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Several approaches have been introduced in the last few years to tackle the problem of interpreting
model-based performance analysis results and translating them into architectural feedback. Typically
the interpretation can take place by browsing either the software model or the performance model. In
this paper, we compare two approaches that we have recently introduced for this goal: one based on
the detection and solution of performance antipatterns, and another one based on bidirectional model
transformations between software and performance models. We apply both approaches to the same
example in order to illustrate the differences in the obtained performance results. Thereafter, we raise
the level of abstraction and we discuss the pros and cons of working on the software side and on the
performance side.

1 Introduction

Identifying and removing the causes of poor performance in software systems are complex problems due
to a variety of factors to take into account. Similarly to other non-functional properties, performance is an
emergent attribute of software, as it is the result of interactions among software components, underlying
platforms, users and contexts [29]. The current approaches to these problems are mostly based on the
skills and experience of software developers or, in the best cases, of performance analysts.

Quite sophisticated profiling tools have been introduced for run-time performance monitoring [23],
but it is well-known that the costs of solving performance problems at runtime is orders of magnitude
larger than the ones at early phases of the software lifecycle [15]. Therefore, instruments that help to
identify and remove causes of software performance problems early in the lifecycle are very beneficial.

In Figure 1 a round-trip Software Performance Engineering (SPE) process is schematically repre-
sented. The forward path starts from a software model that is transformed into a performance model
(e.g. [30]) that can be solved with common performance analysis techniques/tools to obtain performance
indices [20, 3]. The backward path consists of a problems detection/solution step that processes the per-
formance indices, in conjunction with the software artifact and/or the performance model, to detect and
remove possible sources of performance problems. Hence, a set of refactoring actions that may apply to
the software artifact and/or the performance model is obtained. This round-trip process is reiterated until
satisfactory performance indices are obtained.

Two options have been represented in Figure 1 for what concerns the reiteration mechanism, and
they are identified by non-continuous arrows. Dotted arrows represent the option of working on the
performance model to detect and remove performance problems. In this case a transformation from
the performance model to the software model has to take place when satisfactory performance indices
are obtained. Dotted-line arrows represent the option of working on the software model where refac-
toring actions are applied. In both cases the forward path has to be run at each iteration to obtain the
performance indices of a refactored (performance or software) model.

http://dx.doi.org/10.4204/EPTCS.108.3
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Figure 1: Round-trip Software Performance Engineering.

In the last 5 years several approaches have appeared for identification and removal of performance
problems either in the software model [5, 1, 21] or in the performance model [12, 31]. Although these two
categories of approaches nicely fit into the round-trip process of Figure 1, they work in different modeling
environments, under different assumptions. Hence, not only they might achieve different results, but also
they can show very different characteristics in terms of automation, scalability, effectiveness, etc.

The goal of this paper is to highlight the differences between these two categories of approaches in
order to envisage the contexts where they can be more appropriately used. For this goal we consider two
approaches that we have recently introduced.

The first approach is based on the detection and solution, on the software model, of performance
antipatterns that are used for “codifying” the knowledge and experience of analysts by means of the
identification of a problem, i.e. a bad practice that negatively affects software performance, and a so-
lution, i.e. a set of refactoring actions that can be carried out to remove it [1]. This approach involves
dotted-line arrows of Figure 1.

The second approach is based on bidirectional model transformations between UML software mod-
els and Queueing Network (QN) performance models. A forward transformation is used to generate the
performance model from an initial software model. The corresponding backward transformation is used
to generate a new software model from a satisfactory performance model obtained by means of changes
made by the analyst on the performance side [12]. This approach involves dotted arrows of Figure 1.

We apply both the approaches to the same running example in the E-Commerce domain in order
to illustrate the differences in the obtained results. Thereafter, we raise the level of abstraction and we
discuss the issues that we have to cope with when working on the software side or the performance side
to detect and remove performance problems.

The paper is organized as follows: in Section 2 a running example in the E-Commerce domain
is presented and performance analysis results obtained by applying the two approaches are illustrated;
Section 3 discusses the major issues related to working on the software or the performance side in a
round-trip SPE process; Section 4 presents related works, and finally Section 5 concludes the paper.

