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Architecture patterns capture architectural design experience and provide abstract solutions to recur-
ring architectural design problems. They consist of a description of component types and restrict
component connection and activation. Therefore, they guarantee some desired properties for archi-
tectures employing the pattern. Unfortunately, most documented patterns do not provide a formal
guarantee of whether their specification indeed leads to the desired guarantee. Failure in doing so,
however, might lead to wrong architectures, i.e., architectures wrongly supposed to show certain de-
sired properties. Since architectures, in general, have a high impact on the quality of the resulting sys-
tem and architectural flaws are only difficult, if not to say impossible, to repair, this may lead to badly
reparable quality issues in the resulting system. To address this problem, we propose an approach
based on model checking to verify pattern specifications w.r.t. their guarantees. In the following we
apply the approach to three well-known patterns for dynamic architectures: the Singleton, the Model-
View-Controller, and the Broker pattern. Thereby, we discovered ambiguities and missing constraints
for all three specifications. Thus, we conclude that verifying patterns of dynamic architectures using
model checking is feasible and useful to discover ambiguities and flaws in pattern specifications.

1 Introduction

Architecture patterns capture architectural design experience and are regarded as the “Grand Tool” for de-
signing a software system’s architecture [34]. Patterns for dynamic architectures are patterns for architec-
tures in which components may appear and disappear and connections may change over time [36, 15, 8].

Usually, a pattern provides abstract solutions to recurring architectural design problems. The so-
lution is usually a specification of component types, connection, and activation constraints. Moreover,
it guarantees an overall property for architectures employing them [33, 9]. This property then leads to
certain, desired quality aspects of the resulting software system. Consider, for example, the Singleton
pattern. It consists of a component type singleton which is supposed to behave as follows: if a new com-
ponent of this type is required to be activated, this is only done if there is not yet any active component of
this type available. The guarantee for the overall architecture is then, that at every point in time at most
one component of this type is activated. This guarantee, in turn, leads to reduced resource utilization,
since memory usage is minimized.

Unfortunately, for most patterns, there is no formal guarantee that their specification indeed leads
to the desired guarantee. For example, there is no guarantee that the specification of the Singleton
pattern [16] leads indeed to an architecture in which there is only one active component of that type
during the whole execution. Indeed, as shown later on, there are many hidden assumptions about the
environment which are left implicit and which are required in order to satisfy the guarantee. Thus, there
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is actually no guarantee that architectures employing the specification indeed fulfill the desired quality
attribute of reduced resource utilization.

However, since architects rely on patterns when designing an architecture, this may lead to wrong ar-
chitecture decisions. Wrong architecture decisions, however, may strongly influence a software systems
quality [6, 17] and are only difficult, if not impossible, to repair [17, 23]. In security-related applications,
for example, a good architecture may eliminate or mitigate up to 92% of the most dangerous weak-
nesses [11]. Similarly, two conclusions of the Ariane 5 explosion were that it could have been avoided
at design time using correct architecture specifications and a “software architect” position was requested
for future projects [12]. To put it in the words of Garlan [17]: “a poor architecture can lead to a disaster
for the whole project.”

Thus, we propose a 5 step approach based on model checking to verify patterns w.r.t. their claimed
guarantees:

1. Review current literature about a pattern.
2. Identify and formalize the interfaces of the involved component types.
3. Model the behavior of component types in terms of abstract state machines.
4. Specify the pattern’s guarantee in terms of temporal logic formulae.
5. Verify the guarantee by applying model checking.

To evaluate the approach, we applied it to verify three contemporary patterns for dynamic architectures:
The Singleton pattern, the Model-View-Controller pattern, and the Broker pattern.

In the following paper we report on our experience of applying model checking to verify architecture
patterns. Thus, the major contributions of this paper are as follows:

1. We describe an approach to formally verify patterns of dynamic architectures.
2. We show feasibility and usability of applying model checking to verify patterns for dynamic ar-

chitectures.
3. We provide (verified) formalizations of the Model-View-Controller pattern.
4. We describe characteristic (verified) properties for Singleton, MVC and Broker pattern.

