
J. Kofroň, J. Tumova (Eds.): Formal Engineering approaches
to Software Components and Architectures (FESCA’17)
EPTCS 245, 2017, pp. 52–66, doi:10.4204/EPTCS.245.5

Checking Properties along Multiple
Reconfiguration Paths for Component-Based Systems

Jean-Michel Hufflen
FEMTO-ST (UMR CNRS 6174) & University of Burgundy Franche-Comté

16, route de Gray; 25030 Besançon Cedex; France
jmhuffle@femto-st.fr

Reconfiguration paths are used to express sequences of successive reconfiguration operations within
a component-based approach allowing dynamic reconfigurations. We use constructs from regular
expressions—in particular, alternatives—to introduce multiple reconfiguration paths. We show how
to put into action procedures allowing architectural, event, and temporal properties to be proved.
Our method, related to finite state automata and using marking techniques, generalises what we did
within previous work, where the regular expressions we processed were more restricted. But we can
only deal with a subset of first-order logic formulas.
Keywords Component-based approach, dynamic reconfiguration paths, multiple reconfiguration
paths, checking invariance properties, finite state automata, marking techniques.

1 Introduction

Dynamic reconfigurations of software architectures are active research topics [1, 3, 5, 19, 20, 21, 18, 25].
They provide large increase in value for component-based software. Such an approach allows some
components to be replaced or removed, in particular if they fail. In order to provide more services, more
components may be added dynamically, too. So dynamic reconfigurations increase the availability and
reliability of such systems by allowing their architecture to evolve at run-time.

The work presented hereafter is an extension of [14], which addresses the verification of architec-
tural, event, or temporal properties. Such properties may be crucial for systems with high-safety re-
quirements. About the definition of such properties, [9] proposes FTPL1, a temporal logic for dynamic
reconfigurations applied to components defined by means of the Fractal toolbox [4] and including such
properties. FTPL allows successive reconfigurations—modelled by reconfiguration paths—to be applied
to successive configurations (or component models). Since FTPL is based on first-order predicate logic,
such properties are undecidable in general, there only exist partial solutions for proving them.

Many authors developed methods that work whilst software is running and may be reconfigured—
e.g., [17, 18], based on FTPL, or [12] as another example. Therefore we know if a property holds for
the successive members of a chain of reconfigurations, until the current run-time state. Our method
is very different, more related to the approach of a procedure’s developer when such a developer aims
to prove its procedure before deploying it and putting it into action. In fact, we do not verify such
properties at run-time, but on a static abstraction of the reconfiguration model, so we aim to ensure that
such a property holds before the software is deployed and working, that is, at design-time. Of course, we
cannot consider reconfigurations caused by totally unexpected events but we think that our approach is
complementary to such works, our goal is to go as far as possible within this static approach. In [14], we
proposed a method based on this point of view and using marking techniques related to model-checking:

1Fractal Temporal Pattern Logic.

http://dx.doi.org/10.4204/EPTCS.245.5

J.-M. Hufflen 53

given a reconfiguration path that may be applied when the software is running, we aimed to ensure that a
property holds if this path is actually applied when the software works. We were able to deal with some
cases of infinite reconfiguration paths, but we only processed one possible reconfiguration path. Dealing
with only one path is not restrictive for methods applied at run-time, whilst the software is working,
but is rather limited at design-time, where several possible futures could be studied. In the present
article, we propose the new notion of multiple reconfiguration paths, which are expressions denoting
several possible reconfiguration processes. However, this extension has a price: the correctness of our
new implementations—w.r.t. the definitions of [9]—is guaranteed only for a strict subset of formulas, in
comparison with formulas used within [14].

Section 2 gives some recalls about the component model we use, our operations of reconfiguration,
and the temporal logic for dynamic reconfigurations. Of course, most definitions presented in this section
come from [9, 10, 11, 17]. Section 3 precisely introduces our notion of multiple reconfiguration path and
Section 4 recalls the organisation of our framework. Then we give updated versions of our programs in
Section 5 and study the correctness of these implementations w.r.t. the operators defined in Section 2. We
do not examine all the operators, but our examples are representative: implementation techniques and
correctness proofs are analogous. Section 6 discusses some advantages and drawbacks of our method,
in comparison with other approaches. It also introduces future work. In order for this article to be self-
contained, most of the definitions put hereafter are identical to [14]’s. Readers familiar with that article
can skip Section 2—except for the definition of the CP[set—and § 4.1.

2 Architectural Reconfiguration Model

First we recall how our component model is organised. Then we sum up the operations used for re-
configuring an architecture. Last, we make precise operators used in FTPL, the temporal logic used in
[9, 10, 11, 17] for dynamic reconfigurations.

2.1 Component Model

Roughly speaking, a component model describes an architecture of components. Some simpler compo-
nents may be subcomponents of a composite one, and components may be linked. Let S be a set of type
names 2, a component C is defined by:

• three pairwise-disjoint sets of parameters3 PC , input port names IC , and output port names OC ;

• the class tC encompassing the services implemented by the component;

• additional functions to get access to the class of a parameter or port (τC : PC ∪ IC ∪OC →S), or
to a parameter’s value (vC : PC →

⋃
s∈S s);

• the set sub-cC of its subcomponents if the C component is composite4;

• the set B of bindings of ports—that is, couples of input and input port names, being the same
type, and the set D of delegation links, between composite component ports and port of contained
components.

2. . . or class names within an object-oriented approach.
3Some authors use the term ‘attributes’ instead. A parameter is related to an internal feature, e.g., the maximum number of

messages a component can process.
4Of course, the binary relation ‘is a subcomponent of’ must be a direct acyclic graph. A composite component cannot have

parameters. More precisely, it implicitly has the parameters of all its sub-components.

54 Checking Properties along Multiple Reconfiguration Paths for Component-Based Systems

HttpServer

httpRequest

RequestHandler
(deviation, load)

handler getDispatcher

getCacheRequestReceiver

request getHandler

RequestDispatcher

dispatcher getServer

CacheHandler
(validityDuration,

memorySize)

cache
FileServer2

server2

FileServer1
server1

Figure 1: Component-based architecture of an HTTP server [11].

