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Comparison of concurrent programming languages and correctness of program transformations in
concurrency are the focus of this research. As criterion we use contextual semantics adapted to
concurrency, where may- as well as should-convergence are observed. We investigate the relation
between the synchronous pi-calculus and a core language of Concurrent Haskell (CH). The contex-
tual semantics is on the one hand forgiving with respect to the details of the operational semantics,
and on the other hand implies strong requirements for the interplay between the processes after
translation. Our result is that CH embraces the synchronous pi-calculus. Our main task is to find
and prove correctness of encodings of pi-calculus channels by CH’s concurrency primitives, which
are MVars. They behave like (blocking) 1-place buffers modelling the shared-memory. The first
developed translation uses an extra private MVar for every communication. We also automatically
generate and check potentially correct translations that reuse the MVars where one MVar contains
the message and two additional MVars for synchronization are used to model the synchronized com-
munication of a single channel in the pi-calculus. Our automated experimental results lead to the
conjecture that one additional MVar is insufficient.

1 Introduction

Our goals are the comparison of programming languages, correctness of transformations, compilation
and optimization of programs, in particular of concurrent programs. We already used the contextual
semantics of concurrent (functional) programming languages to effectively verify correctness of trans-
formations [16, 23, 24], also under the premise not to worsen the runtime [30]. We propose to test may-
and should-convergence in the contextual semantics, since, in particular, it rules out transformations that
transform an always successful process into a process that may run into an error, for example a deadlock.
There are also other notions of program equivalence in the literature, like bisimulation based program
equivalences [27], however, these tend to take also implementation specific behavior of the operational
semantics into account, whereas contextual equivalence abstracts from the details of the executions.

In [28, 31] we developed notions of correctness of translations w.r.t. contextual semantics, and in
[32] we applied them in the context of concurrency, but for quite similar source and target languages.
In this paper we translate a synchronous message passing model into a shared memory model, namely a
synchronous π-calculus into a core-language of Concurrent Haskell, called CH.

The contextual semantics of concurrent programming languages is a generalization of the extension-
ality principle of functions. The test for a program P is whether C[P] – i.e. P plugged into a program
context – successfully terminates (converges) or not, which usually means that the standard reduction se-
quence ends with a value. For a concurrent program P, we use two observations: may-convergence (P↓)
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– at least one execution path terminates successfully, and should-convergence1 (P⇓) – every intermediate
state of a reduction sequence may-converges. For two processes P and Q, P ≤c Q holds iff for all con-
texts C[·]: (C[P]↓ =⇒ C[Q]↓), and P and Q are contextually equivalent, P∼c Q, iff P≤c Q and Q≤c P.
Showing equal expressivity of two (concurrent) calculi by a translation τ requires that may- and should-
convergence make sense in each calculus. Important properties are convergence-equivalence (may- and
should-convergencies are preserved and reflected by the translation) and adequacy (see Definition 4.4),
which holds if τ(P)≤c,CH τ(Q) implies P≤c,π Q, for all π-calculus processes P,Q. Full-abstraction, i.e.
∀P,Q : τ(P)≤c τ(Q) iff P≤c Q, only holds if the two calculi are more or less the same.

Source and Target Calculi. The well-known π-calculus [15, 14, 27] is a minimal model for mobile
and concurrent processes. Dataflow is expressed by passing messages between them via named chan-
nels, where messages are channel names. Processes and links between processes can be dynamically
created and removed which makes processes mobile. The interest in the π-calculus is not only due to
the fact that it is used and extended for various applications, like reasoning about cryptographic proto-
cols [1], applications in molecular biology [21], and distributed computing [13, 7]. The π-calculus also
permits the study of intrinsic principles and semantics of concurrency and the inherent nondeterministic
behavior of mobile and communicating processes. We investigate a variant of the π-calculus which is the
synchronous π-calculus with replication, but without sums, matching operators, or recursion. To observe
termination of a process, the calculus has a constant Stop which signals successful termination.

The calculus CH, a core language of Concurrent Haskell, is a process calculus where threads eval-
uate expressions from a lambda calculus extended by data constructors, case-expressions, recursive let-
expressions, and Haskell’s seq-operator. Also monadic operations (sequencing and creating threads) are
available. The shared memory is modelled by MVars (mutable variables) which are one-place buffers
that can be either filled or empty. The operation takeMVar tries to empty a filled MVar and blocks if
the MVar is already empty. The operation putMVar tries to fill an empty MVar and blocks if the MVar
is already filled. The calculus CH is a variant (or a subcalculus) of the calculus CHF [23, 24] which
extends Concurrent Haskell with futures. A technical advantage of this approach is that we can reuse
studies and results on the contextual semantics of CHF also for CH.

Details and Variations of the Translation. One main issue for a correct translation from π-processes
to CH-programs is to encode the synchronous communication of the π-calculus. The problem is that the
MVars in CH have an asynchronous behavior (communication has to be implemented in two steps: the
sender puts the message into an MVar, which is later taken by the receiver). To implement synchronous
communication, the weaker synchronisation property of MVars has to be exploited, where we must be
aware of the potential interferences of the executions of other translated communications on the same
channel. The task of finding such translations is reminiscent of the channel-encoding used in [20], but,
however, there an asynchronous channel is implemented while we look for synchronous communication.

We provide a translation τ0 which uses a private MVar per channel and per communication to ensure
that no other process can interfere with the interaction. A similar idea was used in [12, 3] for keeping
channel names private in a different scenario (see [10, 9] for recent treatments of these encodings). We
prove that the translation τ0 is correct. Since we are also interested in simpler translations, we looked
for correct translations with a fixed and static number of MVars per channel in the π-calculus. Since this

1An alternative observation is must-convergence (all execution paths terminate). The advantages of equivalence notions
based on may- and should-convergence are invariance under fairness restrictions, preservation of deadlock-freedom, and equiv-
alence of busy-wait and wait-until behavior (see e.g. [32]).
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task is too complex and error-prone for hand-crafting, we automated it by implementing a tool to rule out
incorrect translations2. Thereby we fix the MVars used for every channel: a single MVar for exchanging
the channel-name and perhaps several additional MVars of unit type to perform checks whether the
message was sent or received (we call them check-MVars, they behave like binary semaphores that are
additionally blocking for signal-operations on an unlocked semaphore). The outcomes of our automated
search are: a further correct translation that uses two check-MVars, where one is used as a mutex between
all senders or receivers on one channel, and further correct translations using three additional MVars
where the filling and emptying operations for each MVar need not come from the same sender or receiver.
The experiments lead to the conjecture that there is no translation using only one check-MVar.

Results. Our novel result is convergence-equivalence and adequacy of the open translation τ (Theo-
rems 4.5 and 4.8), translating the π-calculus into CH. The comparison of the π-calculus with a concurrent
programming language (here CH) using contextual semantics for may- and should-convergence in both
calculi exhibits that the π-calculus is embeddable in CH where we can prove that the semantical proper-
ties of interest are kept. The adaptation of the adequacy and full abstraction notions (Definition 4.4) for
open processes is a helpful technical extension of our work in [28, 31].