The paper is structured as follows: In Sect. 2 we first provide some background information about the
techniques used to formalize the pattern specifications as well as of model checking in general. Then,
in Sect. 3 we describe the details of the approach, demonstrated by means of a running example. In
Sect. 4 we summarize our results obtained for the Singleton, the Model-View-Controller, and the Broker
pattern. In Sect. 5 we then report on our experience of applying model checking to pattern verification
and critically discuss our approach. Finally, we provide an overview of related work in Sect. 6 and
conclude the paper with a summary of major findings, a discussion of possible implications, and points
to future work in Sect. 7.

2 Background

In the following we briefly describe the background of our work. Therefore, we first introduce the
formalism used to specify patterns for dynamic architectures. Then, we briefly discuss the basic idea
behind model checking in general and the NuSMV symbolic model checker specifically.

2.1 Specifying Constraints of Dynamic Architectures

Over the last decades, a series of so-called architecture description languages appeared to support in the
formal specification of dynamic software architectures. Examples include the Chemical Abstract Ma-
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Figure 1: Approach to specify properties of dynamic architectures.

chine [19], Rapide [24], Darwin [25], Wright [3] and its dynamic extension [2], Π-ADL [31], xADL [13],
and ACME [18]. Around the same time, some approaches emerged to formalize architectural styles
and patterns [1, 30, 32, 22, 5, 29]. Only recently, however, formal models of dynamic architectures
emerged [35, 15, 8] and specification techniques for properties of such architectures were developed [27,
28].

In the following, we briefly summarize the major concepts and notations of dynamic architectures
found in these works. Moreover, we introduce some techniques used in their specification.

2.1.1 A Model of Dynamic Architectures

In this work, a dynamic architecture is modeled by a set of so-called Configuration Traces (CTs) [28].
A CT, in turn, is a sequence of Architecture Configurations (CNFs) which consist of a set of active
components, valuations of their ports with messages, and connections between their ports.

2.1.2 Specification Techniques

For the specification of CTs, we employ algebraic specification techniques, interface specifications, and
linear temporal logic [26]. The overall approach is summarized in Fig. 1.

As a first step, a suitable signature is specified to introduce symbols for sets, functions, and predicates.
These symbols form the primitive entities of the whole specification process. Datatype specifications and
interface specifications as well as architecture constraint specifications are based on these symbols.

Then, datatypes are algebraically specified over the signature [37, 7]. A Datatype Specification
(DTS) consists of a set of so-called datatype assertions, built over datatype terms, to assert characteristic
properties of the datatype and provide meaning for the symbols introduced in the signature.

Interfaces are also directly specified over the signature. Therefore, a set of ports is typed by sorts of
the corresponding signature by means of so-called port specifications. Then, an interface is specified by
assigning an interface identifier with three sets of ports: local, input, and output ports. Finally, a set of
interface assertions is associated with each interface identifier to specify component types, i.e., interfaces
with associated global invariants.

Finally, architecture constraints can be specified by means of configuration trace assertions over the
interfaces. Configuration Trace Assertions (CTAs) are a temporal specification technique based on linear
temporal logic [26] to specify sets of CTs. They allow the specification of temporal properties over
component interfaces. Thereby, port names denote the valuation of a component port in a configuration
and can be used as variables in algebraic terms as well. For example, c.p denotes the current valuation
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of port p of component c. Moreover, CTAs allow for the specification of activation and connection
predicates:
• Activation predicates can be used to specify activation and deactivation of components. An acti-

vation of component c, for example, is denoted with ‖c‖.
• Connection predicates can be used to specify connection between component ports. A connection

between port p of component c and port p′ of component c′, for example, is denoted with c.p→
c′.p′.

