
V. Castiglioni and O. Dardha (Eds.): Combined Workshop on

Expressiveness in Concurrency and Structural Operational Semantics

(EXPRESS/SOS 2021)

EPTCS 339, 2021, pp. 59–75, doi:10.4204/EPTCS.339.7

© M. Schmidt-Schauß, D. Sabel

This work is licensed under the

Creative Commons Attribution License.

Minimal Translations from Synchronous Communication to

Synchronizing Locks

Manfred Schmidt-Schauß

Goethe-University, Frankfurt am Main, Germany

schauss@ki.cs.uni-frankfurt.de

David Sabel

LMU, Munich, Germany

david.sabel@ifi.lmu.de

In order to understand the relative expressive power of larger concurrent programming languages, we

analyze translations of small process calculi which model the communication and synchronization

of concurrent processes. The source language SYNCSIMPLE is a minimalistic model for message

passing concurrency while the target language LOCKSIMPLE is a minimalistic model for shared

memory concurrency. The former is a calculus with synchronous communication of processes,

while the latter has synchronizing mutable locations – called locks – that behave similarly to bi-

nary semaphores. The criteria for correctness of translations is that they preserve and reflect may-

termination and must-termination of the processes. We show that there is no correct compositional

translation from SYNCSIMPLE to LOCKSIMPLE that uses one or two locks, independent from the

initialisation of the locks. We also show that there is a correct translation that uses three locks. Also

variants of the locks are taken into account with different blocking behavior.

1 Introduction

Different models of concurrency are studied and used in theory and in practice of computer science.

One main approach are message passing models where the concurrently running threads (or processes)

communicate by sending and receiving messages. A prominent example for a message passing model

is the π-calculus [6, 16]. There exist approaches with asynchronous and with synchronous message

passing. In asynchronous message passing, a sender sends its message and proceeds without waiting that

a receiver collects the message (thus the message is kept in some medium until the receiver collects it

from that medium). In synchronous message passing, the message is exchanged in one step and thus

sender and receiver wait until the communication has happened. Thus, synchronous message passing

can be used for synchronization of processes.

Another main approach for concurrency are program calculi with shared memory where concurrent

processes communicate by using shared memory primitives. For instance, λ (fut) [7] is a program cal-

culus that models the core of the strict concurrent functional language Alice ML, and it has concurrent

threads, handled futures, and memory cells with an atomic exchange-operation. Also other shared mem-

ory synchronization primitives like concurrent buffers and their encodability into λ (fut) are analyzed

[24]. Other examples are the calculi CH [19] and CHF [14, 15, 21]. The latter is a program calculus that

models the core of Concurrent Haskell [10]: it extends the functional programming language Haskell

by concurrent threads and so-called MVars, which are synchronizing mutable memory locations. Thus,

depending on the model (or the concurrent programming languages) there exist different primitives. The

simplest approach is some kind of locking primitive to block a process until some event happens. To

exchange a message, for instance, atomic read-write registers can be used. More sophisticated primitives

are for example semaphores, monitors, or Concurrent Haskell’s MVars. All these approaches have in

common that processes can be blocked until an event occurs, which is performed by another process.

http://dx.doi.org/10.4204/EPTCS.339.7
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

60 Minimal Translations from Synchronous Communication to Synchronizing Locks

Expressivity of (concurrent) programming languages is an important topic, since the corresponding

results allow us to classify the languages and their programming constructs, and to understand their

differences. Investigating the expressivity to clarify the relation between message passing models and

shared memory concurrency can in principle be done by constructing correct translations from one model

to the other. Our research considers the question whether and how synchronous message passing can be

implemented by models that support shared memory and some of these synchronization primitives.

In previous work [19], we analyzed translations from the synchronous π-calculus into a core language

of Concurrent Haskell. In particular, we looked for compositional translations that preserve and reflect

the convergence behavior of processes (in all program-contexts) w.r.t. may- and should-convergence.

This means, processes can successfully terminate or not, where may-convergence observes whether there

is a possible execution path to a successful process and should-convergence means that the ability to

become successful holds for all execution paths. We found correct translations and proved them to be

correct with respect to this correctness notion. Looking for small translations has several advantages:

The resource usage of the translated programs is lower, they are easier to understand than larger ones,

and the corresponding correctness proofs often are easier than for large ones. Hence, we also tried

to find smallest translations, but in the end we could not answer the following question: what is the

minimal number of MVars that are necessary to correctly encode the message passing synchronization

using MVars? This leads us to the general question how synchronous communication can be encoded by

synchronizing primitives and what is the minimal number of primitives that is required. This question

is addressed in this paper. We choose to work with models that are as simple as possible and also as

complex as needed, but nevertheless are also relevant for full programming languages (we discuss the

transportion of the results to full languages in Section 2.3). Thus we consider translations from a small

message passing source language into a small target language with shared memory concurrency and

synchronizing primitives.

For the source language SYNCSIMPLE, we use a minimalistic model for concurrent processes that

synchronize by communication. The language has constructs for sending (denoted by “!”) and for

receiving (denoted by “?”). A communication step atomically processes one ! from one process together

with one ? from another process. For simplicity, there is no message that is sent and there are no channel

names (i.e. the language can be seen as a variant of the synchronous π-calculus (without replication and

sums) where only one global channel name exists).

For the target language LOCKSIMPLE we choose a similar calculus where the communication is

removed and replaced by synchronizing shared memory locations. These locations are called locks. A

lock can be empty or full. There are operations to fill an empty lock (put) or to empty a full lock (take).

The main variant that we consider is the one where the put-operation blocks on a full lock, but the take-

operation is not blocking on an empty lock. Thus these locks are like binary semaphores where put is the

wait-operation and take is the signal-operation (where signal on an unlocked semaphore is allowed but

has no effect). We also consider the language with several locks with different initializations (empty or

full). Based on this setting, the question addressed by the paper is:

What is the minimal number of locks that is required to correctly translate the source calcu-

lus into the target calculus?

The notion of correctness of a translation requires comparing the semantics of both calculi. We

adopt the approach of observational correctness [17, 22] and thus we use correctness w.r.t. a contex-

tual equivalence which considers the may- and the must-convergence in both calculi. May-convergence

means that the process can be evaluated to a successful process (in both calculi we add a constant to

signal success). Due to the nondeterminism, observing may-convergence is too weak since for instance,

M. Schmidt-Schauß, D. Sabel 61

it equates processes that must become successful with processes that either diverge or become success-

ful. Hence we also observe must-convergence, which holds if any evaluation of the process ends with a

successful process. Considering must-convergence only is also too weak since it equates processes that

always fail with processes that either fail or become successful. Thus we use the combination of both

convergencies as program semantics. In turn, a correct translation must preserve and reflect the may- and

must-convergence of any program.

This can also be seen as a minimalistic requirement on a correct translation since for instance, requir-

ing equivalence of strong or weak bisimulation (see e.g. [16]) would be a much stronger requirement.

Results. We show that there does not exist a correct compositional translation from SYNCSIMPLE

into LOCKSIMPLE that uses one (Theorem 3.2) or two locks (Theorem 5.17), while there is a correct

compositional translation that uses three locks (Theorem 2.9).

The non-existence is proved for any initial state of the lock variables and also for different kinds of

blocking behaviour of the lock (i.e. whether put or whether take blocks).

Related Work. Validity of translations between process calculi is discussed in [4, 3] where five cri-

teria for valid translations resp. encodings are proposed: compositionality, name invariance, operational

correspondence, divergence reflection, and success sensitiveness. Compositionality and name invariance

restrict the syntactic form of the translated processes; operational correspondence means that the transi-

tive closure of the reduction relation is transported by the translation, modulo the syntactic equivalence;

and divergence reflection and success sensitiveness are conditions on the semantics.