We further define a general formalism for the representation of translations with global names and
analyze different classes of such translations using an automated tool. In particular, we show correctness
of two particular translations in Theorems 5.9 and 5.12. The discovered correct translations look quite
simple and their correctness seems to be quite intuitive. However, our experience is that searching for
correct translations is quite hard, since there are apparently correct (and simple) translations which were
wrong. Our automated tool helped us to rule out wrong translations and to find potentially correct ones.

Discussion of Related Work on Characterizing Encodings. There are five criteria for valid trans-
lations resp. encodings proposed and discussed in [11, 9], which mainly restrict the translations w.r.t.
language syntax and reduction semantics of the source and target language, called: compositionality,
name invariance, operational correspondence, divergence reflection and success sensitiveness. Compo-
sitionality and name invariance restrict the syntactic form of the translated processes; operational cor-
respondence means that the transitive closure of the reduction relation is transported by the translation,
modulo the syntactic equivalence; and divergence reflection and success sensitiveness are conditions on
the semantics.

In our approach, we define semantical congruence (and precongruence) relations on the source and
target language. Thus the first two conditions are not part of our notion of contextual equivalence,
however, may be used as restrictions in showing non-encodability. We also omit the third condition
and only use stronger variants of the fourth and fifth condition. Convergence equivalence as a tool for
finding out may-and should-convergence is our replacement of Gorla’s divergence reflection and success
sensitiveness. We do not define an infinite reduction sequence as an error, which has as nice consequence
that synchronization could be implemented by busy-wait techniques.

Further Related Work. Encodings of synchronous communication by asynchronous communication
using a private name mechanism are given in [12, 3] for (variants of the) π-calculus. Our idea of the
translation τ0 similarly uses a private MVar to encode the channel based communication, but our setting
is different, since our target language is Concurrent Haskell. Encodings between π-calculi with syn-
chronous and with asynchronous communication were, for instance, already considered in [12, 3, 19, 18]

2The tool and some output generated by the tool are available via https://gitlab.com/davidsabel/refute-pi.

https://gitlab.com/davidsabel/refute-pi
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P,Q ∈ΠStop ::=νx.P | xy.P | x(y).P | !P | P|Q | 0 | Stop
C ∈ΠStop,C ::=[·] | x̄(y).C | x(y).C |C|P | P|C |!C | νx.C
D ∈ PCtxtπ ::=[·] | D|P | P|D | νx.D.

Figure 1: Syntax of processes ΠStop, process contexts
ΠStop,C and reduction contexts PCtxtπ where x,y are names.

Interaction rule: (ia) x(y).P|xz.Q ia−→ P[z/y]|Q
Closure: If P≡D[P′],P′ ia−→Q′,D[Q′]≡Q, and D∈PCtxtπ

then P sr−→ Q

Figure 2: Reduction rule and standard reduction in ΠStop

P ≡ Q, if P =α Q
P|(Q|R) ≡ (P|Q)|R
νx.(P|Q) ≡ P|νx.Q, if x /∈ FN(P)

P|0 ≡ P
νx.0 ≡ 0

νx.Stop ≡ Stop

νx.νy.P ≡ νy.νx.P
P|Q ≡ Q|P

!P ≡ P|!P

Figure 3: Structural congruence in ΠStop

where encodability results are obtained for the π-calculus without sums [12, 3], while in [18, 19] the
expressive power of synchronous and asynchronous communication in the π-calculus with mixed sums
was compared and non-encodability is a main result. Translations of the π-calculus into programming
calculi and logical systems are given in [2], where a translation into a graph-rewriting calculus is given
and soundness and completeness w.r.t. the operational behavior is proved. The article [33] shows a trans-
lation and a proof that the π-calculus is exactly operationally represented. There are several works on
session types which are related to the π-calculus, e.g., [17] studies encodings from a session calculus into
PCF extended by concurrency and effects and also an embedding in the other direction, mapping PCF
extended by effects into a session calculus. The result is a (strong) operational correspondence between
the two calculi. In [4] an embedding of a session π-calculus into ReactiveML is given and operational
correspondence between the two languages is shown. Encodings of CML-events in Concurrent Haskell
using MVars are published in [22, 5]. This approach is more high-level than ours (since it considers
events, while we focus the plain π-calculus). In [5] correctness of a distributed protocol for selective-
communication w.r.t. an excerpt of CML is shown and a correct implementation of the protocol in the
π-calculus is given. The protocol is implemented in Concurrent-Haskell, but no correctness of this part
is shown, since [5] focuses to show that CML-events are implementable in languages with first-order
message-passing which is different from our focus (translating the π-calculus into CH).

Outline. We introduce the source and target calculi in Sections 2 and 3, the translation using private
names in Section 4, and in Section 5 we treat translations with global names. We conclude and discuss
future work in Section 6. Due to space constraints most proofs are in the technical report [29].

2 The π-Calculus with Stop

We explain the synchronous π-calculus [15, 14, 27] without sums, with replication, extended with a
constant Stop [25], that signals successful termination. The π-calculus with Stop and the π-calculus
without Stop but with so-called barbed convergences [26] are equivalent w.r.t. contextual semantics
[29]. Thus, adding the constant Stop is not essential, but our arguments are easier to explain with Stop.

Definition 2.1 (Calculus ΠStop). Let N be a countable set of (channel) names. The syntax of processes
is shown in Fig. 1. Name restriction νx.P restricts the scope of name x to process P, P|Q is the parallel
composition of P and Q, the process xy.P waits on channel x to output y over channel x and then becoming
P, the process x(y).P waits on channel x to receive input, after receiving the input z, the process turns
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into P[z/y] (where P[z/y] is the substitution of all free occurrences of name y by name z in process P), the
process !P is the replication of process P, i.e. it behaves like an infinite parallel combination of process
P with itself, the process 0 is the silent process, and Stop is a process constant that signals success. We
sometimes write x(y) instead of x(y).0 as well as xy instead of xy.0.

Free names FN(P), bound names BN(P), and α-equivalence =α in ΠStop are as usual in the π-
calculus. A process P is closed if FN(P) = /0. Let Πc

Stop be the closed processes in ΠStop. Structural
congruence ≡ is the least congruence satisfying the laws shown in Fig. 3. Process contexts ΠStop,C and
reduction contexts PCtxtπ are defined in Fig. 1. Let C[P] be the substitution of the hole [·] in C by P. The
reduction rule ia−→ performs interaction and standard reduction sr−→ is its closure w.r.t. reduction contexts
and ≡ (see Fig. 2). Let

sr,n−−→ denote n sr−→-reductions and
sr,∗−−→ denotes the reflexive-transitive closure of

sr−→. A process P ∈ΠStop is successful, if P≡ D[Stop] for some D ∈ PCtxtπ .
Remark 2.2. We do not include “new” laws for structural congruences on the constant Stop, like
Stop|Stop equals Stop, since this would require to re-develop a lot of theory known from the π-
calculus without Stop. In our view, Stop is a mechanism for a notion of success that can be easily
replaced by other similar notions (e.g. observing an open input or output as in barbed testing). However,
it is easy to prove those equations on the semantic level. (i.e. w.r.t. ∼c as defined below in Definition 2.5).

As an example for a reduction sequence, consider sending name y over channel x and then sending
name u over channel y: (x(z).zu.0|xy.y(x).0) ia−→ (zu.0[y/z]|y(x).0)≡ (y(x).0|yu.0) ia−→ (0|0)≡ 0.