2.1.3 Configuration Diagrams

We use Configuration Diagrams (CDs) as introduced in [27] as a graphical notation to support the speci-
fication of interfaces. A CD is a graph whose nodes resemble interfaces (group of ports) and whose edges
denote connections between component ports. CDs can be annotated by certain common activation and
connection constraints:
• Activation annotations can be used to introduce common activation constraints, such as min./max.

number of components of a certain type.
• Connection annotations can be used to denote connection constraints, such as required connections

between components of a certain type.

2.2 Model Checking

Model checking [4] (MC) is a technique for automatically verifying the correctness of certain properties
against a model of a finite-state system. The model of the system is thereby usually given in terms of a
finite state machine and the properties are specified in terms of temporal logic formulae.

In this work we will use the NuSMV symbolic model checker [10]. A NuSMV model always consists
of several modules, each of which represents a distinct state machine. Each module consists of 2 main
parts: a VAR part for declaring module variables and an ASSIGN part for defining the logic of the
module, i.e., the initial value of the variables as well as state changes. Moreover, an optional part DEFINE
can be used to define variable abbreviations. Modules can interact with each other through parameters
(input) and (output) variables. Every module has to specify the parameter it gets, which acts like input
variables and can itself define variables in the DEFINE section that can be read by other modules in their
transfer parameters. Properties can then be expressed in LTL as well as CTL and checked against the
model.

3 Approach

Figure 2 provides an overview of our approach to verify patterns for dynamic architectures and the
corresponding artifacts: After consulting related literature describing a pattern, we identify and specify
the interfaces of involved component types. Then, the logic of each component type is modeled by a
state machine and the guarantee of the pattern is given in terms of configuration trace assertions. Then,
the model of the pattern as well as the formalized guarantee is translated into a corresponding NuSMV
specification to verify whether the guarantees indeed hold.

Example 1 (Running Example: Model-View-Controller). In the following, we demonstrate each step of
the approach by means of a running example. Therefore, we choose the Model-View-Controller (MVC)
patter which is commonly used for the design of human-computer interfaces [9, 33, 34]. The pattern is
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Figure 2: General approach

well-suited for demonstration since it is not to complex, yet it provides all important aspects of pattern
specifications.

3.1 Literature Study

The study of a pattern starts by consulting current literature to identify the major component types and
constraints about their interrelationships and activation. Moreover, described claims about the guarantees
of a pattern should be collected and documented.

Example 2 (MVC Literature Study). It describes three types of components:

Model: a unique component responsible for consistently storing the necessary data.

View: displays the data of the model to the user.

Controller: handles user inputs.

The pattern requires that there exists a designated controller component for each view component. A
controller component recognizes user input (usually through events) and invokes a suitable service in
the (unique) model component to update the model data accordingly. After this process, all views (and
corresponding controllers) have to be updated with the new data from the model which is usually done
through notifications.

The claimed benefits of the MVC-pattern are described as follows:
B1: Single point of data storage.
B2: Data consistency throughout the model and the views.
B3: Easy to extend with new views.
B4: High cohesion and low coupling of the components.

3.2 Interface Specification

Having an informal description of the pattern, we apply the techniques described in Sect. 2.1 to formalize
the specification. As a first step, the syntactic interfaces of the involved component types have to be
formalized. As described in Sect. 2.1, this can be done either graphically by means of configuration
diagrams, or it can be done using interface specification templates. For each interface we specify local,
input and output ports as well as their types.

Example 3 (MVC Interface Specification). As already described in the informal description of the pat-
tern, the pattern consists of three types of components: Model, View, and Controller components.
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ISpec Model uses Array
loc: service_ele, data
in: service, getData
out: output, notificate
service, service_ele : −1 . . .2
data, output : array 0 . . .2 of 0 . . .10
getData, notificate : bool

Figure 3: Model Interface Specification.

ISpec View uses Array
loc: view_data, view_ele
in: notification, model_data, element
out: getData
view_data : 0 . . .10
view_ele, element : 0 . . .2
model_data : array 0 . . .2 of 0 . . .10
notification, getData : bool

Figure 4: View Interface Specification.

ISpec Controller
loc: event_actual
in: contr_id, random
out: service
event_actual, service : −1 . . .2
contr_id, random: 0 . . .3

Figure 5: Controller Interface Specification.

