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We consider state-based systems modelled as coalgebrae wpe incorporates branching, and
show that by suitably adapting the definition of coalgebbésimulation, one obtains a general and
uniform account of the linear-time behaviour of a state iohsa coalgebra. By moving away from
a boolean universe of truth values, our approach can metsextent to which a state in a system
with branching is able to exhibit a particular linear-timehlaviour. This instantiates to measuring
the probability of a specific behaviour occurring in a prabsiic system, or measuring the minimal
cost of exhibiting a specific behaviour in the case of weidlt@mputations.

1 Introduction

When analysing process behaviour, one of the early choicesas to make is between a linear and a
branching view of time. In branching-time semantics, theioes a process has for proceeding from a
particular state are taken into account when defining a natfgorocess equivalence (with bisimulation
being the typical such equivalence), whereas in lineae-ts@mantics such choices are abstracted away
and the emphasis is on the individual executions that a psoiseable to exhibit. From a system verifi-
cation perspective, one often chooses the linear-time,\@s\his not only leads to simpler specification
logics and associated verification techniques, but alsasrtee practical need to verify all possible
system executions.

While the theory of coalgebras has, from the outset, beentalpprovide a uniform account of var-
ious bisimulation-like observational equivalences (aatdr of various simulation-like behavioural pre-
orders), it has so far not been equally successful in giviggreeric account of the linear-time behaviour
of a state in a system whose type incorporates a notion othiiag. For example, the generic trace
theory of [9] only applies to systems modelled as coalgebfagmpe T o F, with the monadr : Set — Set
specifying a branching type (e.g. non-deterministic oibpialistic), and the endofunctér : Set — Set
defining the structure of individual transitions (e.g. lidx transitions or successful termination). The
approach in loc. cit. is complemented by that(of|[12], wheaeds are derived using a determinisation
procedure similar to the one for non-deterministic aut@nathe latter approach applies to systems
modelled as coalgebras of ty@e T, where again a monad : Set — Set is used to model branching
behaviour, and an endofunctGr specifies the transition structure. Neither of these ambres is able
to account for potentially infinite traces, as typically dayed in model-based formal verification. This
limitation is partly addressed inl[1], but again, this onpples to coalgebras of typEo F, albeit with
more flexibility in the underlying category (which in parlar allows a measure-theoretic account of
infinite traces in probabilistic systems). Finally, nonetloé above-mentioned approaches exploits the
compositionality that is intrinsic to the coalgebraic aggmh. In particular, coalgebras of ty@e ToF
(of which systems with both inputs and outputs are an examspke Example5l7) can not be accounted
for by any of the existing approaches. This paper presentgtampt to address the above limitations
concerning the types of coalgebras and the nature of treaésdn be accounted for, by providingai-
form andcompositionatreatment of (possibly infinite) linear-time behaviour ys&ms with branching.
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In our view, one of the reasons for only a partial success ueldeing a fully general coalgebraic
theory of traces is the long-term aspiration within the gela community to obtain a uniform charac-
terisation of trace equivalence via a finality argument, ichmthe same way as is done for bisimulation
(in the presence of a final coalgebra). This encounterectulifiés, as a suitable category for carrying
out such an argument proved difficult to find in the genera¢ casthis paper, we tackle the problem of
getting a handle on the linear-time behaviour of a state inadgebra with branching from a different
angle: we do not attempt to directly define a notion of traceivedence between two states (e.g. via
finality in some category), but focus dgestingwhether a state is able to exhibit a particular trace, and
on measuring the extent of this ability. This "measurindates to the type of branching present in the
system, and instantiates to familiar concepts such as titmapility of exhibiting a given trace in prob-
abilistic systems, the minimal cost of exhibiting a givesice in weighted computations, and simply the
ability to exhibit a trace in non-deterministic systems.

The technical tool for achieving this goal is a general@anf the notions of relation and relation
lifting [LO], which lie at the heart of the definition of coagraic bisimulation. Specifically, we employ
relations valued in a partial semiring, and a correspondieigeralised version of relation lifting. Our
approach applies to coalgebras whose type is obtained asiiif@osition of several endofunctors $st:
one of these is a monaldthat accounts for the presence of branching in the systeiite thie remaining
endofunctors, assumed here to be polynomial, jointly dater the notion of linear-time behaviour. This
strictly subsumes the types of systems considered in eartigk on coalgebraic traces|[9,[1,112], while
also providing compositionality in the system type.

