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We consider state-based systems modelled as coalgebras whose type incorporates branching, and
show that by suitably adapting the definition of coalgebraicbisimulation, one obtains a general and
uniform account of the linear-time behaviour of a state in such a coalgebra. By moving away from
a boolean universe of truth values, our approach can measurethe extent to which a state in a system
with branching is able to exhibit a particular linear-time behaviour. This instantiates to measuring
the probability of a specific behaviour occurring in a probabilistic system, or measuring the minimal
cost of exhibiting a specific behaviour in the case of weighted computations.

1 Introduction

When analysing process behaviour, one of the early choices one has to make is between a linear and a
branching view of time. In branching-time semantics, the choices a process has for proceeding from a
particular state are taken into account when defining a notion of process equivalence (with bisimulation
being the typical such equivalence), whereas in linear-time semantics such choices are abstracted away
and the emphasis is on the individual executions that a process is able to exhibit. From a system verifi-
cation perspective, one often chooses the linear-time view, as this not only leads to simpler specification
logics and associated verification techniques, but also meets the practical need to verify all possible
system executions.

While the theory of coalgebras has, from the outset, been able to provide a uniform account of var-
ious bisimulation-like observational equivalences (and later, of various simulation-like behavioural pre-
orders), it has so far not been equally successful in giving ageneric account of the linear-time behaviour
of a state in a system whose type incorporates a notion of branching. For example, the generic trace
theory of [9] only applies to systems modelled as coalgebrasof typeT◦F , with the monadT : Set→ Set

specifying a branching type (e.g. non-deterministic or probabilistic), and the endofunctorF : Set→ Set

defining the structure of individual transitions (e.g. labelled transitions or successful termination). The
approach in loc. cit. is complemented by that of [12], where traces are derived using a determinisation
procedure similar to the one for non-deterministic automata. The latter approach applies to systems
modelled as coalgebras of typeG◦T, where again a monadT : Set → Set is used to model branching
behaviour, and an endofunctorG specifies the transition structure. Neither of these approaches is able
to account for potentially infinite traces, as typically employed in model-based formal verification. This
limitation is partly addressed in [1], but again, this only applies to coalgebras of typeT ◦F, albeit with
more flexibility in the underlying category (which in particular allows a measure-theoretic account of
infinite traces in probabilistic systems). Finally, none ofthe above-mentioned approaches exploits the
compositionality that is intrinsic to the coalgebraic approach. In particular, coalgebras of typeG◦T◦F
(of which systems with both inputs and outputs are an example, see Example 5.7) can not be accounted
for by any of the existing approaches. This paper presents anattempt to address the above limitations
concerning the types of coalgebras and the nature of traces that can be accounted for, by providing auni-
formandcompositionaltreatment of (possibly infinite) linear-time behaviour in systems with branching.
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In our view, one of the reasons for only a partial success in developing a fully general coalgebraic
theory of traces is the long-term aspiration within the coalgebra community to obtain a uniform charac-
terisation of trace equivalence via a finality argument, in much the same way as is done for bisimulation
(in the presence of a final coalgebra). This encountered difficulties, as a suitable category for carrying
out such an argument proved difficult to find in the general case. In this paper, we tackle the problem of
getting a handle on the linear-time behaviour of a state in a coalgebra with branching from a different
angle: we do not attempt to directly define a notion of trace equivalence between two states (e.g. via
finality in some category), but focus ontestingwhether a state is able to exhibit a particular trace, and
on measuring the extent of this ability. This ”measuring” relates to the type of branching present in the
system, and instantiates to familiar concepts such as the probability of exhibiting a given trace in prob-
abilistic systems, the minimal cost of exhibiting a given trace in weighted computations, and simply the
ability to exhibit a trace in non-deterministic systems.

The technical tool for achieving this goal is a generalisation of the notions of relation and relation
lifting [10], which lie at the heart of the definition of coalgebraic bisimulation. Specifically, we employ
relations valued in a partial semiring, and a correspondinggeneralised version of relation lifting. Our
approach applies to coalgebras whose type is obtained as thecomposition of several endofunctors onSet:
one of these is a monadT that accounts for the presence of branching in the system, while the remaining
endofunctors, assumed here to be polynomial, jointly determine the notion of linear-time behaviour. This
strictly subsumes the types of systems considered in earlier work on coalgebraic traces [9, 1, 12], while
also providing compositionality in the system type.

Our main contribution, presented in Section 5, is auniformandcompositionalaccount of linear-time
behaviour in state-based systems with branching. A by-product of our work is an extension of the study
of additive monads carried out in [14, 3] to what we callpartially additive monads(Section 3). Our
approach can be summarised as follows:

• We move from two-valued to multi-valued relations, with theuniverse of truth values being in-
duced by the choice of monad for modelling branching. This instantiates to relations valued in the
interval [0,1] in the case of probabilistic branching, the setN

∞ = N∪{∞} in the case of weighted
computations, and simply{⊥,⊤} in the case of non-deterministic branching. This reflects our
view that the notion of truth used to reason about the observable behaviour of a system should be
dependent on the branching behaviour present in that system. Such a dependency is also expected
to result in temporal logics that are more natural and more expressive, and at the same time have
a conceptually simpler semantics. In deriving a suitable structure on the universe of truth values,
we generalise results on additive monads [14, 3] topartially additive monads. This allows us to
incorporate probabilistic branching under our approach. We show that for a commutative, partially
additive monadT onSet, the setT1 carries a partial semiring structure with an induced preorder,
which in turn makesT1 an appropriate choice of universe of truth values.

• We generalise and adapt the notion of relation lifting used in the definition of coalgebraic bisimu-
lation, in order to (i) support multi-valued relations, and(ii) abstract away branching. Specifically,
we make use of the partial semiring structure carried by the universe of truth values to generalise
relation lifting of polynomial endofunctors to multi-valued relations, and employ a canonicalex-
tension liftinginduced by the monadT to capture a move from branching to linear time. The use
of this extension lifting allows us to make formal the idea oftesting whether, and to what extent,
a state in a coalgebra with branching can exhibit a particular linear-timebehaviour. Our approach
resembles the idea employed by partition refinement algorithms for computing bisimulation on
labelled transition systems with finite state spaces [13]. There, one starts from a single partition
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of the state space, with all states related to each other, andrepeatedly refines it through stepwise
unfolding of the transition structure, until a fixpoint is reached. Similarly, we start by assuming
that a state in a system with branching can exhibit any linear-time behaviour, and moreover, assign
the maximum possible value to each pair consisting of a stateand a linear-time behaviour. We then
repeatedly refine the values associated to such pairs, through stepwise unfolding of the coalgebraic
structure.