We adopt the first condition for our non-encodability results since we will require that the translation

is compositional. The name invariance is irrelevant since our simple calculi do not have names. We do

not use the third condition in the proposed form, since it has a flavour of showing equivalence of bisim-

ulations, instead, we require equivalence of may- and must-convergence which is a bit weaker. Thus, for

our non-encodability result the property could be included (still showing non-encodability), but for the

correct translation in Theorem 2.9, we did not check the property. Convergence equivalence for may-

and must-convergence is our replacement of Gorla’s divergence reflection and success sensitiveness.

Translations from synchronous to asynchronous communication are investigated in the π-calculus

[5, 1, 9, 8]. Encodability results are obtained for the π-calculus without sums [5, 1], while Palamidessi

analyzed synchronous and asynchronous communication in the π-calculus with mixed sums and non-

encodability is the main result [8, 9].

A high-level encoding of synchronous communication into shared memory concurrency is an encod-

ing of CML-events in Concurrent Haskell using MVars [12, 2], however a formal correctness proof for

the translation is not provided.

Outline. In Section 2 we introduce the process language SYNCSIMPLE with synchronous communi-

cation and the process language LOCKSIMPLE with asynchronous locks. After defining the correctness

conditions on translations, we show that three locks (with a specific initialization) are sufficient for a

correct translation and we discuss variants of the target language. In particular, we show that changing

blocking variants is equivalent to a modification of the initial store. In Section 3 it is shown that one lock

in LOCKSIMPLE is insufficient for a correct translation and Section 4 exhibits certain general proper-

ties of correct translations which use two or more locks. Section 5 contains the structuring into different

blocking types of translations, and proofs that there are no correct translations for two locks and any

initial store. Section 6 concludes the paper. For space reasons some proofs are omitted, but they can be

found in the extended version of this paper [23].

62 Minimal Translations from Synchronous Communication to Synchronizing Locks

2 Languages for Concurrent Processes

We define abstract and simple models for concurrent processes with synchronous communication and

for concurrency with synchronizing shared memory. The former model is a simplified variant of the

π-calculus with a single global channel name and without replication or recursion, the latter can be

seen as a variant where interprocess communication is replaced by binary semaphores. Thereafter we

define correct translations, prove correctness of a specific translation and consider variants of the target

language.

2.1 The Calculus SYNCSIMPLE

Definition 2.1. The syntax of processes and subprocesses of the calculus SYNCSIMPLE is defined by

the following grammar, where i ∈ {1, . . . ,k}:

Subprocesses U ::= X | 0 | !U | ?U

Processes P ::= U | U|P

We informally describe the meaning of the symbols. The symbol 0 means the silent subprocess;

the symbol X means success, The operation ! means an output (or send-command), and ? means an

input (or receive-command), and| is parallel composition. For example, the expression ?!!X|!?0 is a

process, and so are also ???!!!?X and ?!!X|!?0|X|!!!!!!?!X. We assume that| is commutative and

associative and that 0 is an identity element w.r.t.|, i.e. 0|P = P for all P. Thus a process can be seen

as a multiset of subprocesses.

Definition 2.2. The operational semantics of SYNCSIMPLE is a (non-deterministic) small-step opera-

tional semantics. A single step
SYS
−−→ is defined as

!U1|?U2|P
SYS
−−→ U1|U2|P

where U1,U2 are arbitrary subprocesses and P is an arbitrary process.

The reflexive-transitive closure of
SYS
−−→ is denoted as

SYS,∗
−−−→.

If a process is of the form X|P , then the process is successful. A sequence of
SYS
−−→-steps starting

with P is called an execution of P .

Note that there may be several executions of processes, but every execution terminates.

Example 2.3. Two examples for the execution of P = ?!0|!!X|?0 are:

• P = ?!0|!!X|?0
SYS
−−→ !0|!X|?0

SYS
−−→ !0|X|0, where the final process is successful.

• P = ?!0|!!X|?0
SYS
−−→ !0|!X|?0

SYS
−−→ 0|!X|0 where the final process is terminated, but not

successful.

This means there may be executions leading to a successful process, and at the same time executions

leading to a fail.

We often omit the suffix 0 for a subprocess, i.e. whenever a subprocess ends with symbol ! or ? we

mean the same subprocess extended by 0.

Definition 2.4. A process P is called

• may-convergent if there is some successful process P ′ with P
SYS,∗
−−−→ P ′.

M. Schmidt-Schauß, D. Sabel 63

• must-convergent if for all processes P ′ with P
SYS,∗
−−−→ P ′, the process P ′ is may-convergent.

• must-divergent or a fail, if there is no execution leading to a successful process.

• may-divergent, if there exists an execution P
SYS,∗
−−−→ P ′, where P ′ is a fail.

Our definition of must-convergence is the same as so-called should-convergence (see e.g. [13, 18,

14]). However, since there are no infinite reduction sequences, the notions of should- and must-

convergence coincide (see e.g. [11, 18] for more discussion on the different notions). Thus, an alter-

native but equivalent definition of must-convergence is: a process P is must-convergent, if all maximal

reductions starting from P end with a successful process.

2.2 The Calculus LOCKSIMPLE

We now define the calculus LOCKSIMPLE which can be seen as a modification of SYNCSIMPLE

where ? and ! are removed, and operations Pi and Ti, which mean put and take, are added where

i = 1, . . . ,k and k is the number of locks (i.e. storage cells). Locks can be empty (written as �) or full

(written as �). For k locks, the initial store is a k-tuple (C1, . . . ,Ck) where Ci ∈ {�,�}. We make this

explicit by writing LOCKSIMPLEk,IS for the language with k locks and initial store IS. Subprocesses in

LOCKSIMPLEk,IS for a fixed value 1 ≤ k ∈ N are built from X,0, the symbols Pi,Ti and concatenation.

Processes are a multiset of subprocesses: they are composed by parallel composition|which is assumed

to be associative and commutative.

Definition 2.5. The syntax of processes and subprocesses of the calculus LOCKSIMPLEk,IS is defined

by the following grammar:

subprocess: U ::= 0 |X | PiU | TiU

process: P ::= U | U|P

We first describe the operational semantics of processes of LOCKSIMPLEk,IS and then give the for-

mal definition. The operational semantics is a non-deterministic small-step reduction
LS
−→ which operates

on k locks Ci (which are full (i.e. �) or empty (written as �)). The execution of the operations Pi or Ti is

as follows:
Pi: (put) changes Ci from �→�, or waits, if Ci is �.

Ti: (take) changes Ci from �→�, or goes on (no change), if Ci is �

Note that locks together with Pi and Ti behave like binary semaphores, where (Pi,Ti) means (wait,signal)

(or (down,up), resp.). The semaphore is set to 1 if the lock is empty, and set to 0 if the lock is full. Note

that locks specify a particular behavior for the case of a signal operation and the semaphore set to 1: the

signal has no effect (since Ti on an empty lock does not have an effect). Now we formally define the

operational semantics:

Definition 2.6. The relation
LS
−→ operates on a pair (P,(C1, . . . ,Ck)), where P is a LOCKSIMPLEk,IS-

process, C1, . . . ,Ck are the storage cells. For a LOCKSIMPLEk,IS-process P the reduction starts with

initial store (P, IS).
We write the state as C , and with C [Ci = �] we denote that the specific cell Ci has value �. The

notation C [Ci 7→ �] means that in C the value in storage cell Ci is replaced by �. The same for �

instead of �. The relation
LS
−→ is defined by the following two rules:

(PiU|P,C [Ci =�])
LS
−→ (U|P,C [Ci 7→�]) and (TiU|P,C)

LS
−→ (U|P,C [Ci 7→�])

The reflexive-transitive closure of
LS
−→ is denoted as

LS,∗
−−→. A sequence (P,C)

LS,∗
−−→ (P ′,C ′) is called

an execution of (P,C), and if C = IS then it is also called an execution of P .

