
J. Kofroň, J. Tumova, B. Buhnova (Eds.): Formal Engineering
Approaches to Software Components and Architectures (FESCA’16)
EPTCS 205, 2016, pp. 16–30, doi:10.4204/EPTCS.205.2

c© S. Keshishzadeh, A.J. Mooij & J. Hooman
This work is licensed under the
Creative Commons Attribution License.

Industrial Experiences with a Formal DSL Semantics to
Check the Correctness of Generated DSL Artifacts∗

Sarmen Keshishzadeh
Eindhoven University of Technology

Eindhoven, The Netherlands
s.keshishzadeh@tue.nl

Arjan J. Mooij
Embedded Systems Innovation by TNO

Eindhoven, The Netherlands
arjan.mooij@tno.nl

Jozef Hooman
Embedded Systems Innovation by TNO

Eindhoven, The Netherlands
Radboud University Nijmegen

Nijmegen, The Netherlands
jozef.hooman@tno.nl

A domain specific language (DSL) abstracts from implementation details and is aligned with the way
domain experts reason about a software component. The development of DSLs is usually centered
around a grammar and transformations that generate implementation code or analysis models. The
semantics of the language is often defined implicitly and in terms of a transformation to implementa-
tion code. In the presence of multiple transformations from the DSL, the correctness of the generated
artifacts with respect to the semantics of the DSL is a relevant issue. We show that a formal semantics
is essential for checking the correctness of the generated artifacts. We exploit the formal semantics
in an industrial project and use formal techniques based on equivalence checking and model-based
testing for validating the correctness of the generated artifacts. We report about our experience with
this approach in an industrial development project.

1 Introduction

A domain specific language (DSL) [8] abstracts from implementation details and is aligned with the way
domain experts reason about a software component. By focusing on the essential concepts in a problem
domain, DSLs facilitate the involvement of domain experts in the development of DSL specifications.

Tool support for the development of DSLs is improving constantly. Language workbenches such
as Xtext enable language designers to define their languages and develop transformations that generate
various artifacts from DSL models. This has boosted the popularity of DSL approaches in industry, as
witnessed by reports like [16, 21].

The development of DSLs is usually centered around a grammar and transformations that generate
implementation code or analysis models from DSL specifications. In such a setting, the main focus is
on the transformation to implementation code which is very valuable in industrial practice. Generat-
ing analysis models is particularly interesting for safety-critical components and facilitates analyzing
DSL models using a combination of formal techniques. For example, properties can be verified against
verification models or simulation models can be used to explore the modeled behavior interactively.

In DSL approaches, the semantics of the language is often defined implicitly and in terms of the
generated implementation. Although DSLs focus on the essential concepts of their respective domains,
∗This research was supported by the Dutch national COMMIT program under the Allegio project, and by the European

ARTEMIS program under the Crystal project.

http://dx.doi.org/10.4204/EPTCS.205.2
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

S. Keshishzadeh, A.J. Mooij & J. Hooman 17

the semantics of the language constructs are not always obvious. The lack of a formal semantics can give
rise to different interpretations and cause inconsistencies between the transformations.

Various authors [1, 6] have proposed to use a formal semantics to describe the precise meaning
of the language constructs. The formalization also allows them to have a single reference that should
be followed by all the transformations. However, having a formal semantics as a reference does not
guarantee the correctness of the transformations from a DSL. The developer of a transformation should
have a deep understanding of the DSL and the target language and construct a transformation that does
not deviate from the semantics of the DSL. In [7] the authors indicate that such tasks are very error-prone
and introducing redundant validations is an effective way to reduce the rate of mistakes.

We propose to use the formal semantics of a DSL and introduce redundancy to validate the correct-
ness of the artifacts generated from transformations [12]. We introduce redundant validations using the
following formal techniques:

• equivalence checking (by transforming models to a formalism that allows checking equivalence of
behaviors);

• model-based testing (by testing conformance of executable models to a test model).

We report on our experiences with these formal techniques in the context of an industrial DSL.
This DSL is used in a development project to write specifications for an existing implementation of
an industrial software component and to develop new enhanced specifications for future releases of the
software. In this paper, we focus on DSL models that describe the existing implementation. The results
obtained in the project show that the redundancy introduced by equivalence checking and model-based
testing can effectively detect inconsistencies between the generated artifacts for a DSL. To hide the
complexities of these techniques, we have developed a push-button technology that allows industrial
users to automatically perform these checks for the generated artifacts.

Instead of validating the correctness of the generated artifacts, some authors [9] propose to formally
prove the correctness of transformations. For a realistic DSL, this can be very costly in terms of time and
the required expertise [14]. Thus, proving transformations should only be considered for well-established
languages and transformations. Moreover, for a young DSL, transformations are improved regularly, and
hence proving their correctness may not be effective. The industrial context of our work also calls for a
pragmatic approach where there is no time for time-consuming proofs.

Overview. We discuss the mCRL2 process algebra in Section 2. In Section 3 we describe an industrial
control component and informally introduce a DSL for describing its behavior; the semantics of the
language is formalized in Section 4 using mCRL2. In Section 5 we use model-based testing to assess
the quality of an implementation of the industrial component. The correctness of the used models is
validated in Section 6. In Section 7 we discuss about our experiences with different types of model
transformations. In Section 8 we discuss related work. Section 9 contains conclusions and directions for
future research.