Our main contribution, presented in Sectidn 5, imdormandcompositionakhccount of linear-time
behaviour in state-based systems with branching. A byymiodf our work is an extension of the study
of additive monads carried out in [14), 3] to what we qadirtially additive monad$SectionB). Our
approach can be summarised as follows:

e We move from two-valued to multi-valued relations, with tineiverse of truth values being in-
duced by the choice of monad for modelling branching. Trssantiates to relations valued in the
interval [0, 1] in the case of probabilistic branching, the B8t= NU {«} in the case of weighted
computations, and simplyL, T} in the case of non-deterministic branching. This reflects ou
view that the notion of truth used to reason about the obblr\zehaviour of a system should be
dependent on the branching behaviour present in that sySeoh a dependency is also expected
to result in temporal logics that are more natural and mopeessive, and at the same time have
a conceptually simpler semantics. In deriving a suitabigctiire on the universe of truth values,
we generalise results on additive moneads [14, Fjadially additive monads This allows us to
incorporate probabilistic branching under our approach.st\bw that for a commutative, partially
additive monadr on Set, the seflT'1 carries a partial semiring structure with an induced reQr
which in turn maked 1 an appropriate choice of universe of truth values.

e We generalise and adapt the notion of relation lifting usetté definition of coalgebraic bisimu-
lation, in order to (i) support multi-valued relations, giflabstract away branching. Specifically,
we make use of the partial semiring structure carried by tireeuse of truth values to generalise
relation lifting of polynomial endofunctors to multi-vadd relations, and employ a canoniext-
tension liftinginduced by the monad to capture a move from branching to linear time. The use
of this extension lifting allows us to make formal the ideaeasting whether, and to what extent,
a state in a coalgebra with branching can exhibit a partidudaar-timebehaviour. Our approach
resembles the idea employed by partition refinement algusgtfor computing bisimulation on
labelled transition systems with finite state space$ [13ler&, one starts from a single partition
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of the state space, with all states related to each otheregeatedly refines it through stepwise
unfolding of the transition structure, until a fixpoint isaehed. Similarly, we start by assuming
that a state in a system with branching can exhibit any litieae behaviour, and moreover, assign
the maximum possible value to each pair consisting of a atade linear-time behaviour. We then
repeatedly refine the values associated to such pairs gisiapwise unfolding of the coalgebraic
structure.

The present work is closely related to our earlier work on imak traces and path-based logics
[1], which described a game-theoretic approach to tesfiagsystem with non-deterministic branching
is able to exhibit a particular trace. Here we consider atjitbranching types, and while we do not
emphasise the game-theoretic aspect, our use of greafshischas a very similar thrust.

Acknowledgements Several fruitful discussions with participants at the 2@agstuhl Seminar on

Coalgebraic Logics helped refine the ideas presented hareuge of relation lifting was inspired by
the recent work on coinductive predicates [8], itself basedhe seminal work in_[10] on the use of
predicate and relation lifting in the formalisation of iradilon and coinduction principles. Last but not
least, the comments received from the anonymous revieveaitsilouted to improving the presentation
of this work and to identifying new directions for future vkor

