This is achieved by

transition t(2). Now the two agents have to reset their edge states to sinit and unlock themselves. The

agent mimicking the responder of the original transition t starts by taking t(3), followed by the simulator

of the original initiator taking t(4). If a communication was not successful, either because the initiators

surrogate has taken an other transition with another agent in the meantime or because responder sim-

ulating agent observes its partner before it could acknowledge the communication, t(5) is taken. This

transition assures that in the described cases an agent can give up on a communication attempt and reset

its state, readying itself for another attempt, potentially with a different partner.

Note that if a transition t = (p,q) →δ (p,q′) is already immediate observation compliant we do not

need to add the whole set of transitions. We could instead add a slightly altered version of the original

transition as follows.

t(6) = ((U, p),sinit ,(U,q),sinit ) →δ ′ ((U, p),sinit ,(U,q′),sinit ) (6)

Clearly the result would be the same. This kind of transition is only needed if the simulation needs to

be more efficient in the sense of steps needed to get to an output stable configuration. We will therefore

omit this type of transitions in our analyses.

Observation 11 (Output Changing Transitions). By definition of O′ the output of an agent only depends

on its computation state. As transitions t(3), t(4) do not change the computation states, only transitions

t(1), t(2), and t(5) can have an impact on the output of an agent. Since Simulation 10 is an immediate

observation protocol, this agent has to be the observer of such transitions.

Observation 12 (Number of Started Conversations). Every agent has at most one started and not yet

concluded conversation at any point in time. Starting a conversation by taking transition t(1) as respon-

der brings an agent to a locked state. Therefore, no other conversation can be started or acknowledged by

this agent until the conversation is concluded with transition t(3) or aborted with transition t(5). Acknowl-

edging a conversation by taking transition t(2) as responder also brings an agent to a locked state. Again

no other conversation can be started or acknowledged by this agent until the conversation is concluded

with transition t(4) or aborted with transition t(5).

Observation 13 (Point of no Return). Every occurrence of transition t
(2)
i, j with acting agents i and j is

eventually followed by transitions t
(3)
j,i and t

(4)
i, j . After execution of t

(2)
i, j agent i is locked with q ∈ Q in

its edge state to j and agent j is locked with sponr in its edge state to i. From Observation 12 we know

that neither i nor j can be observer of any transition with some agent different from i and j. From

the transitions with i and j only t
(3)
j,i is enabled and will be taken at some point because of the fairness

assumptions in population protocols. After that agent j is still locked with sponr in its edge state to i.

Therefore, j can only be observer of transitions t(3), t(4), or t(5). Again from Observation 12 we know

that only t
(4)
i, j is possible.

4 Computational power

We now show that our model can compute all predicates computable in population protocols by giving a

translation, that relates configurations from a protocol to configurations from its simulation representing

the same state of computation. Additionally, we identify requirements imposed on such a translation to

be helpful in proving the equality of computed predicates. We will ultimately show how this proof is

executed.
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4.1 Translation and criteria

We provide a translation, that constructs configurations in mediated population protocols from configu-

rations of population protocols by giving all agents an unlocked state and setting all edges to the neutral

sinit state.

Definition 14 (Translation of Configurations). Let P = (Q,Σ, I,O,δ ) be a population protocol and P′ =
(Q′

,Σ′
,S′,s′0, I

′
,O′

,δ ′) a immediate observation mediated population protocol constructed from P using

Simulation 10. By J·K : POP(Q)→ POPM (Q′) we denote the translation of configurations C ∈ POP(Q)
in the population protocol into configurations D ∈ POPM (Q′) from the mediated population protocol.

This translation is defined as follows:

J(q0,q1, . . . ,qn)K =













(U,q1) sinit . . . sinit

sinit (U,q2)
. . .

...
...

. . .
. . . sinit

sinit . . . sinit (U,qn)













From the criteria for good encodings defined by Gorla [11] we adopt the notion of operational corre-

spondence.

