
B. Buhnova, L. Happe, J. Kofroň (Eds.):
Formal Engineering approaches to Software
Components and Architectures (FESCA’15).
EPTCS 178, 2015, pp. 62–76, doi:10.4204/EPTCS.178.6

c© V. Koutsoumpas
This work is licensed under the
Creative Commons Attribution License.

A Formal Approach based on Fuzzy Logic for the
Specification of Component-Based Interactive Systems

Vasileios Koutsoumpas
Technische Universität München, Munich, Germany

koutsoum@in.tum.de

Formal methods are widely recognized as a powerful engineering method for the specification, simu-
lation, development, and verification of distributed interactive systems. However, most formal meth-
ods rely on a two-valued logic, and are therefore limited to the axioms of that logic: a specification
is valid or invalid, component behavior is realizable or not, safety properties hold or are violated,
systems are available or unavailable. Especially when the problem domain entails uncertainty, im-
preciseness, and vagueness, the appliance of such methods becomes a challenging task. In order to
overcome the limitations resulting from the strict modus operandi of formal methods, the main ob-
jective of this work is to relax the boolean notion of formal specifications by using fuzzy logic. The
present approach is based on Focus theory, a model-based and strictly formal method for component-
based interactive systems. The contribution of this work is twofold: i) we introduce a specification
technique based on fuzzy logic which can be used on top of Focus to develop formal specifications
in a qualitative fashion; ii) we partially extend Focus theory to a fuzzy one which allows the speci-
fication of fuzzy components and fuzzy interactions. While the former provides a methodology for
approximating I/O behaviors under imprecision, the latter enables to capture a more quantitative view
of specification properties such as realizability.

1 Introduction

Formal methods are widely recognized as a powerful engineering method for the specification of interac-
tive systems [3]. They follow the principle of “correctness by construction” and are therefore well suited
for security-critical systems [11]. Although the promises of formal methods are well known [16], there
are many limitations preventing the usage in industrial software development. The following limitations
are generally identified in literature [4, 22] as the main blockers: 1) Limited scope: Formal methods are
not well suited to specifying user and environment interfaces and interactions; 2) Limited scalability: As
systems increase in size, the time and effort required to develop a formal specification grows dispropor-
tionately; 3) Limited expressiveness: standard formal methods are not capable to quantify values between
the “absolute truth” and the “absolute false”.

Through the longtime experience obtained within the research projects SPES [21] and E-Energy1,
we empirically confirmed the presence and challenges of the above stated limitations for the avionic,
automotive, and smart grid domain. Driven from the individual problems recognized in each domain,
there is a natural question whether it is possible to extend standard formal methods to allow on the one
hand to speed up the development of specifications while on the other hand the specification should
remain formal enough to allow the promises of formal methods such as verification, model checking,
etc. To advance this overarching question we distinguish between two major problem categories:

1http://www.e-energy.de/en/

http://dx.doi.org/10.4204/EPTCS.178.6
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://www.e-energy.de/en/

V. Koutsoumpas 63

L
e
v
e
l
o
f
F
u
z
in
e
ss

Clasical Formal Methods(Top-Down)

Rapid Formal Methods(Bounded Top-Down)

Requirements Formalization Specification Verification Deployment

Informal
Requirements

Informal
Requirements

Informal
Requirements

FR

it 1

it 2

it N

System
Specification

System Model

=

Simulation

dec

Enviroment

im
p

l

simul

+/-

d
ep

lo
y

(A)

(B)

(C)

Figure 1: (A) Instead of an iterative refinement we suggest to proceed with formal modeling as early as
possible (B) We propose a specification technique for: 1) formalizing qualitative properties of compo-
nents and; 2) for approximating component behavior in terms of a rule base (C) we provide an equiva-
lence model which allows to capture distances between specifications and systems

Problem Statement 1: Formal methods, such as Focus [3] or Z [13], permit the precise and unambigu-
ous modeling of interactive component behavior. To achieve that, it’s necessary to formalize the informal
system requirements. Since vagueness, imprecision, and ambiguity are inherent in natural language, the
informal system requirements suffer also from this. Thus, a tight feedback loop between detailed re-
quirements specification and formal specification is observed and repeated until the formal specification
becomes precise enough to continue with the implementation. Nevertheless, some system problems,
particularly those drawn from the systems engineering domain, where the system’s context includes user
and environment interactions, may be difficult to model in crisp or precise terms. Furthermore, in order
to meet the project’s time constraints, it may be desirable that formal methods should commence as early
as possible, even though the understanding of parts of the problem domain is only approximate. Hence,
the first problem we deal with in this paper is visualized in Figure 1 and addresses the research question:
How to soften the aforementioned tight feedback loop?

Problem Statement 2: Once a formal system specification is defined, standard verification systems
(e.g. Isabelle [20]) return a boolean answer that indicates whether a system behavior conforms to its
specification. Hence, two distinct behavior clusters are formed, namely that of correct and that of in-
correct behaviors. However, not all correct behaviors are equally good, and not all incorrect behaviors
are equally bad. Thus, a second research question rises whether it is possible to relax the strict boolean
notion of formal methods to capture a more fine grained view as depicted in Figure 1 between specifi-
cation and possible implementations. Such a view, allows for quantitative reasoning about specification
properties such as realizability, safety, and liveness, to name only a few.

Motivation and Research Objective: The identified problems are closely related to the strict math-
ematical concepts used in formal methods. Most of them are based on crisp sets and on a two-valued
logic, and are therefore limited to the axioms of that logic. Many researcher [15, 19] have successfully
applied probabilistic and stochastic approaches to deal with uncertainty resulting from the lack of infor-
mation. However, there is also another source of uncertainty, resulting from the inability to characterize

64 A Formal Approach based on Fuzzy Logic for the Specification of Interactive Systems

information. The latter is also the kind of uncertainty we address in this work. In recent years, there is a
number of research attempts [4, 5, 12, 17, 18], which point out the need for emerging ideas and concepts
to overcome these limitations. Indeed, most existing approaches, especially those addressing the second
problem are based on distance specification [4, 5, 12]. Their attempt is to relax the boolean notion by
defining custom distances for each specification property and to measure the corresponding deviation.
The alternative we suggest in this work is an innovative approach where we use fuzzy logic to tackle with
this problem. The overall idea is schematically depicted in Figure 1 and can be understood as a combina-
tion of rapid prototyping with formal methods. We call this engineering method Rapid Formal Methods
(RFM). The research objective is to establish the basic foundations and concepts needed towards a com-
plete theory for the specification of fuzzy interactive systems. Such a theory should provide the necessary
concepts for developing softer specifications but also for modeling fuzzy interactions. The presentation
of a complete theory within this paper is not possible and thus we concentrate on component behavior.
Structure: Section 2 presents the related foundations of Focus and fuzzy set theory. In addition the
conventions made for this paper are declared. Section 3 describes how fuzzy logic applies on top of Focus
to develop specifications based on qualitative properties. In Section 4 the concept of fuzzy components
is introduced and the necessary formalisms are presented. Section 5 lists the related work and establishes
a border between this and other approaches. Finally, Section 6 concludes the present work and describes
possible future directions.