2 Running Experiment

In this section we show an application of the two approaches of interest in the E-Commerce domain.
We first describe the E-Commerce System software architectural model, then numerical results obtained
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from the experimentation are presented and discussed.

2.1 The E-Commerce System (ECS)

2.1.1 The ECS model

ECS is a web-based system that manages business data. We assume to have a multi-view model, com-
posed by (i) Static and (ii) Dynamic Views.

Several components are in the (server-side) Static View of Figure 2, each one providing/requiring
interfaces and/or operations called during services execution. Among all provided services in this pa-
per we focus on the three ones of Figure 3, namely: (a) Register related to customers registration, (b)
BrowseCatalog for consulting the products catalog, and (c) MakePurchase that is executed whenever a
customer wants to purchase a product.

Note that, since we adopted the SAP•one methodology [9] for generating a QN performance model
[8] from a (platform-independent) UML software model in both the compared approaches, no infor-
mation about the deployment of software components is provided. Hence, we are assuming that every
software component is placed on a logical device, and that all the devices have the same “speed” but
they can manage requests through queues of different capacity and different scheduling policy. When
the performance model is generated from the software model, that assumption allows us to directly map
each software component to a single service center, and to connect it with the other ones in respect with
the interface realizations/usages in the Static View and the message flows in the Dynamic View.

Figure 2: Initial ECS - Static View.

2.1.2 Performance requirements, legacy constraints and performance annotations for ECS

Several performance requirements have been defined on services response time and hardware devices
utilization:

R1: no service must have a response time greater than 4 seconds in the server-side when in the whole
system there are 150, 300, and 50 users requesting respectively the MakePurchase, BrowseCata-
log, and Register services;

R2: no hardware resource has to be used more than 90% when in the whole system there are 150, 300,
and 50 users requesting respectively the MakePurchase, BrowseCatalog, and Register services.
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(a) Register service

(b) BrowseCatalog service

(c) MakePurchase service

Figure 3: Initial ECS - Dynamic View.

Furthermore, a legacy constraint has been introduced:
C1: since we assume that the Database is a Commercial Off-The-Shelf component, it can neither be

refactored in any way nor replaced by another database having better performance.

In order to carry out performance analysis, several input parameters for the performance model obtained
from the ECS model by means of the forward transformation have to be defined:

Workload characterization. Performance requirements define the average number of users for
workloads. Hence, we define a closed workload class for each considered service. In particular, the
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average number of users for MakePurchase, BrowseCatalog, and Register are, respectively, 150, 300,
and 50. This means that under an aggregate average number of users equal to 500, the 10% is registering,
the 60% is browsing the products catalog, and the 30% is purchasing a product.

Service demands definition. Figure 4 shows service demands of the considered services. Values are
expressed in seconds. Since Customer generates workloads, we consider it as the delay node whose think
time is 15 seconds in order to represent the mean time needed by a user for elaborating a request and the
arrival of the latter to the server-side. All the other service demands are orders of magnitude lower than
think time because there is no time spent in thinking. Note that service demands are well proportioned
relating to requests in the various services. Hence, we are confident about their adequacy.

Figure 4: Service demands for the initial ECS.

2.1.3 Performance analysis for ECS

All the performance analysis have been conducted by transforming each involved software architectural
model into a QN performance model [8], and by solving the latter with the JMT tool [3].

Figure 5 shows performance analysis results for the QN corresponding to the initial ECS model for
the indices of interest, i.e. response times and utilizations.

(a) Response times (b) Utilizations

Figure 5: Response times and utilizations of the initial ECS.

As illustrated in Figure 5.(a), R1 is widely violated by the MakePurchase service. In fact, under
a workload of 150 users purchasing a product, in the server-side the mean time elapsed from a single
request arrival to its departure (i.e. the response time) is 23.32 - 15.00 = 8.32 seconds, i.e. more than
double compared to the defined threshold of 4 seconds. Instead, the response times at server-side for the
other two services don’t violate R1. In fact, BrowseCatalog has a mean response time of 17.81 - 15.00 =
2.81 seconds whereas Register has a mean response time of 16.77 - 15.00 = 1.77 seconds.