64 Minimal Translations from Synchronous Communication to Synchronizing Locks

To simplify notation, we write LOCKSIMPLEk for the language with k locks where all locks are

empty at the beginning, i.e. it is LOCKSIMPLEk,IS with IS = (�, . . . ,�)).
Note that the blocking behavior of the put-operation is modelled by the operational semantics as

follows: for (PiU|P, C [Ci = �]) there is no step (for subprocess PiU) defined and thus PiU has to

wait until another subprocess changes the value of Ci.

Definition 2.7. A process P of LOCKSIMPLEk,IS is called successful, if there is a subprocess X of P ,

i.e. P =X|P ′ for some P ′. A state (P,C) is called

• successful, if P is successful.

• may-convergent, if there is some successful (P ′,C ′) with (P,C)
LS,∗
−−→ (P ′,C ′).

• must-convergent, if for all states (P ′,C ′) with (P,C)
LS,∗
−−→ (P ′,C ′), the state (P ′,C ′) is may-

convergent.

• must-divergent or a fail, if there is no execution leading to a successful state.

• may-divergent, if for some state (P ′,C ′): (P,C)
LS,∗
−−→ (P ′,C ′), where (P ′,C ′) is a fail.

A process P is called may-convergent, must-convergent, must-divergent, or may-divergent, resp. iff the

state (P, IS) is may-convergent, must-convergent, must-divergent, or may-divergent, resp.

An example for a reduction sequence for k = 2 is:

(P20|T2X,(�,�))
LS
−→ (0|T2X,(�,�))

LS
−→ (0|X,(�,�)) (successful)

The process P20|T2X is even must-convergent.

In the following, we often leave the state implicit and in abuse of notation, we “reduce” processes

without explicitly mentioning the state.

As in SYNCSIMPLE we often omit the suffix, 0, for a subprocess, i.e. whenever a subprocess ends

with symbol Pi or Ti we mean the same subprocess extended by 0.

2.3 Correct Translations

We are interested in translations from one full concurrent programming language with synchronous se-

mantics into another full imperative concurrent language with locks, where the issues are expressive

power and the comparison between the languages. In order to focus considerations, we investigate this

issue by considering translations from a core concurrent language (SYNCSIMPLE) with synchronous

semantics into a core of an imperative concurrent language (LOCKSIMPLE).

However, even in our simple languages there are interesting questions, for example, whether there

exists a correct translation and how many locks are necessary for such a translation.

Since our analysis started top-down, we are sure that the non-encodability results can be transferred

back to larger calculi. For discussing this, let us call the full languages SYNCFULL and LOCKFULL,

resp. The language SYNCFULL may be the π-calculus and thus, it extends SYNCSIMPLE by names,

named channels, name restriction, sending and receiving names and replication or recursion. The lan-

guage LOCKFULL may be a variant of the core language of Concurrent Haskell, where locks are ex-

tended to synchronising memory cells which have addresses (or names) and content (for instance, num-

bers). The main argument why non-encodability in the small languages implies non-encodability in the

larger languages is the following: Suppose we have non-encodability between the small languages for

2 locks, and there exists a correct (compositional) translation φ : SYNCFULL → LOCKFULL that uses

M. Schmidt-Schauß, D. Sabel 65

only one synchronising memory cell in LOCKFULL. Then the idea is to embed every SYNCSIMPLE-

program P into a SYNCFULL-program P ′ by using only one channel, and then using the translation

φ to derive a LOCKFULL-program φ(P ′). Using this construction, we also get a translation of ! and

? into LOCKFULL, where every ! translates into a send-prefix, and every ? into a receive-prefix. The

parallel-operator remains as it is. Then the correctness of φ tells us that the LOCKFULL-program φ(P ′)
has the same may- and must-convergencies. Compositionality gives us a LOCKSIMPLE-program that

uses at most 2 locks, and it has the same parallel-structure as P , and the !,?, are translated always in the

same way. The result can be reduced to a LOCKSIMPLE-program with at most 2 locks, (perhaps after

restricting φ w.r.t. contents of messages and recursion), which contradicts the result on small languages,

since the reasoning holds for all P .

Definition 2.8. A mapping τ from the processes of SYNCSIMPLE into processes of LOCKSIMPLEk,IS

is called a translation.

• τ is called compositional iff τ(0) = 0, τ(X) =X, τ(P1|P2) = τ(P1)|τ(P2); τ(U) does not

contain the parallel operator| for every subprocess U ; and τ(!U) = τ(!)τ(U) and τ(?U) =
τ(?)τ(U) for every subprocess U

• τ is called correct iff for all SYNCSIMPLE-processes P, P is may-convergent iff τ(P) is may-

convergent, and P is must-convergent iff τ(P) is must-convergent,

Compositional translations τ in our languages can be identified with the pair (τ(!),τ(?)) of strings, and

we say that τ has length n, if |τ(!)|+ |τ(?)|= n.

For example, a correct translation cannot map τ(0) =X since then 0 is must-divergent, but τ(0) is

must-convergent. Hence τ(0) = 0 and τ(X) =X make sense for correct translations.

We show that three locks are sufficient for a correct compositional translation.

Theorem 2.9. For k = 3, the translation τ with τ(!) = P1T3P2T1 and τ(?) = P3T2 is correct for initial

store (�,�,�).

Proof. We give a sketch (the full proof can be found in [23]): A communication starts with executing P1

of τ(!) = P1T3P2T1, leaving the storage (�,�,�). Then no other sequence τ(!),τ(?) in parallel processes

can be executed. Then T3 is executed, leaving the storage (�,�,�). The next step is that one process

with τ(?) = P3T2 may start, and P3 is executed, leaving the storage (�,�,�). Now T2 is executed, and

this is the only possibility. the storage is then (�,�,�). Again, the only possibility is now P2 from τ(!)
and the storage (�,�,�). The last step is executing T1, which restores the initial storage (�,�,�).

This is the only execution possibility of τ(!) and τ(?), hence it can be retranslated into an interaction

communication of a single ! and a single ?.

There are also other correct compositional translations for k = 3: An example is a compositional

correct translation τ of length 8, detected by an automated search, with τ(!) = P2P1T3P1T1T2 and τ(?) =
P3T1 and with initial store (�,�,�).

The observation is that the communication is completely protected by using P2 as a mutex, which is

similar to the translation of length 6 (see Theorem 2.9)

2.4 Blocking Variants of LOCKSIMPLE

We choose for our locks, that Pi blocks, but Ti never blocks. However, also other choices are possible.

Variants of LOCKSIMPLE where for every i either Pi blocks on a full lock, but Ti is non-blocking, or Ti

blocks on an empty lock, but Pi is non-blocking, do not lead to really new problems: In [23] we show that

66 Minimal Translations from Synchronous Communication to Synchronizing Locks

all those variants are equivalent to the previously defined language where for all i: Pi is blocking, but Ti

is non-blocking. This is possible since we take into account any initial store and thus the main argument

of the equivalence is that we can change the initial store for every i by switching the role of Pi,Ti and at

the same time switching the initial store for i from � to � and vice versa. Thus this extension does not

increase the number of (really) different languages for a fixed k. However, the variant where Pi blocks

for a full lock and Ti blocks for an empty lock for all i (which is related to an implementation using

the MVars in Concurrent Haskell) appears to be different from our LOCKSIMPLE languages. There

are results on possibility and impossibility of correct translations from SYNCSIMPLE into a further

restricted variant of LOCKSIMPLE [20]. A deeper investigation in these languages is future work.