2 Preliminaries

In this section we give an overview of the micro Common Representation Language 2 (mCRL2) [11].
mCRL2 is a process algebra that extends the Algebra of Communicating Processes (ACP) [5] with data
and time. The mCRL2 language and its supporting toolset [15] can be used to specify and analyze the
behavior of distributed systems and protocols.

18 Checking the Correctness of Generated DSL Artifacts

In this short overview, we focus on the language constructs that we need throughout the paper. The
interested reader can refer to [11] for more details. We explain the way data types are defined and used
in mCRL2 (Section 2.1) and describe behavioral specifications in the language (Section 2.2).

2.1 Data Specification

mCRL2 offers ways to specify data types (also known as sorts) and use their elements in specifications.
Standard data types such as natural numbers (N) and booleans (B) are predefined in the language. Com-
mon operations on these data types are also available, e.g., ≈ denotes equality.

The user can define new data types in a specification. A new sort can be declared by explicitly
characterizing its elements in a structured data type. For instance, we can define Color with elements
Red, Green, and Blue:

sort Color = struct Red | Green | Blue;

It is also possible to declare structured types that depend on other sorts. For instance, a data type called
Message that contains pairs of natural numbers can be defined as follows:

sort Message = struct Pair(fst:N,snd:N);
A Message has the shape Pair(n1,n2) where n1,n2 ∈ N. The declaration of Message provides two pro-
jection functions, fst and snd, that extract the elements of Pair(n1,n2):

fst(Pair(n1,n2)) = n1 snd(Pair(n1,n2)) = n2

Functions can also be declared and used in the mCRL2 language. Given two sorts A and B, the
notation A→ B denotes the sort of functions from A to B. mCRL2 includes an operator called function
update for unary functions. For f ∈A→B this operation is denoted by f [a→ b] and represents a function
that maps a to b and maps all the other elements of A like f does.

We can declare the sort of functions from N to N as follows:

sort NatFunc = N→ N;

We consider two examples of this sort:

• succ: given n ∈ N returns n+1;

• condsqr: given n ∈ N returns n2 if n > 10; otherwise, it returns n.

We declare these functions using the map keyword:

map succ,condsqr : NatFunc;

To define succ and condsqr, it is necessary to specify the calculations performed in these functions. This
is realized by introducing equations using the keyword eqn. Variables used in the equations are declared
by the keyword var.
var n : N;
eqn succ(n) = n+1;

condsqr(n) = if (n > 10,n2,n);
The conditional operation has the shape if (c, t,u). It evaluates to the term t if the condition c holds and
it evaluates to the term u if c does not hold.

Lists are a built-in data type in mCRL2. The set of lists where all elements are from a sort A are
represented by List(A). Elements of List(A) are built with two constructors: [] the empty list, and a . `
which puts a (of type A) in front of list ` (of type List(A)). A list can be defined by specifying its elements
and putting them between square brackets. For example, [22,4] is a list of natural numbers.

S. Keshishzadeh, A.J. Mooij & J. Hooman 19

// count(0) // count(1) // count(2) //

reset

jj

Figure 1: Behavior of Counter

2.2 Process Specification

mCRL2 allows us to specify behavior using a small set of primitives and operators. We use a simple
example to describe some basic constructs of mCRL2. The example is a modulo 3 counter that starts
counting from 0 and resets itself when it reaches 3.

In mCRL2, behavior is described in terms of processes. Actions are elementary processes and repre-
sent observable atomic events. Actions can also carry data parameters. In our example, count and reset
can be considered as actions performed by the counter. The action count carries a data parameter to
indicate the current number. These actions are declared as follows:
act count : N;

reset;
Actions can be combined using different operators to form processes that specify more complex

behaviors. For instance, the non-deterministic choice between process p and q is denoted by p+ q and
the sequential composition of p and q is denoted by p.q. Data values can also influence the course of
actions. Suppose c is a boolean expression. The process c→ p�q behaves as p if c holds and otherwise
it behaves as q. The “else” part of the conditional operator can be omitted. If c does not hold in c→ p,
deadlock will occur.

The following process specifies the modulo 3 counter. The process Counter carries a data parameter
to keep track of the current number. The initial behavior is specified by init, i.e., counting starts from 0.
proc Counter(n:N) = (n < 3)→ count(n).Counter(n+1)

+(n≈ 3)→ reset.Counter(0);
init Counter(0);
For any n≤ 3 exactly one of the conditions n < 3 and n≈ 3 will evaluate to true. The process performs
action count(n) when n < 3 and then behaves as Counter(n+1). If n≈ 3, the process performs reset and
starts counting from 0. Fig. 1 depicts the labeled transition system of the counter.

3 Industrial Application: a Clinical X-ray Generator

In this section we introduce an industrial control component that we use for reporting our experiences
(Section 3.1). We also informally describe a DSL for specifying the behavior of the component (Sec-
tion 3.2).

3.1 Platform

Philips Healthcare produces interventional X-ray systems (Fig. 2(a)) which are used to perform minimally-
invasive medical procedures. During a procedure, the surgeon uses the images on the monitors as guid-
ance. Images are constructed for two projections. The X-ray system consists of two planes: frontal
(top-down) and lateral (left-right). These planes can be used separately or together (biplane).