As illustrated in Figure 5.(b), R2 is violated by Database and ProductCatalog. In fact, under the spec-
ified workload, the former has an utilization of 96.66% whereas the latter has an utilization of 99.99%.

Since several performance indices of interest are not satisfactory we need to refactor the software
model in order to satisfy violated requirements.

2.2 ECS refactoring based on performance antipatterns

In this section we perform two refactorings on the initial ECS model by using the approach based on
performance antipatterns [1]. We first execute the antipatterns detection phase in order to identify bad
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practices related to performance, then we randomly choose an antipattern to remove. Hence, given the
corresponding pair (problem, solution), we execute a refactoring that applies the solution to the problem.

Let us assume that, among all the detected antipatterns, we choose to remove the occurrence of the
BLOB antipattern where the so called “Blob” entity is ProductCatalog. As stated in [25], this antipattern
“occurs when a single class either 1) performs all of the work of an application or 2) holds all of the
application’s data” and it can be solved “by refactoring the design to distribute intelligence uniformly
over the application’s top-level classes, and to keep related data and behavior together”. Hence, let us
assume that products managed by ECS are films and books and that these types of products are requested
respectively for 80% and 20%. We can split the ProductCatalog in two components, i.e. FilmCatalog
and BookCatalog. Figure 6 shows the refactored ECS static view, where the two components have been
introduced and adequately connected to the other ones. Note that their interfaces/operations are concep-
tually coherent with data each one of them manages. Also dynamic and deployment views are affected
by the refactoring. In particular, in the dynamic view a probability-weighted alternative fragment with
two operands related to films (with a probability of 0.8) and books (with a probability of 0.2) replaces
each portion of MakePurchase and BrowseCatalog services involving ProductCatalog, replicating that
portion for both FilmCatalog and BookCatalog in an adequate manner 1.

Figure 6: Refactored ECS (BLOB removed) - Static View.

Figure 7 shows performance analysis results of the QN corresponding to the ECS model for the
refactoring described in this section.

(a) Response times (b) Utilizations

Figure 7: Response times and utilizations after the BLOB antipattern removal.

As illustrated in Figure 7.(a), R1 is no longer violated for the MakePurchase service. In fact, under a
workload of 150 users purchasing a product, the response time at the server-side is 18.03 - 15.00 = 3.03
seconds, that are almost one second lower than the defined threshold of 4 seconds. Also the response time
at server-side for BrowseCatalog improves, hence it still not violate R1. Instead, the response times at
server-side for Register significantly increases, and it becomes 20.05 - 15.00 = 5.05 seconds, i.e. greater

1Readers interested to all details related to the refactored views not shown in this paper can refer to the external resource
available at http://www.di.univaq.it/cortelle/docs/FESCA2013_appendix.pdf.

http://www.di.univaq.it/cortelle/docs/FESCA2013_appendix.pdf
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than the defined threshold of 4 seconds.
As illustrated in Figure 7.(b), R2 is violated for Database and FilmCatalog. In fact, under the speci-

fied workload, the former has an utilization of 99.9% whereas the latter has an utilization of 95%.
Since several performance indices of interest are not satisfactory we need further refactoring in order

to satisfy violated requirements.
Let us assume that, among all the detected antipatterns, we choose to remove the occurrence of the

EST antipattern in Register, in order to obtain a better response time for that service2. As stated in [25],
this antipattern “occurs when an excessive number of requests is required to perform a task. It may be
due to inefficient use of available bandwidth, an inefficient interface, or both” and it can be solved by
means of the application of the Session Facade design pattern [27]. Hence, two new communicating
components, i.e. RemoteFacade and LocalFacade, are introduced between the one originating an exces-
sive number of requests, i.e. UserController, and the destination of those requests, i.e. Database. This
refactoring results in more efficient interfaces and also in a more efficient use of available bandwidth.