3 One Lock is Insufficient for any Initialization

We show that there is no correct (compositional) translation into LOCKSIMPLE1,IS, the language with

one lock, for any initial storage, i.e. for initial storage � and initial storage �.

Lemma 3.1. Let τ be a correct translation SYNCSIMPLE → LOCKSIMPLE1,IS. Then τ(!) as well as

τ(?) either start with P1 or have a subsequence P1P1.

Proof. Consider the processes !X and ?X which are both must-divergent. If τ(!) does not satisfy the

condition, then the process τ(!X) can be executed without any wait and is successful. The same for

τ(?X). However, this is a contradiction to correctness.

Theorem 3.2. There is no correct translation SYNCSIMPLE → LOCKSIMPLE1,IS.

Proof. Let τ be a correct translation. We first consider the case that the initial storage is �. Then from

Lemma 3.1 we derive that τ(!) as well as τ(?) have a subsequence P1P1 or start with P1. since P1 as a

prefix is executable (and similar as in the proof of Lemma 3.1, the processes !X and ?X can be used as

examples to refute the correctness of τ). Consider the process τ(!X|?X), which is must-convergent.

First, reduce τ(!X) until exactly before the first occurrence of P1P1. Then reduce τ(?X). Since the

reduction starts with C1 = �, it will block after executing the first P1 of the leftmost subsequence P1P1

(or earlier). Then C1 =�, and we have a deadlock. This is a contradiction to correctness of τ .

Now we consider the case that the initial store is �. Then Lemma 3.1 shows that τ(!) and τ(?)
contain a subsequence P1P1 or start with P1. We again use the must-convergent process τ(!X|?X). If

both τ(!) and τ(?) start with P1, then there is an initial deadlock. Suppose that neither τ(!) nor τ(?) do

start with a P1, then they both start with a T1, and have a subsequence P1P1. Let us consider the leftmost

such subsequence for τ(!) as well as for τ(?). Construct the following execution for τ(!X|?X): First

τ(!) until it blocks at the second P1 of the sequence P1P1, then the execution of τ(?) until the second P1

of the sequence P1P1. Then we have a deadlock, which is impossible.

If τ(!) starts with a P1, but not τ(?), then there is a leftmost sequence P1P1 of τ(?). Execute τ(?) until

it is blocked at P1. Then we reach a deadlock. This is a contradiction.

4 General Properties for at Least Two Locks

In this section, we consider compositional translations SYNCSIMPLE → LOCKSIMPLEk,IS with k ≥ 2

and prove several properties of correct compositional translations that will help us later to show that

k = 2 is impossible. We also introduce the notion of a blocking type for a translation. The idea of this

M. Schmidt-Schauß, D. Sabel 67

notion is recording how τ establishes that executing τ(!) in the process τ(!X) blocks and why executing

τ(?) in the process τ(?X) blocks. Both processes must block if τ is correct, since the the processes !X

and ?X are both blocking (and not successful) in SYNCSIMPLE.

Below this notion helps to structure the arguments for different cases.

Lemma 4.1. Let τ be a correct translation from SYNCSIMPLE → LOCKSIMPLEk,IS for k ≥ 1. Then

there is a reduction sequence of τ(!)|τ(?) that executes every symbol in τ(!)|τ(?).

Proof. First, consider τ(!X)|τ(?0), which is must-convergent (since !X|?0 is must-convergent), and

hence there is a reduction sequence of τ(!)|τ(?) consuming at least all symbols in τ(!). The same

sequence can be used as a partial reduction sequence of τ(!0)|τ(?X), and since this process is must-

convergent (since !0|?X is must-convergent), the sequence will also consume all symbols of τ(?X).

The notation #(S,r) means the number of occurrences of the symbol S in the string r.

Proposition 4.2. Let τ : SYNCSIMPLE → LOCKSIMPLEk,IS for k ≥ 2 be a correct translation. Then

for every 1 ≤ i ≤ k: #(Pi,τ(!))+#(Pi,τ(?))≤ #(Ti,τ(!))+#(Ti,τ(?)).

Proof. The processes !!X|??X, !!0|??X and !!X|??0 are must-convergent, hence also their images

under τ . Now suppose the claim is false. Then for some index, say 1, #(P1,τ(!)) + #(P1,τ(?)) >
#(T1,τ(!)) + #(T1,τ(?)). We apply Lemma 4.1 to τ(!!X|??X) and obtain a reduction sequence R1

that exactly consumes the top parts τ(!) and τ(?) of τ(!!X|??X).
Replacing X by 0, the reduction sequence R1 can be also used for τ(!!X|??0). Since τ(!!X|??0)

is must-convergent, R1 can be continued to R1R2 ending in a success of the form X|Q0 where Q is a

suffix of τ(?), since !!X|??0 is must-convergent.

The reduction sequence R1R2 can also be used for τ(!!0|??X) (by interchanging 0 and X), ending

in 0|QX. Since !!0|??X is must-convergent, the reduction sequence R1R2 can be extended to R1R2R3

resulting in 0|X.

After R1, we have C1 =� and that the initial store for index 1 is �, due to the assumption, and since

the symbols in τ(!),τ(?) are completely consumed. Hence R2R3 must execute a T1 before every other

P1. But since the number of T1-symbols is strictly smaller than the number of P1-symbols, there must be

a deadlock situation at least for one of the symbols P1.

This is a contradiction, hence the proposition holds.

Definition 4.3. For a correct translation τ into LOCKSIMPLEk,IS, a blocking prefix of a sequence S of

symbols in LOCKSIMPLEk,IS is a prefix of S of one of the two forms:

1. R1PiR2Pi, where R1,R2 are sequences, and R2 does not contain Pi,Ti, and the execution of S that

starts with store IS deadlocks exactly before the last symbol, which is Pi.

2. R1Pi, where R1 does not contain Pi,Ti, and the execution of S that starts with store IS deadlocks

exactly before the last symbol, which is Pi.

We may also speak of R1Pi or PiR2Pi, respectively, as a blocking subsequence of S.

In the case that S has a blocking sequence, we say that the blocking type of S is PiPi if the blocking

sequence is R1PiR2Pi, and the blocking type is Pi, if the blocking sequence is R1Pi.

We say a translation τ has blocking type (W1,W2), if W1 is the blocking type of τ(!), and W2 is the

blocking type of τ(?).

Lemma 4.4. Let τ : SYNCSIMPLE → LOCKSIMPLEk,IS be a correct translation where k ≥ 2. Then

there is some i, such that τ(!) has a blocking subsequence of the form RPi, or PiRPi, where R does not

contain Pi,Ti. The same holds for τ(?).

68 Minimal Translations from Synchronous Communication to Synchronizing Locks

Proof. The reduction of τ(!) cannot be completely executed, since τ(!X) is a fail. Hence the execution

stops at a symbol Pi, and it is either the first occurrence of Pi, or a later occurrence. Hence the sequence

before is of the form R, or PiR, where R does not contain Pi,Ti. The same arguments hold for τ(?).

Lemma 4.5. Let τ : SYNCSIMPLE → LOCKSIMPLEk,IS be a correct translation where k ≥ 2. If τ(!)
is of blocking type Pi then ISi = �, and if τ(!) is of blocking type PiPi then the first i-symbol is Ti, or

ISi =�; The same holds for τ(?).