Possible components of an HTTP server are given in Fig. 1, as an example of a component-based
architecture, already used in [6]. Requests are read by the RequestReceiver component and transmitted
to the RequestHandler component. When the latter processes a request, it may consult the cache by
means of the CacheHandler component or transmit this request to the RequestDispatcher component,
which manages file servers. This architecture is based on a cache and load balancer, in order for response
times to be as short as possible. The cache must be used only if the number of similar requests is very
high, and the amount of memory devoted to the cache component must be automatically adjusted to the
Web server’s load. The validity duration of the data put in the cache must also be adjusted with respect
to the Web server’s load. In addition, more data servers have to be deployed if the servers’ average
load is high. According to these conventions, we see that some components may be added or removed,
depending on some parameters.

2.2 Configuration Properties

Example 1 Looking at Fig. 1’s architecture, we can notice that the CacheHandler component is con-
nected to the RequestHandler component through their respective ports cache and getCache. We can
express this configuration property—so-called CacheConnected—as follows:

B 3 (cacheCacheHandler,getCacheRequestHandler)

In fact, such properties—that may be viewed as constraints—are specified using first-order logic
formulas over constants (‘true’, ‘false’), variables, sets and functions defined in § 2.1, predicates
(=,∈, . . .), connectors (∧,∨, . . .) and quantifiers (∀,∃). These configuration properties form a set denoted
by CP. The subset CP[is build analogously, but connectors and quantifiers are restricted to ∧ and ∀.
Roughly speaking, formulas belonging to CP[are comparable to premises of Horn clauses within logic
programming.

2.3 Reconfiguration Operations

Primitive reconfiguration operations apply to a component architecture, and the output is a component
architecture, too5. They are the addition or removal of a component, the addition or removal of a binding,
the update of a parameter’s value. Let us notice that the result of such an operation is consistent from a

5They may be viewed as graph transformations applied to component models if we consider such models as graphs.

J.-M. Hufflen 55

c0 c1run c�1Remove
CacheHandler

c2
Add

CacheHandler

c3
Memory
SizeUp

c�3run
c4

Add
FileServer

c5
Duration

ValidityUp

HttpServer

Request
Receiver

Request
Handler

Request
Dispatcher

File
Server1

HttpServer

Request
Receiver

Request
Handler

Request
Dispatcher

Cache
Handler

File
Server1

File
Server2HttpServer

Request
Receiver

Request
Handler

Request
Dispatcher

Cache
Handler

File
Server1

Figure 2: Part of an evolution path of Fig. 1’s HTTP server architecture [11].

point of view related to software architecture: for example, a component is stopped before it is removed,
and removing it causes all of its bindings to be removed, too. These operations are robust in the sense
that they behave like the identity function if the corresponding operation cannot be performed. For
example, if you try to remove a component not included in an architecture, the original architecture
will be returned. The same if you try to add a component already included in the architecture6. As
a consequence, these topological operations—addition or removal of a component or a binding—are
idempotent: applying such an operation twice results in the same effect than applying it once. General
reconfiguration operations on an architecture are combinations of primitive ones, and form a set denoted
by R. The set of evolution operations is Rrun = R∪{run} where run is an action modelling that all the
stopped components are restarted and the software is running7.

Definition 2 ([10, 17]) The operational semantics of component systems with reconfigurations is de-
fined by the labelled transition system S = 〈C,C0,Rrun,→, l〉 where C = {c,c1,c2, . . .} is a set of
configurations—or component models—C0 ⊆ C is a set of initial configurations, Rrun is a finite set of
evolution operations,→⊆C×Rrun×C is the reconfiguration relation, and l : C→CP is a total function
to label each c ∈C with the largest conjunction of cp ∈ CP evaluated to ‘true’ over Rrun.

Let us note c
op→ c′ when a target configuration c′ is reached from a configuration c by an evolution

op ∈ Rrun. Given the model S = 〈C,C0,Rrun,→, l〉, an evolution path σ of S is a (possibly infinite)
sequence of component models c0,c1,c2, . . . such that ∀i ∈ N,∃op ∈ Rrun,ci

op→ ci+1 ∈ →. We write
‘σ [i]’ to denote the ith element of a path σ , if this element exists. The notation ‘σ↑i ’ denotes the suffix
path σ [i],σ [i+ 1], . . . and ‘σ j

i ’ (j ∈ N) denotes the segment path σ [i],σ [i+ 1], . . . ,σ [j− 1],σ [j]. An
example of evolution path allowing Fig. 1 to be reached from a simpler architecture is given in Fig. 2
(Fig. 1’s architecture is labelled by the c4 configuration).

2.4 Temporal Logic

FTPL deals with events from reconfiguration operations, trace properties, and temporal properties, respec-
tively denoted by ‘event’, ‘trace’, and ‘temp’ in the following. Hereafter we only give some operators of

6The reason: the name of a component—part of its definition—can only identify one component. But you can clone a
component under a new name.

7Strictly speaking, we have to stop a component before removing it, and to start it before having added it, as abovemen-
tioned. This convention about the run action allows us not to be worried about such stop and start operations within our
reconfiguration paths.

56 Checking Properties along Multiple Reconfiguration Paths for Component-Based Systems

FTPL, in particular those used in the implementations we describe. For more details about this temporal
logic, see [10, 17]. FTPL’s syntax is defined by:

〈temp〉 ::= after 〈event〉 〈temp〉 | before 〈event〉 〈trace〉 | . . .
〈trace〉 ::= always cp | eventually cp | . . .
〈event〉 ::= op normal | op exceptional | op terminates

where ‘cp’ is a configuration property and ‘op’ a reconfiguration operation. Let cp in CP be a configura-
tion property and c a configuration, c satisfies cp, written ‘c |= cp’ when l(c)⇒ cp. Otherwise, we write
‘c 6|= cp’ when c does not satisfy cp.