2 Preliminaries

Focus Theory. We base our approach on Focus [3], a model-based and strictly formal software and
systems engineering method for distributed interactive systems. The method builds on top of High-
Order, two-valued, typed Logic (HOL [1]), which describes systems in terms of their structure (syntactic)
and behavior (semantic). The system structure is determined by a static hierarchy of components, each
defining an interface I IO through a set of typed input channels I ∈ I and typed output channels O ∈O.

The central concept of Focus is that of a stream, which is used to represent communication histories.
Let M be a given set of messages. A stream s over the set M is a finite (M∗) or an infinite (M∞) sequence
of elements from M. Furthermore, the set of timed streams denoted by Mℵ =de f (M∗)∞ represent an
infinite history of finite communications over a channel that are carried out in a discrete time frame. The
k-th sequence in a timed stream represents the sequence of messages exchanged on the channel in the
k-th time interval.

Further, different components can be connected through I/O channels to describe component inter-
action through message exchange. Hence, component behavior is determined by a mapping from the set
of possible input histories (streams over input channels

#»
I) to the set of possible output histories (streams

over output channels
#»
O). Therefore, the semantic interface of a component is denoted by a set-valued

function F :
#»
I →℘(

#»
O). For example, this mapping can be expressed by means of automata includ-

ing states and transitions with guards over input histories and actions over output histories, but other
description techniques such as table specifications [7] are supported in principle as well.

Fuzzy Set Theory. We assume that the reader has a basic knowledge of fuzzy set theory and fuzzy
logic. For a detailed description, we refer to [14, 24, 25].

A fuzzy set µ of X is a function from the reference set X to the unit interval, formally µ : X → [0,1].
F(X) denotes the set of all fuzzy sets of X . The value µ(x) is called degree of truth and the function µ

is called membership function.

V. Koutsoumpas 65

R

µA(x)

1

supp(A)

α

[A]α

A fuzzy set can be represented by a continuous membership func-
tion µ , or by a set A of ordered pairs. The latter is denoted by
A = {(x,µA(x)) | x ∈ X}. The set supp(A) =de f {x ∈ X | µA(x) >
0} is called support of A. The set [A]α =de f {x ∈ X | µ(x) ≥
α} is called α-cut of A. The fuzzy set A is often denoted by
{µA(x1)/x1, ...,µA(xn)/xn}. Now let X ,Y ⊆ R be universal sets, then a
fuzzy relation R is a fuzzy set given by R = {((x,y),µR(x,y)) | (x,y)∈
X ×Y}. Qualitatively, a fuzzy relation can be understood as an ex-
pression of the form R = “x is heavier than y”, where x ∈ X , y ∈ Y
and R ⊆ X ×Y . Finally, let R1(x,y) ⊆ X ×Y and R2(y,z) ⊆ Y × Z
be two fuzzy relations. The composition of them is denoted by R1 ◦R2 defined in X × Z. The mem-
bership function of the composed relation is given by the max-min composition denoted by µR1◦R2 =

SupyMin[µR1(x,y),µR2(y,z)].

Conventions. Throughout this paper we make usage of some basic operators on streams. Let s be a
stream, then (s.k) denotes the k-th element of the stream, s@t denotes the element of a timed stream
at time point t, (s↓k) denotes the sequence of the first k sequences/messages in the stream and (#s) is
the number of elements in s. For an infinite stream (#s) = ∞. Furthermore, we define the functions
max(s)/sup(s) and min(s)/inf (s), returning the maximum/supremum and minimum/infimum element of
a finite/infinite stream, respectively. By s1 c©s2 we denote the concatenation of two streams. In general,
messages of any type are supported by streams but for readability we use only the set of real numbers R.
Types and sets used in any context, i.e. x : T and x ∈ T , respectively, are by default to be understood as
crisp. Fuzzy sets are always stated explicitly. Fuzzy types are recognized by the prefix 〈F 〉, followed
by the type-name. We define the domain and the range of a fuzzy set by dom.µA =de f A and rng.µA =de f

{µA(x) | x ∈ A}.

3 Fuzzy Logic on Top of Focus

VPP

w
:
W

t
:
T

p : P

In this Section we apply fuzzy logic on top of Focus to develop
soft specifications for interactive systems. Consider the following
simple example of a Virtual Power Plant (VPP) which exchanges
weather information with its environment (i.e. weather station) and
produces power to supply a network of consumers. A system ac-
cording to Focus is specified if the syntactic and the semantic in-
terface are fully specified. The former specifies how the system
interact (I I O) with its environment while the latter specifies the
behavior of the component denoted by B :

#»
I →℘(

#»
O). Formalizing the behavior of a component is

not always easy. In the given example one first has to decompose the system in its elementary building
blocks, for example a set of solar panels. Afterwards the formalization by means of mathematical models
like differential equations of each behavior is required. For a detailed overview on how to apply formal
methods to smart grid systems and the coherent challenges, we refer to [9] and [10].

66 A Formal Approach based on Fuzzy Logic for the Specification of Interactive Systems

3.1 Syntactic Interface - I/O Specification

First we have to extend the syntactic interface for the introduced example. As illustrated above the
(I I O) of the VPP consists of its input channels w, t, its output channel p, and the types of messages
that are transmitted on them. Messages received on w/t are of type W/T respectively, and messages sent
along p are of type P. Since channels are typed, and Focus uses crisp sets to define types, we introduce a
new concept namely that of fuzzy properties and fuzzy ports.