Proof. The blocking type Pi is only possible if in R of the prefix RPi there is no Ti, hence the initial store

ISi = �. If the blocking type is PiPi and ISi = �, then the first i-symbol must be a Ti. The other case is

that ISi is �.

5 Non-Existence of a Correct Translation for Two Locks

In this section, we will show that there is no correct compositional translation from SYNCSIMPLE

to LOCKSIMPLE2,IS (for any initial storage IS). We distinguish several cases by considering differ-

ent blocking types according to Definition 4.3. When reasoning on translations, we use an extended

notation of translations as pairs of strings (i.e. (τ(!),τ(?))): We describe sets of translations using set-

concatenation (writing singletons without curly braces) and the Kleene-star. For instance, we write

({P1,T1}
∗T2,{P2}

∗T1) to denote the set of all translations where τ(!) starts with arbitrary many P1- and

T1-steps ending with T2, and τ(?) starting with an arbitrary number of P2-steps followed by a single

T1-step.

An automated search for compositional translations for k = 2 and length ≤ 10 has refuted the cor-

rectness of all these translations for all initializations of the initial storage. This is consistent with our

general arguments in this section.

5.1 Refuting the Blocking Type (PiPi,PjPj)

Proposition 5.1. Let τ : SYNCSIMPLE → LOCKSIMPLE2,IS be a correct translation of blocking type

(PiPi,PjPj). Then i 6= j.

Proof. W.l.o.g. assume that the blocking type is (P1P1,P1P1). Then the blocking prefixes of τ(!) and τ(?)
are M1P1RP1 and M2P1R′P1, respectively. Now we reduce the must-convergent process τ(!0)|τ(?X) by

selecting the following reduction sequence: first, reduce τ(!) until M1P1R is completely executed, and

then reduce τ(?) as far as possible. Let Q be the prefix of τ(?) of the form {P2,T2}
∗{P1,T1}. If P1 is

the symbol from {P1,T1} of τ(?), then a deadlock would occur, which is not possible, since !0|?X is

must-convergent. Hence Q as a prefix of τ(?) must be of the form {P2,T2}
∗T1. There are two cases:

1. After executing M1P1R it holds C1 =� and C2 =�.

(a) IS2 = �. Now, since reducing τ(?) starts with C2 = �, and the final T1 of Q resets C1, the

reduction sequence starting with τ(!0) and then executing τ(?) is possible until the end of

M2P1R′. Since now C1 =� and in both pending subprocesses a P1 is to be executed, we have

a deadlock, which is impossible due to must-convergence of !0|?X.

(b) IS2 = �. Then the first {P2,T2}-symbol of τ(?) cannot be P2, since it would block. Hence

the first {P2,T2}-symbol of τ(?) is T2. Then the further reduction of τ(?) is independent of

the initial values and it is the same as in the previous case.

M. Schmidt-Schauß, D. Sabel 69

2. After executing M1P1R it holds C1 = � and C2 = �. Then the first symbol of τ(?) cannot be P2,

since this would be a deadlock. Also, the first symbol of τ(?) cannot be T2, since then the reduction

of τ(?) alone is the same as started with the initialization C1 =C2 =�, and the reduction proceeds

until the end of the blocking sequence, which leads to a deadlock. Hence τ(?) starts with T1. The

prefix of τ(?) cannot be T1{T1,P1}
∗P2, since this either blocks within T1{T1,P1}

∗ or at P2. Hence

the prefix is T1{T1,P1}
∗T2. This implies that τ(?) is executable until the blocking P1, and thus leads

to a deadlock. Hence this case is also not possible.

We have checked all cases, hence i = j is not possible and the lemma is proved.

We consider the blocking type (P1P1,P2P2) in the rest of this subsection, which suffices due to sym-

metry and Proposition 5.1.

Lemma 5.2. Let τ : SYNCSIMPLE → LOCKSIMPLE2,IS be a correct translation of blocking type

(P1P1,P2P2). Then the following holds:

1. The blocking prefix of τ(!) is R1P1{P2,T2}
∗T2P1 and the blocking prefix of τ(?) is

R3P2{P1,T1}
∗T1P2.

2. {T1,P1}
∗T2 is a prefix of τ(!), and {T2,P2}

∗T1 is a prefix of τ(?).

Proof. Let the blocking prefix of τ(!) be R1P1P1 and the blocking prefix of τ(?) be R3P2{T1,P1}
∗P2.

Then first execute R1, and then R3P2{T1,P1}
∗ until it blocks. If it blocks at a P1, then it is a deadlock. If

it blocks at a P2, then P1P1 cannot be both executed, hence a deadlock. Hence τ(!) has a blocking prefix

R1P1R2P1 where R2 6= /0. By symmetry, we obtain that the blocking prefix of τ(?) is R3P2R4P2 where

R4 6= /0. Now let the blocking prefix of τ(!) be R1P1{T2,P2}
∗P2P1. Execute τ(!) until P2P1 is left, and

then execute τ(?). Clearly, τ(?) must block, independent of the previous executions. If τ(?) blocks at P1,

then we have a deadlock, and if it blocks at P2, then we also have a deadlock. Hence the blocking prefix

of τ(!) is of the form R1P1{T2,P2}
∗T2P1.

By symmetry, we obtain that the blocking prefix of τ(?) is of the form R3P2{T1,P1}
∗T1P2. Now we

prove restrictions on the prefix of τ(!) and τ(?). Assume that the prefix of τ(?) is {T2,P2}
∗P1. Then first

reduce τ(!) until it blocks before P1, then reduce τ(?), until it blocks within {T2,P2}
∗ or at the (first) P1 in

τ(?). Both cases lead to a deadlock, hence this case is impossible. Thus τ(?) has prefix {T2,P2}
∗T1.

For the rest of this subsection, we assume blocking type (P1P1,P2P2), and that only correct translations

are of interest.

Lemma 5.3. Let τ be a correct translation. Then for any initial storage the prefix of τ(!) cannot be T+
1 T2

nor T+
2 T1.

Proof. In each case the must-divergent process τ(!X|. . .|!X) with sufficiently many subprocesses can

be reduced such that it leads to a success, which contradicts the correctness of τ : Fix the first subprocess

and reduce it until the end using the prefixes of the other subprocesses to proceed in case of a blocking.

This leads to success, which is a contradiction.

Lemma 5.2 implies:

Lemma 5.4. The prefix of τ(!) cannot be T ∗
1 P2.

Lemma 5.5. Let τ be a correct translation. Then the prefix of τ(!) cannot be T+
2 P2.

70 Minimal Translations from Synchronous Communication to Synchronizing Locks

Proof. Consider the must-convergent process τ(!X|. . .|!X|?0). First reduce all the prefixes T+
2 in

all τ(!X) until P2 is the first symbol. Since {T2,P2}
∗T1 is a prefix of τ(?), and due to the assumption of

the blocking type, reduction cannot block at a P2 in {T2,P2}
∗. Hence T1 is executed, which means that

reduction is now independent of the initial store. We reduce τ(?) until it stops before the second P2 of

the blocking subsequence. Then it is a deadlock, which contradicts correctness of τ .

Lemma 5.6. The prefix of τ(!) cannot be P1.

Proof. Assume the prefix of τ(!) is P1. Then IS1 = � due to the assumption that the blocking type is

(P1P1,P2P2). Consider the must-convergent process !X|. . .|!X|?0, where we fix the number of !X-

subprocesses later if this is necessary. We will use the structure of the subprocesses τ(!) and τ(?) proved

in Lemma 5.2 whenever necessary.