Definition 3 ([10]) Let σ be an evolution path, the FTPL semantics is defined by induction on the form
of the formulas as follows8—in the following, i ∈ N—:

• for the events:

σ [i] |= op normal if i > 0∧σ [i−1] 6= σ [i]∧σ [i−1]
op→ σ [i] ∈→

σ [i] |= op exceptional if i > 0∧σ [i−1] = σ [i]∧σ [i−1]
op→ σ [i] ∈→

σ [i] |= op terminates if σ [i] |= op normal∨σ [i] |= op exceptional

• for the trace properties:

σ |= always cp if ∀i : i≥ 0⇒ σ [i] |= cp
σ |= eventually cp if ∃i : i≥ 0⇒ σ [i] |= cp

• for the temporal properties:

σ |= after event temp if ∀i : i≥ 0∧σ [i] |= event⇒ σ
↑
i |= temp

σ |= before event trace if ∀i : i > 0∧σ [i] |= event⇒ σ
i−1
0 |= trace

Example 4 If we consider the evolution path of Fig. 2 again, we can now express that after calling the
AddCacheHandler reconfiguration operation, the CacheHandler component is always connected to the
RequestHandler component—CacheConnected is the configuration property defined in Example 1—:

after AddCacheHandler normal always CacheConnected

Remark 5 About temporal and trace properties, let us notice that if such a property holds on an evolu-
tion path, it holds on any prefix of this path.

3 Multiple Reconfiguration Paths

Definition 6 Let Rrun be a set of evolution operations, a reconfiguration path is a sequence of elements
of Rrun, and the set ΩRrun of multiple reconfiguration paths on Rrun is the set of regular expressions
built over the alphabet Rrun. Let us recall that the constructs used within regular expressions are ‘|’ for
alternatives, ‘?’ for an optional occurrence of an alphabet’s member, ‘*’ (resp. ‘+’) for zero (resp. one)
or more occurrences of such a member. Semantically, a multiple reconfiguration path is the set of all the
prefixes of all the reconfiguration paths denoted by this regular expression.

Example 7 The following multiple reconfiguration path:

8For a complete definition including all the operators, see [10].

J.-M. Hufflen 57

��
��

��
��

��
��

��
��

��
��

��
��

��
��
��
��

��
��

��
��

��
��

q0

q1 q′1 q2 q3 q′3 q4

q7

q5 q6 q8

?
- - - - -

�

-

J
J
JĴ

- -� �� �6

ru
n

R
em

ov
eC

ac
he

H
an

dl
er

A
dd

C
ac

he
H

an
dl

er

M
em

or
yS

iz
eU

p

ru
n

D
..

.
A
dd

Fi
le

Se
rv

er

A
..

.
D

ur
at

io
nV

al
id

ity
U

p

ru
n

A
dd

Fi
le

Se
rv

er

DeleteFileServer

Figure 3: Automaton for a multiple reconfiguration path.

run RemoveCacheHandler AddCacheHandler
(MemorySizeUp run
(AddFileServer DurationValidityUp | DurationValidityUp AddFileServer) run?
DeleteFileServer)+ AddFileServer

includes the chain of reconfigurations pictured at Fig. 2.

Remark 8 Let us recall that a reconfiguration path may be infinite. Looking at Ex. 7, we consider
that the ‘(...)+’ expression can be iterated a finite number of times, followed by the AddFileServer
operation; another possible behaviour is an endless iteration of the ‘(...)+’ expression. We encompass
all these possible behaviours by considering prefixes, as mentioned in Def. 6.

It is well-known for many years—since Kleene’s theorem—that a regular expression language can
be recognised by a deterministic finite state automaton, whose transitions are labelled by members of
this language’s alphabet. Let us recall that such an automaton A is defined by a set Q of states, a set L of
transition labels, and a set T ⊆Q×L×Q of transitions. As in Def. 3 for systems with reconfigurations,
there exists a function l : Q→ CP, which labels each q state with the largest conjunction of cp ∈ CP
evaluated to ‘true’ for the q state. As an example, Ex. 7’s language can be recognised by the automaton
pictured in Fig. 3 (the states q0,q1,q′1, . . . ,q5 have been respectively named in connection to the succes-
sive component models c0,c1,c′1, . . . ,c5 of Fig. 2). In addition, let us recall that such an automaton can
be build automatically from a regular expression. In the next section, we explain what our states are, and
which operations are performed by our transitions.

4 Our Method’s Bases

4.1 Modus Operandi

As mentioned above, our framework’s basis is an automaton modelling the possible evolution paths of
a multiple reconfiguration path. A state of such an automaton is a component model, initial or got by
means of successive reconfiguration operations—primitive or built by chaining primitive operations—or
‘run’ operations. A transition consists of applying such an evolution operation. Such an automaton has

58 Checking Properties along Multiple Reconfiguration Paths for Component-Based Systems

an initial state, given by the initial component model (q0 in Fig. 3). Since we aim to recognise all the
prefixes of possible reconfiguration paths, any state may be viewed as final. In addition, since some
infinite behaviours are accepted (e.g., endlessly cycling from the q5 or q6 state to the q2 state in Fig. 3),
there are processes without ‘actual’ final state. In fact, the complete automaton may be viewed as an
ω-automaton. Let us go back to states reached several times—e.g., the q2 state in Fig. 3, reached after q5
and q6—: considering that the whole system is back to a previous state may be not exact, because some
parameters may have been updated: this is the case in Fig. 3’s example, about the memory’s size and
duration validity. As a consequence, some properties related to components’ parameters may not hold.
We will go back on this point at the beginning of § 2.2.