The present work is closely related to our earlier work on maximal traces and path-based logics
[1], which described a game-theoretic approach to testing if a system with non-deterministic branching
is able to exhibit a particular trace. Here we consider arbitrary branching types, and while we do not
emphasise the game-theoretic aspect, our use of greatest fixpoints has a very similar thrust.

Acknowledgements Several fruitful discussions with participants at the 2012Dagstuhl Seminar on
Coalgebraic Logics helped refine the ideas presented here. Our use of relation lifting was inspired by
the recent work on coinductive predicates [8], itself basedon the seminal work in [10] on the use of
predicate and relation lifting in the formalisation of induction and coinduction principles. Last but not
least, the comments received from the anonymous reviewers contributed to improving the presentation
of this work and to identifying new directions for future work.

2 Preliminaries

2.1 Relation Lifting

The concepts ofpredicate liftingand relation lifting, to our knowledge first introduced in [10], are by
now standard tools in the study of coalgebraic models, used e.g. to provide an alternative definition of the
notion of bisimulation (see e.g. in [11]), or to describe thesemantics of coalgebraic modal logics [17, 16].
While these concepts are very general, their use so far usually restricts this generality by viewing both
predicates and relations as sub-objects in some category (possibly carrying additional structure). In this
paper, we make use of the full generality of these concepts, and move from the standard view of relations
as subsets to a setting where relations are valuations into auniverse of truth values. This section recalls
the definition of relation lifting in the standard setting where relations are given by monomorphic spans.

Throughout this section (only),Rel denotes the category whose objects are binary relations(R,〈r1, r2〉)
with 〈r1, r2〉 : R→ X×Y a monomorphic span, and whose arrows from(R,〈r1, r2〉) to (R′,〈r ′1, r

′
2〉) are

given by pairs of functions( f : X → X′ , g : Y →Y′) s.t. ( f ×g)◦ 〈r1, r2〉 factors through〈r ′1, r
′
2〉:

R

��
✤

✤

✤
//
〈r1,r2〉

// X×Y

f×g
��

R′ //
〈r ′1,r

′
2〉
// X′×Y′

In this setting, therelation lifting of a functor F: Set→ Set is defined as a functorRel(F) : Rel→ Rel

taking a relation〈r1, r2〉 : R→ X×Y to the relation defined by the span〈F(r1),F(r2)〉 : F(R)→ F(X)×
F(Y), obtained via the unique epi-mono factorisation of〈F(r1),F(r2)〉:

R
��

〈r1,r2〉

��

F(R)

〈F(r1),F(r2)〉
��

// // Rel(F)(R)
ww

ww♦♦
♦♦
♦♦
♦♦
♦♦
♦

X×Y F(X)×F(Y)
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It follows easily that this construction is functorial, andin particular preserves the order≤ between
relations on the same objects given by(R,〈r1, r2〉) ≤ (S,〈s1,s2〉) if and only if 〈r1, r2〉 factors through
〈s1,s2〉:

R // //❴❴❴
//

〈r1,r2〉
//

S //
〈s1,s2〉

// X×Y

An alternative definition ofRel(F) for F a polynomial functor(i.e. constructed from the identity and
constant functors usingfinite products and set-indexed coproducts) can be given by induction on the
structure ofF . We refer the reader to [11, Section 3.1] for details of this definition. An extension of this
definition to a more general notion of relation will be given in Section 4.

2.2 Coalgebras

We model state-based, dynamical systems as coalgebras overthe category of sets. Given a functor
F : C→ C on an arbitrary category, anF-coalgebrais given by a pair(C,γ) with C an object ofC, used
to model the state space, andγ :C→FC a morphism inC, describing the one-step evolution of the system
states. Then, a canonical notion of observational equivalence between the states of twoF-coalgebras is
provided by the notion of bisimulation. Of the many, and under the assumption thatF preserves weak
pullbacks, equivalent definitions of bisimulation (see [11] for a detailed account), we recall the one
based on relation lifting. This applies to coalgebras over the category of sets (as described below), but
also more generally to categories with logical factorisation systems (as described in [11]). According to
this definition, anF-bisimulationbetween coalgebras(C,γ) and(D,δ ) overSet is aRel(F)-coalgebra:

R //❴❴❴❴❴
��

��

Rel(F)(R)
��

��

X×Y
γ×δ

// F(X)×F(Y)

In the remainder of this section we sketch a coalgebraic generalisation of a well-known partition refine-
ment algorithm for computingbisimilarity (i.e. the largest bisimulation) on finite-state labelled transition
systems [13]. For an arbitrary endofunctorF : Set → Set and two finite-stateF-coalgebras(C,γ) and
(D,δ ), the generalised algorithm iteratively computes relations≃i ⊆ C×D with i = 0,1, . . . as follows:

• ∼0= C×D

• ∼i+1= (γ ×δ )∗(Rel(F)(≃i)) for i = 0,1, . . .

where(γ × δ )∗ takes a relationR⊆ FC×FD to the relation{(c,d) ∈C×D | (γ(c),δ (d)) ∈ R}. Thus,
in the initial approximation≃0 of the bisimilarity relation, all states are related, whereas at stepi + 1
two states are related if and only if their one-step observations are suitably related using the relation≃i.
Bisimilarity between the coalgebras(C,γ) and(D,δ ) thus arises as the greatest fixpoint of a monotone
operator on the complete lattice of relations betweenC andD, which takes a relationR⊆C×D to the
relation(γ ×δ )∗(Rel(F)(R)). A similar characterisation of bisimilarity exists for coalgebras with infinite
state spaces, but in this case the fixpoint can not, in general, be reached in a finite number of steps.