Definition 1 (Fuzzy Property). A fuzzy property p̃ is a three-tuple 〈X ,ξ ,πξ 〉, where X is the universe of
discourse which can be referenced by p̃, ξ is a linguistic term which characterizes the property and πξ :
X→ [0,1]∪{⊥} is the membership function. The value πξ (xi) is an indicator to what degree the property
holds for a given xi ∈ X . A fuzzy property can be represented by a fuzzy set Xξ = {(x,πξ (x)) | x ∈ X},
which is fully specified by the three-tuple. By P we denote the set of all fuzzy properties.

Example 1. The tuple 〈T,HIGH,πHIGH〉, where T = {t ∈ R | (−30 ≤ t ≤ 40)} defines a property
which describes the high temperature for the VPP. A possible representation could then be THIGH =

{0/15,0.3/20,0.6/25,0.9/30,1/35}, where the temperature of 15◦C are considered to be high with a
degree of truth 0, the temperature of 20◦C are considered to be high with a degree of truth 0.3, and so on.

Definition 2 (Total Fuzzy Property). We say that a property p̃= 〈X ,ξ ,πξ 〉 is total, denoted by De ftotal(p̃)
if:

De ftotal(p̃)⇒∀x ∈ X ∃y ∈ [0,1] : πξ (x) = y (1)

Definition 3 (Partial Fuzzy Property). We say that a property p̃ = 〈X ,ξ ,πξ 〉 is partial, denoted by
De fpartial(p̃) if:

De fpartial(p̃)⇒∃x ∈ X : πξ (x) =⊥ (2)

In example 1, the defined property is partial because ∃t ∈ T |πHIGH(t) =⊥, e.g. πHIGH(28) =⊥. Defining
total properties is time intensive, mostly because of the partial known interaction with the environment.
Additionally, the possible deployment of a system in multiple environments requires to define each prop-
erty separately for each environment. We will show later in this paper how to overcome this issues by
defining mapping strategies over I/O streams.

Definition 4 (Fuzzy Port). A fuzzy port ΘT over a type T is a set of fuzzy properties ΘT = { p̃ ∈ P},
which satisfies the following two conditions:

- Each property type is a subset of T, formally:

∀p̃ ∈ΘT → p̃.X ⊆ T (c1)

- Each property is uniquely characterized by its linguistic term, formally:

∀p̃1, p̃2 ∈ΘT | p̃1 6= p̃2→ p̃1.ξ 6= p̃2.ξ (c2)

A fuzzy port ΘT is said to be well defined, only if, c1 and c2 are satisfied, ΘT ` c1∧ c2. Graphically, a
fuzzy input/output port is denoted by a white/black circle (◦)/(•), respectively, at the boundary of a com-
ponent. By IPS/OPS we denote the set of all fuzzy input/output ports for a given system S. Furthermore,
by p̃ΘT we denote the property p̃ which belongs to the fuzzy port ΘT . This notation is further generalized
also for the elements ξ ΘT ,πΘT

ξ
of a property.

Since fuzzy ports are formally specified we can now connect channels with fuzzy ports. I/O channels
can be connected to I/O fuzzy ports respectively through connections. A connection is defined as the

V. Koutsoumpas 67

VPP
w : W
t : T

p : P

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

weatherDescription %

D
eg

re
e

of
 m

em
be

rs
hi

p

sunny cloudy

−10 0 10 20 30 40

0

0.2

0.4

0.6

0.8

1

Temperature °C

D
eg

re
e

of
 m

em
be

rs
hi

p

low average high

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.2

0.4

0.6

0.8

1

power kWh

D
eg

re
e

of
 m

em
be

rs
hi

p

low average high(A)−ΘW (B)−ΘT (C)−ΘP

Figure 2: Syntactic Interface Specification for the VPP

binding of a concrete channel to a concrete fuzzy port. Note that not every channel can be connected
to a concrete port. This is because ports and channels are specified separately. While the former is
a characteristic of the component to be developed the latter may preexist i.e. consider we develop a
component for an already existing system. Thus, following connectivity property has to hold:

Definition 5 (Connectivity). A channel c : C can be connected with a fuzzy port ΘT only if: C⊆ T . This
property guarantees that each message transmitted over the channel c can be interpreted by the port ΘT .

For the VPP example we define the set of fuzzy input ports IPVPP = {ΘW ,ΘT}, where ΘW =
{WSUNNY , WCLOUDY} (Figure 2-A) and ΘT ={TLOW , TAV ERAGE , THIGH} (Figure 2-B). The set of fuzzy
output ports OPVPP = {ΘP} contains a single fuzzy port ΘP ={PLOW , PAV ERAGE , PHIGH} (Figure 2-C).
Figure 2 denotes the defined total properties of each fuzzy port. Intuitively a fuzzy port takes the role
of an interpreter. For a given message received at some time point t over a channel c, the port gives
all possible interpretations for each property. For example, the temperature of 23◦ can be interpreted to
be high/average/low with degree of truth 0.2/0.6/0, respectively. Hence, given a port ΘT and a measure
t ∈ T , a port interpretation defines a total order ≤ on ΘT , e.g. TLOW ≤ THIGH ≤ TAV ERAGE |t=23

Concluding, the syntactic interface of a component is fully specified if 1) its I/O channels are speci-
fied and additionally to Focus theory 2) the corresponding fuzzy I/O ports are well defined.

3.2 Semantic Interface - Behavior Specification

3.2.1 Rule Base Specification.

After specifying the syntactic interface of a system, we now specify the semantic by a rule base. Let
I = {i1 : I1, ..., in : In} and O = {o1 : O1, ...,om : Om} be a set of typed I/O channels. Furthermore, let
IP = {ΘI1 , ...,ΘIn} and OP = {ΘO1 , ...,ΘOm} represent the well defined fuzzy ports that correspond to
the typed I/O channels. For readability, we write p̃i instead of p̃ΘIi to denote that a property p̃ ∈ ΘIi .
Then, a single rule for a specific o ∈ O has generally the form:

Ro
r : if i1@t is ξ

(1)
1,r .. and ... in@t is ξ

(n)
n,r then o@(t +1) is ξr, r = 1, ..,k (3)

68 A Formal Approach based on Fuzzy Logic for the Specification of Interactive Systems

R :
#»
I →℘(

#»
O)

Applicability Mod.
Method MIN
{α1, ...,αk}

Implication Mod.
Method MIN
{πout put(R1)

ξ1,...,ξn
, ...,

π
out put(Rk)
ξ1,...,ξn

}

Assembling Mod.
MAX

π
out put(R)
ξ1,...,ξn

Defuzzyfication Mod.
mean-of-maxima

o′crisp
i1 : I1

in : In

o : O

Figure 3: Behavior interpretation of a rule based specification

where ξ
(1)
1,r , ...,ξ

(n)
n,r , and ξr represent the linguistic terms that correspond to the fuzzy properties of a fuzzy

port such that ξ
(j)
j,r = p̃.ξ | p̃ ∈ΘI j , j = 1, ...,n and ξr = p̃.ξ | p̃ ∈ΘO.