Figure 8 shows the refactored Register service of ECS, where the two Facade components have been
adequately introduced in the dynamics of that service. Also static and deployment views are affected by
the refactoring. In particular, also in the static view the two Facade components and their interfaces have
been adequately introduced.

Figure 8: Refactored ECS (EST removed) - Dynamic View (Register service)

Figure 9 shows performance analysis results of the QN corresponding to the ECS model for the
refactoring described in this section.

As illustrated in Figure 9.(a), R1 is no longer violated for the Register service. In fact, under a
workload of 50 users requesting a registration, the response time at the server-side is 18.16 - 15.00 =
3.16 seconds, that are almost one second lower than the defined threshold of 4 seconds. Also response
times at server-side for BrowseCatalog and MakePurchase improve, hence they still not violate R1. In
fact, the response time at server-side for the former becomes 16.77 - 15.00 = 1.77 seconds, whereas the
one for the latter becomes 17.83 - 15.00 = 2.83 seconds.

As illustrated in Figure 9.(b), R2 is violated for Database and FilmCatalog. In fact, under the spec-
ified workload, the former has an utilization of 99.57% whereas the latter has an utilization of 96.37%.

2Note that the EST occurrence detected in this second step could also have been detected in the previous iteration where we
opted for the BLOB occurrence removal.
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(a) Response times (b) Utilizations

Figure 9: Response times and utilizations after the EST antipattern removal.

Finally, utilizations of RemoteFacade and LocalFacade are, respectively, 6.89% and 11.01%, hence they
do not violate R2.

Since several performance indices of interest are not satisfactory we need further refactoring in order
to satisfy violated requirements but, at this point, we stop iterating the antipattern-based refactoring ap-
proach and turn back to the initial ECS model in order to start the application of the refactoring approach
that uses bidirectional transformations.

2.3 ECS refactoring based on bidirectional transformations

In this section we perform two refactorings on the initial ECS model by using the approach based on
bidirectional transformations. Hence, refactorings are executed by the performance analyst directly on
the performance model, basing on his own expertise on interpreting performance results.

Figure 10: QN refactoring for ECS (ProductCatalog split)

Starting from the QN model in the top-side of Figure 10 resulting from the application of the forward
transformation to the initial ECS model, performance results of Figure 5 are obtained. As we stated
in Section 2.2, we assume that products managed by ECS are films and books and that these types of
products are requested respectively for 80% and 20%. Since the Database cannot be refactored in any
way, we assume that the performance analyst refactors the QN model as shown in dashed boxes of Figure
10, hence by splitting ProductCatalog (i.e. the bottleneck) in two service centers, i.e. FilmCatalog and
BookCatalog, for managing the two types of products. Service demands for new service centers are
adjusted basing on percentiles assumed above.

Note that, by applying the backward transformation in order to go back to the software model, the
same refactored ECS resulting from the first refactoring of Section 2.2 is obtained. Therefore, also the
performance results are the same, hence several performance indices of interest are not satisfactory and
we need further refactoring at performance model side in order to satisfy violated requirements.
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Figure 11: QN refactoring for ECS (FilmCatalog split).

Let us assume that, since the Database cannot be refactored in any way, the performance analyst
refactors the QN model as shown in dashed boxes of Figure 11, hence by splitting FilmCatalog (i.e. the
bottleneck) in two service centers, i.e. FilmCatalog1 and FilmCatalog2, and balancing their load. This
means that requests for films are equally distributed between the two service centers, i.e. CatalogCon-
troller routes the requests to the two service centers with an identical probability of 0.5. Service demands
for new service centers are adjusted basing on that probability.

Figure 12 shows an excerpt of the static view for the refactored ECS obtained applying the backward
transformation in order to go back to the software model. Also dynamic and deployment views are
affected by the refactoring. In particular, in the dynamic view a probability-weighted alternative fragment
with two operands related to request balancing (probability of 0.5) replaces the portion of MakePurchase
and BrowseCatalog services involving FilmCatalog, by replicating that portion for both FilmCatalog1
and FilmCatalog2 in an adequate manner.