For the semantics of processes, we observe whether standard reductions successfully terminate or
not. Since reduction is nondeterministic, we test whether there exists a successful reduction sequence
(may-convergence), and we test whether all reduction possibilities are successful (should-convergence).
Definition 2.3. Let P be a ΠStop-process. We say process P is may-convergent and write P↓, if and only
if there is a successful process P′ with P

sr,∗−−→ P′. We say P is should-convergent and write P⇓ if and only
if for all P′: P

sr,∗−−→ P′ implies P′↓. If P is not may-convergent, then P we say is must-divergent (written
P⇑). If P is not should-convergent, then we say it is may-divergent (written P↑).
Example 2.4. The process P := νx,y.(x(z).0 | xy.Stop) is may-convergent (P↓) and should-convergent
(P⇓), since P sr−→ 0 | Stop is the only sr−→-sequence for P. The process P′ := νx,y.(x(z).0 | xy.0) is may-
and must-divergent (i.e. P′↑ and P′⇑), since P′ sr−→ 0 is the only sr−→-sequence for P′.
For P′′ := νx,y.(xy.0 | x(z).Stop | x(z).0), we have P′′ sr−→ νx,y.(Stop | x(z).0) and P′′ sr−→ νx,y.x(z).Stop.
The first result is successful, and the second result is not successful. Hence, for P′′ we have P′′↓ and P′′↑.

Should-convergence implies may-convergence, and must-divergence implies may-divergence.
Definition 2.5. For P,Q ∈ ΠStop and observation ξ ∈ {↓,⇓,↑,⇑}, we define P≤ξ Q iff Pξ =⇒ Qξ .
The ξ -contextual preorders ≤c,ξ and then ξ -contextual equivalences ∼c,ξ are defined as

P≤c,ξ Q iff ∀C ∈ΠStop,C : C[P]≤ξ C[Q] and P∼c,ξ Q iff P≤c,ξ Q∧Q≤c,ξ P

Contextual equivalence of ΠStop-processes is defined as P∼c Q iff P∼c,↓ Q∧P∼c,⇓ Q.

Example 2.6. For Q := νx,y.(xy.0 | x(z).Stop | x(z).0), we have Stop∼c,↓ Q (which can be proved using
the methods in [25]), but Stop 6∼c Q, since Stop⇓ and Q↑ and thus Stop 6∼c,⇓ Q. Note that ≤c,⇓ = ≤c

holds in ΠStop, since there is a context C such that for all processes P: C[P]⇓ ⇐⇒ P↓ (see [25]).
For instance, the equivalence 0 ∼c,⇓ Q does not hold, since !0⇑ and !Q⇓ and thus the context C =![·]
distinguishes 0 and Q w.r.t. should-convergence.

Contextual preorder and equivalence are (pre)-congruences. Contextual preorder remains unchanged
if observation is restricted to closing contexts:
Lemma 2.7. Let ξ ∈ {↓,↑,⇓,⇑}, P,Q be ΠStop-processes. Then P ≤c,ξ Q if, and only if ∀C ∈ ΠStop,C

such that C[P] and C[Q] are closed: C[P]≤ξ C[Q].
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P ∈ ProcCH ::=(P1|P2) | ⇐e | νx.P | xme | xm− | x = e
e ∈ ExprCH ::=x | λx.e | (e1 e2) | c e1 . . .ear(c) | letrec x1=e1, . . . ,xn=en in e | m | seq e1 e2

| caseT eof(cT,1 x1 . . .xar(cT,1)->e1) . . .(cT,|T | x1 . . .xar(cT,|T |)->e|T |)
m ∈MExprCH ::=returne | e >>= e′ | forkIOe | takeMVare | newMVare | putMVaree′

t ∈ TypCH ::=IO t | (T t1 . . . tn) | MVar t | t1→ t2
D ∈ PCtxtCH ::=[·] | D|P | P|D | νx.D
M ∈MCtxtCH ::=[·] |M>>=e

E ∈ ECtxtCH ::=[·] | (Ee) | (seqEe) | (caseEofalts)
F ∈ FCtxtCH ::=E | (takeMVarE) | (putMVarEe)

Figure 4: Syntax of processes, expressions, types, and context classes of CH

Functional Evaluation:
(cpce) ⇐M[F[x]]|x = e sr−→⇐M[F[e]]|x = e
(mkbinds)⇐M[F[letrecx1=e1, . . . ,xn=enine]] sr−→ νx1 . . .xn.(⇐M[F[e]]|x1=e1|. . .|xn=en)

(beta) ⇐M[F[((λx.e1) e2)]]
sr−→⇐M[F[e1[e2/x]]]

(case) ⇐M[F[caseT (c e1 . . .en) of . . .(c y1 . . .yn->e) . . .]] sr−→⇐M[F[e[e1/y1, . . . ,en/yn]]]

(seq) ⇐M[F[(seq v e)]] sr−→⇐M[F[e]] where v is a functional value
Monadic Computations:
(lunit) ⇐M[return e1>>= e2]

sr−→⇐M[e2 e1]

(tmvar) ⇐M[takeMVar x]|xme sr−→⇐M[return e]|xm−
(pmvar) ⇐M[putMVar x e]|xm− sr−→⇐M[return ()]|xme
(nmvar) ⇐M[newMVar e] sr−→ νx.(⇐M[return x]|xme)
(fork) ⇐M[forkIO e] sr−→⇐M[return ()]|⇐e

Closure w.r.t. D-contexts and ≡: If P1 ≡ D[P′1], P2 ≡ D[P′2], and P′1
sr−→ P′2 then P1

sr−→ P2.

Capture avoidance: We assume capture avoiding reduction for all reductions.

Figure 5: Standard reduction rules of CH (call-by-name-version)

3 The Process Calculus CH

The calculus CH (a variant of the language CHF, [23, 24]) models a core language of Concurrent Haskell
[20]. We assume a partitioned set of data constructors c where each family represents a type T . The
data constructors of type T are cT,1, . . . ,cT,|T | where each cT,i has an arity ar(cT,i) ≥ 0. We assume that
there is a type () with data constructor (), a type Bool with constructors True, False, a type List with
constructors Nil and : (written infix), and a type Pair with a constructor (,) written (a,b).

Processes P ∈ ProcCH in CH have expressions e ∈ ExprCH as subterms. See Fig. 4 where u,w,x,y,z
are variables from an infinite set Var. Processes are formed by parallel composition “|”. The ν-binder
restricts the scope of a variable. A concurrent thread⇐e evaluates e. In a process there is (at most one)
unique distinguished thread, called main thread, written as main⇐==e. MVars are mutable variables which
are empty or filled. A thread blocks if it wants to fill a filled MVar xme or empty an empty MVar xm−.
Here x is called the name of the MVar. Bindings x = e model the global heap, of shared expressions,
where x is called a binding variable. If x is a name of an MVar or a binding variable, then x is called an
introduced variable. In Q|νx.P the scope of x is P. A process is well-formed, if all introduced variables
are pairwise distinct and there exists at most one main thread main⇐==e.