3.2.2 Behavior Specification

In the following we explain how the behavior function can be defined. Figure 3 depicts the required
modules for the behavior specification. A tuple 〈i1@t, ..., in@t〉 ∈ I1× ...× In denotes the measured input
picked up by the syntactic interface at some time point t. For each rule Rr in the rule base we determine
the degree to which the measured input fulfills the premise of the rule, called degree of applicability αr =

min{π(1)
ξ1,r

(i1), ...,π
(n)
ξn,r

(in)}. The applicability degrees are passed to the implication module where each

rule Rr implies for the measured input the fuzzy output set π
out put(Rr)
ξ1,...,ξn

: O→ [0,1], o 7−→min{αr,πξr(o)}.
The output of a rule Rr is a fuzzy set of output values obtained by cutting of the fuzzy set πξr at the level
of applicability αr. The results are passed to the assembling module which combines all calculated fuzzy
output sets (one for each rule) into a single fuzzy output set by determining the maximum π

out put(R)
ξ1,...,ξn

:

O′ → [0,1], o′ 7−→ max
0≤r≤k

{πout put(Rr)
ξ1,...,ξn

}. The fuzzy output set is passed to the defuzzyfication module

which decides for a crisp value o′crisp by selecting the value with the maximum membership degree. In
case where more values have the same degree the mean of maxima is selected. Finally, the crisp output
value is passed to the output stream o. In case of multiple output channels the above procedure is repeated
for each oi ∈ O, i = 1, ...,m. Thus, the behavior of a system S is fully specified by the set of all output
specifications RS = {Ro1 , ...,Rom}. Given a set of timed input streams, the output streams are evaluated
according to RS for each time point.
Example 2. For the example depicted in Figure 2, let the fuzzy properties be defined according to the fol-
lowing scheme: THIGH = { 0

10 ,
0.4
20 ,

0.6
25 ,

0.8
30 ,

1
35}, TLOW = {0.2

20 ,
0.4
15 ,

0.6
10 ,

0.8
5 , 1

0}, WSUNNY = { 0
80 ,

0.4
60 ,

0.6
40 ,

0.8
20 ,

1
0},

WCLOUDY = { 0
20 ,

0.4
40 ,

0.6
60 ,

0.8
80 ,

1
100}, PHIGH = {0

1 ,
0.4
2 , 0.6

3 , 0.8
4 , 1

5}, PLOW = {0
4 ,

0.4
3 , 0.6

2 , 0.8
1 , 1

0}.
Furthermore, let Rp be the rule base specification containing the following rules:

R1: if t is HIGH and w is SUNNY then p is HIGH

R2: if t is LOW and w is CLOUDY then p is LOW

V. Koutsoumpas 69

Given the tuple 〈t@t1,w@t1〉 = 〈20,40〉 denoting the measured input at time point t1, we are seek-
ing for the output p. As a first step we calculate the degree of applicability for each rule. Thus,
α1 = min{π(1)

HIGH(20),π(2)
SUNNY (40)} = min{0.4,0.6} = 0.4 and α2 = min{π(1)

LOW (20),π(2)
CLOUDY (40)} =

min{0.2,0.4}= 0.2. By cutting of the fuzzy sets PHIGH , PLOW to the degree of applicability α1 and α2, re-
spectively, we get the output value of each rule: π

out put(R1)
HIGH,SUNNY = {0

1 ,
0.4
2 , 0.4

3 , 0.4
4 , 0.4

5 } and π
out put(R2)
LOW,CLOUDY =

{0
4 ,

0.2
3 , 0.2

2 , 0.2
1 , 0.2

0 }. By assembling the fuzzy outputs of each rule we get: πout put(R)={max(0.2,0)
0 , max(0.2,0)

1 ,
max(0.2,0.4)

2 , max(0.2,0.4)
3 , max(0,0.4)

4 , max(0,0.4)
5 } = {0.2

0 , 0.2
1 , 0.4

2 , 0.4
3 , 0.4

4 , 0.4
5 }. Finally, applying the mean of

maxima we get o = 3.5 which is the crisp output that is passed to the output channel p.

Theorem 1. Every rule based behavior specification RS = {Ro1 , ...,Rom}, where Roi is of the generally
form given by equation 3, has a deterministic behavior interpretation R :

#»
I →℘(

#»
O), which defines a

total deterministic Moore machine (∆ ,Λ) with transition function:

∆ : (Σ× (I→M∗))→℘(Σ× (O→M∗)) (4)

The above theorem states that despite the fact that the rule based behavior specification relies on fuzzy
properties, the component behavior from a black box point of view is not fuzzy at all. This implies, that
the abstraction from a rule based behavior specification leads to a crisp deterministic interface behavior
R. Consequently, tools like Autofocus [2] and theorem provers like Isabelle [20] can be further used for
behavior analysis.

3.3 Mapping Strategies

The definition of total properties requires a total mapping from the reference set to the unit interval. This
mapping may be achievable for static properties such as the speed of a car. However, most properties
especially when modeling complex systems with environmental interactions are in nature not static. How
high temperature should be interpreted depends highly on the geographically location the system will be
deployed in. Furthermore, the temperature of 15◦C may considered to be high in winter but only average
in summer. Therefore, properties can be also time dependent. To deal with location and time dependency
of properties we introduce the concept of mapping strategies. Such a strategy defines the membership
function of a property according to the observed history of a channel. Thus, the property adapts to the
location of a component. Additionally, a threshold for the history length may be declared to consider
only recent interactions, this guarantees a smooth adaption of the membership function over time.