Figure 3 provides a formal specification of the in-
terface for Model components. Each Model has
two local ports: data to store all the data and ser-
vice_ele to store the name of the currently running
service. It receives a service call through the ser-
vice input port and a request to deliver the current
data state through the getData input port. More-
over, it provides its data through the output out-
put port and notifies its environment about data
changes through its notificate output port.
In Fig. 4 we provide a formal specification of the
interface for view components. A view compo-
nent stores its data in a corresponding local port
named view_data. Since we have more compo-
nents of type view, each view has an associated
identifier which is stored in local port view_ele
and which is set at the beginning through its ele-
ment input port. Moreover, it gets notified about
data updates and receives them through the no-
tification and model_data input ports. Finally, it
requests new data from the model through its get-
Data output port.
Figure 5 provides a specification of interfaces for
controller components. The event a controller is
currently working on is stored in the event_actual
local port. Again, each controller has a unique
identifier which it receives through the corre-
sponding contr_id input port. Through its random
input port, a controller receives a notification about the occurrence of an event. The corresponding
service invocation is then communicated through its service output port.

Having a formal specification of the components interfaces allows now to specify the behavior of a
component type as well as the claimed guarantees over these interfaces.

3.3 Model of the Pattern

The behavior of the different component types is modeled using traditional mealy state machines. Thereby,
each component type consists of a set of control states of which one is active at each point in time. State
changes are triggered by valuations of a component’s input ports and may result in valuations of compo-
nent output ports as well as in a change of the currently active control state.

Example 4 (MVC Behavior Specification). In the following we specify the abstract behavior of model,
view, and controller components, respectively.



22 Model Checking Patterns of Dynamic Architectures

updatestart notifi-
cation

(1,2)

(3,4)

(5,6)

Figure 6: Model behavior.
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Figure 6 provides a specification of the behavior of
model components. It is initialized (start) by setting
service_ele to −1 and initializing its data store data. If
it gets a service!=−1 it outputs a notificate=false event,
sets service_ele=service, and changes to control state
notification. Thereby, depending on the valuation of its
getData input port, it returns either an empty output (1)
or a copy of data on its output port (2). In control state
notification, a model immediately changes back to up-
date. Thereby it changes its data store data[service_ele]
depending on the effects of the service call and noti-
fies its environment about this changes by setting no-
tificate=true. Again, depending on the valuation of its
getData port it returns either an empty output (3) or a
copy of data on its output port (4). Finally, in control
state update again, it waits for incoming data requests
and depending on the valuation of its getData port it
returns either an empty output (5) or a copy of data on
its output port (6).
The behavior of components of type view is described
by the state machine depicted in Fig. 7. A view com-
ponent is initialized (start) with a unique identifier, re-
ceived through its element input port and stored in the
view_ele local port. It starts in control state busy
where it immediately changes to the idle state, out-
puts a request to receive data by setting getData=true,
and updates its local data store accordingly by set-
ting view_data=model_data[view_ele] (1). It remains
idle until it gets notified about a data-change from the
model (2). After getting notified through its input port
notification, a view changes again its control state back to its initial state busy (3).
Finally, Fig. 8 models the behavior of a controller component. Similar as a view, a controller gets
initialized (start) by an identifier. It then continuously generates events which it forwards to the model
by sending a corresponding service identifier through its output port service (1).

3.4 Specify Constraints

As a next step, one can start to formalize the claims identified in Sect. 3.1 over the formal interface
specification developed in Sect. 3.2. Therefore, one can again leverage the methods and techniques
presented in Sect. 2.

Example 5 (MVC Guarantee Specification). In Ex. 2 we identified several claims made about a system
build in a MVC pattern. In the following we use a so-called configuration trace assertion template to
formalize some of these guarantees of the MVC pattern.
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Spec MVC uses Array
var m : Model

v : View
c : Controller

�
(

c.service 6=−1 =⇒ ∀v :
(
♦(v.getData)

))
(1)

�
(

x = m.data[v.view_ele] =⇒ ♦
(
v.view_Data = x

))
(2)

Figure 9: Specification of MVC guarantees.