Several programming languages are used within our framework. Fig. 4 shows how tasks are organ-
ised within our architecture—(cp)p∈N being successive component models. In our implementation, the
ADL9 we use for our component models is TACOS+/XML [13]. This language using XML10-like syntax
is comparable with other ADLs, in particular Fractal/ADL [4], but we mention that the organisation of
TACOS+/XML texts make very easy the programming of primitive reconfiguration operations mentioned
in § 2.3, that is why we chose this ADL, a short example is given in [14]. Reconfigurations operations
are implemented using XSLT11: the input and output are TACOS+/XML files.

cp cp+1- -
? ?

program checking
a property,
returning
true or
false

XSLT
stylesheet

. . .

Figure 4: Our organisation.

When we model that the software is running, only one com-
ponent model is in use, so that may be viewed as the identity
function applied to a component model. In the programs given
below, we compute each component model belonging to a re-
configuration path. For each component model, we may ver-
ify topological properties, e.g., checking that a component or
binding is present. As in [14], these topological properties are
computed by means of XQuery programs [27]. There is no dif-
ficulty about the implementation of reconfiguration operations
and property checks, so the descriptions put hereafter concern
the part implemented by means of automata.

4.2 Types Used

Now we describe our checking functions at a high level. First we make precise the types used, in order
to ease the reading of our functions. The formalism we use is close to type definitions in strong typed
functional programming languages like Standard ML [23] or Haskell [22]. Of course, we assume that
some types used hereafter—e.g., ‘bool’, ‘int’—are predefined. We use the same names than in [14] for
identical notions, and new functions introduced are suffixed by ‘*’ or ‘**’.

As mentioned above, an evolution operation is either the identity function, which expresses that the
software is running, or a reconfiguration operation, which is implemented by applying an XSLT stylesheet
to an XML document and getting the result as another XML document. At a higher-level, such an evolution
operation may be viewed as a function which applies to a component model and returns a component
model. Likewise, checking a property may be viewed as a function which applies to a component model
and returns a boolean value. Assuming that the component-model type has already been defined, we

9Architecture Definition Language.
10eXtensible Markup Language.
11eXtensible Stylesheet Language Transformations, the language of transformations used for XML documents [26]. Let us

note that if another ADL is used within a project, there exist XSLT programs giving equivalent descriptions in TACOS/XML [13].
In particular, that is the case for Fractal/ADL.

J.-M. Hufflen 59

introduce these two function types as:

type evolution-op = component-model → component-model
type check-property = component-model → bool

An event is defined by an evolution operation and a symbol related to this operation’s result (cf. Def. 3):

function event->ev-op : event → evolution-op
function event->termination-s : event → termination-symbol
type termination-symbol = {normal,exceptional,terminates}

This last information is used by a function checking that the component model got by an evolution
operation and the previous component model are equal or different, depending on this symbol12:

function term-check : event → (component-model × component-model → bool)

Let state be the type used for a state of our automata, starting from such a state and a configuration13

is expressed by the following type:

type path-check = state × component-model → bool

The following function yields all the transitions starting from a state:

function t : state → set-of[transition]

the data belonging to a set can be accessed by means of a ‘for’ expression. A transition starts from a
state and returns a state, and the label of such a transition is given by the l function:

type transition = state → state
function l : transition → evolution-op

In the following, we will focus on the constructs ‘after’ and ‘always’. The path-check type is used
within:

function check-after* : evolution-op × path-check → path-check
function check-always* : check-property → path-check

In other words, check-always*(check-p∗)(q,c) applies the check-p∗ function along the q state, the
states reached by transitions originating from q, and so on, starting from the c component model. The
result of this expression is a boolean value. As soon as applying the check-p∗ function yields ‘false’, the
process stops and the result is ‘false’. Likewise, check-after*(e,check-f∗)(q,c) also starts from the
q state and the c component model; it applies the check-f∗ function as soon as the e event is detected
as a transition of the automata. The property related to the check-f∗ function is to be checked for all
the component models resulting from the application of the successive transitions. As a more complete
example, the translation of the formula ‘after e always cp’—where e is an event and cp a configuration
property—is check-after*(e,check-always*(cp)), which is a function that applies on a path, start-
ing from a state and component model. The process starts from the initial state of the automaton. Of
course, there are similar declarations for functions such as check-before* and check-eventually*
(cf. § 2.4).

12Let us recall (cf. Def. 3) that if this symbol is ‘terminates’, no additional checking is performed.
13That is, a component model (see Def. 2).

60 Checking Properties along Multiple Reconfiguration Paths for Component-Based Systems

4.3 Ordering States of Automata

In this section, we introduce some notions related to our automata and used in the following. The states
of our automata modelling multiple reconfiguration paths can be ordered with respect to the transitions
performed before cycling. Let A be an automaton, q0 its initial state, L its set of transition labels, and T
its set of transitions, if q and q′ are two states of A :

q 7→ q′ def⇐⇒ ∃τ ∈ T,∃l ∈ L,τ = (q, l,q′) [By language abuse, we note q′ = τ(q).]

q < q′ def⇐⇒ q = q0∨
{
∃(q1, . . . ,qn,q′1, . . . ,q

′
p),

q0 7→ q1 7→ · · · 7→ qn 7→ q 7→ q′1 7→ · · · 7→ q′p 7→ q′

and q0,q1, . . . ,qn,q,q′1, . . . ,q
′
p,q
′ are pairwise-different. The notation ‘q≤ q′’ stands for ‘q < q′∨q = q′’.

If we consider the A0 automaton pictured at Fig. 3, q0 < q1 < q′1 < q2 < q3 < q′3 < q4 < q5 < q6 < q8
and q′3 < q7 < q5. Obviously, our ‘<’ relation is a partial order.

Remark 9 In fact, we build a binary relation step by step by exploring all the possible paths from the
initial state, until we reach a state previously explored within the same chain, and our ‘<’ function is the
transitive closure of this relation. As a consequence, the transitions which do not satisfy this property
are those going back to a state already explored.