The above greatest fixpoint characterisation of bisimilarity is generalised and adapted in Section 5,
in order to characterise the extent to which a state in a coalgebra with branching can exhibit a linear-
time behaviour. There, the two coalgebras in question have different types: the former has branching
behaviour and is used to model the system of interest, whereas the latter has linear behaviour only and
describes the domain of possible traces.
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2.3 Monads

In what follows, we use monads(T,η ,µ) onSet (whereη : Id⇒ T andµ : T◦T⇒ T are theunit and
multiplicationof T) to capture branching in coalgebraic types. Moreover, we assume that these monads
arestrongandcommutative, i.e. they come equipped with astrength mapstX,Y : X×TY → T(X×Y) as
well as adouble strength mapdstX,Y : TX×TY → T(X ×Y) for each choice of setsX,Y; these maps
are natural inX andY, and satisfy coherence conditions w.r.t. the unit and multiplication ofT. We also
make direct use of theswapped strength mapst′X,Y : TX×Y → T(X×Y), obtained from the strength via
the twist maptwX,Y : X×Y →Y×X:

TX×Y
twTX,Y

// Y×TX
stY,X

// T(Y×X)
TtwY,X

// T(X×Y)

Example2.1. As examples of monads, we consider:

1. thepowerset monadP : Set→ Set, modelling nondeterministic computations, with unit given by
singletons and multiplication given by unions. Its strength and double strength are given by

stX,Y(x,V) = {x}×V dstX,Y(U,V) =U ×V

for x∈ X, U ∈ PX andV ∈ PY,

2. thesemiring monadTS : Set→ Set with (S,+,0,•,1) a semiring, given by

TS(X) = { f : X → S| sup( f ) is finite}

with sup( f ) = {x∈ X | f (x) 6= 0} thesupportof f . Its unit and multiplication are given by

ηX(x)(y) =

{

1 if y= x

0 otherwise
µX( f ∈ S(S

X)) = ∑
g∈sup( f )

∑
x∈sup(g)

f (g)•g(x)

while its strength and double strength are given by

stX,Y(x,g)(z,y) =

{

g(y) if z= x

0 otherwise
dstX,Y( f ,g)(z,y) = f (z)•g(y)

for x∈ X, f ∈ TS(X), g∈ TS(Y), z∈ X andy∈Y. As a concrete example, we will consider the
semiringW = (N∞,min,∞,+,0), and useTW to model weighted computations.

3. the sub-probability distribution monadS : Set → Set, modelling probabilistic computations,
with unit given by the Dirac distributions (i.e.ηX(x) = (x 7→ 1)), and multiplication given by
µX(Φ) = ∑

ϕ∈sup(Φ)
∑

x∈sup(ϕ)
Φ(ϕ) ∗ϕ(x), with ∗ denoting multiplication on[0,1]. Its strength and

double strength are given by

stX,Y(x,ψ)(z,y) =

{

ψ(y) if z= x

0 otherwise
dstX,Y(ϕ ,ψ)(z,y) = ϕ(z)∗ψ(y)

for x∈ X, ϕ ∈ S (X), ψ ∈ S (Y), z∈ X andy∈Y.
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3 From Partially Additive, Commutative Monads to Partial Commuta-
tive Semirings with Order

Later in this paper we will consider coalgebras whose type isgiven by the composition of several end-
ofunctors onSet, one of which is a commutative monadT : Set → Set accounting for the presence of
branching in the systems of interest. This section extends results in [14, 3] to show how to derive a
universe of truth values from such a monad. The assumption ofloc. cit. concerning theadditivity of
the monad under consideration is here weakened topartial additivity (see Definition 3.1); this allows
us to incorporate the sub-probability distribution monad (which is not additive) into our framework.
Specifically, we show that any commutative, partially additive monadT : Set → Set induces a partial
commutative semiring structure on the setT1, with 1= {∗} a final object inSet. We recall that acom-
mutative semiringconsists of a setScarrying two commutative monoid structures(+,0) and(•,1), with
the latter distributing over the former:s•0= 0 ands• (t +u) = s• t + s•u for all s, t,u ∈ S. A partial
commutative semiringis defined similarly, except that+ is a partial operation subject to the condition
that whenevert +u is defined, so iss• t +s•u, and moreovers• (t +u) = s• t +s•u. The relevance of
a partial commutative semiring structure on the set of truthvalues will become clear in Sections 4 and 5.

It follows from results in [3] that any commutative monad(T,η ,µ) on Set induces a commutative
monoid(T(1),•,η1(∗)), with multiplication• : T(1)×T(1)→ T(1) given by the composition

T(1)×T(1)
dst1,1

// T(1×1)
Tπ2

// T(1)

Alternatively, this multiplication can be defined as the composition

T(1)×T(1)
st′1,1

// T(1×T(1))
Tπ2

// T2(1)
µ1

// T(1)

or as

T(1)×T(1)
st1,1

// T(T(1)×1)
Tπ1

// T2(1)
µ1

// T(1)

(While the previous two definitions coincide for commutative monads, this is not the case in general.)

Remark3.1. The following maps define left and right actions of(T(1),•) onT(X):

T(1)×T(X)
dst1,X

// T(1×X)
Tπ2

// T(X) T(X)×T(1)
dstX,1

// T(X×1)
Tπ1

// T(X)

On the other hand, any monadT : Set → Set with T /0 = 1 is such that, for anyX, TX has azero
element0∈ TX, obtained as(T!X)(∗). This yields azero map0 :Y → TX for anyX,Y, obtained as the
composition

Y
!Y

// T /0
T!X

// TX

with the maps !Y : Y → T /0 and !X : /0→ X arising by finality and initiality, respectively. Now consider
the following map:

T(X+Y)
〈µX◦Tp1,µY◦Tp2〉

// TX×TY (1)

wherep1 = [ηX,0] : X+Y → TX andp2 = [0,ηY] : X+Y → TY.

Definition 3.1. A monadT : Set→ Set is calledadditive1 (partially additive) if T /0= 1 and the map in
(1) is an isomorphism (respectively monomorphism).

1Additive monads were studied in [14, 3].
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The (partial) inverse of the map〈µX ◦Tp1,µY ◦Tp2〉 can be used to define a (partial) addition on
the setTX, given byT[1X ,1X]◦qX,X , whereqX,X : TX×TX → T(X+X) is the (partial) left inverse of
〈µX ◦Tp1,µY ◦Tp2〉:

TX T(X+X)
〈µX◦Tp1,µY◦Tp2〉

//T[1X ,1X ]
oo TX×TX

qX,X
oo❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

+

kk

That is,a+b is defined if and only if(a,b) ∈ Im(〈µX ◦Tp1,µY ◦Tp2〉)
2.

[3, Section 5.2] explores the connection between additive,commutative monads and commutative
semirings. The next result provides a generalisation to partially additive, commutative monads and
partial commutative semirings.