Definition 15 (Operational Correspondence). A translation J·K : POP(Q)→ POPM (Q′) is operationally

corresponding if it is

(1) (operationally) complete, i.e., for all C,C′ ∈ POP(Q) with C −→∗ C′ it holds that JCK −→∗ JC′K,

and

(2) (operationally) sound, i.e., for all C ∈ POP(Q) and D ∈ POPM (Q′) with JCK −→∗ D there exists a

C′ ∈ POP(Q) with D −→∗ JC′K and C −→∗ C′.

If our translation in Def. 14 instantiated with concrete population protocol P and mediated popula-

tion protocol P′ is operationally corresponding, we get that every configuration reachable in P is also

reachable in P′ and vice versa.

Definition 16 (Input/Output Correspondence). Let P be a population protocol, P′ be a mediated popula-

tion protocol and G,G′ be the global protocols to P and P′ respectively. A translation J·K : POP(Q)→
POPM (Q′) is I/O corresponding if it is

(1) input corresponding, i.e., for all V ∈ POP(Σ) it holds that JI(V )K = I
′ (V ), and

(2) output corresponding, i.e., for all C ∈ POP(Q) it holds that O(C) = O
′ (JCK).

Input/Output Correspondence gives us the assurance that input and output functions of the protocols

related by a translation behave in a similar way. If it holds, translating an input configuration of the

original protocol or directly using the input function of the corresponding mediated population protocol

yields the same result. Additionally, configurations are always translated into configurations with the

same output.

Definition 17 (Output Stability Preservation). Let P be a population protocol, P′ be a mediated popula-

tion protocol and G,G′ be the global protocols to P and P′ respectively. A translation J·K : POP(Q)→
POPM (Q′) is output stability preserving if for each C ∈ POP(Q) it holds that JCK is output stable iff C

is output stable.

From the output stability preservation we get that each output stable configuration is translated into

a configuration also being output stable.
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Lemma 18. Let P = (Q,Σ, I,O,δ ) be a population protocol and P′ = (Q′
,Σ′

,S′,s′0, I
′
,O′

,δ ′) a mediated

population protocol. If there is a translation J·K : POP(Q) → POPM (Q′) that is operationally corre-

sponding, input/output corresponding, and output stability preserving, then P and P′ compute the same

predicate.

Proof. Since the translation is input corresponding every initial configuration in P has a correspond-

ing initial configuration in P′. From the operational correspondence we know that a configuration is

reachable from an initial configuration in P′ iff it has a corresponding configuration reachable from the

corresponding initial configuration in P. With output correspondence both configurations clearly have

the same output and, since the translation is output stability preserving, the output is either stable in both

configurations or in none. Therefore, the protocol P calculates the same semilinear predicate as P′.

4.2 All semilinear predicates can be computed by immediate observation mediated pop-

ulation protocols

Lemma 19. The translation J·K given in Def. 14 is operationally corresponding for any population pro-

tocol P = (Q,Σ, I,O,δ ) and the mediated population protocol P′ = (Q′
,Σ′

,S′,s′0, I
′
,O′

,δ ′) constructed

using Simulation 10.

Proof. To prove operational completeness assume that C,C′ ∈ POP(Q) with C −→∗ C′. Since −→∗

is defined as reflexive-transitive closure of −→ we get that C1,C2, . . . ,Cn ∈ POP(Q) exist with C −→
C1 −→C2 −→ . . .−→Cn −→C′. We can always simulate a step Ci −→Ci+1 in P by making 4 steps in P′.

Assume that the step is due to transition t ∈ δ and agents at a and b are acting as initiator and responder

respectively in Ci

ta,b
−→ Ci+1. This can be simulated as JCiK

t
(1)
a,b
−→ C2

i

t
(2)
b,a
−→ C3

i

t
(3)
a,b
−→ C4

i

t
(4)
b,a
−→ JCi+1K and thus

JCiK −→4 JCi+1K holds. Thus, JCK −→4 JC1K −→4
. . .−→4 JCnK −→4 JC′K exemplifies JCK −→∗ JC′K.