2 Preliminaries

2.1 Relation Lifting

The concepts opredicate liftingandrelation lifting, to our knowledge first introduced ih [10], are by
now standard tools in the study of coalgebraic models, ugpdceprovide an alternative definition of the
notion of bisimulation (see e.g. in[11]), or to describe$henantics of coalgebraic modal logics|[17, 16].
While these concepts are very general, their use so farlysesltricts this generality by viewing both
predicates and relations as sub-objects in some categasgifly carrying additional structure). In this
paper, we make use of the full generality of these conceptsireove from the standard view of relations
as subsets to a setting where relations are valuations imbivarse of truth values. This section recalls
the definition of relation lifting in the standard settingevh relations are given by monomorphic spans.
Throughout this section (onlyRel denotes the category whose objects are binary relatiRris;, r2))
with (r1,r2) : R— X xY a monomorphic span, and whose arrows frd®(r1,r2)) to (R, (r{,r5)) are
given by pairs of function$f : X — X', g:Y —Y’) s.t. (f xg)o(ry,rp) factors throughr/,r5):
R % sy
|
I fxg
R iy
In this setting, theelation lifting of a functor F: Set — Set is defined as a functdel(F) : Rel — Rel
taking a relationr1,rz) : R— X x Y to the relation defined by the spéf(ry1),F(r2)) : F(R) — F(X) x
F(Y), obtained via the unique epi-mono factorisationefry),F (r2)):

R F(R) ——— Rel(F)(R)

(fl.rz)I <F(r1)7F(r2)>l /

X x Y F(X) x F(Y)
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It follows easily that this construction is functorial, aimd particular preserves the order between
relations on the same objects given (8 (r1,r2)) < (S (s1,%)) if and only if (r1,ry) factors through
(s1,%):

R— - %S)MXXY
S

(ri,ra2)

An alternative definition oRel(F) for F a polynomial functor(i.e. constructed from the identity and
constant functors usinfinite products and set-indexed coproducts) can be given by iiwiuch the
structure ofF. We refer the reader to [11, Section 3.1] for details of tl@frdtion. An extension of this
definition to a more general notion of relation will be giverSectiori 4.

2.2 Coalgebras

We model state-based, dynamical systems as coalgebrasheveategory of sets. Given a functor
F : C — C on an arbitrary category, dfcoalgebrais given by a paifC, y) with C an object ofC, used

to model the state space, apdC — FC a morphism inC, describing the one-step evolution of the system
states. Then, a canonical notion of observational equicaldetween the states of tWecoalgebras is
provided by the notion of bisimulation. Of the many, and unitie assumption thd preserves weak
pullbacks, equivalent definitions of bisimulation (see][idr a detailed account), we recall the one
based on relation lifting. This applies to coalgebras okerdategory of sets (as described below), but
also more generally to categories with logical factormasystems (as described in[11]). According to
this definition, arf-bisimulationbetween coalgebrg€, y) and(D, &) overSet is aRel(F)-coalgebra:

R-—-—>Rel(F)(R)

X XYW F(X) xF(Y)
In the remainder of this section we sketch a coalgebraicrgésation of a well-known partition refine-
ment algorithm for computinisimilarity (i.e. the largest bisimulation) on finite-state labelleahsition
systems[[1B]. For an arbitrary endofuncter. Set — Set and two finite-statd--coalgebragC, y) and

(D, d), the generalised algorithm iteratively computes relaienC C x D withi=0,1,... as follows:

® ~o= CxD

o ~iy1= (yx90)*(Rel(F)(~)) fori=0,1,...
where(y x 0)* takes a relatiofiR C FC x FD to the relation{(c,d) e Cx D | (y(c),d(d)) € R}. Thus,
in the initial approximation~q of the bisimilarity relation, all states are related, wlarat step + 1
two states are related if and only if their one-step obsEmatare suitably related using the relatien
Bisimilarity between the coalgebrd€, y) and (D, d) thus arises as the greatest fixpoint of a monotone
operator on the complete lattice of relations betw€aandD, which takes a relatioR C C x D to the
relation(y x 0)*(Rel(F)(R)). A similar characterisation of bisimilarity exists for dgabras with infinite
state spaces, but in this case the fixpoint can not, in germrakached in a finite number of steps.