Figure 9 provides a formal speci-
fication of two properties for MVC
Architectures. Eq. (1) requires that
whenever a controller executes a
service (in response to a user event),
the views will at some point in the
future request an update of their data.
Eq. (2), on the other hand, requires
data consistency of the model and the
views, i.e., that the data in the views is
always updated according to their corresponding data in the model.

3.5 Verification

In the last step we apply model checking to verify the guarantees against the model of the pattern. First,
the interface specification developed in Sect. 3.2 is used to build a corresponding NuSMV structure.
Then, the model of the pattern developed in Sect. 3.3 is systematically translated to a corresponding
NuSMV model. Finally, the specification of the pattern guarantees developed in Sect. 3.4 are transferred
to a corresponding LTL specification in NuSMV and verified against the model.

3.5.1 Translate Interfaces

The specification of a pattern’s interfaces is used to develop a raw structure of the NuSMV model. The
general structure of a NuSMV module consists of a VAR, ASSIGN and DEFINE part. Algorithm 1
describes the systematic translation of a pattern’s interface specification to a NuSMV raw structure.

3.5.2 Translate Model

In the next step, the NuSMV template is enhanced using the specification of component type behavior.
Algorithm 2 describes the systematic translation of a behavioral specification to a corresponding NuSMV
pattern template.

Algorithm 1 Translate Interfaces to NuSMV
Require: interface specification of component types

1: create a new NuSMV-File with one main module
2: for all interface specifications is do
3: create a new module for is
4: for all input ports ip of is do
5: create module parameter for ip
6: end for
7: for all local ports lp of is do
8: create module variable for lp
9: end for

10: for all output ports op of is do
11: create variable in DEFINE part for op
12: end for
13: end for
14: return NuSMV template for the pattern

Algorithm 2 Translate Model to NuSMV
Require: NuSMV template + model (state machines)

1: for all component types ct do
2: create variable controlState with entries for

each control state in ct’s VAR part
3: define initial states of all local variables in ct’s

ASSIGN part
4: encode state machine using next statements in

cts ASSIGN part
5: define the valuation of output variables in the

ct’s DEFINE part
6: end for
7: return enhanced NuSMV model with logic for all

component type modules
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Finally, the concrete architecture is configured in module main. First, components are instantiated and
then, the configuration is encoded by connecting output ports (variables in DEFINE part) to correspond-
ing input ports (module parameters) of the corresponding components.

3.5.3 Translate Pattern Guarantees

Now, as the NuSMV model is complete, we translate the guarantees formalized in Sect. 3.4 to corre-
sponding NuSMV LTL specifications.

Example 6 (Verifying the MVC pattern). Listing 1 shows the NuSMV code resulting by applying Alg. 1
and Alg. 2 to the specifications developed in Ex. 3 and Ex. 4.

Listing 1: NuSMV code for module model.
MODULE model ( se rv ice , getData )
VAR

c o n t r o l S t a t e : {Update , N o t i f i c a t i o n } ;
s e r v i c e _ e l e : −1..2;
da ta : a r ray 0 . . 2 of 0 . . 1 0 ;

ASSIGN
i n i t ( c o n t r o l S t a t e ) := Update ;
i n i t ( s e r v i c e _ e l e ) := −1;
i n i t ( da ta [ 0 ] ) := 7;
i n i t ( da ta [ 1 ] ) := 5;
i n i t ( da ta [ 2 ] ) := 3;
next ( c o n t r o l S t a t e ) := case

c o n t r o l S t a t e =Update & s e r v i c e != −1 : N o t i f i c a t i o n ;
TRUE : Update ;

esac ;
next ( s e r v i c e _ e l e ) := s e r v i c e ;

next ( da ta [ 0 ] ) : = case
c o n t r o l S t a t e = N o t i f i c a t i o n & s e r v i c e _ e l e = 0 : ( data [0 ] + 7) mod 10;
TRUE : data [ 0 ] ;