To prove operational soundness assume that C ∈ POP(Q) and D ∈ POPM (Q′) with JCK −→∗ D. We

construct C′ as follows. For this assume (D)i,i = (li,di).

(C′)i =

{

g , if there is exactly one j ∈ N
+
≤|D|,6=i

such that (D)i, j = g and (D) j,i 6= sponr

di , otherwise

We can show that D −→∗ JC′K by taking the appropriate transitions for all i, j ∈ N
+
≤|D| with i 6= j as

follows.

if (D)i, j = q and (D) j,i = sponr take transitions t
(3)
j,i , t

(4)
i, j

if (D)i, j = sinit and (D) j,i = sponr take transition t
(4)
i, j

if (D)i, j = q and (D) j,i 6= sponr take transition t
(5)
j,i

otherwise do nothing

Since JCK−→∗ D by assumption and D −→∗ JC′K we get that JCK−→∗ JC′K. We can construct C −→
C1 −→C2 −→ . . .−→C′ from the path JCK −→ D1 −→ D2 −→ . . .−→ JC′K as follows. Whenever there

is a step Dx

t
(2)
i, j
−→ Dy in this path, take transition Cv

ti, j
−→Cw in the path of C −→∗ C′. By Observation 12 we

get that each such step of type (2) is eventually followed by transitions of type (3) and (4) and since JC′K
has only edge states sinit , this has to happen before JC′K is reached. Therefore, there exists a C′ ∈POP(Q)
with D −→∗ JC′K and C −→∗ C′.
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Lemma 20. The translation J·K given in Def. 14 is I/O corresponding for any population protocol

P = (Q,Σ, I,O,δ ) and the mediated population protocol P′ = (Q′
,Σ′

,S′,s′0, I
′
,O′

,δ ′) constructed using

Simulation 10.

Proof. The input function I′ of P′ makes use of the input function I of P by putting an agent in the

unlocked state (U, I(σ)) iff the same agent would be in state I(σ) in P. Also every edge state is initialized

with sinit . This matches J·K that translates each state q to (U,q) and sets every edge state to sinit . Thus,

JI(V )K = I
′ (V ) and J·K is input corresponding.

The output function O′ of P′ makes use of the output function O of P by ignoring the locking state of

an agent and giving back the output of O for the computation state. As seen above, J·K translates every

agents state q to a tuple with q being the second component i.e. its computation state. For each agent a

it holds that O((C)a) = O′
(

(D)a,a

)

. As O aggregates the outputs of all agents, which are the same in P

and P′, O(C) = O
′ (JCK) and consequently J·K is output corresponding.

Lemma 21. The translation J·K given in Def. 14 is output stability preserving for any population protocol

P = (Q,Σ, I,O,δ ) and the mediated population protocol P′ = (Q′
,Σ′

,S′,s′0, I
′
,O′

,δ ′) constructed using

Simulation 10.

Proof. Let C be a configuration that is output stable in P. Assume towards contradiction JCK is not

output stable in P′. From the definition of output stability follows that a configuration D exists with

O
′ (JCK) 6= O

′ (D) and D is reachable from JCK, i.e. there is a path JCK −→ D1 −→ D2 −→ . . . −→ D.

W.l.o.g assume that D is the first such configuration in this path, i.e. O′ (JCK) = O
′ (Di) for each such Di.

Since O′ aggregates the values of O′ for each agent and because P′ is an immediate observation protocol,

there has to be a single agent a that has changed its output because of the transition leading to D. From

Observation 11 we know that this transition has to be of type (1), (2), or (5) and a has to be its observer.

If it is (1) or (2) we can construct a configuration in the same way as C′ was constructed in the proof

of operational soundness for Lemma 19. This C′ is reachable from C in P and JC′K is reachable from

D in P′. Note that on the path from D to JC′K agent a is never an observer of any transition with type

(1), (2), or (5) and therefore does not change its output. Because our translation maintains outputs for

each agent O((C)a) = O′
(

(JCK)a,a

)

6= O′
(

(D)a,a

)

= O′
(

(JC′K)a,a

)

= O((C′)a) holds. This results in

O(C) 6= O(C′), a contradiction to C being output stable.