Expressions ExprCH consist of functional and monadic expressions MExprCH . Functional expres-
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sions are variables, abstractions λx.e, applications (e1 e2), seq-expressions (seq e1 e2), constructor
applications (c e1 . . . ear(c)), letrec-expressions (letrec x1 = e1, . . . ,xn = en in e), and caseT -
expressions for every type T . We abbreviate case-expressions as caseT e of alts where alts are the
case-alternatives such that there is exactly one alternative (cT,i x1 . . .xar(cT,i)->ei) for every constructor
cT,i of type T , where x1, . . . ,xar(cT,i) (occurring in the pattern cT,i x1 . . .xar(cT,i)) are pairwise distinct vari-
ables that become bound with scope ei. We often omit the type index T in caseT . In letrec x1 = e1, . . . ,
xn = en in e the variables x1, . . . ,xn are pairwise distinct and the bindings xi = ei are recursive, i.e. the
scope of xi is e1, . . . ,en and e. Monadic operators newMVar, takeMVar, and putMVar are used to create,
to empty and to fill MVars, the “bind”-operator >>= implements sequential composition of IO-operations,
the forkIO-operator performs thread creation, and return lifts expressions into the monad.

Monadic values are newMVare, takeMVare, putMVare1 e2, returne, e1 >>= e2, or forkIOe. Func-
tional values are abstractions and constructor applications. A value is a functional or a monadic value.

Abstractions, letrec-expressions, case-alternatives, and νx.P introduce variable binders. This in-
duces bound and free variables (dentoted by FV(·)), α-renaming, and α-equivalence =α . If FV(P) = /0,
then we call process P closed. We assume the distinct variable convention: free variables are distinct
from bound variables, and bound variables are pairwise distinct. We assume that α-renaming is applied
to obey this convention. Structural congruence ≡ of CH-processes is the least congruence satisfying the
laws P1|P2 ≡ P2|P1, (P1|P2)|P3 ≡ P1|(P2|P3), νx1.νx2.P ≡ νx2.νx1.P, P1 ≡ P2 if P1 =α P2, and
(νx.P1)|P2 ≡ νx.(P1|P2) if x 6∈ FV(P2).

We assume expressions and processes to be well-typed w.r.t. a monomorphic type system: the typing
rules are standard (they can be found in [29]). The syntax of types is in Fig. 4 where (IO t) is the type of
a monadic action with return type t, (MVar t) is the type of an MVar with content type t, and t1→ t2 is a
function type. We treat constructors like overloaded constants to use them in a polymorphic way.

We introduce a call-by-name small-step reduction for CH. This operational semantics can be shown
to be equivalent to a call-by-need semantics (see [23] for the calculus CHF). However, the equivalence
of the reduction strategies is not important for this paper. That is why we do not include it.

In CH, a context is a process or an expression with a (typed) hole [·]. We introduce several classes of
contexts in Fig. 4. They are used by the reduction rules.

Definition 3.1. The standard reduction sr−→ is defined by the rules and the closure in Fig. 5. It is only
permitted for well-formed processes which are not successful.

Functional evaluation includes β -reduction (beta), copying shared bindings into needed positions
(cpce), evaluating case- and seq-expressions (case) and (seq), and moving letrec-bindings into the
global bindings (mkbinds). For monadic computations, rule (lunit) implements the monadic evaluation.
Rules (nmvar), (tmvar), and (pmvar) handle the MVar creation and access. A takeMVar-operation can
only be performed on a filled MVar, and a putMVar-operation needs an empty MVar. Rule (fork) spawns
a new thread. A concurrent thread of the form⇐return e is terminated (where e is of type ()).

Example 3.2. The process main⇐== newMVar ()>>=(λy.forkIO(takeMVary))>>=λ .putMVary () creates
a filled MVar, that is emptied by a spawned thread, and then again filled by the main thread.

We say that a CH-process P is successful if P ≡ νx1 . . .xn.(
main⇐==return e|P′) and if P is well-

formed. This captures Haskell’s behavior that termination of the main-thread terminates all threads.

Definition 3.3. Let P be a CH-process. Then P may-converges (denoted as P↓), iff P is well-formed and
∃P′ : P

sr,∗−−→ P′ such that P′ is successful. If P↓ does not hold, then P must-diverges and we write P⇑.
Process P should-converges (written as P⇓), iff P is well-formed and ∀P′ : P

sr,∗−−→ P′ =⇒ P′↓. If P is not
should-convergent, then we say P may-diverges written as P↑.
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τ0(P) =
main⇐==do {stop← newMVar ();forkIO τ(P);putMVar stop ()}

τ(xy.P) =do {checkx← newMVar ();putMVar (unchan x) (y,checkx);putMVar checkx ();τ(P)}
τ(x(y).P)=do {(y,checkx)← takeMVar (unchan x);takeMVar checkx;τ(P)}}
τ(P|Q) =do {forkIO τ(Q);τ(P)}
τ(νx.P) =do{chanx← newEmptyMVar;letrec x = Chanchanx in τ(P)}
τ(0) =return ()
τ(Stop) =takeMVar stop
τ(!P) =letrec f = do {forkIO τ(P); f} in f

Figure 6: Translations τ0 and τ

Definition 3.4. Contextual approximation≤c and equivalence∼c on CH-processes are defined as≤c :=
≤c,↓∩≤c,⇓ and ∼c := ≤c∩≥c where P1 ≤c,↓ P2 iff ∀D ∈ PCtxtCH : D[P1]↓ =⇒ D[P2]↓ and P1 ≤c,⇓
P2 iff ∀D ∈ PCtxtCH : D[P1]⇓ =⇒ D[P2]⇓. For CH-expressions, let e1 ≤c e2 iff for all process-contexts
C with a hole at expression position: C[e1]≤c C[e2] and e1 ∼c e2 iff e1 ≤c e2∧ e2 ≤c e1.

As an example, we consider the processes

P1 := νm.(
main⇐== takeMVar m|⇐takeMVar m|mm())

P2 := main⇐== return ()

P3 := main⇐== letrec x = x in x

Process P1 is may-convergent and may-divergent (and thus not should-convergent), since either the main-
thread succeeds in emptying the MVar m, or (if the other threads empties the MVar m) the main-thread
is blocked forever. The process P2 is sucessful. The process P3 is must-divergent. The equivalence
P1 ∼c,↓ P2 holds, but P1 6∼c P2, since P2 is should-convergent and thus P1 6∼c,⇓ P2. As a further example, it
is easy to verify that P1 ∼c,⇓ P3 holds, since both processes are not should-convergent and a surrounding
context cannot change this. However, P1 6∼c,↓ P3, since P3⇑.

Contextual approximation and equivalence are (pre)-congruences. The following equivalence will
help to prove properties of our translation.

Lemma 3.5. The relations in Definition 3.4 are unchanged, if we add closedness: for ξ ∈ {↓,⇓}, let
P1 ≤c,ξ P2 iff ∀D ∈ PCtxtCH such that D[P1],D[P2] are closed: D[P1]ξ =⇒ D[P2]ξ .