The proof of Proposition 3.2 is a slight adaptation of the corresponding proofs in [3, Section 5.2].

Proposition 3.2. LetT be a commutative, (partially) additive monad. Then:

1. (T1,•,η1(∗)) is a commutative monoid.

2. (TX,0,+) is a (partial) commutative monoid, for each set X.

3. (T1,0,+,•,η1(∗)) is a (partial) commutative semiring.

Proof (Sketch).The commutativity of the following diagram lies at the heartof the proof of item 3:

T1×T1

•

��

T(1+1)×T1
T[1X ,1X ]×1T1
oo

aT(1+1)

��

δ×1T1
//
(T1×T1)×T1

q1,1×1T1

oo❴ ❴ ❴ ❴ ❴

〈π1×π2,π2×π2〉

��

(T1×T1)× (T1×T1)

•×•

��

T1 T(1+1)
δ

//

T[1X ,1X ]
oo T1×T1

q1,1
oo❴ ❴ ❴ ❴ ❴ ❴ ❴

whereaTX : TX×T1→ TX is the right action from Remark 3.1, andδ is the map〈µ1 ◦Tp1,µ1 ◦Tp2〉
used in the definition of+ on T1. The composition• ◦ (T[1X ,1X ]× 1T1) ◦ (q1,1 × 1T1) captures the
computation of(a+b)•c, whereas the compositionT[1X ,1X]◦q1,1◦(•×•)◦〈π1×π2,π2×π2〉 captures
the computationa• c+ b• c, with a,b,c ∈ T1. The fact thatδ commutes with the strength map (by
(iv) of [3, Lemma 15]), together withaT(1+1) and• being essentially given by the double strength maps
dst1+1,1 anddst1,1, yields (•×•) ◦ 〈π1 × π2,π2× π2〉 ◦ (δ × 1T1) = δ ◦aT(1+1), that is, commutativity
(via the plain arrows) of the right side of the above diagram.This immediately results ina• c+ b• c
being defined whenevera+b is defined, and hence in the commutativity of the right side ofthe diagram
also via the dashed arrows. This, combined with the commutativity of the left side of the diagram (which
is simply naturality of the right actiona), gives(a+b)•c= a•c+b•c whenevera+b is defined.

Example3.2. For the monads in Example 2.1, one obtains the commutative semirings({⊥,⊤},∨,⊥,∧,⊤)
whenT=P, (N∞,min,∞,+,0) whenT=TW

3, and the partial commutative semiring([0,1],+,0,∗,1)
whenT= S (where in the latter casea+b is defined if and only ifa+b≤ 1).

2A similar, buttotal, addition operation is defined in [14, 3] for additive monads.
3This is sometimes called thetropical semiring.
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4 Generalised Relations and Relation Lifting

This section introduces generalised relations valued in a partial commutative semiring, and shows how to
lift polynomial endofunctors onSet to the category of generalised relations. We begin by fixing apartial
commutative semiring(S,+,0,•,1), and noting that the partial monoid(S,+,0) can be used to define a
preorder relation onSas follows:

x⊑ y if and only if there existsz∈ Ssuch thatx+z= y

for x,y ∈ S. It is then straightforward to show (using the definition of apartial commutative semiring)
that the preorder⊑ has 0∈ Sas bottom element, and is preserved by• in each argument. Proper (i.e. not
partial) semirings where the preorder⊑ is a partial order are callednaturally ordered[5]. We here extend
this terminology to partial semirings.

Example4.1. For the monads in Example 2.1, the preorders associated to the induced partial semirings
(see Example 3.2) are all partial orders:≤ on {⊥,⊤} for T= P, ≤ on [0,1] for T= S , and≥ onN

∞

for T= TW.

We letRel denote the category4 with objects given by triples(X,Y,R), whereR : X ×Y → S is a
function defining amulti-valued relation(or S-relation), and with arrows from(X,Y,R) to (X′,Y′,R′)
given by pairs of functions( f ,g) as below, such thatR⊑ R′ ◦ ( f ×g):

X×Y

⊑

f×g
//

R
��

X′×Y′

R′

��

S S

Here, the order⊑ on Shas been extended pointwise toS-relations with the same carrier.
We writeRelX,Y for the fibre over(X,Y), that is, the full subcategory ofRel whose objects areS-

relations overX ×Y and whose arrows are given by(1X,1Y). It is straightforward to check that the
functorq : Rel→ Set×Set taking(X,Y,R) to (X,Y) defines a fibration: the reindexing functor( f ,g)∗ :
RelX′,Y′ → RelX,Y takesR′ : X′×Y′ → S to R′ ◦ ( f ×g) : X×Y → S.

We now proceed to generalising relation lifting toS-relations.

Definition 4.1. Let F : Set→ Set. A relation lifting of F is a functor5 Γ : Rel → Rel such that q◦Γ =
(F ×F)◦q:

Rel

q

��

Γ
// Rel

q

��

Set×Set
F×F

// Set×Set

We immediately note a fundamental difference compared to standard relation lifting as defined in
Section 2.1. While in the case of standard relations each functor admits exactly one lifting, Definition 4.1
implies neither the existence nor the uniqueness of a lifting. We defer the study of a canonical lifting
(similar toRel(F) in the case of standard relations) to future work, and show how to define a relation
lifting of F in the case whenF is a polynomial functor. To this end, we make the additional assumption
that the unit 1 of the semiring multiplication is a top element (which we also write as⊤) for the preorder

4To keep notation simple, the dependency onS is left implicit.
5Given the definition of the fibrationq, such a functor is automatically a morphism of fibrations.
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⊑. Recall that⊑ also has a bottom element (which we will sometimes denote by⊥), given by the unit
0 of the (partial) semiring addition. The definition of the relation lifting of a polynomial functorF is by
structural induction onF and makes use of the semiring structure onS:

• If F = Id, Rel(F) takes anS-relation to itself.

• If F =C, Rel(F) takes anS-relation to the equality relationEq(C) : C×C→ Sgiven by

EqC(c,c
′) =

{

⊤ if c= c′

⊥ otherwise

• If F = F1×F2, Rel(F) takes anS-relationR : X×Y → S to:

(F1X×F2X)× (F1Y×F2Y)
〈π1×π1,π2×π2〉

// (F1X×F1Y)× (F2X×F2Y)
Rel(F1)(R)×Rel(F2)(R)

// S×S •
// S

The functoriality of this definition follows from the preservation of⊑ by • (see Section 3).