5 Our Method’s Functions

5.1 Our Markers

Our main idea—already expressed in [14]—is quite comparable to the modus operandi of a model-
checker when it checks the successive states of an automaton in the sense that we mark all the successive
states of a multiple reconfiguration path’s automata. The possible values of such a mark are:

unchecked the initial mark for the steps not yet explored within a reconfiguration path;

again if a universal property (for all the members of a suffix path) is being checked, it must be checked
again at this step if it is explored again;

checked the property has already been checked, and no additional check is needed if this step is explored
again.

However, there is a significant difference between [14] and the present work: in [14], one marker was
used for a state. This is impossible here since we have to explore several possible transitions from a same
state. Let us consider the multiple reconfiguration path ((e | op0) op1)+—where e,op0,op1 ∈Rrun with
op0 6= e, op1 6= e—and a property after e always cp. When this regular expression is resumed, there are
two cases: either the e event has been recognised, in which case we have to check the cp property on all
the successive states and cycling is detected after the new application of the e operation, or op0 and op1
have been performed and we are still waiting for the e event. We cannot use the same markers for these
two cases.

The type of the check-after* function is given in § 4.2. In fact, an automaton modelling a multiple
reconfiguration path is pre-processed and its states are marked as unchecked, by means of a new mark,
mark-for-after. Then a recursive function check-after**—being the same type—is launched, reads
and updates this new mark. The check-always* function behaves the same, the recursive function
which is launched is check-always** and the new marker is mark-for-always.

J.-M. Hufflen 61

check-after**(e,check-f∗)(q,c) −→
if mark-for-after(q) == again then true
else // mark-for-after(q) == unchecked

mark-for-after(q) ←− again ; result −→ true ;
for τ in t(q) do

c0←− l(τ)(c) ; q0←− τ(q) ;
result −→ result and

if l(τ) == event->ev-op(e) and event->termination-s(e)(c0,c) then check-f∗(q0,c0)
else check-after**(e,check-f∗)(q0,c0)

end if
end for ;
result ;

end if
end

check-always**(check-p∗)(q,c) −→
check-p∗(c) ∧ if mark-for-always(q) == checked then true

else // mark-for-always(q) ∈ {unchecked,again}
mark-for-always(q) ←− checked ; result ←− true ;
for τ in t(q) do

c0←− l(τ)(c) ; q0←− τ(q) ; result −→ result and check-always**(check-p∗)(q0,c0)
end for ;
result ;

end if ;
end

Figure 5: Checking properties: two implementations.

The implementation of the functions check-after** and check-always** is given in Fig. 5. We
use a high-level functional pseudo-language, except for updating marks, which is done by means of side
effects. A more complete implementation is available at [15], including other features of FTPL, with
similar programming techniques and similar methods for proving the termination of our functions and
the correctness w.r.t. the definitions given in [9, 10].

5.2 Implementations’ Correctness

Concerning the termination of the functions check-after** and check-always**, the proofs are sim-
ilar to those given in [14]. The correctness is also ensured for idempotent reconfiguration operations,
excluding some operations on parameters, but proofs are here more subtle.

5.2.1 Termination

Proposition 10 The function check-after** terminates.

Let q0 be the initial state of our automaton, a principal call of the check-after** function is:

check-after**(e,check-f∗)(q0,c)

where e is an event, check-f∗ a check function being path-check type, c a component model. Recursive
calls of this function satisfy the invariant ∀q j : q0 ≤ q j < qi,mark-for-after(q j) = again when it is
applied to the qi state. The transitions which may be fired from qi are a finite set, so the ‘for’ loop
terminates if for each transition, the process terminates. Let qk be a state reached from qi. If qi < qk, the

62 Checking Properties along Multiple Reconfiguration Paths for Component-Based Systems

invariant holds. If qi 6< qk, then qk is a state already explored14, that is, the next recursive call applies to
a state whose the value of mark-for-after is again. Such a call terminates.

Proposition 11 The function check-always** terminates.

This termination proof is similar: since transitions which may be fired from qi are a finite set, the
‘for’ loop terminates if for each transition, the process terminates. However, let us notice that a pro-
cess launched by the check-always** function may start after the beginning of a cycle, and the cycle
may have to be entered a second time. Globally, two passes may be needed for an expression such
that check-after*(e,check-always*(cp)), where e is a reconfiguration operation and cp a formula.
Before reaching the end of a cycle, the invariant is:

∀q j : q0 ≤ q j < qi,mark-for-always(q j) = checked∨mark-for-always(q j) = again

when the check-always** function is applied to the qi state. Roughly speaking, when a cycle is per-
formed, this mark has been set either to again, in which case the property has to be checked again, or to
checked, in which case our function concludes that the temporal property is true. If the mark has been
set to again, it means that the checking of the temporal property ‘always cp’ had not begun yet; for
example, if we were processing the ‘after’ part of ‘after e always cp’. If re-entering a cycle is needed,
at a q′0 state already explored, the invariant is ∀q j : q′0 ≤ q j < qi,mark-for-always(q j) = checked, qi

being the current state. Let qk a state reached from qi. If qi < qk, the invariant holds. If qi = q′0, this
recursive call of check-always** is performed with the situation:

∀q j : q′0 ≤ q j 6< q′0,mark-for-always(q j) = checked

that is, the check-always function terminates at this next call.

5.2.2 Restrictions on Formulas

Let us recall that in [14], we were able to deal with finite paths and cycles without continuation, that is,
the ‘+’ construct of regular expressions was used only at a final position. In other words, there were no
alternatives. In this previous work, we also mentioned that our modus operandi is suitable if the cycle
of reconfiguration operations is idempotent. Since the composition of two commutative idempotent
functions is idempotent, too, some pairs of reconfiguration operations can be commuted, some consists
of operations which neutralised each other, and globally, most cycles used are globally idempotent.
Concerning our primitive reconfigurations, most of them are idempotent, e.g., a component’s addition
or removal, as well as a binding’s addition or removal. Assigning a constant value to a parameter is
idempotent, but general changes are not, e.g., incrementing or decrementing a parameter.