Figure 12: Refactored ECS resulting from QN refactoring (FilmCatalog split) - Static View.

Figure 13 shows performance analysis results of the QN corresponding to the ECS model for the
refactoring described in this section.

As illustrated in Figure 13.(a), R1 is still not violated for MakePurchase and BrowseCatalog services.
In fact, under a workload of 150 users purchasing a product, the response time at the server-side for the
former is 17.39 - 15.00 = 2.39 seconds, resulting in an improvement greater than half a second whereas,
under a workload of 300 users browsing the catalog, the response time at the server-side for the latter
remains more or less unchanged, i.e. 17.14 - 15.00 = 2.14 seconds (improvement of 0.25 seconds).
Instead, the response time at server-side for Register increases, and it becomes 20.85 - 15.00 = 5.85
seconds, i.e. still greater than the defined threshold of 4 seconds.

As illustrated in Figure 13.(b), the only component having an utilization that violates R2 is Database.
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(a) Response times (b) Utilizations

Figure 13: Response times and utilizations after the FilmCatalog split.

In fact, under the specified workload, it has an utilization of 99.9%.
Since several performance indices of interest are not satisfactory we need further refactoring in order

to satisfy violated requirements but, at this point, we stop iterating the refactoring approach that uses
bidirectional transformations in order to compare both the approaches on the same number of iterations.

3 Raising the abstraction level

In this section, in light of the example illustrated in Section 2, we discuss the issues that characterize
refactoring approaches that work on the software side and the ones working on the performance side.

3.1 Level of automation and human role

In order to be adopted in practice, a round-trip SPE process needs to be supported by a high level of
automation, due to the complexity of tasks that have to be executed and the decisions that have to be
taken. Nevertheless, the human role in SPE should not be completely removed, because the experience
and skills of software designers and/or performance analysts cannot be fully embedded in automated
processes, as we discuss in the following.

Let us look at the steps in the forward path of Figure 1: software to performance model transforma-
tions have been fully automated in the last decade even for high complexity cases [6]; performance model
solution is a well assessed task since decades and very sophisticated techniques are available today [3].

So, let us focus on the backward path of Figure 1. Automation in the problem detection and solution
step is traditionally very well supported on the performance side, where a whole theory on bottleneck
identification and removal has been introduced few decades ago (e.g. [20]) and has been continuously
refined by more recent results (e.g. [14]). However, refactoring actions applied on the performance side
have to be reported on the software side. The automation of the former task rests on bidirectional model
transformations, as shown in Section 2.3. Bidirectional transformations are complex to build in this
domain, mostly due to the low injectivity of forward transformations [24] that usually collapse several
elements of a software model into an unique element of a performance model, making back-tracing more
difficult. Instead, on the software side a certain level of automation has been introduced only recently,
for example based on antipatterns (as illustrated in our example) or on metaheuristics that search the
solution space looking for changes that can improve the performance indices [21].

However, in both cases it may be necessary to decide among alternative refactoring actions, because
it is difficult to implement such a sharp detection and solution step that terminates with an unique sug-
gestion of refactoring actions, especially in large scale systems.

The number of alternative refactoring actions outcoming from the detection and solution phase on
the software side can be considerably higher than the one on the performance side. This is mostly due
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from the richness of software model notations that makes the space of possible solutions quite larger than
the one on the performance side. For example, the reduction of number of visits to a network node in
a QN performance model consists in modifying an integer parameter, whereas in UML may correspond
to several alternatives that reduce the number of messages exchanged in a behavioral model (i.e. the
EST removal in Section 2.2). This aspect, on one end, can be considered as an advantage of approaches
that work on the software side, because they propose a variety of choices to software designers that can
select the most appropriate one(s), for example considering cost factors or legacy constraints. On the
other end, a too large variety of solutions (i.e. the list of detected antipatterns) can be hard to manage.
Decision support mechanisms, for example based on convenience metrics, might help the designer to
mitigate this aspect [7, 21]. However, they are heuristic techniques that sometimes do not work better
than the designer’s experience.