• if F = F1+F2, Rel(F)(R) : (F1X+F2X)× (F1Y+F2Y)→ S is defined by case analysis:

Rel(F)(R)(ιi(u), ι j(v)) =

{

Rel(Fi)(R)(u,v) if i = j

⊥ otherwise

for i, j ∈ {1,2}, u∈ FiX andv∈ FjY. This definition generalises straightforwardly from binary to
set-indexed coproducts.

Remark4.2. A more general definition of relation lifting, which appliesto arbitrary functors onSet, is
outside the scope of this paper. We note in passing that such arelation lifting could be defined by starting
from ageneralised predicate liftingδ : F ◦P0 ⇒ P0◦F for the functorF, similar to the predicate liftings
used in the work on coalgebraic modal logic [17]. Here, the contravariant functorP0 : Set → Setop

takes a setX to the hom-setSet(X,S). Future work will also investigate the relevance of the results in
[6, 7] to a general definition of relation lifting in our setting. Specifically, the work in loc. cit. shows
how to construct truth-preserving predicate liftings and equality-preserving relation liftings for arbitrary
functors on the base category of aLawvere fibration, to the total category of that fibration.

For the remainder of this paper, we take(S,+,0,•,1) to be the partial semiring derived in Section 3
from a commutative, partially additive monadT, and we viewSas the set of truth values. In the case of
the powerset monad, this corresponds to the standard view ofrelations as subsets, whereas in the case of
the sub-probability distribution monad, this results in relations given by valuations in the interval[0,1].

Example4.3. Let F : Set→ Set be given byFX = 1+A×X, with A a set (of labels), and let(S,+,0,•,1)
be the partial semiring with carrierT1 defined in Section 3.

• ForT= P, Rel(F) takes a (standard) relationR⊆ X×Y to the relation

{(ι1(∗), ι1(∗)}∪{((a,x),(a,y)) | a∈ A,(x,y) ∈ R}

• ForT= S , Rel(F) takesR : X×Y → [0,1] to the relationR′ : FX×FY → [0,1] given by

R′(ι1(∗), ι1(∗)) = 1 R′((a,x),(a,y)) = R(x,y) R′(u,v) = 0 in all other cases

• ForT= TW, Rel(F) takesR : X×Y → N
∞ to the relationR′ : FX×FY → N

∞ given by

R′(ι1(∗), ι1(∗)) = 0 R′((a,x),(a,y)) = R(x,y) R′(u,v) = ∞ in all other cases
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5 From Bisimulation to Traces

Throughout this section we fix a commutative, partially additive monadT : Set → Set and assume,
as in the previous section, that the natural preorder⊑ induced by the partial commutative semiring
obtained in Section 3 has the multiplication unitη1(∗) ∈ T1 as top element. Furthermore, we assume
that this preorder is anωop-chain completepartial order, whereωop-chain completeness amounts to any
decreasing chainx1 ⊒ x2 ⊒ . . . having a greatest lower bound⊓i∈ωxi . These assumptions are clearly
satisfied by the orders in Example 4.1.

We now show how combining the liftings of polynomial functors to the category of generalised
relations valued in the partial semiringT1 (as defined in Section 4) with so-calledextension liftings
which arise canonically from the monadT, can be used to give an account of the linear-time behaviour
of a state in a coalgebra with branching. The type of such a coalgebra can be any composition involving
polynomial endofunctors and the branching monadT, although compositions of typeT ◦F , G◦T and
G◦T◦F with F andG polynomial endofunctors are particularly emphasised in what follows.

We begin with some informal motivation. WhenRel is the standard category of binary relations,
recall from Section 2.2 that anF-bisimulation is simply aRel(F)-coalgebra, and that the largestF-
bisimulation between twoF-coalgebras(C,γ) and(D,δ ) can be obtained as the greatest fixpoint of the
monotone operator onRelC×D which takes a relationR to the relation(γ ×δ )∗(Rel(F)(R)). Generalising
the notion ofF-bisimulation from standard relations toT1-relations makes little sense when the systems
of interest areF-coalgebras. However, when considering say, coalgebras oftypeT ◦F, it turns out that
liftings of F to the category ofT1-relations (as defined in Section 4) can be used to describe the linear-
time behaviourof states in such a coalgebra, when combined with suitable liftings of T to the same
category of relations. To see why, let us consider labelled transition systems viewed as coalgebras of
type P(1+A× Id). In such a coalgebraγ : C → P(1+A×C), explicit termination is modelled via
transitionsc→ ι1(∗), whereas deadlock (absence of a transition) is modelled asγ(c) = /0. In this case,
Rel(P)◦Rel(1+A× Id) is naturally isomorphic toRel(P(1+A× Id)) 6, and takes a relationR⊆ X×Y
to the relationR′ ⊆ P(1+A×X)×P(1+A×Y) given by

(U,V)∈R′ if and only if

{

if ι1(∗) ∈U thenι1(∗) ∈V, and conversely

if (a,x) ∈U then there exists(a,y) ∈V with (x,y) ∈ R, and conversely

Thus, the largestP(1+A× Id)-bisimulation between two coalgebras(C,γ) and(D,δ ) can be computed
as the greatest fixpoint of the operator onRelC,D obtained as the composition

R⊆C×D ✤ Rel(F) // R1 ⊆ FC×FD ✤ Rel(P)
// R2 ⊆ P(FC)×P(FD) ✤

(γ×δ )∗
// R′ ⊆C×D (2)

whereF = 1+A× Id. Note first thatRel(P) (defined in Section 2.1 for an arbitrary endofunctor onSet)
takes a relationR⊆ X×Y to the relationR′ ⊆ P(X)×P(Y) given by

(U,V) ∈ R′ if and only if for all x∈U there existsy∈V with (x,y) ∈ R, and conversely

Now consider the effect of replacingRel(P) in (2) with the lifting L : Rel → Rel that takes a relation
R⊆ X×Y to the relationR′ ⊆ P(X)×Y given by