Of course, this limitation still holds for our revised algorithms. Another limitation exists for alterna-
tive with a common continuation. As a simple counter-example, let us consider the multiple reconfigura-
tion path (op0 | op1) op2. If we process the formula always cp—cp ∈ CP—our algorithm checks the
cp formula at the initial state, then at the result of op0, then at the result of op2 after op0. The result of op1
applied to the initial state is checked, and the process stops because of the mark put at the common state
after op0 and op1. Now let cp be cp0 ∨ cp1—where cp0,cp1 ∈ CP—and let us assume that cp0 ∧¬cp1
(resp. ¬cp0∧ cp1) holds on the result of op0 (resp. op1). If cp1 is always false after applying op2—e.g.,
cp1 may be related to a binding removed by op2—, our method results in an erroneous answer along the
path op1 op2, even it is right for the path op0 op2.

14See Rem. 9.

J.-M. Hufflen 63

Solutions exist. We could restrict alternatives of regular expressions by allowing them only at the top
level. The counter-example above would be rewritten as (op0 op2 | op1 op2), the result of op2—as
a component model—would be checked twice, one time after applying op0, the second after applying
op1. Adopting such a rule would complicate the processing of a multiple reconfiguration path such as
(op0 | op1)+. Another drawback is that a multiple reconfiguration path may contain alternatives for
the corresponding automaton even if the ‘|’ operator is not used explicitly. As an example, let us consider
the multiple reconfiguration path op0 op1? op2. The alternative syntactically appears if we rewrite it by
means of a grammar—S being the axiom, S′ another non-terminal symbol, and ε the empty word—:

S −→ op0 S’ op2 S’ −→ op1 | ε

and an analogous counter-example, based on a logical disjunction, can be found for such a case. This
drawback does not appear if a non-empty cycle is possibly followed by a continuation, that is, in a
multiple reconfiguration path like op0+ op1. If we rewrite this example by means of a grammar:

S −→ op0 S’ S’ −→ op0 S’ | op1

we will see that no common part follows the alternative. This is different if the cycle can be empty. As an
example, the multiple reconfiguration path op0 op1* op2 can be rewritten using the following grammar:

S −→ op0 S’ op2 S’ −→ op1 S’ | ε

and a common part follows the alternative.

From our point of view, the best solution is to restrict formulas to the strict subset CP[defined in
§ 2.2. In other words, the ‘∨’ connector must not be used, the ‘∀’ quantifier—related to that connector—
and the ‘¬’ operator must not, either.

5.2.3 Correctness for Restricted Formulas

Adopting these additional conventions, proving the correctness of our function check-always*—other
functions’ correctness is analogouss—is tedious but not really difficult. We have to examine all the basic
cases of formulas cp ∈ CP[)—e.g., the set membership of a binding—and idempotent reconfiguration
operations op0,op1,op2 to show the following proposition.

Proposition 12 Starting from the same state and the same component model, if the formula always cp—
where cp ∈CP[—holds on the two paths op0 op2 and op1—that is, before and after applying op1—it also
holds on the multiple reconfiguration path (op0 | op1) op2.

By induction, it is easy to prove such a property about longer paths. It is also easy to prove that if this
property holds for the two formulas cp0 and cp1, it also holds for the formula cp0∧ cp1. An analogous
proof exists for the ‘∀’ quantifier. By induction on the number of members of a multiple reconfiguration
path, we can prove this proposition by considering a grammar associated with this path, as we sketch
in § 5.2.2. As a consequence, if a same state is reached along several paths, the property holds and our
function check-always** is correct. Studying the correctness of the function check-after** is easier,
because the possible futures of each path of an alternative are explored independently.

6 Discussion and Future Work

Within the framework sketched at § 4.1, the new versions of our programs have been implemented using
the Java programming language and can be found in [15]. The descriptions of this paper allow us to be

64 Checking Properties along Multiple Reconfiguration Paths for Component-Based Systems

more related to a theoretical model, and to emphasise that our method is close to algorithms based on
marking tehniques and used in model-checking, e.g., [7, 8, 24].

As mentioned in the introduction, our method takes place at design-time. We do not deal with a
language to describe reconfiguration operations and constraints on these operations as an extension of
an ADL, as in [25], we are mainly interested in developing effective methods for verifying properties.
In [14] we were able to deal with a particular case of infinite paths, based on the fact that often the
same sequences are repeated: a component may be stopped in some circumstances, restarted in some
circumstances, and so on. However, it is true that this situation was restrictive and the initial motivation
of the present work was to introduce alternatives within our paths. Such construct would be irrelevant
within methods working at run-time [17, 18], since they observe a process in progress, the history of
reconfiguration operations being known. At design-time, it may be interesting to plan several possible
behaviours, what is new in comparison with [14]. In the present work, we choose to focus on some
efficiency for our algorithms, since common parts are explored once and cycles are explored two times
at most, that is, our algorithms are linear with respect to the automaton’s state number. In other words,
we are able to explore several possible behaviours quite efficiently, but the price to pay is a restriction of
the formulas processed. However, if we look at the examples given within [9, 10, 11, 17], we can think
that our restriction is not too cumbersome in practice.

As mentioned above, other solutions exist, but we wanted our extension to be close to our origi-
nal modus operandi. If we consider a ‘simple’ reconfiguration path, that is, only one transition starts
from each state of the corresponding automaton, we get exactly the programs given in [14]. Yet an-
other work may consider only alternatives without syntactic common continuation—possibly by apply-
ing some transformation rules—or our algorithms could be changed in order to explore more states in
such a case, but this second solution might lead to some combinatorial explosion. Another solution could
be based on branching-time logic for reconfiguration alternatives, whereas the present work is based on
linear-time logic, as in [9, 10, 11, 17]. Other ideas could be based on a connection with the Model Driven
Engineering technical space [2], who would provide more expressive power. Likewise, we could plan a
bridge between our approach and others, closer to a semantic level: for example, [19] models reconfig-
uration operations by means of graph rewriting and uses formal verification techniques along graphs to
check properties related to reconfigurations.