The surgeon sends X-ray requests using the pedals. The interventional system of Fig. 2(a) includes
a component called Pedal Handling that makes decisions about the amount of X-ray that should be

20 Checking the Correctness of Generated DSL Artifacts

(a) Interventional X-ray

Tubes

Pedal Handling

Pedals (User)

X-ray

Request

Condition Evaluators

Input

Actions

(b) Interfaces of Pedal Handling

Figure 2: Industrial Application

generated in the tube of each plane (Fig. 2(b)). From each plane the following types of X-ray can be
generated:

• Fluoroscopy: low dose X-ray, for obtaining real-time images;

• SingleShot: high dose X-ray, for capturing a single image;

• Series: high dose X-ray, for recording a series of images.

Pedal Handling also takes into account conditions that should interrupt the X-ray, or that should
prevent the X-ray from starting. Condition Evaluators continuously evaluate these conditions and notify
Pedal Handling when changes occur.

3.2 DSL for Pedal Handling

To describe the behavior of Pedal Handling, domain experts mainly focus on the external interfaces of
the component. Starting from the initial state, they think about the input actions received from Pedals
and Condition Evaluators. Based on the received input, the component might change its current state; it
also makes a decision about the output X-ray and sends a request to the tubes. This process continues by
receiving the next input. Thus, from the domain expert’s point of view the behavior of Pedal Handling
can be described with alternating sequences of input and output actions.

To specify the behavior of Pedal Handling, we use a DSL that fits this way of reasoning. Fig. 3
depicts a specification in the DSL. For confidentiality reasons, we do not provide a realistic model. This
language is designed in collaboration with domain experts from Philips Healthcare. Although we use
Fig. 3 as a running example to illustrate our approach, the results reported in the paper are based on
realistic DSL models and implementations that are executable on the physical hardware.

A DSL model starts with declaring the input actions that can be received by the Pedal Handling
component (InActions). Afterwards, it declares variables that keep track of the current state of the
component (Boolean variables and Plane variables) and their initial values (Init). Two not-
explicitly-declared variables, OutputType and OutputPlane, determine the output of Pedal Handling.

The internal logic of the component is described in terms of Rules. Each rule refers to an input
action and consists of a guard and a do clause. The guard describes when the input action is enabled and
the do clause determines how the action influences the state of the component and the output. A DSL
model specifies exactly one rule for each input action. Multiple rules for an action are not supported.

Rules of the DSL use simple constructs for describing behavior. However, the precise meaning
of some constructs is not obvious. For instance, it is not obvious whether evaluating the do clause of

S. Keshishzadeh, A.J. Mooij & J. Hooman 21

Figure 3: Snapshot of a DSL Model

an action can be interrupted by receiving a new input action. Since a do clause may contain multiple
assignments to a variable, it is also relevant to determine when a variable assignment takes effect.

In Section 4 we give a formalization of the DSL which clearly specifies the semantics of the language.
For instance, our semantics enforces that do clauses should be interpreted in an atomic way and each
assignment to a variable immediately changes its value such that the previous value is overwritten.

4 Formalizing the DSL Semantics

In Section 3.2 we informally introduced a DSL and motivated the need for a formal semantics. In this
section, we give a formalization of the DSL semantics by introducing a transformation from the DSL to
mCRL2. Similar to the Pedal Handling DSL, a compact representation/language for describing behavior
in terms of labeled transition systems is very common in many application domains. Hence, our approach
for formalizing the semantics of the DSL can be applied to other DSLs.

We describe our general transformation scheme by transforming the model of Fig. 3 to mCRL2. Our
choice of mCRL2 is motivated by the expressiveness of the language, the availability of a toolset [15]
that supports analysis of behavior, and our previous experience with the language and toolset. We first
discuss the required data specifications (Section 4.1). Then we use process expressions to describe the
behavior of DSL models (Section 4.2). Finally, we discuss the types of analysis that we perform on DSL
models (Section 4.3).

4.1 Data Specification

Plane, X-Ray Type. As mentioned in Section 3.1, X-ray can be generated from three planes (frontal,
lateral, and biplane). We define the data types Plane and XRay to describe the planes and the type of

22 Checking the Correctness of Generated DSL Artifacts

X-ray generated from them.

sort Plane = struct None | FR | LT | BI;
XRay = struct Standby | Fluo | SingleShot | Series;

The combination of None and Standby describes a situation in which no X-ray is generated from the
planes.
State. A DSL model declares a set of boolean and plane variables. The valuation of these variables and
the two special variables OutputType and OutputPlane determine the state of the transition system
described by the DSL model.

To describe the notion of state in mCRL2, we create two structured data types B (for boolean vari-
ables) and P (for plane variables). The structure of these sorts corresponds to the variable declarations of
the DSL model. For the model of Fig. 3, B and P are defined as follows:

sort B = struct FRFluoReq | FRFluoOK;
P = struct FluoPlane;

To specify the valuations of boolean and plane variables, we declare the following data types:

sort BVals = B→ B;
PVals = P→ Plane;

Finally, the notion of state can be formalized as follows:

sort PSt = struct St(bs:BVals,ps:PVals,outType:XRay,outPlane:Plane);

The projection functions outType and outPlane extract the values of OutputType and OutputPlane

from states.
In a DSL model, the initial values of the boolean and plane variables are specified by Init. We

declare bs0 ∈ BVals and ps0 ∈ PVals to specify the initial values in mCRL2. We also declare s0 ∈ PSt to
describe the initial state.
map bs0 : BVals;

ps0 : PVals;
s0 : PSt;

eqn bs0(FRFluoReq) = false;
bs0(FRFluoOK) = true;
ps0(FluoPlane) = None;
s0 = St(bs0, ps0,Standby,None);