If the transition agent a took was of type (5), there has to be a configuration along the path from

JCK to D where agent a took a transition of type (1). Observation 12 states that there has to be such a

transition in advance and by the definition of J·K this has to be after JCK. But if the transition of type (5)

changes the output of a, the corresponding type (1) transition must also have changed it, contradicting

our assumption of D being the first configuration with an output different from O
′ (JCK). This is due

to a type (5) transition resetting the computation state of an agent back to the state it had before the

corresponding type (1) transition.

For the other direction assume towards contradiction JCK is output stable in P′ and C is not output

stable in P. Then there exists a configuration C that is reachable from C with O(C) 6=O
(

C
)

. Because J·K
is operationally complete by Lemma 19 it holds that

q
C

y
is reachable from JCK. From the output corre-

spondence of J·K in Lemma 20 follows that O′ (JCK) =O(C) 6=O
(

C
)

=O
′
(q

C
y)

. This is a contradiction

to the output stability of JCK in P′.

Theorem 22. For any population protocol P = (Q,Σ, I,O,δ ), the immediate observation mediated pop-

ulation protocol P′ constructed from P using Simulation 10 calculates the same semilinear predicate.
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Proof. We have shown that J·K from Definition 14 is operationally corresponding, I/O corresponding and

output stability preserving in Lemmas 19, 20, and 21. By Lemma 18 the statement directly follows.

Corollary 23. Immediate observation mediated population protocols can compute every semilinear

predicate and are therefore at least as expressive as population protocols.

4.3 Immediate observation does not restrict the computational power of mediated pop-

ulation protocols

The approach in the previous sections can be used to prove that two-way communication in mediated

population protocols does not add to the computational power of the model. To achieve this we define a

simulation of mediated population protocols into the variant with immediate observation communication.

Simulation 24. Let P = (Q,Σ,S,s0, I,O,δ ) be a mediated population protocol. The following imme-

diate observation mediated population protocol P′ simulates the protocol P and is given by the tuple

(Q′
,Σ′

,S′,s′0, I
′
,O′

,δ ′) where

Σ
′ := Σ,

Q′ := {L,U}×Q,

S′ := ({sinit ,sponr}∪ (Q×S))×S,

s′0 := (sinit ,s0) ,

I′(σ) := (U, I(σ)) for all σ ∈ Σ,

O′(l,q) := O(q) for all (l,q) ∈ Q′
.

W.l.o.g. we assume that {sinit ,sponr}∩ (Q∪ S) = /0. In contrast to Simulation 10 the edge state has two

components. The first component again signals the current state of the simulated communication and

serves as a backup for the condition prior to the communication. Here we need to save both, computation

state and edge state. The second component represents the actual edge state present in the original

protocol. We specify for each transition t = (p,r,q,s) →δ (p′,r′,q′,s′) of δ with p,q, p′,q′ ∈ Q and

r,s,r′,s′ ∈ S the following transitions for δ ′.

t(1) = ((U, p), (sinit ,r), (U,q), (sinit ,s)) →δ ′ ((U, p), (sinit ,r), (L,q
′), ((q,s),s′))

t(2) = ((L,q′), ((q,s),s′), (U, p), (sinit ,r)) →δ ′ ((L,q′), ((q,s),s′), (L, p′), (sponr,r
′))

t(3) = ((L, p′), (sponr,r
′), (L,q′), ((q,s),s′)) →δ ′ ((L, p′), (sponr,r

′), (U,q′), (sinit ,s
′))

t(4) = ((x,y), (sinit ,s
′), (L, p′), (sponr,r

′)) →δ ′ ((x,y), (sinit ,s
′), (U, p′), (sinit ,r

′))

for every (x,y) ∈ Q′

t(5) = ((x,y), (v,w), (L,q′), ((q,s),s′)) →δ ′ ((x,y), (v,w), (U,q), (sinit ,s))