3.2 Effectiveness of refactoring actions

Independently of the considered side, after a set of alternative refactoring actions will be determined,
either the software designer or the performance analyst has to decide which one(s) applying to the (soft-
ware or performance) model. This is a key decision for sake of process convergence. In fact, a decision
tree drives the process, where each branch (i.e. each set of actions applied) leads to a new model that has
to be solved in order to check whether performance problems have been removed (e.g. a performance
requirement, that was violated, is now satisfied).

As mentioned above, heuristic techniques (possibly based on convenience metrics) might support
this decision both on the software and the performance side. However, the effectiveness of refactoring
actions will be given by the tradeoff between the refactoring complexity (i.e. the distance between the
original model and the refactored one) and the performance gain obtained from the refactoring. For
example, it may happen that heavy re-design actions, like splitting software components and modifying
their interaction patterns (i.e. FilmCatalog and BookCatalog that replace ProductCatalog in Section 2.2),
bring little performance benefits as compared to re-deploy a software component (ProductCatalog) on
another processing node (i.e. DatabaseNode of ECS). In most cases it is difficult to predict the perfor-
mance gain of a refactoring action without actually solving a refactored performance model. However,
again due to the usual richness of software modeling notations, the refactoring complexity is generally
lower on the performance side. At least, the portfolio of refactoring actions that can be applied, for ex-
ample on a Queueing Network, is certainly more limited than the one working on an UML model. On
one end, this implies that in order to solve nested performance problems more iterations may be needed
on the performance side compared to the software side. On the other end, the performance gain of refac-
toring actions applied to the software side is more unpredictable due to the forward transformation that
generates a refactored performance model from a refactored software model. In worst cases, software
refactoring actions could lead to performance degradation due to side effects that are not visible in the
software model (e.g. false positive performance antipatterns)3.

3.3 Scalability

Several factors contribute to the scalability of refactoring approaches. First, it comes straightforward
that a single loop of the round-trip process illustrated in Figure 1 is shorter in case of refactoring on the

3This problem is analogous to looking for bugs in software code: working on high-level languages (like C) gives a quite
rich syntax, but modifications must be translated in assembler before looking at their effects, whereas working in assembler
provides a more direct control on the effects of changes.
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performance side than on the software side. This is due to the need of applying a forward transformation
to a refactored software model for obtaining a refactored performance model. Direct refactoring on the
performance side, however, requires at the end of the process (i.e. when a satisfactory performance
model has been obtained) the application of a backward transformation to build back a corresponding
satisfactory software model. This observation leads to the scalability of the transformations.

Let us assume that the forward transformation has a O( f orward) complexity, whereas the complexity
of the forth and back transformations are, respectively, Obid( f orth) and Obid(back)4. By a rough count-
ing, if N iterations are necessary to solve problems on the performance side and M iterations (usually
with M < N) are necessary on the software side, then the scalability tradeoff can be expressed by:

M ∗O( f orward)< N ∗ (Obid( f orth)+Obid(back))
Of course, the transformation complexities depend on the distance between the specific source soft-

ware metamodel and target performance metamodel.
Another factor that affects the scalability is the number of iterations necessary to obtain satisfying

results. This translates to the depth of the decision tree that we have mentioned above. As discussed
in the previous subsection, this obviously depends on the effectiveness of refactoring actions, but also
on their dependencies. In fact, alternative refactoring actions that can be independently applied (i.e.
the refactored model obtained by applying all of them does not depend on the application order, as the
sequential removal of BLOB and EST antipatterns of Section 2.2), ease the tree navigation. As opposite,
alternative actions that affect each other, as splitting a component introduced in a previous refactoring
(i.e. the FilmCatalog splitting of Section 2.3), requires a (possibly expensive) backtrack process on the
decision tree to be considered. Heuristic approaches to prune the decision tree would be suitable in this
context. However, it looks easier (but likely less effective) to decide on the performance side than on
the software side. For example, it is usually more evident the bottleneck to be first removed than the
antipattern to be solved (among alternative ones).