Definition 6 (Mapping Strategy). A mapping strategy for a given property p̃ = 〈X ,ξ ,πξ 〉(partial or total)
is a high order function over a stream to a membership function for that property, formally:

mapstrξ : Stream X ,N∪{∞}→ (πξ : X → [0,1]) (5)

Example 3 (Mapping Strategy). For the VPP example the signature of a concrete mapping strategy for
the property average temperature TAV ERGAGE could be declared as:

fct mapstrTAV ERAGE (t : Stream T, n: Nat) fct πξ (x : T){
ret gaussmf(min(t↓n), max(t↓n))}

70 A Formal Approach based on Fuzzy Logic for the Specification of Interactive Systems

4 Fuzzy Components

In Section 3 we showed that fuzzy logic is well suited for modeling soft properties and develop rule
based specifications. We proved that the abstraction of a rule based behavior specification leads to a crisp
deterministic interface behavior R :

#»
I → #»

O. However, not all correct behaviors are equally good, and not
all incorrect behaviors are equally bad. Thus, we introduce the concept of fuzzy components and fuzzy
behavior of them. This description yields a quantitative reasoning about component behaviors. Figure 4
depicts the extension of a component with deterministic behavior b :

#»
I → #»

O to a fuzzy component with
fuzzy behavior b̂ :

I→

O which is the subject of this section.

b b̂

i1 : I1

i2 : I2

o : O
i1 : F I1

i2 : F I2

o : FO

extension

Figure 4: Fuzzy Components and Fuzzy Behavior

4.1 Basic Adaption

To enable fuzzy component behavior first we have to extend Focus theory in order to deal with fuzzy
types. Thus, we introduce the notion of fuzzy types/channels. The prefix symbol F defines a fuzzy type
as a total function from the crisp reference type T to the unit interval [0,1], denoted by FT : T → [0,1].
Now, let a set TF of fuzzy types FT be given. By CF we denote the set of fuzzy channels. Furthermore,
we assume that we have given a fuzzy type assignment for the fuzzy channels: f type : CF → TF . Given
a set CF of fuzzy channels, a valuation or history of a fuzzy channel is denoted by:

CF = {x : CF →MN : ∀c ∈CF : x.c ∈ {dom.(f type(c))}N } (6)

A valuation of a fuzzy channel x ∈

CF associates a stream s of elements of type dom. f type(c) with
each fuzzy channel c ∈ CF . Throughout this chapter we work with a simple notation for streams over
fuzzy channels which is described in the following. By s. j we denote the j-th element of the stream s
and by accc(s. j) we denote the degree of membership of s. j in dom. f type(c). Informally, the value
accc(s. j) tell us to what degree element s. j is accepted by channel c. If we combine two elements (s. j,
s.k | j,k ∈ N∧ j 6= k) of a stream, their combination is rated according to the following scheme:

Lower: acc↓(s. j,s.k) = (s. j∧ s.k) = min{(accc(s. j),accc(s.k)}
Upper: acc↑(s. j,s.k) = (s. j∨ s.k) = max{(accc(s. j),accc(s.k)}

(7)

For a finite number of elements in a stream we define analogously the acceptance degree of a stream s
by:

acc↓(s) = min
0≤ j≤#s

{acc(s. j)} | acc↑(s) = max
0≤ j≤#s

{acc(s. j)} (8)

Since streams can have an infinite number of elements the above scheme converts to following equations
for the infinite case:

acc↓(s) = inf
0≤ j≤#s=∞

{acc(s. j)} | acc↑(s) = sup
0≤ j≤#s=∞

{acc(s. j)} (9)

V. Koutsoumpas 71

Furthermore, we can combine not only elements of the same stream but also from different streams as
well using the scheme above with following replacement in equation 7 (s. j/s1. j,s.k/s2.k). Thus, two
or more streams can be combined in order to evaluate the upper and lower acceptance bounds. It is
noteworthy to mention that the acceptance degree is not limited to the specified upper and lower bounds
in this paper. A statistical representation for the acceptance degree is possible as well (e.g. acc(s) =
1
#s

#s
∑
j=0

acc(s. j)). Which representation is best suited depends highly on the system characteristics. Hence,

while for a fault tolerant system like a VPP some could prefer the statistical mean representation for a
safety critical system like an airplane the lower and upper bounds seems to be more appropriate. Finally,
having established a strict notion for fuzzy types, channels and stream processing we introduce the notion
of a fuzzy syntactic interface of a component:

Definition 7 (Fuzzy syntactic interface). Given a set of fuzzy input channels IF and a set of of fuzzy
output channels OF we introduce the notion of a fuzzy syntactic interface of a component by (IF ,OF) or
symbolic (IFĨOF).

4.2 Fuzzy Extension

Theorem 2 (Fuzzy Type Extension). Let f : In→ O be a mapping from typed inputs (i1 : I1, ..., in : In)

to a single typed output o : O. If the input becomes fuzzy through a fuzzy type assignment of the form
(i1 : F I1, ..., in : F In) then the fuzzy type extension of O is given by:

FO(o)
de f
= sup{min{F I1(i1), ...,F In(in))}|

(i1, ..., in) ∈ In and o = f (i1, ..., in)} (10)

Example 4 (Stateless Fuzzy Behavior). We show how the extension principle is applied to a stateless
adder with deterministic behavior o = f (i1, i2). Let i1 : I1 , i2 : I2 and o : O be of type I1 = {2,3,4} ,
I2 = {6,7,8} and O = {8,9,10,11,12}, respectively. We are seeking for the fuzzy output type FO if the
input of f becomes fuzzy typed.

fct f =(i1 : I1, i2 : I2) out o : O{
ret i1 + i2;}

fct f̂ =(i1 : F I1, i2 : F I2) out o : ?{
ret i1 + i2;}

Let, F I1= {0.5/2, 1/3, 0.5/4} be a fuzzy type representing the ”fuzzy 3” and F I2= {0.5/6, 1/7, 0.5/8}
another fuzzy type representing the ”fuzzy 7”. Now, according to Theorem 2:

FO(o) = sup{min{F I1(i1),F I2(i2)) | i1 ∈ I1, i2 ∈ I2 and o = f (i1, i2)}

For i1 + i2 = 9 we receive:

FO(i1 + i2 = 9) = max{min(F I1(3),F I2(6)),min(F I1(2),F I2(7))}
= max(min(1,0.5),min(0.5,1)) = 0.5

Repeating for all o ∈ O we obtain FO = {0/8,0.5/9,1/10,0.5/11,0/12}, which is the fuzzy type rep-
resenting the ”fuzzy 10” depicted in figure 5-A.