(U,y) ∈ R′ if and only if there existsx∈U with (x,y) ∈ R

6A similar observation holds more generally forP ◦F with F a polynomial endofunctor. In general, only a natural trans-
formationRel(F ◦G)⇒ Rel(F)◦Rel(G) exists, see [11, Exercise 4.4.6].
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To do so, we must change the type of the coalgebra(D,δ ) from P ◦F to justF . A closer look at the
resulting operator onRelC,D reveals that it can be used to test for the existence of a matching trace: each
state of theF-coalgebra(D,δ ) can be associated amaximal trace, i.e. an element of the finalF-coalgebra,
by finality. In particular, whenF = 1+A× Id, maximal traces are either finite or infinite sequences of
elements ofA. Thus, the greatest fixpoint of the newly defined operator onRelC×D corresponds to the
relation onC×D given by

c∋tr d if and only if there exists a sequence of choices of transitions starting fromc∈C that leads to

exactly the same maximal trace (element ofA∗∪Aω) as the single trace ofd ∈ D

This relation models the ability of the statec to exhibit the same trace as that ofd.
The remainder of this section formalises the above intuitions, and generalises them to arbitrary mon-

adsT and polynomial endofunctorsF, as well as to arbitrary compositions involving the monadT and
polynomial endofunctors. We begin by restricting attention to coalgebras of typeT◦F, with the monad
T capturing branching and the endofunctorF describing the structure of individual transitions. In this
case it is natural to view the elements of the finalF-coalgebra as possiblelinear-time observable be-
haviours of states inT◦F-coalgebras. Similarly to the above discussion, we let(C,γ) and(D,δ ) denote
aT◦F-coalgebra and respectively anF-coalgebra. The lifting ofF to T1-relations will be used as part
of an operator onRelC,D. In order to generalise the liftingL above to arbitrary monadsT, we recall the
following result from [15], which assumes a strong monadT on a cartesian closed category.

Proposition 5.1([15, Proposition 4.1]). Let (B,β ) be aT-algebra. For any f: X×Y → B, there exists
a unique1-linear f : TX×Y → B making the following triangle commute:

TX×Y
f

// B

X×Y

ηX×1Y

OO

f

;;✇✇✇✇✇✇✇✇✇

In the above, 1-linearity is linearity in the first variable. More precisely, forT-algebras(A,α) and
(B,β ), a mapf : A×Y → B is called 1-linear if the following diagram commutes:

T(A)×Y
st′A,Y

//

α×1Y

��

T(A×Y)
T( f )

// T(B)

β
��

A×Y
f

// B

Clearly 1-linearity should be expected of the liftingL(R) : TX×Y → T1 of a relationR : X×Y → T1,
as this amounts toL(R) commuting with theT-algebra structures(TX,µX) and(T1,µ1). Given this, the
diagram of Proposition 5.1 forces the definition of the generalised lifting.

Definition 5.2. Theextension liftingLT : Rel→ Rel is the functor taking a relation R: X×Y → T1 to
its unique1-linear extensionR : TX×Y → T1.

Remark5.1. It follows from [15] that a direct definition of the relationR : TX ×Y → T1 is as the
composition

TX×Y
st′X,Y

// T(X×Y)
T(R)

// T21
µ1

// T1

This also yields functoriality ofLT, which follows from the functoriality of its restriction toeach fibre
categoryRelX,Y, as proved next.
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Proposition 5.3. The mapping R∈ RelX,Y 7→ R∈ RelTX,Y is functorial.

Proof (Sketch).Let R,R′ ∈RelX,Y be such thatR⊑R′. Hence, there existsS∈RelX,Y such thatR+S=R′

(pointwise). To show thatR⊑ R′, it suffices to show thatµ1◦T(R)⊑ µ1◦T(R′) (pointwise). To this end,
we note that commutativity of the mapδ with the monad multiplication, proved in [3, Lemma 15 (iii)]
and captured by the commutativity of the lower diagram below(via the plain arrows)

T21
µ1

// T1

T2(1+1)
µ1+1

//

Tδ
��

T2!

OO

T(1+1)

δ

��

T!

OO

T(T1×T1)

〈Tπ1,Tπ2〉
��

Tq1,1

OO✤

✤

✤

T21×T21 µ1×µ1

// T1×T1

q1,1

OO✤

✤

✤

✤

✤

✤

✤

also yields commutativity of the whole diagram (via the dashed arrows). This formalises the commuta-
tivity of + (defined asT! ◦q1,1) with the monad multiplication. Now pre-composing this commutative
diagram (dashed arrows) with the map

T(X×Y) // T(T1×T1)

given by the image underT of the map(x,y) 7→ 〈R(x,y),S(x,y)〉 yields

(µ1 ◦T(R))+ (µ1◦T(S)) = µ1◦T(R+S) = µ1◦TR′

and therefore, using the definition of⊑, µ1 ◦T(R)⊑ µ1◦T(R′). This concludes the proof.

Thus,LT is a functor making the following diagram commute:

Rel

q

��

LT
// Rel

q

��

Set×Set
T×Id

// Set×Set

We are finally ready to give an alternative account of maximaltraces ofT◦F-coalgebras.

Definition 5.4. Let (C,γ) denote aT ◦F-coalgebra, and let(Z,ζ ) denote the final F-coalgebra. The
maximal trace maptrγ : C→ (T1)Z of γ is the exponential transpose of the greatest fixpoint R: C×Z →
T1 of the operatorO : RelC,Z → RelC,Z given by the composition

RelC,Z
Rel(F)

// RelFC,FZ
LT

// RelT(FC),FZ
(γ×ζ )∗

// RelC,Z

The above definition appeals to the existence of least fixpoints in chain-complete partial orders, as
formalised in the following fixpoint theorem from [4].
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Theorem 5.5([4, 8.22]). Let P be a complete partial order and letO : P→ P be order-preserving. Then
O has a least fixpoint.

Definition 5.4 makes use of this result applied to thedual of the order⊑. Our assumption that⊑
is ωop-chain complete makes the dual order a complete partial order. Monotonicity of the operator in
Definition 5.4 is an immediate consequence of the functoriality of Rel(F), LT and(γ ×δ )∗.

[4] also gives a construction for the least fixpoint of an order-preserving operator on a complete
partial order, which involves taking a limit over an ordinal-indexed chain. Instantiating this construction
to the dual of the order⊑ yields an ordinal-indexed sequence of relations(Rα), where:

• R0 =⊤ (i.e. the relation onC×D given by(c,d) 7→ 1),

• Rα+1 = O(Rα),

• Rα = ⊓β<αRβ , if α is a limit ordinal.