4 The Translation τ0 with Private MVars

We present a translation τ0 that encodes ΠStop-processes as CH-programs. It establishes correct syn-
chronous communication by using a private MVar, which is created by the sender and its name is sent to
the receiver. The receiver uses it to acknowledge that the message was received. Since only the sender
and the receiver know this MVar, no other thread can interfere the communication.The approach has
similarities with Boudol’s translation [3] from the π-calculus into an asynchronous one, where a private
channel name of the π-calculus was used to guarantee safe communication between sender and receiver.

For translating π-calculus channels into CH, we use a recursive data type Channel (with constructor
Chan), which is defined in Haskell-syntax as

data Channel= Chan (MVar (Channel,(MVar ())))
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We abbreviate (caseChan e of (Chan m -> m)) as (unchan e).
We use a >> b for a>>=(λ .b) and also use Haskell’s do-notation with the following meaning:

do {x← e1;e2} = e1 >>= λx.(do {e2})
do {(x,y)← e1;e2} = e1>>= λ z.casePair z of (x,y)->(do {e2})

do {e1;e2} = e1>> (do {e2})
do {e} = e

As a further abbreviation, we write y← newEmptyMVar inside a do-block to abbreviate the sequence
y← newMVar ⊥;takeMVar y, where ⊥ is a must-divergent expression. Our translation uses one MVar
per channel which contains a pair consisting of the (translated) name of the channel and a further MVar
used for the synchronization, which is private, i.e. only the sender and the receiver know it. Privacy is
established by the sender: it creates a new MVar for every send operation. Message y is sent over channel
x by sending a pair (y,check) where check is an MVar containing (). The receiver waits for a message
(y,check) by the sender. After sending the message, the sender waits until check is emptied, and the
receiver acknowledges by emptying the MVar check3

Definition 4.1. We define the translation τ0 and its inner translation τ from the ΠStop-calculus into the
CH-calculus in Fig. 6. For contexts, the translations are the same where the context hole is treated like
a constant and translated as τ([·]) = [·].

The translation τ0 generates a main-thread and an MVar stop. The main thread is then waiting
for the MVar stop to be emptied. The inner translation τ translates the constructs and constants of
the ΠStop-calculus into CH-expressions. Except for the main-thread (and using keyword let instead of

letrec), the translation τ0 generates a valid Concurrent Haskell-program, i.e. if we write τ0(P) =
main⇐==e

as main= e , we can execute the translation in the Haskell-interpreter.

Example 4.2. We consider the ΠStop-process P := νx,y1,y2,z.(x(y1).0|x(y2).Stop|xz.0) which is
may-convergent and may-divergent: depending on which receiver communicates with the sender, the re-
sult is the successful process νx,y1.(x(y1).0|Stop) or the must-divergent process νx,y2.(x(y2).Stop).
The CH-process τ0(P) reduces after several steps to the process

νstop,chanx,chany1,chany2,chanz,checkx,x,y1,y2,z.(
chanxm(z,checkx)|chany1m−|chany2m−|chanzm−|checkxm ()|stopm ()

|x=Chanchanx|z=Chanchanz|y1=Chanchany1|y2=Chanchany2|
main⇐== putMVar stop ()

|⇐do {putMVar checkx ();return ()}
|⇐do {(y1,checkx)← takeMVar chanx;takeMVar checkx;return ()}
|⇐do {(y2,checkx)← takeMVar chanx;takeMVar checkx;takeMVar stop})

Now the first thread (which is the translation of sender xz.0) is blocked, since it tries to fill the full MVar
checkx. The second thread (the encoding of x(y1).0) and the third thread (the encoding of x(y2).Stop)
race for emptying the MVar chanx. If the second thread wins, then it will fill the MVar checkx which is
then emptied by the first thread, and all other threads are blocked forever. If the third thread wins, then it
will fill the MVar checkx which is then emptied by the first thread, and then the second thread will empty
the MVar stop. This allows the main-thread to fill it, resulting in a successful process.

For the following definition of τ being compositional, adequate, or fully abstract, we adopt the view
that τ is a translation from ΠStop into the CH-language with a special initial evaluation context Cτ

out.

3A variant of the translation would be to change the roles for the acknowledgement such that an empty MVar is created,
which is filled by the receiver and emptied by the sender. The reasoning on the correctness of the translation is very similar to
the one presented here.
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Definition 4.3. Let Cτ
out := νstop. main⇐==do {stop← newMVar ();forkIO [·];putMVar stop ()}. Variants

↓0,⇓0 of may- and should-convergence of expressions e within the context Cτ
out in CH are defined as

e↓0 iff Cτ
out[e]↓ and e⇓0 iff Cτ

out[e]⇓. The relation∼c,τ0 is defined by∼c,τ0 :=≤c,τ0 ∩≥c,τ0 , where e1 ≤c,τ0 e2
iff ∀C : if FV(C[e1],C[e2])⊆ {stop}, then C[e1]↓0 =⇒ C[e2]↓0 and C[e1]⇓0 =⇒ C[e2]⇓0.

Since ≤c,CH is a subset of ≤c,τ0 , we often can use the more general relations for reasoning.
Definition 4.4. Let ΠStop,C be the contexts of ΠStop. We define the following properties for τ0 and τ (see
[31] for a general framework of properties of translations under observational semantics). For open
processes P,P′, we say that translation τ is
convergence-equivalent iff for all P ∈ΠStop: P↓ ⇐⇒ τ(P)↓0 and P⇓ ⇐⇒ τ(P)⇓0,

compositional upto {↓0,⇓0} iff for all P ∈ΠStop, all C ∈ΠStop,C, and all ξ ∈ {↓0,⇓0} :
if FV(C[P])⊆ {stop}, then τ(C[P])ξ ⇐⇒ τ(C)[τ(P)]ξ ,

adequate iff for all processes P,P′ ∈ΠStop: τ(P)≤c,τ0 τ(P′) =⇒ P≤c P′, and

fully abstract iff for all processes P,P′ ∈ΠStop: P≤c P′ ⇐⇒ τ(P)≤c,τ0 τ(P′).
Convergence-equivalence of translation τ0 for may- and should-convergence holds. For readability

the proof is omitted, but given in the technical report [29], where we show:
Theorem 4.5. Let P ∈ ΠStop be closed. Then τ0 is convergence-equivalent for ↓ and ⇓, i.e. P↓ is
equivalent to τ0(P)↓. and P⇓ is equivalent to τ0(P)⇓. This also shows convergence-equivalence of τ

w.r.t. ↓0,⇓0, i.e. P↓ ⇐⇒ τ(P)↓0 and P⇓ ⇐⇒ τ(P)⇓0.
We show that the translation is adequate (see Theorem 4.8 below). The interpretation of this result is

that the π-calculus with the concurrent semantics is semantically represented within CH. This result is
on a more abstract level, since it is based on the property whether the programs (in all contexts) produce
values or may run into failure, or get stuck; or not. Since the π-calculus does not have a notion of values,
also the translated processes cannot be compared w.r.t. values other than a single form of value.

The translation τ0 is not fully abstract (see Theorem 4.9 below), which is rather natural, since it only
means that it is mapped into a subset of the CH-expressions and that this is a proper subset w.r.t. the
semantics. For proving both theorems, we first use a simple form of a context lemma:
Lemma 4.6. Let e,e′ be CH-expressions, where the only free variable in e,e′ is stop.