The initial values of OutputType and OutputPlane cannot be specified by Init in the DSL. It is
assumed that initially no X-ray is generated from the planes. Hence, we specify s0 such that:

outType(s0) = Standby outPlane(s0) = None

Guard, Do Clause. A DSL model specifies one rule for each input action. The rule of an action consists
of a guard and a do clause. From Fig. 3 one can see that a guard is a function from states to booleans. A
do clause consists of a sequence of assignments/conditionals that given the current state can change the
values of the variables and produce a new state. We describe guards and do clauses as follows:

sort Guard = PSt→ B;
DCl = List(PSt→ PSt);

For the DSL model of Fig. 3 with 4 rules, we declare the guards and do clauses gi,di for 1≤ i≤ 4:

S. Keshishzadeh, A.J. Mooij & J. Hooman 23

map g1,g2,g3,g4 : Guard;
d1,d2,d3,d4 : DCl;

The calculations of each guard can be described in terms of an equation. For instance, the guard of the
first rule of Fig. 3 can be defined as follows:
var b : BVals;

p : PVals;
xr : XRay;
pl : Plane;

eqn g1(St(b, p,xr,pl)) = (b(FRFluoReq)≈ false);
To describe do clauses, we specify assignments and conditionals in terms of equations. To explain

this, we consider the do clause of the first rule from Fig. 3. This do clause contains four assignments and
one conditional.

We describe each assignment as a function that updates one of the components of a state argument
St(b, p,xr,pl). We denote the assignments of the first rule by a1,a2,a3,a4 based on their order of appear-
ance:
map a1,a2,a3,a4 : PSt→ PSt;
eqn a1(St(b, p,xr,pl)) = St(b[FRFluoReq→ true], p,xr,pl);

a2(St(b, p,xr,pl)) = St(b, p[FluoPlane→ FR],xr,pl);
a3(St(b, p,xr,pl)) = St(b, p,Fluo,pl);
a4(St(b, p,xr,pl)) = St(b, p,xr,FR);

For example, the first assignment updates the values of boolean variables by setting FRFluoReq to true.
A conditional statement of a do clause is specified by a term of the shape if (c, t,u) in equations. The

conditional in the first rule of Fig. 3 can be described as follows:
map cond : PSt→ PSt;
eqn cond(St(b, p,xr,pl)) = if (b(FRFluoOK),Eval(condthen,St(b, p,xr,pl))

,St(b, p,xr,pl));
In this equation, Eval is a function that evaluates a sequence of assignments or conditionals and condthen
is the “then” part of the conditional (see below).

A do clause is described as a sequence of assignments/conditionals. For example, we describe the do
clause of the first rule (d1) as a sequence of the assignments a1,a2 and the conditional cond. The “then”
part of a conditional is also specified as a sequence of its components. The “then” part of the conditional
in the first rule (condthen) is a sequence of a3,a4:
map condthen : List(PSt→ PSt);
eqn d1 = [a1,a2,cond];

condthen = [a3,a4];
Having sequences of assignments and conditionals, it is also essential to define a function that applies

a sequence of statements to a state and returns the resulting state. The following mCRL2 description
defines Eval for this purpose:
map Eval : List(PSt→ PSt)×PSt→ PSt;
var s : PSt;

f : PSt→ PSt;
` : List(PSt→ PSt);

eqn Eval([],s) = s;
Eval(f . `,s) = Eval(`, f (s));

The function Eval is defined by specifying its effect on terms of the shape [] and f . ` (the constructors
of List).

24 Checking the Correctness of Generated DSL Artifacts

4.2 Process Specification

The Pedal Handling component performs two types of actions: input and output. A DSL model explicitly
declares a set of input actions (from Pedals and Condition Evaluators) by InActions. Pedal Handling
also performs actions output(xr, p) to send requests for xr ∈ XRay to p ∈ Plane. This action is not
explicitly declared in the DSL. Corresponding to the input actions and the output action we declare
actions in mCRL2. For Fig. 3 we declare:
act FRFluoOn,FRFluoOff ,StartCond,ResetStartCond;

output : XRay×Plane;
In Section 3.2, we mentioned that domain experts describe the behavior of Pedal Handling with

alternating sequences of input and output actions. The semantics of the DSL is aligned with this intuition.
We specify the semantics of the DSL model of Fig. 3 in terms of the following processes:
proc PIn(s:PSt) = g1(s)→ (FRFluoOn.POut(Eval(d1,s)))

+g2(s)→ (FRFluoOff .POut(Eval(d2,s)))
+g3(s)→ (StartCond.POut(Eval(d3,s)))
+g4(s)→ (ResetStartCond.POut(Eval(d4,s)));

POut(s:PSt) = output(outType(s),outPlane(s)).PIn(s);
init PIn(s0);

The process PIn describes the behavior of Pedal Handling when the component is ready to receive
an input. It carries a data parameter that indicates the current state. The process PIn uses a combination
of choices and conditionals for case distinction. The guards are used as conditions in the conditional
operators to determine enabled actions. Performing an input action updates the state based on the corre-
sponding do clause. The process POut describes the behavior of Pedal Handling when the component is
ready to produce an output. In this situation, output is performed and it carries the X-ray type and plane
extracted from the state. Performing the output action does not influence the state.