72 A Formal Approach based on Fuzzy Logic for the Specification of Interactive Systems

4.3 Fuzzy Component Behavior

Recall from section 3 where component behavior was denoted by B :
#»
I →℘(

#»
O), meaning that input

histories
#»
I are mapped to all possible output histories

#»
O over the set-valued function B we turn to the

motivation of a general method which enables the mapping of fuzzy input histories to all possible fuzzy
output histories over a set-valued function B̂, denoted by B̂ :

I→℘(

O). A fuzzy behavior B̂ is called

deterministic if B̂(x) is a one element set for each fuzzy input history x. Such a behavior is equivalent to
a function b̂ :

I→

O where B̂(x) = {b̂(x)}.

Definition 8 (Fuzzy Behavior Extension). Let b :
#»
I → #»

O be a mapping from input histories
#»
I to output

histories
#»
O. The fuzzy extension of b is given by:

b̂ :

I→

O

where ∀o ∈ O we apply the fuzzy type extension theorem 2.

Definition 9 (α-Realizability). A fuzzy I/O behavior B̂ is called α-realizable, if there exist a total func-
tion b̂ :

I→

O such that:

∀x ∈ I : b̂(x) ∈ B̂(x)∧acc(b̂(x))≥ α (11)

[b̂]α is called an α-realization of B̂. By JB̂Kα we denote the set of all α-realizations of B̂. An output
history y ∈ B̂(x) is called α-realizable for a fuzzy I/O behavior with input x, if there exists a realization
[b̂]α ∈ JB̂Kα with y = b̂(x).

Example 5 (Stateful Fuzzy Behavior). Consider the following two programs (left: boolean, right:fuzzy)
which is the stateful extension for the example 4.

fct b =(i1 : I1, i2 : I2) out o : O {
〈first(i1)+ first(i2)〉 c©
b(rest(i1), rest(i2))}

fct b̂ =(i1 : F I1, i2 : F I2) out o : FO{
〈first(i1)+ first(i2)〉 c©
b(rest(i1), rest(i2))}

Now let i1 = 〈2,3,4,3,3,4,2,3〉 be an input stream of fuzzy typeF I1 and i2 = 〈7,6,6,7,6,7,9,7〉 another
input stream of fuzzy type F I2. Then, the fuzzy behavior b̂(i1, i2) is 0.5-realizable but it is not 0.75-
realizable as visualized in Figure 5-B.

Concluding this Section, we showed how to extend basic specification properties like realizability, in
order to tackle with fuzzy behavior. In a similar way, theorem 2 and definition 8 provide the necessary
tools for formalizing further specification properties such as safety, liveness, and fairness.

5 Related Work

In the last decade many research efforts are recorded in literature [4–6,12,15,17–19], where classical for-
mal methods have been extended with probabilistic, stochastic, distance measurement, and multi-valued
logic techniques in order to deal with uncertainties in modeling component-based interactive systems.
However, uncertainty has two distinct facets: randomness and fuzziness both of which play basic roles
in human reasoning, decision making and concept formation [26]. While the former handles partial
knowledge (lack of essential information) the latter deals with partial truth (inability to characterize in-
formation). Thus, we intentionally leave probabilistic and stochastic systems outside the scope of this

V. Koutsoumpas 73

N

µ(x)

1

0
1 2 3 4 5 6 7 8 9 10 11 12

F I1 F I2 FO
(A)

T

acc(o)

1

0
t1 t2 t3 t4 t5 t6 t7 t8

z z

z z

z z z

z
(B)

[b̂]0.75

[b̂]0.5

Figure 5: (A) Fuzzy type extension for a stateless adder. (B) α-realization of stateful adder with fuzzy
behavior b̂

paper, concentrating instead on how to deal with partial truth. For the specification and development of
interactive systems in consideration of probabilistic effects we refer to Neubecks dissertation [19] where
a theoretical framework for probabilistic systems is provided.

Chechik et al. [6] introduces the concept of multi-valued model-checking and describes a multi-
valued symbolic model-checker, χChek for analyzing models that contain uncertainty or inconsistency.
They develop a modeling language based on a generalization of Kripke structures, where both atomic
propositions and transitions between states may take any of the truth values of a given multi-valued logic.
In addition to the theoretical foundation they present a model-checking algorithm which is illustrated on
some examples. Finally, the formalization of specification properties such us fairness in multi-valued
model-checking is addressed. While Chechik et al. concentrate on logics with a finite set of truth values
(a 3-valued logic is evaluated in their examples), we explore the case of continuous intervals of truth
values. Furthermore, the concept of mapping strategies introduced in this paper enables the dynamic re-
configuration of specified intervals of truth values, which is also an extension to the aforementioned work.

With respect to formal specification based on fuzzy logic, Matthews et al. [18] suggests fuzzy set the-
ory as a possible representation scheme to deal with uncertainty. The main contribution of their work is
an extension of a set based specification language, namely Z. They develop a suitable fuzzy set notation
within the existing syntax of Z. A summary of a toolkit is provided that defines the operators, measures
and modifiers necessary for the manipulation of fuzzy sets and relations. In further work [17], Matthews
illustrates how the toolkit can be used to specify a simple fuzzy expert system. However, their approach
does not capture component interactions, which is the primary concern in this paper.

Cerny et al. [5] in a recent attempt pointed out that boolean notions of correctness are formalized
by preorders on systems. To overcome the limitations of a two-valued logic, the authors introduce the
notion of distances between two systems or between a system and a specification, and suggest quanti-
tative simulation games as a framework for measuring such distances. They presented three particular
distances: two for quantifying aspects of correct systems, namely coverage and robustness; and one for
measuring the degree of correctness of an incorrect system. In a later work [4], the same authors ex-
tend the quantitative notion of simulation distances to automata with inputs and outputs. The introduced
interface distance, allows for measuring the desirability of an interface w.r.t. a given specification. In
a direct comparison with the work presented in this paper one could say that both approaches pursue
the same objective, namely to relax the boolean notion in formal specifications. However, the common
objective is addressed by two distinct approaches. While Cerny et al. define for each property of interest
a simulation distance and measure afterwards the deviation of all models, we rely on fuzzy set theory to
soften the boolean notion. Hence, we suggest to formalize properties in terms of a-cuts and acceptance

74 A Formal Approach based on Fuzzy Logic for the Specification of Interactive Systems

degrees on vague descriptions and measure to what degree a property of interest is fulfilled by concrete
models (e.g. a-Realizabilty of two behaviors).