Then Cτ
out[e]≤c Cτ

out[e
′] holds, if and only if Cτ

out[e]↓ =⇒ Cτ
out[e

′]↓ and Cτ
out[e]⇓ =⇒ Cτ

out[e
′]⇓.

Proposition 4.7. The translation τ is compositional upto {↓0,⇓0}.
We show that the translation τ transports ΠStop-processes into CH, such that adequacy holds. Thus

the translated processes also correctly mimic the behavior of the original ΠStop-processes when plugged
into contexts. If the translated open processes cannot be distinguished by ≤c,τ0 , i.e. there is no test that
detects a difference w.r.t. may- and should-convergence, then the original processes are equivalent in the
π-calculus. However, this open translation is not fully abstract, which means that there are CH-contexts
(not in the image of the translation) that can see and exploit too much of the details of the translation.
Theorem 4.8. The translation τ is adequate.

Proof. We prove the adequacy for the preorder≤c,τ0 , for∼c,τ0 and∼c the claim follows by symmetry. Let
P,P′ be ΠStop-processes, such that τ(P)≤c,τ0 τ(P′). We show that P≤c P′. We use Lemma 3.5 to restrict
considerations to closed C[P],C[P′] below. Let C be a context in ΠStop, such that C[P],C[P′] are closed
and C[P]↓. Then τ0(C[P]) =Cτ

out[τ(C[P])]. Closed convergence-equivalence implies Cτ
out[τ(C[P])]↓. By

Proposition 4.7. we have Cτ
out[τ(C)[τ(P)]]↓. Now τ(P) ≤c,τ0 τ(P′) implies Cτ

out[τ(C)[τ(P′)]]↓, which is
the same as Cτ

out[τ(C[P′])]↓ using Proposition 4.7. Closed convergence-equivalence implies C[P′]↓. The
same arguments hold for ⇓ instead of ↓. In summary, we obtain P≤c P′.
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Theorem 4.9. The translation τ is not fully abstract, but it is fully abstract on closed processes, i.e. for
closed processes P1,P2 ∈ΠStop, we have P1 ≤c P2 ⇐⇒ τ(P1)≤c,τ0 τ(P2).

Proof. The first part holds, since an open translation can be closed by a context without initializing
the ν-bound MVars. For P = x̄(y).Stop|x(z).Stop, we have P ∼c Stop but τ(P) 6∼c,0 τ(Stop): let
D be a context that does not initialize the MVars for x (as the translation does). Then D[τ(P)]⇑0, but
D[τ(Stop)]⇓0. Restricted to closed processes, full abstraction holds: P1 ≤c P2 =⇒ τ(P1) ≤c,τ0 τ(P2)
follows from Lemma 4.6, since τ0 produces closed processes in context Cτ

out. Theorem 4.8 implies the
other direction.

5 Translations with Global MVars

In this section we investigate translations that do not use private MVars, but use a fixed number of global
MVars. We first motivate this investigation. The translation τ is quite complex and thus we want to figure
out whether there are simpler translations. A further reason is that τ is not optimal, since it generates one
MVar per communication which can be garbage-collected after the communication, however, generation
and garbage collection require resources and thus the translation τ may be inefficient in practice.

To systematically search for small global translations we implemented an automated tool. It searches
for translations with global MVars (abstracting from a lot of other aspects of the translation) and tries to
refute the correctness. As we show, most of the small translations are shown as incorrect by our tool.
Analyzing correctness of the remaining translations can then be done by hand.

We only consider the aspect of how to encode the synchronous message passing of the π-calculus,
the other aspects (encoding parallel composition, replication and the Stop-constant) are not discussed
and we assume that they are encoded as before (as the translation τ did). We also keep the main idea
to translate a channel of the π-calculus into CH by representing it as an object of a user-defined data
type Channel that consists of an MVar for transferring the message (which again is a Channel), and
additional MVars for implementing a correct synchronization mechanism. For the translation τ , we used
a private MVar (created by the sender, and transferred together with the message). Now we investigate
translations where this mechanism is replaced by one or several public MVars, which are created once
together with the channel object. To restrict the search space for translations, only the synchronization
mechanism of MVars (by emptying and filling them) is used, but we forbid to transfer specific data (like
numbers etc.). Hence, we restrict these MVars (which we call check-MVars) to be of type MVar (). Such
MVars are comparable to binary semaphores, where filling and emptying correspond to operations signal
and wait. In summary, we analyze translations of π-calculus channels into a CH-data type Channel

defined in Haskell-syntax as

data Channel = Chan (MVar Channel)(MVar ()) . . .(MVar ())

A π-calculus channel x is represented as a CH-binding x = Chan content check1 . . . checkn where
content, check1, . . . ,checkn are appropriately initialized (i.e. empty) MVars. The MVars are public (or
global), since all processes which know x have access to the components of the channel. After fixing
this representation of a π-channel in CH, the task is to translate the input- and output-actions x(y) and
xz into CH-programs such that the interaction reduction is performed correctly and synchronously. We
call the translation of x(y), the receiver (program) and the translation of xz the sender (program). As a
simplification, we restrict the allowed operations of the sender and receiver allowing only the operations:
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φ0,T (P) =
main⇐==do {stop← newMVar ();forkIO φT (P);putMVar stop ()}

φT (xy.P) =do {T x,y
send;φT (P)}

φT (x(y).P)=do {T x,y
receive;φT (P)}

φT (P|Q) =do {forkIO φT (Q);φT (P)}
φT (νx.P) =do{contx← newEmptyMVar;checkx1← newEmptyMVar; . . . ;checkxn← newEmptyMVar;

letrec x = Chancontx checkx1 . . .checkxnin φT (P)}
φT (0) =return ()
φT (Stop) =takeMVar stop
φT (!P) =letrec f = do {forkIO φT (P); f} in f

Figure 7: Induced translations φT and φ0,T where T = (Tsend,Trecieve) uses n check-MVars

putS: The sender puts its message into the contents-MVar of the channel. It represents the expression
caseChannel x of (Chan c a1 . . . an-> putMVar c z >> e) in CH where e is the remaining program
of the sender. The operation occurs exactly once in the sender program. We write it as putSx z, or
as putS, if x and z are clear.

takeS: The receiver takes the message from the contents-MVar of channel x and replaces name y by
the received name in the subsequent program. The operation occurs exactly once in the receiver
program. We write it as takeSx y, or as takeS, if x and y are clear. It represents the CH-expression
caseChannel x of (Chan c a1 . . . an-> takeMVar c >>= λy.e) where e is the remaining program of
the receiver. In do-notation, we write do {y← takeSx;e} to abbreviate the above CH-expression.

putC and takeC: The sender and the receiver may synchronize on a check-MVar checki by putting ()
into it or by emptying the MVar. These operations are written as putCi

x and takeCi
x, or also as

putCi,takeCi if the name x is clear. We write putC and takeC if there is only one check-MVar.
Let e be the remaining program of the sender or receiver. Then putCi

x represents the CH-expression
caseChannel x of (Chan c a1 . . . an-> putMVar ai () >> e) and takeCi

x represents the expression
caseChannel x of (Chan c a1 . . . an-> takeMVar ai >> e).