The processes PIn and POut enforce alternating execution of the input and output actions. Do clauses
are evaluated by Eval. Thus, new actions cannot be performed before a do clause is completely evaluated.
Moreover, assignments have an immediate effect.

4.3 Analyzing DSL Models

For a safety critical component, it is desired to use DSL models as a single source to automatically obtain
models that enable analysis using various formal techniques, e.g., verification, simulation.

To enable verification, we have automated the transformation from the DSL to mCRL2. We have
used the mCRL2 toolset to generate the state spaces of DSL models and to verify properties expressed
in a variant of the modal µ-calculus. A realistic DSL model declares 25 input actions and their effects
in terms of rules. The corresponding state space consists of approximately 45000 states and 350000
transitions. We have verified some safety properties against this model, e.g., “deadlock-freedom”, “no
X-ray is generated from the planes when there is no request from the user”. The interested reader can
refer to Appendix A of [13] for a modal µ-calculus formalization of some safety properties for the DSL
model of Fig. 3.

The mCRL2 formalization can also be used as a reference to implement transformations to other
formalisms. Having a formalized semantics helps to avoid arbitrary choices in the transformations that
would give a different semantics to the constructs of the DSL.

To enable simulation, we have implemented an automated transformation from the DSL to POOSL
[19, 17]. POOSL is a modeling language with a semantics expressed in terms of timed probabilistic

S. Keshishzadeh, A.J. Mooij & J. Hooman 25

Generate

Generate

Generate

Generate

Equivalence Checking

(Section 6.1)

Model-based

Testing Against

(Section 5)

Model-based Testing Against (Section 6.2)

DSL Model

Semantic/Verification

Model

(mCRL2)

Simulation Model

(POOSL)

Test Model

(AML)
Implementation

(mCRL2)

Figure 4: Generated Artifacts for Pedal Handling and their Validation

labeled transition systems. The tools available for POOSL allow us to simulate the modeled behavior
and discuss our observations with domain experts. Due to space restrictions, we do not discuss this
transformation; the interested reader can refer to [13] for a detailed description of the transformation.

Using the mCRL2 formalization as guidance for implementing a transformation to POOSL does not
give a robust connection between the generated mCRL2 and POOSL models. In Section 6, we formally
validate the correctness of POOSL models with respect to the mCRL2 formalization. A proposed imple-
mentation for Pedal Handling is available. Thus, at the moment we do not generate code from the DSL.
Fig. 4 depicts the transformations from the DSL; test models are discussed in Section 5. In Section 6 we
also discuss an approach for validating simulation models against test models.

5 Validating the Industrial Implementation

We introduce model-based testing as a way to assess the correctness of an implementation with respect
to a DSL description (Section 5.1). We also discuss about interpreting the results obtained from model-
based testing (Section 5.2).

5.1 Validating the Implementation by Model-based Testing

In industry, the implementation is considered to be the most valuable artifact that is produced for a
component. When behavioral models of a component are also available, it is relevant to check whether
the implementation complies to the modeled behavior. Validating the compliance of implementations
to DSL models adds a level of redundancy that can reveal discrepancies between the developed DSL
models and implementations.

We use model-based testing to validate the correctness of an implementation with respect to a DSL
model. Model-based testing uses a model that describes the behavior of a system under test and enables
both automatic generation and execution of test cases on the implementation.

The semantics of the Pedal Handling DSL is described in terms of labeled transition systems and
hence we create a test environment based on the theory of input-output conformance (ioco) testing for
labeled transition systems [20] to automatically derive test cases from the behavior described in the DSL
and execute them on the implementation.

In the ioco theory, correctness of implementations with respect to specifications is expressed in terms
of the binary relation of ioco. The ioco theory provides an algorithm that derives a set of test cases from

26 Checking the Correctness of Generated DSL Artifacts

a given specification such that executing this set of test cases on an implementation determines whether
the specification and implementation are related by the conformance relation.

The model-based testing tool of Axini [3] is based on the ioco theory. In this tool, specifications
are described in the Axini Modeling Language (AML). We have developed an automated transformation
from the DSL to AML (Fig. 4). The generated AML model for a DSL specification is used for model-
based testing against the implementation; see [13] for details about the transformation to AML.

5.2 Interpreting the Results of Model-based Testing

Validating the compliance of an implementation to a DSL model by model-based testing requires special
attention to interpret the results correctly. A failed test case shows a discrepancy between the test model
and the implementation. This can have three different reasons:

• a mistake in the transformation from the DSL to the test models;

• a failure in the implementation;

• a modeling mistake in the DSL model, which is cascaded to the test model.

The transformation from the DSL to test models should preserve the semantics of the DSL. A mistake
in realizing the semantics may result in failed test cases. In Section 6 we introduce an approach to gain
confidence in the correctness of the generated models in Fig. 4. When there is sufficient confidence in
the correctness of test models, a failed test case may indicate a failure of the implementation.

The last item mentioned above is particularly relevant if implementations are not generated from the
DSL. In such cases, failed test cases could also indicate a mistake in DSL models; the intended behavior
is not correctly described in the DSL (and the same modeling mistakes are cascaded to the test model)
but the implementation has correctly realized the behavior.