for every (x,y) ∈ Q′

and (v,w) ∈ S′ \{(sponr,r
′)}

This simulation follows the same ideas as the Simulation 10. The only difference is the edge state of

the original protocol that needs to be taken into account by transitions of the simulation and that needs to

be backed up for possible future resets. We can now give a translation similar to Definition 14 required

for our line of argumentation.
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Definition 25 (Translation of Mediated Configurations). Let P = (Q,Σ,S,s0, I,O,δ ) be a mediated pop-

ulation protocol and P′ = (Q′
,Σ′

,S′,s′0, I
′
,O′

,δ ′) a immediate observation mediated population protocol

constructed from P using Simulation 24. By J·K : POPM (Q)→ POPM (Q′) we denote the translation of

configurations C ∈ POPM (Q) in the population protocol into configurations D ∈ POPM (Q′) from the

mediated population protocol. This translation is defined as follows:

u
wwwwv













q1 s2,1 . . . sn,1

s1,2 q2
. . .

...
...

. . .
. . . sn,n−1

s1,n . . . sn−1,n qn













}
����~

=













(U,q1) (sinit ,s2,1) . . . (sinit ,sn,1)

(sinit ,s1,2) (U,q2)
. . .

...
...

. . .
. . . (sinit ,sn,n−1)

(sinit ,s1,n) . . . (sinit ,sn−1,n) (U,qn)













With this simulation and translation we conjecture that each mediated population protocol can be

simulated by a immediate observation mediated population protocol that shares several attributes, espe-

cially computing the same predicates.

Conjecture 26. For any mediated population protocol P = (Q,Σ,S,s0, I,O,δ ), the immediate observa-

tion mediated population protocol P′ = (Q′
,Σ′

,S′,s′0, I
′
,O′

,δ ′) constructed from P using Simulation 24

calculates the same semilinear predicate.

5 Conclusion and future work

We have given a proof for the model of immediate observation mediated population protocols to compute

all semilinear predicates. Thus they are as least as powerful in computation as population protocols.

Additionally, we have given arguments why we believe this model is even equivalent to the model of

mediated population protocols with two-way communication. Consequently allowing the initiator of a

transition to change its agent and edge states does not contribute to the computational power. The proof

of our Conjecture 26 can hopefully be done in our future research.

Our approach asks for a simulation and a translation which might seem overly complicated for a

proof of equal computational power. But additionally several other attributes, besides the computation

of the same predicate, carry over from the one protocol to the other if our Simulation 10 and translation

from Definition 14 are used. Consider for example livelock freedom, i.e. no configuration is reached that

has no successor besides itself. The simulation can reach a livelock iff the original protocol can reach

such a configuration. This can easily be derived from the operational correspondence in Definition 15.

In the context of protocols computing some predicate, a livelock is only possible if an output is reached.

Otherwise the requirements for a well-specified protocol are not met. A livelock can be a desirable state

as the computation can clearly be stopped in such a configuration. If the protocol does something else

than computing a predicate, livelocks can be even more important to be reached or avoided, depending

on the situation.

Another example is the analysis of a required communication structure. Whereas some protocols

need a full interaction graph to carry out a computation, a path structure would suffice for others to get a

correct result. The interaction graphs supporting a protocol do also support its simulation.

As a last example consider failure resistance [9]. If a protocol is designed to tolerate a certain

number and type of faults, the simulation of this protocol could be capable of a comparable behaviour.

This however depends on the type of failure and the chosen strategy to handle it. Crash failures, where

an agent may leave the population at any time, should be manageable in the simulation with the same

mechanisms as the original protocol did. Message losses could lead to new problems in the simulation
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like deadlocked communication partners. Some error handling and error masking strategies could lead

to the number of failures tolerable by the simulation being reduced in contrast to the original protocol.

A study on desirable attributes and how they carry over from one protocol to another by our simula-

tion is something we wish to address in the future.
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