We restrict our search for translations to the case that the sender and the receiver programs are
sequences of the above operations, assuming that they are independent of the channel name x. With this
restriction, we can abstractly write the translation of the sender and the receiver as a pair of sequences,
where only putS,takeS,putCi and takeCi operations are used. We make some more restrictions:

Definition 5.1. Let n > 0 be a number of check-MVars. A standard global synchronized-to-buffer transla-
tion (or gstb-translation) is a pair (Tsend,Treceive) of a send-sequence Tsend and a receive-sequence Treceive

consisting of putS, takeS, putCi and takeCi operations, where the send-sequence contains putS once,
the receive-sequence contains takeS once, and for every putCi-action in (Tsend,Treceive), there is also a
takeCi-action in (Tsend,Treceive). W.l.o.g., we assume that in the send-sequence the indices i are ascend-
ing. I.e. if putCi or takeCi is before putC j or takeC j, then i < j holds.

We often say translation instead of gstb-translation, if this is clear from the context.

Definition 5.2. Let T = (Tsend,Treceive) be a gstb-translation. We write T x,y
send for the program Tsend instan-

tiated for xy, i.e. putS is putSx y, and all other operations are indexed with x. We write T x,y
receive for the

program Treceive instantiated for x(y), i.e. takeS is takeSx y, and all other operations are indexed with
x. The induced translations φ0,T and φT of (Tsend,Treceive) are defined in Fig. 7.
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The induced translations are defined similar to the translations τ0 and τ , where the differences are the
representations of the channel. The translation of νx, x(y), and xy is different, but the other cases remain
the same. Since φ0,T (P) =Cτ

out[φT (P)] and by the same arguments as in Theorem 4.8, we have:

Proposition 5.3. If φT is closed convergence-equivalent, then φT is adequate.

An execution of a translation (Tsend,Treceive) for name x is the simulation of the abstract program,
i.e. a program that starts with empty MVars x, x1, . . . ,xn, and is an interleaved sequence of actions from
the send and receive-sequence Tsend and Treceive, respectively.

To speak about the translations we make further classifications: We say that a translation allows
multiple uses, if a check-MVar is used more than once, i.e. the sender or receiver may contain takeCi or
putCi more than once for the same i. A translation has the interprocess check restriction, if for every i:
takeCi and putCi do not occur both in Tsend, and also not both in Treceive.

Definition 5.4. A translation T = (Tsend,Treceive) according to Definition 5.1 is

• executable if there is a deadlock free execution of T ;

• communicating, if Tsend contains at least one takeCi-action;

• overlap-free if for a fixed name x, starting with empty MVars, every interleaved (concurrent)
execution of (Tsend,Treceive) cannot be disturbed by starting another execution of Tsend and/or
Treceive. More formally, let ((s1; ...;si);(r1; ....r j)) and ((s′1; ...;s′i);(r

′
1; ....r′j)) be two copies of

(Tsend ,Treceive) for a fixed name x. We call a command ak from one of the four sequences, an
a-action for a ∈ {s,s′,r,r′}. The translation T is overlap-free if every execution of the four se-
quences has the property that it can be split into a prefix and a suffix (called parts in the following)
such that one of the following properties holds

1. One part contains only s- and r-actions, and the other part contains only s′- and r′-actions.
2. One part contains only s- and r′-actions and the other part contains only s′- and r-actions.

We implemented a tool to enumerate translations and to test whether each translation preserves and
reflects may- and should-convergence for a (given) finite set of processes. Hence, our tool can refute the
correctness of translations, but it can also output (usually small) sets of translations which are not refuted
and which are promising candidates for correct translations. The above mentioned parallel execution of
Tsend and Treceive is not sufficient to refute most of the translations, since it corresponds to the evaluation
of the π-program νx.(x(y)|xz) (which is must-divergent). Thus, we apply the translation to a subset
of π-processes, which we view as critical and for which we can automatically decide may- and should-
convergence (before and after the translation). We consider only π-programs of the form (νx1, . . . ,xn.P)
where P contains only 0, Stop, parallel composition, and input- and output-prefixes. These programs
are replication free and the ν-binders are on the top, and hence terminate. In the following we omit the
ν-binders, but always mean them to be present. We also implemented techniques to generates all such
programs until a bound on the size of the program is reached.

Our simulation tool4 can execute all possible evaluations of those π-processes and – since all eval-
uation paths are finite – the tool can check for may- and should-convergence of the π-program. For
the translated program, we do not generate a full CH-program, but generate a sequence of sequences
of takeSx,putSx,takeC

i
x,putC

i
x z and Stop-operations by applying the translation to all action prefixes

in the π-program and by encoding Stop as Stop, 0 into an empty sequence. We get a sequence of se-
quences, since we have several threads and each thread is represented by one sequence. For executing
the translated program, we simulate the global store (of MVars) and execute all possible interleavings

4Available via https://gitlab.com/davidsabel/refute-pi.

https://gitlab.com/davidsabel/refute-pi
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where we check for may- and should-convergence by looking whether the Stop eventually occurs at the
beginning of the sequence. This simulates the behavior of the real CH-program in a controllable manner.

With the encoding of the sender- and receiver program and a π-calculus process P we

1. translate P with the encodings in the sequence of sequences consisting of takeSx, putSx, takeCi
x,

putCi
x z and Stop-operations;

2. simulate the execution on all interleavings;

3. test may- and should convergence of the original π-program P as well as the encoded program
(w.r.t. the simulation);

4. compare the convergence before and after the translation. If there is a difference in the convergence
behavior, then P is a counter-example for the correctness of the encodings.

Example 5.5. Let us consider the gstb-translation (Tsend,Treceive) = ([takeC,putS], [putC,takeS]) and
the π-process P = νx,y,z,w(xy.x(z).Stop|x(w).0). Our tool recognizes that P↑ and P⇑ holds, since P
reduces to the must-divergent process νx,z.(x(z).Stop) and there are no other reduction possibilities.

Applying (Tsend,Treceive) to P yields the abstract program

q := [[takeCx,putSx y,putCx,takeSx z,Stop], [putCx,takeSx w]].

For q, our tool inspects all executions. Among them there is the sequence

putCx;takeCx;putSx y;putCx;takeSx z;Stop

which can be executed ending in Stop. Thus q is may-convergent, and thus the process P is a counter-
example that refutes the correctness of the translation.

The case that there is no check-MVar leads to one possible translation ([putS], [takeS]) which means
that xz is translated into putSx y and x(y) is translated into takeSx y. This translation is not correct,
since for instance the π-process xz.x(y).Stop is neither may- nor should-convergent, but the translation
(written as an abstract program) is [[putSx z,takeSx y,Stop]]. I.e., it consists of one process which
is may- and should-convergent (since putSx z;takeSx y;Stop is the only evaluation sequence and its
execution ends in Stop). Note that the translation into CH will generate two threads: the main threads
that will wait until the MVar stop is filled, and a concurrent thread that will do the above operations.

5.1 Translations with Interprocess Check Restriction

We consider translations with the interprocess check restriction (each takeCi and putCi must be dis-
tributed between the sender and the receiver). There are n! · 2n · (n+ 1)2 different translations (for n
check-MVars). For a single check-MVar, all 8 translations are rejected by our tool, Table 1 shows the
translations and the obtained counter examples. For 2 check-MVars, our tool refutes all 72 translations.
Compared to Table 1, there are two further π-programs used as counterexample. However, also the
programs xy.Stop|x(y) and xy.x(z).zq|x(z)| x(z)|xz|y(u).Stop suffice to refute all 72 translations.