The restrictions of a two-valued logic are present also in systems with continuous behavior. Hen-
zinger et al. presented in their recent paper [12] a model measuring framework for the hybrid case,
where distances are represented by parametrized hybrid automata. Actually, they address the same prob-
lem as described in [5] for the hybrid case. In our approach, we consciously decided for fuzzy set theory
because of the fuzzification property which allows the generalization of a distinct theory to a continu-
ous one. Thus, the introduced concepts in this paper can be easily generalized to continuous behaviors.
An interesting future research objective would be to analyze the trade-off between fuzzy and hybrid ap-
proaches, in general. While hybrid automata make use of differential equations to describe a state, fuzzy
approaches use vague rules. What is the distance between fuzzy descriptions and differential equations?

6 Conclusion

Xtext

RF Specifica-
tion Language

Abstract
Syntax Tree

Parser

RF Spec-
ification

Informal
Specification

Eclipse PluginEclipse IDE

Java Models
Simulink
Models

Isabelle
HOL Models
Verification

d
ev

el
op

co
n

fo
rm

s

transf

gen

gen

gen

tr
a
n

sf

tr
an

sf

impl

transf

u
se

s

Figure 6: Tool Prototype

Tool Support. The intention of this work was
not to present a concrete tool which is part of
a tool demonstration but rather to establish the
underlying theory required for the development
of such a tool. Thus, we abstract away from
the implementation details and present only an
overview of a prototype under development de-
picted in Figure 6. Xtext [8], a framework
for development of programming languages and
DSLs is the starting point. It is used for the de-
velopment of a model based specification lan-
guage with support to the introduced concepts
in chapters 3,4. The model based specifica-
tion language generates the required parser and
linker. Additionally, an eclipse plugin is gener-
ated which enables full support for the specifi-
cation language inside the eclipse IDE. Hence,
the integrated specification editor is used to transform the informal specification (requirements) into a
formal specification which conforms to the developed language. Once, the informal requirements are
formalized a series of model transformations becomes available. On the one hand, the specification can
be transformed to executable models (Java and Simulink) which allows automated simulation for the
system under development. On the other hand a generic theorem prover Isabelle [20] is used for the ver-
ification and validation of system properties. Currently, there is only support for the introduced concepts
in chapter 3, see for example Focus on Isabelle [23]. In particular, support for formal verification of fuzzy
component behavior is a major future research direction. Hence, a primary concern is to develop/adapt a
fuzzy theory toolbox in Isabelle which enables fuzzy reasoning inside the framework.

Summary. In chapter 3, we introduced a specification technique based on fuzzy logic for interactive
systems. In particular, we showed that a fuzzy rule based specification can be represented in terms of a
black box view as a deterministic behavior and can be therefore modeled in a deterministic fashion by

V. Koutsoumpas 75

means of automata. The introduced technique is well suited for modeling especially user and environ-
ment interactions which are characterized by vagueness and uncertainty. The underlying Focus theory
has been adapted to enable vague desriptions over fuzzy I/O ports. Finally, mapping strategy are intro-
duced, which adapts fuzzy properties to the measured behavior over the I/O histories. Mapping strategies
are well suited for formalizing self* properties.

In chapter 4, we introduced fuzzy components and fuzzy behavior of them. We established a ba-
sic notion for fuzzy types, channels and interfaces and provided basic operators on streams. A general
method which enables the mapping of fuzzy input streams to fuzzy output streams over a set valued
function is defined. The latter enables the modeling of fuzzy component behavior. Finally, we showed
the fuzzy interpretation of basic specification properties like realizability.

Outlook. Concluding, we point out that our proposed method allows to capture certain system aspects
which can not be represented by formal methods based on a two-valued logic. However, the work pre-
sented here is only an introduction towards a complete theory for fuzzy interactive systems. Basic system
concepts as composition and decomposition, refinement, interface abstraction and architecture, to name
only a few, have to be addressed in more detail. Last but not least from a more practical point of view
specification techniques such as tables and diagrams and tool support in the form of AutoFocus [2] are fu-
ture directions we have to go in order to set up more practical case studies to evaluate the expressiveness,
completeness, and effectiveness of the introduced approach.

Acknowledgments.

The author address special thanks to Prof. Manfred Broy, Diego Marmsoler, Jonas Eckhardt, and Orestis
Gkorgkas for their invaluable suggestions and the fruitful discussions on the topic.

References

[1] Peter B. Andrews (1986): An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof.
Academic Press Professional, Inc., San Diego, CA, USA.

[2] Manfred Broy, Franz Huber & Bernhard Schätz (1999): AutoFocus - Ein Werkzeugprototyp zur
Entwicklung eingebetteter Systeme. Informatik Forschung und Entwicklung 14, pp. 121–134,
doi:10.1007/s004500050132.

[3] Manfred Broy & Ketil Stølen (2001): Specification and Development of Interactive Systems - Focus on
Streams, Interfaces, and Refinement. Monographs in Computer Science, Springer, doi:10.1007/978-1-4613-
0091-5.

[4] Pavol Cerný, Martin Chmelik, Thomas A. Henzinger & Arjun Radhakrishna (2014): Interface simulation
distances. Theor. Comput. Sci. 560, pp. 348–363, doi:10.1016/j.tcs.2014.08.019.

[5] Pavol Cerny, ThomasA. Henzinger & Arjun Radhakrishna (2010): Simulation Distances. In Paul Gastin &
François Laroussinie, editors: CONCUR 2010 - Concurrency Theory, Lecture Notes in Computer Science
6269, Springer Berlin Heidelberg, pp. 253–268, doi:10.1007/978-3-642-15375-4 18.

[6] Marsha Chechik, Benet Devereux, Steve Easterbrook & Arie Gurfinkel (2003): Multi-valued Symbolic
Model-checking. ACM Trans. Softw. Eng. Methodol. 12(4), pp. 371–408, doi:10.1145/990010.990011.