esac ;
next ( da ta [ 1 ] ) : = case

c o n t r o l S t a t e = N o t i f i c a t i o n & s e r v i c e _ e l e = 1 : ( data [1 ] + 5) mod 10;
TRUE : data [ 1 ] ;

esac ;
next ( da ta [ 2 ] ) : = case

c o n t r o l S t a t e = N o t i f i c a t i o n & s e r v i c e _ e l e = 2 : ( data [2 ] + 3) mod 10;
TRUE : data [ 2 ] ;

esac ;
DEFINE

output := case
getData : da ta ;
TRUE : output_empty ;

esac ;
output_empty := [−1,−1,−1];
n o t i f a c t e := case

c o n t r o l S t a t e = N o t i f i c a t i o n : TRUE;
TRUE : FALSE;

esac ;
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Similarly, the models for view and controller components are translated to NuSMV.
As a next step, the main module is build to coordinate the different modules. Listing 2 depicts the

corresponding NuSMV code.

Listing 2: NuSMV code for module main.
MODULE main
VAR

view1 : view ( model . n o t i f a c t e , model . output , 0 ) ;
c o n t r o l l e r 1 : c o n t r o l l e r (1 , random ) ;
view2 : view ( model . n o t i f a c t e , model . output , 1 ) ;
c o n t r o l l e r 2 : c o n t r o l l e r (2 , random ) ;
view3 : view ( model . n o t i f a c t e , model . output , 2 ) ;
c o n t r o l l e r 3 : c o n t r o l l e r (3 , random ) ;
model : model ( se rv ice , getData ) ;
random : 0 . . 3 ;

ASSIGN
i n i t ( random ) := 0;
next ( random ) := {1 ,2 ,3};

DEFINE
s e r v i c e := c o n t r o l l e r 1 . s e r v i c e + c o n t r o l l e r 2 . s e r v i c e + c o n t r o l l e r 3 . s e r v i c e + 2;
getData := view1 . getData | view2 . getData | view3 . getData ;

The main module is instantiating the components in the VAR part. It passes to every component the
needed parameter. Most of them are output variables from the other components, but for example the
IDs are passed as a static numeric. In the VAR part we also find a variable random. The random variable
is necessary to decide which of the controllers is allowed to invoke a service in the model. Without this
restriction multiple controllers could invoke a service even though the model can only handle one call.
In the DEFINE section we see a service and a getData variable. service indicates which service is called
and getData whether a view is requesting an update of the data.

Finally, the specification of the guarantees developed in Ex.5 is translated to a corresponding LTL
specification in NuSMV (Listing 3).

Listing 3: LTL Specification
LTLSPEC G ( ( c o n t r o l l e r 1 . s e r v i c e + c o n t r o l l e r 2 . s e r v i c e + c o n t r o l l e r 3 . s e r v i c e )> −3)
−> (F view1 . getData ) & (F view2 . getData ) & (F view3 . getData )

LTLSPEC G model . da ta [ view1 . view_ele ] = 0 −> F view1 . view_data = 0
LTLSPEC G model . da ta [ view2 . view_ele ] = 0 −> F view2 . view_data = 0
. . .

4 Results

We applied the approach to formalize and verify three contemporary patterns for dynamic architectures:
The Singleton, the MVC, and the Broker pattern. Table 1 provides an overview of our results1. In the
following we discuss them in more detail.

1All the corresponding NuSMVscripts can be downloaded at http://www.marmsoler.com/mc/.

http://www.marmsoler.com/mc/
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Table 1: Analysis Results.