Remark5.2. While in the caseT = P, restricting to finite-state coalgebras(C,γ) and(D,δ ) results in
the above sequence of relations stabilising in a finite number of steps, forT = S or T = TW this is
not in general the case. However, for probabilistic or weighted computations, an approximation of the
greatest fixpoint may be sufficient for verification purposes, since a threshold can be provided as part of
a verification task.

Remark5.3. By replacing theF-coalgebra(Z,ζ ) by (I ,α−1) with (I ,α) aninitial F -algebra, one obtains
an alternative account offinite traces of states inT ◦F-coalgebras, with thefinite trace mapftrγ : C →
(T1)I of aT◦F-coalgebra(C,γ) being obtained via the greatest fixpoint of essentially the same operator
O, but this time onRelC,I . In fact, one can use anyF-coalgebra in place of(Z,ζ ), and for a specific
verification task, a coalgebra with a finite state space, encoding a given linear-time behaviour, might be
all that is required.

Remark5.4. The choice of functorF directly impacts on the notion of linear-time behaviour. For exam-
ple, by regarding labelled transition systems as coalgebras of typeP(A× Id) instead ofP(1+A× Id)
(i.e. not modelling successful termination explicitly), finite traces are not anymore accounted for – the
elements of the finalF-coalgebra are given by infinite sequences of elements ofA. This should not be
regarded as a drawback, in fact it illustrates the flexibility of our approach.

Example5.5. Let F denote an arbitrary polynomial functor (e.g. 1+A× Id).

• For T = P, the extension liftingLP : Rel → Rel takes a (standard) relationR⊆ X ×Y to the
relationLP(R)⊆ P(X)×Y given by

(U,y) ∈ LP(R) if and only if there existsx∈U with (x,y) ∈ R

As a result, the greatest fixpoint ofO relates a statec in aP ◦F-coalgebra(C,γ) with a statezof
the finalF-coalgebra if and only if there exists a sequence of choices in the unfolding ofγ starting
from c, that results in anF-behaviour bisimilar toz. This was made more precise in [1], where
infinite two-player games were developed for verifying whether a state of aP ◦F-coalgebra has
a certain maximal trace (element of the finalF-coalgebra).

• For T = TS , the extension liftingLS : Rel → Rel takes a valuationR : X ×Y → [0,1] to the
valuationLS (R) : S (X)×Y → [0,1] given by

LS (R)(ϕ ,y) = ∑
x∈sup(ϕ)

ϕ(x)∗R(x,y)
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Thus, the greatest fixpoint ofO yields, for each state in aS ◦F-coalgebra and each potential maxi-
mal tracez, the probability of this trace being exhibited. As computing these probabilities amounts
to multiplying infinitely-many probability values, the probability of an infinite trace will often turn
out to be 0 (unless from some point in the unfolding of a particular state, probability values of 1
are associated to the individual transitions that match a particular infinite trace). This may appear
as a deficiency of our framework, and one could argue that a measure-theoretic approach, whereby
a probability measure is derived from the probabilities of finite prefixes of infinite traces, would be
more appropriate. Future work will investigate the need fora measure-theoretic approach. At this
point, we simply point out that in a future extension of the present approach to linear-time logics
(where individual maximal traces are to be replaced by linear-time temporal logic formulas), this
deficiency is expected to disappear.

• ForT= TW, the extension liftingLW : Rel→ Rel takes aweighted relation R: X×Y →W to the
relationLW(R) : TW(X)×Y →W given by

LW(R)( f ,y) = min
x∈sup( f )

( f (x)+R(x,y))

for f : X → W andy ∈Y. Thus, the greatest fixpoint ofO maps a pair(c,z), with c a state in a
TW ◦F-coalgebra andza maximal trace, to thecost(computed via the min function) of exhibiting
that trace. The case of weighted computations is somewhat different from our other two examples
of branching types, in that the computation of the fixpoint starts from a relation that maps each
pair of states(c,z) to the value 0∈ N

∞ (the top element for⊑), and refines this down (w.r.t. the⊑
order) through stepwise unfolding of the coalgebra structuresγ andζ .

The approach presented above also applies to coalgebras of type G◦T with G a polynomial end-
ofunctor, and more generally to coalgebras whose type is obtained as the composition of polynomial
endofunctors and the monadT, with possibly several occurrences ofT in this composition. In the case of
G◦T-coalgebras, instantiating our approach yields differentresults to the extension semantics proposed
in [12]. Specifically, the instantiation involves taking(Z,ζ ) to be a finalG-coalgebra and(C,γ) to be an
arbitraryG◦T-coalgebra, and considering the monotone operator onRelC,Z given by the composition

RelC,Z
LT

// RelTC,Z
Rel(G)

// RelG(TC),GZ
(γ×ζ )∗

// RelC,Z (3)

The following example illustrates the difference between our approach and that of [12].

Example5.6. ForG= 2× IdA with A a finite alphabet andT=P, G◦T-coalgebras are non-deterministic
automata, whereas the elements of the finalG-coalgebra are given by functionsz: A∗ → 2 and correspond
to languages overA. In this case, the greatest fixpoint of the operator in (3) maps a pair(c,z), with c a
state of the automaton andz a language overA, to⊤ if and only if there exists a sequence of choices in
the unfolding of the automaton starting fromc that results in a deterministic automaton which accepts the
language denoted byz. Taking the union over allzsuch that(c,z) is mapped to⊤ now gives the language
accepted by the non-deterministic automaton withc as initial state, but only under the assumption that
for eacha∈ A, ana-labelled transition exists from any state of the automaton. This example points to
the need to further generalise our approach, so that in particular it can also be applied to pairs consisting
of a G◦T-coalgebra and aG′-coalgebra, withG′ different from G. This would involve considering
relation liftings for pairs of (polynomial) endofunctors.We conjecture that takingG andT as above
andG′ = 1+A× Id would allow us to recover the notion of acceptance of a finite word overA by a
non-deterministic automaton.
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Finally, we sketch the general case of coalgebras whose typeis obtained as the composition of several
endofunctors onSet, one of which is a monadT that accounts for the presence of branching in the
system, while the remaining endofunctors are polynomial and jointly determine the notion of linear-time
behaviour. For simplicity of presentation, we only consider coalgebras of typeG◦T ◦F, with the final
G◦F-coalgebra(Z,ζ ) providing the domain of possible linear-time behaviours.