[7] Alan M. Davis (1988): A Comparison of Techniques for the Specification of External System Behavior.
Commun. ACM 31(9), pp. 1098–1115, doi:10.1145/48529.48534.

http://dx.doi.org/10.1007/s004500050132
http://dx.doi.org/10.1007/978-1-4613-0091-5
http://dx.doi.org/10.1007/978-1-4613-0091-5
http://dx.doi.org/10.1016/j.tcs.2014.08.019
http://dx.doi.org/10.1007/978-3-642-15375-4_18
http://dx.doi.org/10.1145/990010.990011
http://dx.doi.org/10.1145/48529.48534

76 A Formal Approach based on Fuzzy Logic for the Specification of Interactive Systems

[8] Moritz Eysholdt & Heiko Behrens (2010): Xtext: implement your language faster than the quick and dirty
way. In: Proceedings of the ACM international conference companion on Object oriented programming
systems languages and applications companion, ACM, pp. 307–309, doi:10.1145/1869542.1869625.

[9] G. Hackenberg, M. Irlbeck, V. Koutsoumpas & D. Bytschkow (2012): Applying formal software engineer-
ing techniques to smart grids. In: Software Engineering for the Smart Grid (SE4SG), 2012 International
Workshop on, pp. 50–56, doi:10.1109/SE4SG.2012.6225719.

[10] Georg Hackenberg, Maximilian Irlbeck, Vasileios Koutsoumpas & Denis Bytschkow (2014): A Rapid
Prototyping Approach for Smart Energy Systems Based on Partial System Models. In: Computer Soft-
ware and Applications Conference Workshops (COMPSACW), 2014 IEEE 38th International, pp. 596–601,
doi:10.1109/COMPSACW.2014.100.

[11] Anthony Hall & Roderick Chapman (2002): Correctness by Construction: Developing a Commercial Secure
System. IEEE Software 19(1), pp. 18–25, doi:10.1109/52.976937.

[12] Thomas A. Henzinger & Jan Otop (2014): Model Measuring for Hybrid Systems. In: Proceedings of the 17th
International Conference on Hybrid Systems: Computation and Control, HSCC ’14, ACM, New York, NY,
USA, pp. 213–222, doi:10.1145/2562059.2562130.

[13] Jonathan Jacky (1996): The Way of Z: Practical Programming with Formal Methods. Cambridge University
Press, New York, NY, USA, doi:10.1017/CBO9780511574924.

[14] Rudolf Kruse, Joan E. Gebhardt & F. Klowon (1994): Foundations of Fuzzy Systems, 1st edition. John Wiley
& Sons, Inc., New York, NY, USA.

[15] Marta Kwiatkowska, Gethin Norman & David Parker (2004): Probabilistic symbolic model checking with
PRISM: a hybrid approach. International Journal on Software Tools for Technology Transfer 6(2), pp. 128–
142, doi:10.1007/s10009-004-0140-2.

[16] Luqi & Joseph A Goguen (1997): Formal methods: promises and problems. Software, IEEE 14(1), pp.
73–85, doi:10.1109/52.566430.

[17] C. Matthews (2002): Fuzzy concepts and formal methods: a sample specification for a fuzzy expert system.
In: Fuzzy Systems, 2002. FUZZ-IEEE’02. Proceedings of the 2002 IEEE International Conference on, 2, pp.
1150–1155, doi:10.1109/FUZZ.2002.1006666.

[18] Chris Matthews & PaulA. Swatman (2000): Fuzzy Concepts and Formal Methods: A Fuzzy Logic Toolkit
for Z. In: ZB 2000: Formal Specification and Development in Z and B, Lecture Notes in Computer Science
1878, Springer Berlin Heidelberg, pp. 491–510, doi:10.1007/3-540-44525-0 29.

[19] Philipp Neubeck (2012): A Probabilitistic Theory of Interactive Systems. Dissertation, Technische Universität
München, München.

[20] Tobias Nipkow, Lawrence C. Paulson & Markus Wenzel (2002): Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. LNCS 2283, Springer.

[21] Klaus Pohl, Harald Hönninger, Reinhold Achatz & Manfred Broy, editors (2012): Model-Based Engineering
of Embedded Systems, The SPES 2020 Methodology. Springer, doi:10.1007/978-3-642-34614-9.

[22] Ian Sommerville (2006): Software Engineering: (8th Edition) (International Computer Science). Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[23] Maria Spichkova (2008): Focus on Isabelle: From specification to verification. Department of Electrical and
Computer Engineering, Concordia University, Tech. Rep.

[24] L. A. Zadeh (1965): Fuzzy sets. Information and control 8(3), pp. 338–353, doi:10.1016/S0019-
9958(65)90241-X.

[25] L. A. Zadeh (1999): Fuzzy Sets As a Basis for a Theory of Possibility. Fuzzy Sets Syst. 100, pp. 9–34,
doi:10.1016/S0165-0114(99)80004-9.

[26] L.A Zadeh (1977): Possibility theory vs. probability theory in decision analysis. In: Decision and Control
including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and
Applications, 1977 IEEE Conference on, pp. 1267–1269, doi:10.1109/CDC.1977.271764.

http://dx.doi.org/10.1145/1869542.1869625
http://dx.doi.org/10.1109/SE4SG.2012.6225719
http://dx.doi.org/10.1109/COMPSACW.2014.100
http://dx.doi.org/10.1109/52.976937
http://dx.doi.org/10.1145/2562059.2562130
http://dx.doi.org/10.1017/CBO9780511574924
http://dx.doi.org/10.1007/s10009-004-0140-2
http://dx.doi.org/10.1109/52.566430
http://dx.doi.org/10.1109/FUZZ.2002.1006666
http://dx.doi.org/10.1007/3-540-44525-0_29
http://dx.doi.org/10.1007/978-3-642-34614-9
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/S0165-0114(99)80004-9
http://dx.doi.org/10.1109/CDC.1977.271764

	1 Introduction
	2 Preliminaries
	3 Fuzzy Logic on Top of Focus
	3.1 Syntactic Interface - I/O Specification
	3.2 Semantic Interface - Behavior Specification
	3.2.1 Rule Base Specification.
	3.2.2 Behavior Specification

	3.3 Mapping Strategies

	4 Fuzzy Components
	4.1 Basic Adaption
	4.2 Fuzzy Extension
	4.3 Fuzzy Component Behavior

	5 Related Work
	6 Conclusion