On another point, we are interested in this work in reconfigurations, but not in reasons for these re-
configurations15, most often expressed by reconfiguration policies [6]. In parallel, we are working on an
extension of [14] taking such policies into account [16]. In the future, we plan to integrate reconfiguration
policies into our approach based on mutiple reconfiguration paths.

7 Conclusion

In comparison with methods at run-time, ours may appear as too static, unable to cope with unexpected
situations. Our plan is to investigate as far as possible properties that can be checked at design-time,
in order for a reconfigurable system to be deployed as safely as possible. Our work can be used for
simulations, it may help conceptors design policies involving reconfigurations with good properties. Our
tool is not ready for testing policies, but can be used for testing possible results of policies. We see that
such an approach does not aim to replace works applied at run-time, but to complement them. About
examples such as an HTTP server, we succeeded in proving properties. In other words, we think that our
method can provide some significant help at design-time.

15This is the same in [14].

J.-M. Hufflen 65

Acknowledgements

I am grateful to Olga Kouchnarenko and Arnaud Lanoix, who kindly permitted me to use Figs. 1 & 2.
Many thanks to the anonymous referees, who pointed out some omissions and suggested me constructive
improvement.

References

[1] Robert B. Allen, Rémi Douence & David Garlan (1998): Specifying and Analyzing Dynamic Soft-
ware Architectures. In E. Astesiano, editor: Proc. FASE 1998, LNCS 1382, Springer, pp. 21–37,
doi:10.1007/BFb0053581.

[2] Jean Bézivin (2006): Model Driven Engineering: an Emerging Technical Space. In Ralf Lämmel, Jo ao
Saraiva & Joost Visser, editors: International Summer School GTTSE 2005, revised papers, LNCS 4143,
Springer, Braga, Portugal, pp. 36–64, doi:10.1007/11877028_2.

[3] Marius Bozga, Mohamad Jaber, Nikolaos Maris & Joseph Sifakis (2012): Modelling Dynamic Architectures
Using Dy-BIP. In Thomas Gschwind, Flavio De Paoli, Volker Gruhn & Matthias Book, editors: Proc.
SC 2012, LNCS 7306, Springer, pp. 1–16, doi:10.1007/978-3-642-30564-1_1.

[4] Éric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma & Jean-Bernard Stefani (2006): The
Fractal Component Model and its Support in Java. Software Practice and Experience, special issue on Ex-
periences with Auto-adaptive and Reconfigurable Systems 36(11-12), pp. 1257–1284, doi:10.1002/spe.767.

[5] Roberto Bruni & Ivan Lavanese (2006): PRISMA: a Mobile Calculus with Parametric Synchronization. In
Ugo Montanari, Don Sannella & Roberto Bruni, editors: Proc. TGC 2006, LNCS 4661, Lucca, pp. 132–149,
doi:10.1007/978-3-540-75336-0_9.

[6] Franck Chauvel, Olivier Barais, Isabelle Borne & Jean-Marc Jézéquel (2008): Composition of Qualitative
Adaptation Policies. In: Proc. ASE’08, L’Aquila, Italy, pp. 455–458, doi:10.1109/ASE.2008.72.

[7] Edmund M. Clarke, E. Allen Emerson & A. Prasad Sistla (1986): Automatic Verification of Finite-State
Concurrent System Using Temporal Logic Specifications. ACM Transactions on Programming Languages
and Systems 8(2), pp. 244–263, doi:10.1145/5397.5399.

[8] Edmund M. Clarke, Orna Grumberg & David E. Long (1994): Verification Tools for Finite-State Concurrent
Systems. In Jacobus Willem de Bakker, Willem-Paul de Roever & Grzegorz Rozenberg, editors: A Decade
of Concurrency, Proc. REX School/Symp., LNCS 803, Springer-Verlag, Noordwijkerhout, The Netherlands,
pp. 124–175, doi:10.1007/3-540-58043-3_19.

[9] Julien Dormoy, Olga Kouchnarenko & Arnaud Lanoix (2010): Using Temporal Logic for Dynamic Recon-
figurations of Components. In Luís Soares Barbosa & Markus Lumpe, editors: Proc. FACS 2010, Guimaraes,
Portugal, pp. 200–217, doi:10.1007/978-3-642-27269-1_12.

[10] Julien Dormoy, Olga Kouchnarenko & Arnaud Lanoix (2011): Runtime Verification of Temporal Patterns
for Dynamic Reconfigurations of Components. In Farhad Arbab & Peter Csaba Ölveczky, editors: Proc.
FACS 2011, LNCS 7253, Oslo, Norway, pp. 115–132, doi:10.1007/978-3-642-35743-5_8.

[11] Julien Dormoy, Olga Kouchnarenko & Arnaud Lanoix (2012): When Structural Refinement of Components
Keeps Temporal Properties over Reconfigurations. In Dimitra Giannakopoulou & Dominique Méry, editors:
Proc. FM 2012, LNCS 7436, pp. 171–186, doi:10.1007/978-3-642-32759-9_16.

[12] Yliès Falcone, Mohamad Jaber, Thanh-Hung Nguyen, Marius Bozga & Saddek Bensalem (2011): Runtime
Verification of Component-Based Systems. In Gilles Barthe, Alberto Pardo & Gerardo Schneider, editors:
Proc. SEFM 2011, Lecture Notes in Computer Science 7041, Springer, Montevideo, Uruguay, pp. 204–220,
doi:10.1007/978-3-642-24690-6_15.

http://dx.doi.org/10.1007/BFb0053581
http://dx.doi.org/10.1007/11877028_2
http://dx.doi.org/10.1007/978-3-642-30564-1_1
http://dx.doi.org/10.1002/spe.767
http://dx.doi.org/10.1007/978-3-540-75336-0_9
http://dx.doi.org/10.1109/ASE.2008.72
http://dx.doi.org/10.1145/5397.5399
http://dx.doi.org/10.1007/3-540-58043-3_19
http://dx.doi.org/10.1007/978-3-642-27269-1_12
http://dx.doi.org/10.1007/978-3-642-35743-5_8
http://dx.doi.org/10.1007/978-3-642-32759-9_16
http://dx.doi.org/10.1007/978-3-642-24690-6_15

66 Checking Properties along Multiple Reconfiguration Paths for Component-Based Systems

[13] Jean-Michel Hufflen (2013): A Framework for Handling Non-Functional Properties within a Component-
Based Approach. In José Luiz Fiadero, Zhiming Liu & Jiyun Xue, editors: Proc. FACS 2013, LNCS 8348,
Nánchāng, China, pp. 196–214, doi:10.1007/978-3-319-07602-7_13.