Pattern Prop. Type Description

Singleton S1 liveness whenever an instance is required it is returned eventually
S2 safety at every time, there is only one component of type singleton active

MVC M1 liveness views are eventually updated with user events observed by controllers
M2 liveness the data of model and view are eventually in a consistent state

Broker B1 liveness every service requires from a client is eventually executed by some server
B2 liveness a server requests to registered for a broker eventually results in a registration

4.1 Singleton

As shown in Tab. 1, we verified two common properties for the Singleton pattern. Finding S1 ensures
that architectures applying the pattern are guaranteed to eventually activate a singleton if required. One
observation we found during analysis is that the time required to access a singleton component may vary
depending on whether it was the first access to the component or a subsequent access. This is because
the first access usually requires to newly instantiate the singleton which requires some time.

The second finding S2 states another characteristic property of the Singleton pattern: Each architec-
ture applying the pattern is guaranteed to have at most one active component of type singleton. During
the analysis of this property, we found that there might be different interpretations of the pattern. First,
the condition that there can only be one instance, can be interpreted as one instance which is activated
every time or as maximal one instance (i. e. none or one). Another question that arises is whether the
changing instance needs to be always the same or whether it is allowed to change over time.

4.2 MVC

Table 1 shows the properties verified for the MVC pattern. The first property M1 ensures that whenever
an event is registered by the controller, all the views request a new copy of their data from the model. It
is important that the views should be initialized in the idle state instead of the busy state since they need
to request the model data at the beginning.

Finding M2 ensures consistency of the data from the views with the data from the model. It states
that whenever data changes in the model, the corresponding data in the view is eventually updated.

4.3 Broker

As shown in Tab. 1, we investigated two properties for the Broker pattern. Finding B1 states that each
service requested by a client is eventually executed by some of the servers. Thereby, the client commu-
nicates only with the broker and does not have to know where the service is actually executed.

Finally, finding B2 ensures that a server which wants to be registered to the broker, is guaranteed to
be eventually registered. This is important to guarantee that the services of a registered server can be
accessed by the clients.

In order to not complicate the pattern, we did not incorporate a bridge component and stick to one
unique broker component. Our investigation suggests that there are different possibilities to implement
the pattern. With our implementation every request is handled for sure, but only because the requesting
itself is restricted. In practice, the client, the broker, and the server usually execute in different locations,
which is why the information also has to be marshalled and un-marshalled.
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Table 2: Computational effort.

Pattern Lines of Code LTL Specs LTL average LTL total #Variables #Components

Singleton 68 2 25 ms 50 ms 10 1
MVC 89 30 30 ms 1500 ms 15 4

Broker 309 6 1000 ms 6000 ms 42 6

5 Discussion

In the following section we summarize our experience with using model checking techniques to investi-
gate patterns for dynamic architectures.

In general, we found that pattern specifications are usually underspecified in literature and that many
different interpretations are possible where only some of them lead to the desired properties. Consider,
for example, the Singleton pattern where there is ambiguity in whether the instance has to be active all
time or can get deactivated and another instance can get active. We see our approach as helpful for
architects to find and tackle these questions.

Scalability When it comes to formal methods, scalability is sometimes considered a critical issue.
We tried to overcome this problem by raising the level of abstraction of our analyses. By investigating
patterns, rather than concrete architectures, we concentrate on the architecturally important aspects and
thus reduce complexity of the analyses.

Table 2 shows the computational effort to perform our analyses on a standard notebook. The table
shows that the computational effort for single as well as for medium complicated patterns (Singleton
and MVC) is very low (25 ms and 30 ms, respectively). Note that the Broker pattern is actually one of
the more complex patterns documented in literature. However, we can see that also for this pattern the
computational effort to analysis is rather low (1000 ms).
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Figure 10: Effort applying the approach.

Effort Another problem usually mentioned in
formal methods is the required effort. Figure 10
provides an overview of the effort needed to per-
form the analyses described in the papera. We can
see that the relative effort strongly decreased with
growing experience. Indeed, after some experi-
ence, also relatively complex patterns (e.g. the
Broker pattern) can be analyzed with a reasonable
amount of effort (1 PM).
Again we would like to point out the impact of the
effort. Since the results are at pattern level, the
impact is high since it influences every concrete
architecture implemented in a certain pattern.

aAll analyses were conducted by the same person. The person had a computer science background with no experience of
using Model checking techniques so far.
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Quality attributes. A last point which needs to be discussed in more detail regards an important aspect
of software architectures in general. Our approach does actually not provide means to directly specify
quality attributes such as performance, availability, etc. However, as our example shows, it allows us to
specify the technical realization of such aspects. For example, finding S2 of the Singleton pattern can be
used to ensure an upper bound of active components at each point in time. This could be actually seen
as a possible realization of one aspect of efficiency.