Theorem 5.6. There is no valid gstb-translation with the interprocess check restriction for less than
three check-MVars.

A reason for the failure of translations with less than three check-MVars may be:

Theorem 5.7. There is no executable, communicating, and overlap-free gstb-translation with the inter-
process check restriction for n < 3.
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Translation (sender,receiver) Counter-example (π-process) ↓ before ⇓ before ↓ after ⇓ after

([putC,putS], [takeC,takeS]) xy.x(y).Stop N N Y Y
([putC,putS], [takeS,takeC]) xy.x(y).Stop N N Y Y
([putS,putC], [takeC,takeS]) xy.x(y).Stop N N Y Y
([putS,putC], [takeS,takeC]) xy.x(y).Stop N N Y Y
([takeC,putS], [putC,takeS]) xy.x(z).Stop | x(w) N N Y N
([takeC,putS], [takeS,putC]) xy.Stop | x(y) Y Y N N
([putS,takeC], [putC,takeS]) xy.x(z).Stop | x(w) N N Y N
([putS,takeC], [takeS,putC]) xz.za.Stop | xw.wa.Stop | x(y).y(u) Y Y Y N

Table 1: Translations using one check-MVar and with the interprocess check restriction

Proof. For n = 1, we check the translations in Table 1. The first four are non-communicating. For the
translation ([takeC,putS], [takeS,putC]) a deadlock occurs. For ([takeC,putS], [putC,takeS]), after
putC, takeC, we can execute putC again. For ([putS,takeC], [takeS,putC]), after executing putS,
takeS we can execute putS again. For ([putS,takeC], [putC,takeS]), after putC,putS, takeC we
can execute putC again. For n = 2, the simulator finds no executable, communicating, and overlap-free
translation: 18 translations are non-communicating, 21 lead to a deadlock, and 33 may lead to an overlap.

For 3 MVars, our tool rejects 762 out of 768 translations (using the same counter examples as for 2
check-MVars) and the following 6 translations remain:

T1 =([putS,putC1,takeC2,putC3], [takeC1,putC2,takeC3,takeS])
T2 =([takeC1,putS,takeC2,takeC3], [putC3,putC1,takeS,putC2])
T3 =([putC1,putS,takeC2,putC3], [takeS,putC2,takeC3,takeC1])
T4 =([putC1,putC2,takeC3,putS], [takeC2,putC3,takeS,takeC1])
T5 =([takeC1,putS,takeC2,takeC3], [putC1,putC2,takeS,putC3])
T6 =([putC1,takeC2,putS,takeC3], [takeC1,putC2,takeS,putC3])

Proposition 5.8. The translations T1,T2,T3, and T4 are executable, communicating, and overlap-free,
whereas the translations T5 and T6 are executable, communicating, but overlapping.

Proof. We only consider overlaps. For T1 - T4, only if all 8 actions are finished, the next send or receive
can start. For T5,T6, after executing putC1, takeC1, we can again execute putC1.

In [29] we argue that the induced translation φT1 leaves may- and should-convergence invariant. The
main help in reasoning is that there is no unintended interleaving of send and receive sequences according
to Proposition 5.8. Application of Proposition 5.3 then shows:
Theorem 5.9. Translation φT1 is adequate.

For 4 MVars, our tool refutes 9266 and there remain 334 candidates for correct translations.

5.2 Dropping the Interprocess Check Restriction

We now consider gstb-translations without the interprocess check restriction, i.e. putCi and takeCi both
may occur in the sender-program (or the receiver program, resp.). If we allow one check-MVar without
reuse, then there are 20 candidates for translations. All are refuted by our simulation. Allowing reuse of
the single check-MVar seems not to help to construct a correct translation: We simulated this for up to 6
uses, leading to 420420 candidates for a correct translation – our simulation refutes all of them.
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Conjecture 5.10. We conjecture that there is no correct translation for one check-MVar where re-uses
are permitted and the interprocess check restriction is dropped, i.e., Tsend is a word over {putS,putC,
takeC} and Treceive a word over {takeS,putC, takeC}, where putS,takeS occur exactly once. 5

For two MVars, one use and without the interprocess check restriction there are 420 translations.
Our tool refutes all except for two: T7 = ([putC1,putS,takeC2,takeC1], [takeS,putC2]) and T8 =
([takeC1,putS], [putC2,putC1,takeS,takeC2]). In T7 the second check-MVar is used as a mutex for
the senders, ensuring that only one sender can operate at a time. T8 does the same on the receiver side.

Proposition 5.11. The translations T7,T8 are executable, communicating, overlap-free.

Proof. The translations are executable and communicating. For T7, putC1,putS and takeS are per-
formed in this order. An additional sender cannot execute its first command before the original sender
performs takeC1 and this again is only possible after the receiver program is finished. An additional
receiver can only be executed after a putS is performed, which cannot be done by the current sender
and receivers. For T8, putC2,putC1 and takeC1 are performed in this order. An additional receiver can
only start after takeC2 was executed by the original receiver, which can only occur after the original
sender and receiver program are fully evaluated. An additional sender can only start after putC1 has
been executed again, but the current sender and receiver cannot execute this command.

The induced translation φT7 is (closed) convergence-equivalent [29]. With Proposition 5.3 this shows:

Theorem 5.12. Translation φT7 is adequate.

We are convinced that the same holds for T8. We conclude the statistics of our search for translations
without the interprocess restriction: For 3 MVars, there are 10080 translations and 9992 are refuted,
i.e. 98 are potentially correct. One is ([putC1,putS,takeC2,takeC1], [putC3,takeS,putC2,takeC3])
which is quite intuitive: check-MVar 1 is used as a mutex for all senders on the same channel, check-
MVar 3 is used as a mutex for all receivers, and check-MVar 2 is used to send an acknowledgement. For
4 MVars, there are 277200 translations and 273210 are refuted, i.e. 3990 are potentially correct.

6 Discussion and Conclusion

We investigated translating the π-calculus into CH and showed correctness and adequacy of a transla-
tion τ0 with private MVars for every translated communication. For translations with global names, we
started an investigation on exhibiting (potentially) correct translations. We identified several minimal
potentially correct translations and characterized all incorrect “small” translations. For two particular
global translations, we have shown that they are convergence-equivalent and we proved their adequacy
on open processes. The exact form of the translations were found by our tool to search for translations
and to refute their correctness. The tool showed that there is no correct gstb-translation with the inter-
process check restriction for less than 3 check-MVars. We also may consider extended variants of the
π-calculus. We are convinced that adding recursion and sums can easily be built into the translation,
while it might be challenging to encode mixed sums or (name) matching operators. For name matching
operators, our current translation would require to test usual bindings in CH for equality which is not
available in core-Haskell. Solutions may either use an adapted translation or a target language that sup-
ports observable sharing [6, 8]. The translation of mixed-sums into CH appears to require more complex
translations, where the send- and receive-parts are not linear lists of actions.

5We already have a proof in the meantime, not yet published.
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