1. Reduce τ(?0) before it stops at the second P2 of the blocking subsequence. After this we have

C1 =�,C2 =�.

2. Reduce one subprocess τ(!X) until it blocks. Since C1 = IS1 = � at the start and {P1,T1}
∗T2 is a

prefix of τ(!), the reduction is the same as started with IS, hence it stops at the second P1 of the

blocking subsequence and so C1 =�,C2 =� at the end.

3. We go on with the reduction of τ(?) until it blocks. It cannot block at a P1, since this would

be a deadlock. If the reduction consumes all of τ(?), then we reduce the next τ(!): The prefix

{T1,P1}
∗T2 shows that it cannot block at P1 of {T1,P1}

∗, since this would be a deadlock, hence T2

is executed, Now it cannot block at a P2 before the end of the blocking sequence. Thus reduction

will lead to a deadlock at the end of the blocking sequence, since all remaining subprocesses start

with a P1.

The last case is that the further reduction of τ(?0) blocks at a P2. Then again we reduce the next

subprocess τ(!X). It cannot block at P1 of the prefix {T1,P1}
∗T2, since this would be a deadlock,

hence it executes a T2, and thus again it blocks at a P1 at the end of a blocking sequence. This is

the final deadlock.

Lemma 5.7. Let τ be a correct translation. Then the prefix of τ(!) cannot be T+
2 P1.

Proof. Consider the must-convergent process τ(!X|. . .|!X|?0). First, reduce all T+
2 -prefixes away,

thhen use the same arguments as in Lemma 5.6, which is possible, since it is the same process.

Since P1 as prefix of τ(!) is already excluded, we show the following.

Lemma 5.8. Let τ be a correct translation. Then the prefix of τ(!) cannot be T+
1 P1.

Proof. Let us assume that the prefix of τ(!) is T+
1 P1. We know that it is also {P1,T1}

∗T2. Consider the

must-convergent process τ(!X|. . .|!X|?0). Reduce τ(?) until it stops before the second P2 of the

blocking subsequence with C1 =�,C2 =�. There are two cases:

1. τ(!X) can be reduced until it blocks at a P2. Then we assume that the process is τ(!X|?0) Hence

we have a deadlock.

2. τ(!X) can be reduced until it blocks at a P1. This position must be the second position in a blocking

subsequence, since reduction starts with C1 = �, and the prefix {P1,T1}
∗T2 enforces that a T2 is

executed before any P2 in τ(!). Due to the form of the blocking sequence the last step before

blocking was a T2. We continue now the reduction of τ(?). This can block at a P2, and we will

M. Schmidt-Schauß, D. Sabel 71

again use a τ(!)-subprocess for unblocking. Or it stops at a P1, then we use the T+
1 at the start of a

fresh τ(!) to unblock. Finally, τ(?) is worked-off. The already used τ(!) now remain with a prefix

P1. We execute the remaining τ(!) until the blocking P1.

All cases lead to a deadlock, which is a contradiction to correctness of τ .

Proposition 5.9. Blocking type (PiPi,PjPj) is impossible for a correct translation for k = 2.

Proof. Proposition 5.1 excludes the case i = j. For the case i 6= j, it is sufficient to consider i = 1, j = 2

(due to symmetry). Assume that τ is a correct translation of blocking type (P1P1,P2P2). Lemma 5.2

shows that {T1,P1}
∗T2 and {T1,T2,P1,P2}

∗P1{P2,T2}
∗T2P1 must be prefixes of τ(!). Thus τ(!) must start

with T1,P1 or T2 and the length of τ(!) is at least 3. Lemma 5.6 shows that τ(!) cannot start with P1.

Lemmas 5.3, 5.4 and 5.8 show that the prefix of τ(!) cannot be T+
1 T2, T+

1 P1, nor T ∗
1 P2. Thus τ(!) cannot

start with T1. Lemmas 5.3, 5.5 and 5.7 show that the prefix of τ(!) cannot be T+
2 P2,T

+
2 T1, nor T+

2 P1.

Thus τ(!) cannot start with T2. Hence, we have a contradiction, and τ cannot be correct.

5.2 Refuting Blocking Types (PiPi,Pi), (Pi,PiPi), (Pi,Pi), (PiPi,Pj)

Proposition 5.10. Let τ be a correct translation. For k = 2 the blocking types (P1P1,P1), (P1,P1P1), and

(P1,P1) are not possible.

Proof. First, we assume (P1P1,P1). Consider the process τ(!X)|τ(?X) which must be must-convergent

for a correct translation τ . The blocking prefix of τ(?) is of the form {P2,T2}
∗P1, and IS1 = �. Then

construct the following reduction: first, reduce τ(!X) until the blocking P1 (now C1 = � still holds),

and then the prefix {P2,T2}
∗P1 of τ(?X). If it blocks at some P2, then it is a deadlock, and if it blocks

at the P1, it is also a deadlock. The symmetric type (P1,P1P1) is also impossible (by the symmetric

reduction). Now assume the type is (P1,P1). Then the blocking prefixes of τ(!) and τ(?) are both of the

form {P2,T2}
∗P1. Reducing τ(!) blocks at P1. Afterwards reducing τ(?) either stops at a P2, which is

a deadlock, or at P1, which is also a deadlock. Thus for the must-convergent process (!|?X) we can

construct a reduction sequence for τ(!|?X) that ends in a deadlock.

In the following, we only have to think about the blocking types (P1P1,P2), and (P1,P2), since

(P2,P1P1) is a symmetric case of the first one.

Lemma 5.11. Blocking type (P1P1,P2) is not possible for a correct translation and k = 2.

Proof. Assume that the blocking type of τ is (P1P1,P2). Lemma 4.5 shows that IS2 = �, and the prefix

of τ(?) is {P1,T1}
∗P2. This holds, since if the first symbol in τ(?) which is in {P2,T2}

∗ is T2, then the

blocking type would be different for τ(?).
Since the blocking type of τ(!) is P1P1, Lemma 4.5 shows that either IS1 =� or the first 1-symbol in

the blocking-sequence (which is of the form R1P1{T2,P2}
∗P1) is T1.

The blocking prefix of τ(!) cannot be {P1,T1}
∗: This would imply that it stops with P1P1. Then the

process τ(!X|?) permits a failing reduction: First, reduce τ(?) until it blocks with P2, and then reduce

τ(!), which blocks at P1 without changing C2, hence it is a deadlock.

A prefix of τ(!) is of the form {P1,T1}
∗T2: Suppose the prefix is {P1,T1}

∗P2. Reducing τ(!X|?) as

follows: First τ(!), which cannot block within the prefix {P1,T1}
∗, hence it blocks at P2. Subsequent

reduction of τ(?) leads to a deadlock since it blocks at P2.

For the final contradiction, we show that the process τ(!X|?) permits a failing reduction: First,

reduce τ(?) until it blocks with P2, and then reduce τ(!), which blocks at P1. If C2 =� after the reduction,

72 Minimal Translations from Synchronous Communication to Synchronizing Locks

then it is a deadlock. Hence C2 = � after the reduction. This holds for every reduction of τ(!) until

blocking. Now we restart with the process τ(!X|. . .|!X|?), where we will fix the number of !X-

subprocesses later. First, reduce τ(!) until the blocking P1 and get C2 = �. Then we reduce τ(?) as far

as possible. There are cases:

1. τ(?) can be completely reduced. Then we reduce the second τ(!) until a blocking, which will

occur at P1. Then C1 =�, and hence both τ(!) are blocked forever.