Results. For our model-based testing experiments, we used a real but not-yet-released implementation
of Pedal Handling. Independently of our experiments with the DSL, the developers have constructed an
extensive suite of unit tests for validating the implementation. However, in model-based testing the focus
is on assessing the observable behavior of the component based on a model by providing stimuli at its
external interfaces. This revealed a number of issues in the implementation that are out of the scope of
the unit tests. For example, one of the requirements of Pedal Handling indicates that high-dose X-ray
requests have priority over low-dose X-ray requests. A design mistake in realizing this requirement led
to a failed test case. The failed test was part of an unlikely trace where three different pedals must be
pressed at the same time.

Model-based testing revealed that certain modeling choices taken in our DSL models are imple-
mented differently in the implementation. Unlike stopping Fluo (modeled by FRFluoOff in the example
of Fig. 3), stopping Series requires performing two actions in a specific order. The output specified for
the first step of stopping Series was different from the output produced by the implementation. This
observation led to minor changes in our DSL models.

6 Checking the Correctness of Generated Models through Redundancy

Transformations from a DSL to analysis models allow the user to apply various formal techniques and
reason about DSL models. Analysis models can also be used to assess the correctness of other artifacts

S. Keshishzadeh, A.J. Mooij & J. Hooman 27

available for a component (Section 5). However, the results obtained from analysis models are only
valuable if the corresponding transformations correctly realize the semantics of the DSL.

Developing a transformation from a DSL to a modeling language requires a deep understanding of
the semantics of the DSL and the target language. Moreover, the transformation should not deviate from
the semantics of the DSL. Introducing redundancy is a very effective way to reduce the rate of mistakes
in such error-prone tasks [7].

We introduce redundancy to validate the correctness of the artifacts depicted in Fig. 4 in two ways:
equivalence checking (Section 6.1) and model-based testing (Section 6.2). Note that the validation tech-
niques introduced in this section are not bound to the transformations of Fig. 4 and hence manually
constructed models can also be validated using equivalence checking and model-based testing.

6.1 Checking the Behavioral Equivalence between Artifacts

The verification and simulation models in Fig. 4 have an underlying labeled transition system. To get
confidence in the correctness of simulation models with respect to the formalized semantics (transforma-
tion to verification models), we can investigate whether the labeled transition systems described by the
simulation and verification models are related by an equivalence relation, e.g., strong bisimulation. This
may require to develop transformations from analysis models to a formalism that enables state space
generation and comparison.

We have used the mCRL2 toolset for state space generation (the lps2lts tool) and comparison
(the ltscompare tool). To enable state space generation for simulation models, we have developed a
transformation from POOSL to mCRL2. To avoid bridging wide semantic gaps between POOSL and
mCRL2, we have restricted our simulation models to a sufficient subset of POOSL (see [13] for more
details about the constructs used in simulation models) and developed a transformation to mCRL2 for
that specific subset.

When comparing behaviors, the internal steps performed by them are not relevant; we focus on the
observable behaviors. Hence, we check whether the state spaces are equivalent modulo branching bisim-
ulation. Fig. 4 depicts equivalence checking between mCRL2 and POOSL models and the automated
transformation from POOSL to mCRL2 that enables this check.

Results. For realistic DSL models, the behaviors described in mCRL2 and POOSL were equivalent
modulo branching bisimulation. Models generated from three transformations (DSL to mCRL2, DSL to
POOSL, and POOSL to mCRL2) are involved in equivalence checking between simulation and verifica-
tion models. Each transformation is implemented by a different person. This reduces the probability of
identical mistakes in the transformations and makes the redundancy introduced by equivalence checking
more valuable.

6.2 Model-based Testing of Executable Models

In Section 5 we used model-based testing to validate the correctness of an implementation. Executable
analysis models can also be treated as black-boxes that interact via their interfaces; we can supply inputs
to an executable model and observe its output. Thus, executable models can be tested against the test
model generated from a DSL model using model-based testing. Failed test cases reveal mistakes in the
transformations. In our case study, we have applied model-based testing to POOSL models; see Fig. 4.

Note that there are also other possibilities for validating the artifacts of Fig. 4 (e.g., model-based
testing mCRL2 models against AML models). Adding such validations gives more confidence in the

28 Checking the Correctness of Generated DSL Artifacts

correctness of the artifacts but would require additional effort to create the required environment.

Results. We did not encounter any failed test cases in our model-based testing experiments against
POOSL models. Similar to Section 6.1, the transformations to simulation models (POOSL) and test
models (AML) are implemented by different people. Absence of failed test cases gives more confidence
that the semantics of the DSL is realized correctly in these models.

7 Experiences with Different Kinds of Model Transformations

The approach of Fig. 4 deploys model transformations to enable the use of multiple formal techniques
and to introduce redundant mechanisms for assessing the correctness of different artifacts with respect
to the formalized semantics. This approach relies on two types of transformation: transformations from
the DSL to a general-purpose modeling language (from the DSL to mCRL2, POOSL, and AML), and
transformations between general-purpose modeling languages (from POOSL to mCRL2). In this section
we report on our experiences with these two types of transformations.

General-purpose modeling languages originate from different disciplines and are applicable to a wide
range of problems. For instance, POOSL is designed to be applicable for simulation and performance
analysis, whereas mCRL2 is focused on formal verification. In our experience, making transformations
between two general-purpose formalisms is not a trivial task. There are usually language constructs from
the source language that are difficult or even impossible to translate to the target language.