4 Related work

At best of our knowledge this is the first paper that compares approaches for model refactoring based
on performance analysis. Hence, we present a brief overview of works related to the approaches we
compared, i.e. [1] and [12].

Working on the software model side. Very few model-based approaches for automated perfor-
mance diagnosis and improvement have been introduced up today in the software modeling domain.

In [21] and [18] meta-heuristic search techniques are used for improving different non-functional
properties of component based software systems by means of evolutionary algorithms. The main limita-
tion of such approaches is that it is quite time-consuming because the design space may be huge.

In general, there has been a significant effort in software refactoring based on design patterns [13].
However, differently from patterns, antipatterns look at the negative features of a software system and
describe commonly occurring solutions to problems that generate negative consequences [2, 19].

Technology-independent performance antipatterns have been defined in [25] and they represent the
main references in our AP-based works [1, 5]. Technology-specific antipatterns have been specified in
[11, 28] and, more recently, in [22], where EJB antipatterns have been represented as a set of rules loaded
into a detection engine and they are detected by a monitoring mechanism that leads to get run-time system
properties which are matched with pre-defined rules.

4Note that the complexity of the forward transformation in the context of a bidirectional one is higher than a simple forward
transformation, because tracing information has to be brought to obtain the backward transformation [12].
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Working on the performance model side. The formal definition of a round-trip engineering process
considering the non-totality and non-injectivity of model transformations is presented in [16]. Valid
modifications on target models are limited to the ones which do not induce backward mappings out the
source metamodel and are not operated outside the transformation domain.

In [31] performance problems are identified through the detection of bottlenecks and long paths on
Layered Queueing Networks (LQN) models. Contrary to our approach based on bidirectional transfor-
mations [12], however, in [31] no clue is given on the back propagation of performance model changes
to any software model notation.

Stevens [26] discusses bidirectional transformations focusing on basic properties which they should
satisfy and pointing out some ambiguity about specification of non-bijective transformations.

Bidirectional transformations based on triple graph grammars (TGGs) are presented in [17], where
models are interpreted as graphs and transformations are executed by using graph rewriting techniques.

Recently some interesting solutions based on lenses have been proposed. In [10] the authors illustrate
a technique to support bidirectional transformations relying no more on mapping between models but on
differences operable on them.

5 Conclusions

In this paper we have compared two performance-based model refactoring approaches at work on the
same example. This allowed us to highlight the peculiar aspects of working on either the software side
or the performance side. We have finally summarized our findings in Table 1.

Classification parameters AP-based approach (software side) BT-based approach (performance side)

Human skills
required

Design skills medium low
Performance skills low high

Degree of
automation

Problem detection medium high
Problem solution medium high

Refactoring
metrics

Number of actions high low
Complexity low, medium, high low

Performance gain predictability low medium

Scalability Number of iterations low, medium medium, high
Single iteration complexity O( f orward) Obid( f orth)+Obid(back)

Table 1: Overview of the compared approaches.

With the increasing interest on this type of refactoring approaches we retain very relevant to study
contexts where different techniques can better work than other ones. This is an initial step for the com-
parison of such approaches. The afterthoughts of this experience will be either consolidated or turned
down by applying the approaches to a significant amount of examples, that is our intent in the near future.

Several future directions will be investigated: (i) it could be very interesting to study a mixed ap-
proach that combines the ones we compared in this paper, i.e. by executing sequences of bottleneck
analysis followed by detection and solution of performance antipatterns, and/or viceversa; (ii) the in-
troduction of performance antipatterns at the performance model side could support the performance
analyst in detection and solution of performance problems, although it should be considered that the
number of alternative actions resulting from the detection and resolution phases on a performance model
can be considerably fewer than the ones on the software side, due to the lower number of elements
in performance models as compared to software models; (iii) finally, we are working on the introduc-
tion of measurement-based performance problem detection and solution at the code level by means of
monitoring-driven testing techniques for cloud applications[4].
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