2. τ(?) blocks at a P1, then we have a deadlock.

3. τ(?) blocks at a later P2. Then again we use the next subprocess τ(!) and reduce it to the blocking

P1, with C2 =�, and can proceed with τ(?). This can be repeated until τ(?) is completely reduced,

where we assume sufficiently many subprocesses τ(!X). Finally we get a deadlock by reducing

the last τ(!) to the blocking, and then we have a deadlock.

5.3 Refuting the Blocking Type (P1,P2)

The treatment of blocking type (P1,P2) requires more arguments. We first show a lemma on the suffix of

τ(!) and τ(?), that permit to reuse results for other initial stores than (�,�).

Lemma 5.12. For k = 2 and a correct translation τ of blocking type (P1,P2), the initial store can only

be (�,�) and the prefixes of τ(!) and τ(?) are {P2,T2}
∗P1, and {P1,T1}

∗P2.

Due to space constraints the proof of the following proposition is given in [23]:

Proposition 5.13. Let τ be a translation for k = 2 of blocking type (P1,P2). Let τ(!) consist of a sequence

of building blocks which follow the pattern {T1,T2}
∗P1 or {T1,T2}

∗P2, where in addition a suffix {T1,T2}
∗

is appended. Let τ(?) consist of a sequence of building blocks which follow the pattern {T1,T2}
∗P1 or

{T1,T2}
∗P2. Then τ is not correct.

Corollary 5.14. Let τ be a correct translation for k = 2 of blocking type (P1,P2). Then τ(!) and τ(?)
have a nontrivial suffix in {T1,T2}

+.

Extending a must-convergent process by !|? may destroy the must-convergence. An example is

!?0|?X, where !|?|!?0|?X becomes may-divergent. However, for flat processes, the extension pre-

serves must-convergence, where a SYNCSIMPLE-process is flat if it is of the form A1|. . .|An, where

Ai is !0,?0, !X, or ?X.

Lemma 5.15. Let Q be a flat SYNCSIMPLE-process that is must-convergent. Then the process !|?|Q

is also must-convergent.

Proposition 5.16. Blocking type (P1,P2) is impossible for correct translations for k = 2.

Proof. Assume that τ is correct for initial state (�,�). Then Corollary 5.14 shows that τ(!) and τ(?)
must end with {T1,T2}

+. Since τ(!|?) must be completely executable (see Lemma 4.1), reducing

τ((!|?|Q),(�,�))
LS,∗
−−→ (τ(Q),(k1,k2)) must lead to a state (k1,k2) 6= (�,�) for every Q. We consider

the blocking behavior of τ for (k1,k2) 6= (�,�).

• If τ(?) is non-blocking for (k1,k2), then consider the must-divergent process !?X|?. Then

(τ(!?X|?),(�,�))
LS,∗
−−→ (τ(?)X,(k1,k2))

LS,∗
−−→ (X,(l1, l2)). Thus τ is not correct.

• If τ(!) is non-blocking for (k1,k2), then consider the must-divergent process ?!X|!. Then

(τ(?!X|!),(�,�))
LS,∗
−−→ (τ(!)X,(k1,k2))

LS,∗
−−→ (X,(l1, l2)). Thus τ is not correct.

M. Schmidt-Schauß, D. Sabel 73

• We know that the prefix of τ(!) cannot be T+
1 T2 nor T+

2 T1 (see Lemma 5.3).

• The blocking type of τ for (k1,k2) is (PiPi,PjPj). Then the proof of Proposition 5.1 can be adapted

to first show that i 6= j: It uses flat must-convergent processes and constructs failing reductions.

Let Q be such a counter-example process Lemma 5.15 shows that !|?|Q is also must-convergent,

and thus τ(!|?|Q,(�,�))
LS,∗
−−→ (τ(Q),(k1,k2)) and thus (τ(Q),(k1,k2)) also must be must-

convergent. But the constructed failing reductions of Proposition 5.1 refute this. For the case

i 6= j, we can reason as in the lemmas before Proposition 5.9 and also as in Proposition 5.9 itself,

since they all use flat must-convergent SYNCSIMPLE-processes and show that there are failing

reductions after translating them. Again if Q is such a process, Lemma 5.15 shows that !|?|Q

is also must-convergent, and thus τ(!|?|Q,(�,�))
LS,∗
−−→ (τ(Q),(k1,k2)). Thus (τ(Q),(k1,k2))

must be must-convergent. But the constructed failing reductions in the proofs in the lemmas before

Proposition 5.9, or in the proof of Proposition 5.9, respectively, refute the must-convergence. Thus

the proved properties also hold if τ is of blocking type (PiPi,PjPj) for (k1,k2) (where Lemma 5.3

can be used directly, since it holds for any initial state). This shows (PiPi,PjPj) is impossible as

blocking type of τ for (k1,k2).

• The blocking type of τ for (k1,k2) is (P1P1,P1) or (P1,P1P1) or (P1,P1). Then the must-convergent

SYNCSIMPLE-processes in the proof of Proposition 5.10 can be used, since they are flat. Let Q

be such a process. By Lemma 5.15 !|?|Q is must-convergent. Since τ is correct τ(!|?|Q)
is must-convergent and thus (τ(Q),(k1,k2)) is must-convergent. The proof of Proposition 5.10

shows that (τ(Q),(k1,k2)) may-diverges, a contradiction.

• τ is of blocking type (P1P1,P2) for (k1,k2). Then the reasoning is analogous to the previous case

using the must-convergent flat counterexample processes of Lemma 5.11.

• The blocking type (P1,P2) is not possible, since we have a store (k1,k2) 6= (�,�).

We now prove the main result:

Theorem 5.17. Let IS be an initial store with two elements, and τ : SYNCSIMPLE →
LOCKSIMPLE2,IS be a compositional translation. Then τ is not correct.

Proof. The proof is structured along the blocking types (Definition 4.3) of translations. For k = 2 there

are 4 blocking types of subprocesses, and 16 potentially possible blocking types of translations. Propo-

sition 5.1 shows that type (PiPi,PiPi) is impossible, and Proposition 5.9 that (PiPi,PjPj) for i 6= j is

impossible. Proposition 5.10 shows that blocking types (P1P1,P1), (P1,P1P1), and (P1,P1) are impossi-

ble, and also the same for P2, since this is analogous. Lemma 5.11 shows that blocking types (P1P1,P2)
(and also (P2P2,P1), (P1,P2P2),(P2.P1P1) are impossible. The harder case (P1,P2) (and the symmetric

case (P2,P1)) is shown in a series of lemmas and finally proved in Proposition 5.16.

6 Conclusion

We proved that for locks where exactly one of the operations (put or take) blocks if the store is not as

expected, a correct translation from SYNCSIMPLE into LOCKSIMPLE requires at least three locks,

and also exhibited a correct translation for three locks. It remains open whether for all the considered

blocking variants and initial storage values there are correct translations for k ≥ 3. Future work is to

provide more arguments that our results can be transferred to full concurrent programming languages.

Future work is also to investigate the same questions for locks where both, put and take are blocking, if

the store is not as expected (like MVars in Concurrent Haskell).

74 Minimal Translations from Synchronous Communication to Synchronizing Locks

References

[1] Gérard Boudol (1992): Asynchrony and the Pi-calculus. Technical Report Research Report RR-1702,inria-

00076939, INRIA, France. Available at https://hal.inria.fr/inria-00076939.

[2] Avik Chaudhuri (2009): A concurrent ML library in concurrent Haskell. In: ICFP 2009, ACM, pp. 269–280,

doi:10.1145/1596550.1596589.