For example, the data layer of POOSL is object-oriented. Each data class describes its variables and
methods. Moreover, instances of certain data structures (e.g., strings, lists) are accessed using pointers.
On the other hand, mCRL2 is not object-oriented and does not support pointers. Hence, transforming
data classes or pointers from POOSL would require complex mechanisms in mCRL2 models.

Similarities between the source and target languages may suggest a direct mapping between certain
constructs. However, similar constructs in two formalisms may have subtly different semantics. For
instance, one would expect the conditional statement if c then p else q fi of POOSL to be trace
equivalent to c→ p � q in mCRL2. Based on the formal semantics of POOSL, if c then p else q

fi first performs an internal step (τ transition) to evaluate the condition. Then it behaves as p if c holds
and otherwise it behaves as q. However, in mCRL2 no internal action is performed for evaluating c and
hence the two conditional statements are not trace equivalent. This observation reiterates the importance
of formal semantics in transformations between languages.

In the literature, some authors have reported similar experiences about transformations between
general-purpose modeling languages. A partial transformation from the hybrid modeling formalism
Chi 2.0 [4] to mCRL2 is proposed in [10]. The intention is to enable formal verification on models in
Chi 2.0. Semantic differences between Chi 2.0 and mCRL2 makes the transformation complex and hard
to maintain. The generated models are also complex and sometimes difficult to analyze by tools.

In our experience, restricting the scope of a transformation (e.g., using predefined data types in
POOSL specifications instead of representing POOSL data classes in mCRL2) and studying the seman-
tics of the relevant constructs from the source and target languages are effective ways to overcome the
challenges faced in implementing transformations between general-purpose languages.

The Pedal Handling DSL is defined for a narrow domain and its semantics is less elaborate compared
with POOSL, mCRL2, and AML. Thus, it requires less effort to construct the transformations from the
DSL to different analysis models.

S. Keshishzadeh, A.J. Mooij & J. Hooman 29

8 Related Work

In [1] the authors prototype the semantics of a DSL called SLCO in terms of a transformation to an
intermediate language called CS. Afterwards, CS models are transformed to labeled transition systems
and are inspected manually or analyzed by existing tools. The authors have also implemented a number of
transformations from SLCO to SLCO models with equivalent behaviors and suggested that the prototype
semantics can be used to compare the underlying labeled transition systems of the source and target
models.

The B method has been used in [6] to develop process schedulers based on specifications in a DSL.
The information given by a DSL model is taken into account at several refinement steps in B machines.
The authors also introduce a decidable logic for expressing proof obligations of the refinement steps.
This allows them to automatically prove the refinements.

The mentioned studies validate refinement steps, whereas we offer various formal techniques to
assess the semantic correctness of different types of artifacts in an automated way.

In [18] a combination of model-based techniques is used to develop a software bus in a two-phase
process. In the first phase, an mCRL2 model of the component is created and validated through sim-
ulation. After developing the component, the mCRL2 model is used for model-based testing of the
implementation. In the second phase, different properties are verified against the mCRL2 model. The
model is improved based on the results and is used for model-based testing against a second implemen-
tation. In comparison, our approach is centered around domain-specific models and artifacts generated
from them.

9 Conclusions

A DSL allows us to use models that are naturally aligned with the way domain experts reason about a
software component. Existing tools enable language designers to define DSLs and to construct transfor-
mations to implementation code and analysis models. However, the semantic correctness of the generated
artifacts is usually overlooked.

To resolve conflicting interpretations of a DSL, we use a formal semantics of the language. We also
propose to have additional mechanisms to validate the correctness of the generated artifacts with respect
to the semantics of the DSL.

We have experimented with this approach as preparation for the redesign of a clinical X-ray gen-
erator. In this paper, we reported on our experiences with DSL models for an existing implementation
of the industrial component. At the moment, the DSL and the transformation to simulation models are
frequently used for discussions on potential enhancements in the behavior of the component.

We plan to extend our approach by other forms of redundancy to increase the reliability of the arti-
facts. To this end, we consider using model learning. Model learning techniques extract an automaton
model for an implementation by systematically performing tests on it and observing its behavior [2].
A learned model can give insight in the implemented behavior, and can be compared with the labeled
transition system described by a DSL model.

Our approach for validating the generated artifacts for a single DSL model can be extended to validate
the transformations themselves based on a set that consists of several DSL models. Various criteria
can also be defined for the considered sets to obtain DSL models that examine different aspects of the
transformations.

30 Checking the Correctness of Generated DSL Artifacts

References
[1] S. Andova, M.G.J. van den Brand & L. Engelen (2011): Prototyping the Semantics of a DSL using ASF+SDF:

Link to Formal Verification of DSL Models. In: Proceedings of AMMSE’11, EPTCS 56, pp. 65–79,
doi:10.4204/EPTCS.56.5.

[2] D. Angluin (1987): Learning regular sets from queries and counterexamples. Information and computation
75(2), pp. 87–106, doi:10.1016/0890-5401(87)90052-6.