Definition 5.6. Thelinear-time behaviourof a state in a coalgebra(C,γ) of type G◦T◦F is the greatest
fixpoint of an operatorO onRelC,Z defined by the composition:

RelC,Z
Rel(F)

// RelFC,FZ
LT

// RelT(FC),FZ
Rel(G)

// RelG(TFC),GFZ
(γ×ζ )∗

// RelC,Z (4)

The greatest fixpoint ofO measures the extent with which a state in aG◦T◦F-coalgebra can exhibit a
given linear behaviour (element of the finalG◦F-coalgebra). Definition 5.6 generalises straightforwardly
to coalgebraic types given by arbitrary compositions of polynomial endofunctors and the monadT, with
the extension liftingLT being used once for each occurrence ofT in such a composition.
Example5.7. Coalgebras of typeG◦T ◦F , whereG= (1+ Id)A andF = Id×B, model systems with
branching, with both inputs (from a finite setA) and outputs (in a setB). In this case, the possible linear
behaviours are given by special trees, with both finite and infinite branches, whose edges are labelled by
elements ofA (from each node, one outgoing edge for eacha∈ A), and whose nodes (with the exception
of the root) are either labelled by∗ ∈ 1 (for leaves) or by an element ofB (for non-leaves). The linear-time
behaviour of a state in aG◦T◦F-coalgebra is then given by:

• the set of trees that can be exhibited from that state, whenT= P ,

• the probability of exhibiting each tree (with the probabilities corresponding to different branches
beingmultipliedwhen computing this probability), whenT= S , and

• the minimum cost of exhibiting each tree (with the costs of different branches beingaddedwhen
computing this cost), whenT= TW.

The precise connection between our approach and earlier work in [9, 1, 12] is yet to be explored.
In particular, our assumptions are different from those of loc. cit., for example in [9] the DCPO⊥-
enrichedness of the Kleisli category ofT is required.
Remark5.8. Our approach does notdirectlyapply to the probability distribution monad (defined similarly
to the sub-probability distribution monad, but with probabilities adding up to exactly 1), as this monad
does not satisfy the conditionT /0= 1 of Definition 3.1. However, systems where branching is described
using probability distributions can still be dealt with, byregarding all probability distributions as sub-
probability distributions.

In the remainder of this section, we briefly explore the usefulness of an operator similar toO, which
employs a similar extension lifting arising from thedouble strengthof the monadT. We begin by noting
that a result similar to Proposition 5.1 is proved in [15] fora commutative monad on a cartesian closed
category.

Proposition 5.7 ([15, Proposition 9.3]). Let (B,β ) be aT-algebra. Then any f: X ×Y → B extends
uniquely alongηX ×ηY to a bilinear f̃ : TX×TY → B, making the following triangle commute:

TX×TY
f̃

// B

X×Y

ηX×ηY

OO

f

::✈✈✈✈✈✈✈✈✈✈
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Here, bilinearity amounts to linearity in each argument.

Definition 5.8. For a commutative monadT : Set→ Set, thedouble extension liftingL′
T : Rel→ Rel is

the functor taking a relation R: X×Y → T1 to its unique bilinear extensioñR : TX×TY → T1.

Remark5.9. An alternative definition ofL′
T is as the composition ofLT with a dual lifting, which takes

a relationR : X×Y → T1 to its unique 2-linear extensionR : X×TY → T1.

Remark5.10. Again, it can be shown that a direct definition of the relationR̃ : TX×TY → T1 is as the
composition

TX×TY
dstX,Y

// T(X×Y)
T(R)

// T21
µ1

// T1

Proposition 5.9. The mapping R∈ RelX,Y 7→ R∈ RelX,TY is functorial.

We now fix twoT ◦F-coalgebras(C,γ) and(D,δ ) and explore the greatest fixpoint of the operator
O ′ : RelC,D → RelC,D defined by the composition

RelC,D
Rel(F)

// RelFC,FD
L′
T

// RelT(FC),T(FD)
(γ×ζ )∗

// RelC,D

As before, the operatorO ′ is monotone and therefore admits a greatest fixpoint. We argue that this
fixpoint also yields useful information regarding the linear-time behaviour of states inT◦F-coalgebras.
Moreover, this generalises to coalgebras whose types are arbitrary compositions of polynomial functors
and the branching monadT. This is expected to be of relevance when extending the linear-time view
presented here to linear-time logics and associated formalverification techniques. The connection to
formal verification constitutes work in progress, but the following examples motivate our claim that the
lifting L′

T is worth further exploration.

Example5.11. Let F : Set→ Set be a polynomial endofunctor, describing some linear-type behaviour.

1. For non-deterministic systems (i.e.P ◦F-coalgebras), the greatest fixpoint ofO ′ relates two states
if and only if they admit a common maximal trace.

2. For probabilistic systems (i.e.S ◦F-coalgebras), the greatest fixpoint ofO ′ measures the proba-
bility of two states exhibiting the same maximal trace.

3. For weighted systems (i.e.TW ◦F-coalgebras), the greatest fixpoint ofO ′ measures thejoint min-
imal cost of two states exhibiting the same maximal trace. Tosee this, note that the liftingL′

W :
Rel→ Rel takes a weighted relationR : X×Y →W to the relationL′

W(R) : TW(X)×TW(Y)→W
given by

L′
W(R)( f ,g) = min

x∈sup( f ),y∈sup(g)
( f (x)+g(y)+R(x,y))

6 Conclusions and Future Work

We have provided a general and uniform account of the linear-time behaviour of a state in a coalgebra
whose type incorporates some notion of branching (capturedby a monad onSet). Our approach is
compositional, and so far applies to notions of linear behaviour specified bypolynomialendofunctors on
Set. The key ingredient of our approach is the notion of extension lifting, which allows the branching
behaviour of a state to be abstracted away in a coinductive fashion.

Immediate future work will attempt to exploit the results of[6, 7] in order to define generalised re-
lation liftings for arbitrary endofunctors onSet, and to extend our approach to other base categories.
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The work in loc. cit. could also provide an alternative description for the greatest fixpoint used in Defini-
tion 5.6.

The present work constitutes a stepping stone towards a coalgebraic approach to the formal verifi-
cation of linear-time properties. This will employ linear-time coalgebraic temporal logics for the speci-
fication of system properties, and automata-based techniques for the verification of these properties, as
outlined in [2] for the case of non-deterministic systems.
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