[14] Jean-Michel Hufflen (2015): Using Model-Checking Techniques for Component-Based Systems with Recon-
figurations. In Bara Buhnova, Lucia Happe & Jan Kofroň, editors: Proc. FESCA 2015, EPTCS 178, London,
United Kingdom, pp. 33–46, doi:10.4204/EPTCS.178.4.

[15] Jean-Michel Hufflen (2017): Checking Properties of Component-Based Systems Reconfigured by Means
of Adaptation Policies—The Programs. http://members.femto-st.fr/jean-michel-hufflen/en/
tacos-plus.

[16] Jean-Michel Hufflen (2017): Using Model-Checking Techniques for Studying Reconfiguration Policies of
Component-Based Systems. Working paper.

[17] Olga Kouchnarenko & Jean-François Weber (2013): Adapting Component-Based Systems at Runtime via
Policies with Temporal Patterns. In José Luiz Fiadeiro, Zhiming Liu & Jinyun Xue, editors: Proc. FACS 2013,
LNCS 8348, Springer, Nánchāng, China, pp. 234–253, doi:10.1007/978-3-319-07602-7_15.

[18] Olga Kouchnarenko & Jean-François Weber (2014): Decentralised Evaluation of Temporal Patterns over
Component-Based Systems at Runtime. In Ivan Lavanese & Éric Madelaine, editors: Proc. FACS 2014,
Bertinoro, Italy, pp. 108–126, doi:10.1007/978-3-319-15317-9_7.

[19] Christian Krause, Ziyan Maraikar, Alexander Lazovik & Farhad Arbab (2011): Modeling Dynamic Reconfig-
urations in Reo Using High-Level Replacement Systems. SCP 76, pp. 23–36, doi:10.1016/j.scico.2009.10.006.

[20] Arnaud Lanoix & Olga Kouchnarenko (2014): Component Substitution through Dynamic Reconfigurations.
In Barbara Buhnova, Lucia Happe & Jan Kofron, editors: Proc. FESCA 2014, EPTCS 147, Grenoble, France,
pp. 32–46, doi:10.4204/EPTCS.147.3.

[21] Marc Léger, Thomas Ledoux & Thierry Coupaye (2010): Reliable Dynamic Reconfigurations in a Reflective
Component Model. In Lars Grunske, Ralf Reussner & Frantisek Plasil, editors: Proc. CBSE 2010, LNCS
6092, Springer, pp. 74–92, doi:10.1007/978-3-642-13238-4_5.

[22] Simon Marlow (2010): Haskell 2010 Language Report. https://www.haskell.org/onlinereport/
haskell2010/.

[23] Lawrence C. Paulson (1996): ML for the Working Programmer, 2 edition. Cambridge University Press,
doi:10.1017/CBO9780511811326.

[24] Jean-Pierre Queille & Joseph Sifakis (1982): Specification and Verification of Concurrent Systems in CESAR.
In M. Dezani-Cianaglini & Ugo Montanari, editors: Proc. 5th International Symposium on Programming,
LNCS 137, Turin, Italy, pp. 337–351, doi:10.1007/3-540-11494-7_22.

[25] Alejandro Sanchez, Alexandre Madeira & Luís S. Barbosa (2015): On the Verification of Architectural Re-
configurations. Computer Languages, Systems & Structures 44, pp. 218–237, doi:10.1016/j.cl.2015.07.001.

[26] W3C (2007): XSL Transformations (XSLT). Version 2.0. http://www.w3.org/TR/2007/
WD-xslt20-20070123. W3C Recommendation. Edited by Michael H. Kay.

[27] W3C (2008): XQuery 1.1. http://www.w3.org/TR/xquery-11-20081203. W3C Working Draft. Edited
by Don Chamberlin and Jonathan Siméon.

http://dx.doi.org/10.1007/978-3-319-07602-7_13
http://dx.doi.org/10.4204/EPTCS.178.4
http://members.femto-st.fr/jean-michel-hufflen/en/tacos-plus
http://members.femto-st.fr/jean-michel-hufflen/en/tacos-plus
http://dx.doi.org/10.1007/978-3-319-07602-7_15
http://dx.doi.org/10.1007/978-3-319-15317-9_7
http://dx.doi.org/10.1016/j.scico.2009.10.006
http://dx.doi.org/10.4204/EPTCS.147.3
http://dx.doi.org/10.1007/978-3-642-13238-4_5
https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/onlinereport/haskell2010/
http://dx.doi.org/10.1017/CBO9780511811326
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1016/j.cl.2015.07.001
http://www.w3.org/TR/2007/WD-xslt20-20070123
http://www.w3.org/TR/2007/WD-xslt20-20070123
http://www.w3.org/TR/xquery-11-20081203

	1 Introduction
	2 Architectural Reconfiguration Model
	2.1 Component Model
	2.2 Configuration Properties
	2.3 Reconfiguration Operations
	2.4 Temporal Logic

	3 Multiple Reconfiguration Paths
	4 Our Method's Bases
	4.1 Modus Operandi
	4.2 Types Used
	4.3 Ordering States of Automata

	5 Our Method's Functions
	5.1 Our Markers
	5.2 Implementations' Correctness
	5.2.1 Termination
	5.2.2 Restrictions on Formulas
	5.2.3 Correctness for Restricted Formulas

	6 Discussion and Future Work
	7 Conclusion