6 Related Work

Recently, some approaches emerged which focus on the verification of software architectures and ar-
chitecture patterns. They can roughly be classified into two main groups: automatic and interactive
verification.

6.1 Interactive Pattern Verification

Work in this area applies interactive theorem proving (ITP) to pattern verification. One example comes
from Marmsoler and Gleirscher [28] who apply the Isabelle/HOL ITP to investigate patterns for dynamic
architectures. While interactive approaches are very expressive, they usually require manual interaction
for verification. Thus, with our approach we actually complement work in this area by providing an
alternative to verify certain properties automatically.

6.2 Automatic Pattern Verification

Work in this area applies automatic techniques to pattern verification. One example of work in this area
comes from Kim and Garlan [21] who apply the Alloy [20] analyzer to automatically verify architectural
styles specified in ACME [18]. A similar approach comes from Wong et al. [38] which also applies Alloy
to the verification of architecture models. In contrary to this work, however, both approaches are using
the Alloy Analyzer, which is based on SAT-solving whereas we are using model checking with focus on
LTL formulae.

Another related approach in this area comes from Wirsing et al. [14] where the authors apply rewrit-
ing logic to specify and verify cloud-based architectures. Again, the authors apply rewriting logic
whereas the focus of this work was to investigate the feasibility of model checking technologies.

Finally, Zhang et al. [39] applied model checking techniques to verify architectural styles formulated
in Wright#, an extension of Wright [3]. However, whereas their work focuses on strictly static patterns,
in this work we aim to support dynamic architectures, as well.

Indeed, to the best of our knowledge this is the first attempt to apply model checking to the verifica-
tion of patterns for dynamic architectures.

7 Conclusion
With this paper we report on our experience of applying model checking for the verification of patterns
for dynamic architectures. To this end, we first describe a 5-step approach to systematically formalize
a pattern and its corresponding guarantees and employ model checking to verify the guarantees against
the model of the pattern. Then, we apply the approach to investigate 3 commonly used patterns: the
Singleton, the Model-View-Controller, and the Broker pattern. For each pattern, we formalized and
verified two characteristic properties.
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We found that patterns (also well-known once) are usually underspecified in literature and that many
different interpretations are possible where only some of them lead to the promised guarantees. Thus,
we conclude that the proposed approach is useful since it helps to discover such ambiguities. Moreover,
our work shows that the approach is feasible also for relatively complex patterns (such as the Broker
pattern). The additional effort is justified by the general nature of the results: each result at pattern level
applies to every architecture applying the pattern.

We envisage three possible implications of our results: (i) Analysis of existing patterns: our approach
can be used to specify and analyze existing patterns and uncover ambiguities and flaws in their speci-
fication. (ii) Design of new patterns: the approach can also be applied to help in the design of new
patterns. A pattern can be formally specified and then be verified by the designer without even requiring
an implementation thereof. (iii) Pattern conformance analysis: the formal pattern specifications may be
used to help verifying that an architecture indeed implements a certain pattern. For example, the abstract
model of the Singleton pattern provided in Ex. 4 may be used to check whether a concrete architecture
indeed implements this pattern. In turn it is guaranteed that the architecture fulfills the desired guarantee
provided in Ex. 5. To support these implications, future work is needed in two major areas: First, the
approach should be applied to formalize and analyze further patterns (existing ones as well as new ones).
Then, the results should be incorporated into tools to support in the (possible automatic) verification of
pattern conformance.
Acknowledgments. We would like to thank Manfred Broy, Vasileios Koutsoumpas and all the anony-
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