[3] Rob van Glabbeek, Ursula Goltz, Christopher Lippert & Stephan Mennicke (2019): Stronger Validity Criteria

for Encoding Synchrony. In: The Art of Modelling Computational Systems: A Journey from Logic and

Concurrency to Security and Privacy - Essays Dedicated to Catuscia Palamidessi on the Occasion of Her

60th Birthday, LNCS 11760, Springer, pp. 182–205, doi:10.1007/978-3-030-31175-9 11.

[4] Daniele Gorla (2010): Towards a unified approach to encodability and separation results for process calculi.

Inf. Comput. 208(9), pp. 1031–1053, doi:10.1016/j.ic.2010.05.002.

[5] Kohei Honda & Mario Tokoro (1991): An Object Calculus for Asynchronous Communication. In: Pro-

ceedings of the European Conference on Object-Oriented Programming, ECOOP ’91, Springer-Verlag, pp.

133–147, doi:10.1007/BFb0057019.

[6] Robin Milner, Joachim Parrow & David Walker (1992): A calculus of mobile processes, I. Information and

computation 100(1), pp. 1–40, doi:10.1016/0890-5401(92)90008-4.

[7] Joachim Niehren, Jan Schwinghammer & Gert Smolka (2006): A Concurrent Lambda Calculus with Futures.

Theoretical Computer Science 364(3), pp. 338–356, doi:10.1016/j.tcs.2006.08.016.

[8] Catuscia Palamidessi (1997): Comparing the Expressive Power of the Synchronous and the Asynchronous

pi-calculus. In: POPL 1997, ACM Press, pp. 256–265, doi:10.1145/263699.263731.

[9] Catuscia Palamidessi (2003): Comparing The Expressive Power Of The Synchronous And Asynchronous

Pi-Calculi. Math. Structures Comput. Sci. 13(5), pp. 685–719, doi:10.1017/S0960129503004043.

[10] Simon L. Peyton Jones, Andrew Gordon & Sigbjorn Finne (1996): Concurrent Haskell. In: POPL 1996,

ACM, pp. 295–308, doi:10.1145/237721.237794.

[11] Arend Rensink & Walter Vogler (2007): Fair testing. Inform. and Comput. 205(2), pp. 125–198,

doi:10.1016/j.ic.2006.06.002.

[12] George Russell (2001): Events in Haskell, and How to Implement Them. In: ICFP 2001, ACM, pp. 157–168,

doi:10.1145/507635.507655.

[13] David Sabel & Manfred Schmidt-Schauß (2008): A Call-by-Need Lambda-Calculus with Locally Bottom-

Avoiding Choice: Context Lemma and Correctness of Transformations. Math. Structures Comput. Sci.

18(03), pp. 501–553, doi:10.1017/S0960129508006774.

[14] David Sabel & Manfred Schmidt-Schauß (2011): A contextual semantics for Concurrent Haskell with futures.

In: PPDP 2011, ACM, pp. 101–112, doi:10.1145/2003476.2003492.

[15] David Sabel & Manfred Schmidt-Schauß (2012): Conservative Concurrency in Haskell. In: LICS 2012,

IEEE, pp. 561–570, doi:10.1109/LICS.2012.66.

[16] Davide Sangiorgi & David Walker (2001): The π-calculus: a theory of mobile processes. Cambridge univer-

sity press.

[17] Manfred Schmidt-Schauß, Joachim Niehren, Jan Schwinghammer & David Sabel (2008): Adequacy of Com-

positional Translations for Observational Semantics. In: IFIP TCS 2008, IFIP 273, Springer, pp. 521–535,

doi:10.1007/978-0-387-09680-3 35.

[18] Manfred Schmidt-Schauß & David Sabel (2010): Closures of may-, should- and must-convergences for con-

textual equivalence. Inform. and Comput. 110(6), pp. 232 – 235, doi:10.1016/j.ipl.2010.01.001.

[19] Manfred Schmidt-Schauß & David Sabel (2020): Correctly Implementing Synchronous Message Passing

in the Pi-Calculus By Concurrent Haskell’s MVars. In: EXPRESS/SOS 2020, Electronic Proceedings in

Theoretical Computer Science 322, Open Publishing Association, pp. 88–105, doi:10.4204/EPTCS.322.8.

https://hal.inria.fr/inria-00076939
http://dx.doi.org/10.1145/1596550.1596589
http://dx.doi.org/10.1007/978-3-030-31175-9_11
http://dx.doi.org/10.1016/j.ic.2010.05.002
http://dx.doi.org/10.1007/BFb0057019
http://dx.doi.org/10.1016/0890-5401(92)90008-4
http://dx.doi.org/10.1016/j.tcs.2006.08.016
http://dx.doi.org/10.1145/263699.263731
http://dx.doi.org/10.1017/S0960129503004043
http://dx.doi.org/10.1145/237721.237794
http://dx.doi.org/10.1016/j.ic.2006.06.002
http://dx.doi.org/10.1145/507635.507655
http://dx.doi.org/10.1017/S0960129508006774
http://dx.doi.org/10.1145/2003476.2003492
http://dx.doi.org/10.1109/LICS.2012.66
http://dx.doi.org/10.1007/978-0-387-09680-3_35
http://dx.doi.org/10.1016/j.ipl.2010.01.001
http://dx.doi.org/10.4204/EPTCS.322.8

M. Schmidt-Schauß, D. Sabel 75

[20] Manfred Schmidt-Schauß & David Sabel (2020): On Impossibility of Simple Translations of Concurrent

Calculi. Presented at WPTE 2020, pre-proceedings available via http://maude.ucm.es/wpte20/.

[21] Manfred Schmidt-Schauß, David Sabel & Nils Dallmeyer (2018): Sequential and Parallel Improve-

ments in a Concurrent Functional Programming Language. In: PPDP 2018, ACM, pp. 20:1–20:13,

doi:10.1145/3236950.3236952.

[22] Manfred Schmidt-Schauß, David Sabel, Joachim Niehren & Jan Schwinghammer (2015): Observa-

tional program calculi and the correctness of translations. Theor. Comput. Sci. 577, pp. 98–124,

doi:10.1016/j.tcs.2015.02.027.

[23] Manfred Schmidt-Schauß & David Sabel (2021): Minimal Translations from Synchronous Com-

munication to Synchronizing Locks (Extended Version). CoRR abs/2107.14651. Available at

https://arxiv.org/abs/2107.14651.

[24] Jan Schwinghammer, David Sabel, Manfred Schmidt-Schauß & Joachim Niehren (2009): Correctly trans-

lating concurrency primitives. In: ML 2009, ACM, pp. 27–38, doi:10.1145/1596627.1596633.

http://maude.ucm.es/wpte20/
http://dx.doi.org/10.1145/3236950.3236952
http://dx.doi.org/10.1016/j.tcs.2015.02.027
https://arxiv.org/abs/2107.14651
http://dx.doi.org/10.1145/1596627.1596633

	1 Introduction
	2 Languages for Concurrent Processes
	2.1 The Calculus SYNCSIMPLE
	2.2 The Calculus LOCKSIMPLE
	2.3 Correct Translations
	2.4 Blocking Variants of LOCKSIMPLE

	3 One Lock is Insufficient for any Initialization
	4 General Properties for at Least Two Locks
	5 Non-Existence of a Correct Translation for Two Locks
	5.1 Refuting the Blocking Type (PiPi,PjPj)
	5.2 Refuting Blocking Types (PiPi,Pi), (Pi,PiPi), (Pi, Pi), (PiPi,Pj)
	5.3 Refuting the Blocking Type (P1,P2)

	6 Conclusion