[3] Axini: http://www.axini.nl.
[4] D.A. van Beek, A.T. Hofkamp, M.A. Reniers, J.E. Rooda & R.R.H. Schiffelers (2008): Syntax and formal

semantics of Chi 2.0. Eindhoven University of Technology, Technical Report.
[5] J.A. Bergstra & J.W. Klop (1984): Process algebra for synchronous communication. Information and control

60(1), pp. 109–137, doi:10.1016/S0019-9958(84)80025-X.
[6] J.P. Bodeveix, M. Filali, J. Lawall & G. Muller (2005): Formal methods meet domain specific languages. In:

Proceedings of IFM’05, Springer, pp. 187–206, doi:10.1007/11589976 12.
[7] M.G.J. van den Brand & J.F. Groote (2013): Software Engineering: Redundancy is Key. Science of Computer

Programming 97, pp. 75–81, doi:10.1016/j.scico.2013.11.020.
[8] A. van Deursen, P. Klint & J. Visser (2000): Domain-Specific Languages: an annotated bibliography. SIG-

PLAN Notices 35(6), pp. 26–36, doi:10.1145/352029.352035.
[9] H. Ehrig & C. Ermel (2008): Semantical Correctness and Completeness of Model Transformations Using

Graph and Rule Transformation. In: Proceedings of ICGT’08, LNCS 5214, Springer-Verlag, pp. 194–210,
doi:10.1007/978-3-540-87405-8 14.

[10] Stappers F.P.M. (2012): Bridging Formal Models: An Engineering Perspective. Ph.D. thesis, Eindhoven
University of Techonology.

[11] J.F. Groote & M.R. Mousavi (2014): Modeling and Analysis of Communicating Systems. MIT press.
[12] S. Keshishzadeh & A.J. Mooij (2016): Formalizing and Testing the Consistency of DSL Transformations.

Formal Aspects of Computing (in press), doi:10.1007/s00165-016-0359-1.
[13] S. Keshishzadeh, A.J. Mooij & J. Hooman (2015): Industrial Experiences with a Formal DSL Semantics to

Check Correctness of DSL Transformations. arXiv preprint:1511.08049.
[14] X. Leroy (2009): Formal verification of a realistic compiler. Communications of the ACM 52(7), pp. 107–

115, doi:10.1145/1538788.1538814.
[15] mCRL2: http://mcrl2.org.
[16] A.J. Mooij, J. Hooman & R. Albers (2013): Gaining Industrial Confidence for the Introduction of Domain-

Specific Languages. In: Proceedings of IEESD’13, IEEE, pp. 662–667, doi:10.1109/COMPSACW.2013.83.
[17] POOSL: http://poosl.esi.nl.
[18] M. Sijtema, A. Belinfante, M.I.A. Stoelinga & L. Marinelli (2014): Experiences with formal engineering:

Model-based specification, implementation and testing of a software bus at Neopost. Science of computer
programming 80, pp. 188–209, doi:10.1016/j.scico.2013.04.009.

[19] B.D. Theelen, O. Florescu, M.C.W. Geilen, J. Huang, P.H.A. van der Putten & J.P.M. Voeten (2007): Soft-
ware/Hardware Engineering with the Parallel Object-Oriented Specification Language. In: Proceedings of
MEMOCODE’07, IEEE, pp. 139–148, doi:10.1109/MEMCOD.2007.371231.

[20] J. Tretmans (2008): Model based testing with Labelled Transition Systems. In: Formal methods and testing,
LNCS 4949, Springer, pp. 1–38, doi:10.1007/978-3-540-78917-8 1.

[21] J. Verriet, H.L. Liang, R. Hamberg & B. van Wijngaarden (2013): Model-driven development of logistic
systems using domain-specific tooling. In: Proceedings of CSD&M, Springer, pp. 165–176, doi:10.1007/978-
3-642-34404-6 11.

http://dx.doi.org/10.4204/EPTCS.56.5
http://dx.doi.org/10.1016/0890-5401(87)90052-6
http://dx.doi.org/10.1016/S0019-9958(84)80025-X
http://dx.doi.org/10.1007/11589976_12
http://dx.doi.org/10.1016/j.scico.2013.11.020
http://dx.doi.org/10.1145/352029.352035
http://dx.doi.org/10.1007/978-3-540-87405-8_14
http://dx.doi.org/10.1007/s00165-016-0359-1
http://arxiv.org/abs/1511.08049
http://dx.doi.org/10.1145/1538788.1538814
http://dx.doi.org/10.1109/COMPSACW.2013.83
http://dx.doi.org/10.1016/j.scico.2013.04.009
http://dx.doi.org/10.1109/MEMCOD.2007.371231
http://dx.doi.org/10.1007/978-3-540-78917-8_1
http://dx.doi.org/10.1007/978-3-642-34404-6_11
http://dx.doi.org/10.1007/978-3-642-34404-6_11

	1 Introduction
	2 Preliminaries
	2.1 Data Specification
	2.2 Process Specification

	3 Industrial Application: a Clinical X-ray Generator
	3.1 Platform
	3.2 DSL for Pedal Handling

	4 Formalizing the DSL Semantics
	4.1 Data Specification
	4.2 Process Specification
	4.3 Analyzing DSL Models

	5 Validating the Industrial Implementation
	5.1 Validating the Implementation by Model-based Testing
	5.2 Interpreting the Results of Model-based Testing

	6 Checking the Correctness of Generated Models through Redundancy
	6.1 Checking the Behavioral Equivalence between Artifacts
	6.2 Model-based Testing of Executable Models

	7 Experiences with Different Kinds of Model Transformations
	8 Related Work
	9 Conclusions