The above greatest fixpoint characterisation of bisintilas generalised and adapted in Secfibn 5,
in order to characterise the extent to which a state in a ebaégwith branching can exhibit a linear-
time behaviour. There, the two coalgebras in question hdfereht types: the former has branching
behaviour and is used to model the system of interest, whéhealatter has linear behaviour only and
describes the domain of possible traces.
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2.3 Monads

In what follows, we use monadd, n, ) onSet (wheren :1d= T andu : ToT = T are theunit and
multiplication of T) to capture branching in coalgebraic types. Moreover, wem@g that these monads
arestrongandcommutativei.e. they come equipped withstrength maptyxy : X x TY — T(X xY) as
well as adouble strength magstxy : TX x TY — T(X x Y) for each choice of set¥,Y; these maps
are natural inX andY, and satisfy coherence conditions w.r.t. the unit and plidation of T. We also
make direct use of thewapped strength maap;kY : TXxY — T(X xY), obtained from the strength via
thetwist maptwy y : X xY =Y x X:

Ttwy x

TX Y DYy s TX 2 T(Y ¢ X) —% T(X < Y)

Example2.1 As examples of monads, we consider:
1. thepowerset monad” : Set — Set, modelling nondeterministic computations, with unit givey
singletons and multiplication given by unions. Its stréngihd double strength are given by

Stxiy(X,V) = {X} xV dstx’y(U,V) =UxV

forxe X,U € ZX andV € &Y,

2. thesemiring monadl's : Set — Set with (S +,0,e,1) a semiring, given by
Ts(X)={f: X — S|sup(f)isfinite}

with sup(f) = {x € X | f(x) # 0} thesupportof f. Its unit and multiplication are given by

nx<x><y>:{1 y=x u(feS$) =y Y f(geg
(9

0 otherwise gesup(f) xesup

while its strength and double strength are given by

o) ifz=x

dstx y(f =f
0 otherwise stxy (£,9)(2y) = f(z) e g(y)

SWMKQQWZ{

forxe X, f € Tg(X),ge Tg(Y), ze X andy € Y. As a concrete example, we will consider the
semiringW = (N, min, e, +,0), and usely to model weighted computations.

3. the sub-probability distribution monad” : Set — Set, modelling probabilistic computations,
with unit given by the Dirac distributions (i.1x(X) = (x — 1)), and multiplication given by
Ux(®) = 3 S ®(¢)*¢(x), with x denoting multiplication orj0,1]. Its strength and

pesup(d) Xesup(.(i))
double strength are given by

wly) ifz=x
0 otherwise

stx.y(X, @)(2y) = { dstxy (¢, W)(zy) = ¢(2) * Y(y)

forxe X, 9 € S (X), g e (YY), ze Xandy e Y.
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3 From Partially Additive, Commutative Monads to Partial Co mmuta-
tive Semirings with Order

Later in this paper we will consider coalgebras whose tyggvien by the composition of several end-
ofunctors onSet, one of which is a commutative mondd: Set — Set accounting for the presence of
branching in the systems of interest. This section exteasslts in [14] 8] to show how to derive a
universe of truth values from such a monad. The assumptidacotit. concerning thedditivity of
the monad under consideration is here weakenquhtbal additivity (see Definitior_311); this allows
us to incorporate the sub-probability distribution monadith is not additive) into our framework.
Specifically, we show that any commutative, partially alditmonadT : Set — Set induces a partial
commutative semiring structure on the 3dt, with 1= {x} a final object inSet. We recall that &om-
mutative semiringonsists of a seéd carrying two commutative monoid structures, 0) and(e, 1), with
the latter distributing over the formese 0 = 0 andse (t + u) = set +seu for all s;t,u € S. A partial
commutative semirings defined similarly, except that is a partial operation subject to the condition
that whenevet + u is defined, so iset + seu, and moreovese (t + u) = set + seu. The relevance of
a partial commutative semiring structure on the set of tvathes will become clear in Sections 4 dd 5.
It follows from results in[[3] that any commutative mon@f, n, i) on Set induces a commutative
monoid(T(1),e,n1(*)), with multiplicatione : T(1) x T(1) — T(1) given by the composition

T(1) x T(L) = T x 1) — = T(1)

Alternatively, this multiplication can be defined as the gasition

T(1)><T(1)L/1’1>T(1><T(1)) T, r201) (1)
or as
T(L) x T(1) =25 T(T(1) x 1) =% 72(1) —2 (1)

(While the previous two definitions coincide for commutatimonads, this is not the case in general.)
Remark3.1 The following maps define left and right actions(df(1),e) on T(X):

T(1) % TK) 225 T(1 % X) —225 T(X) T(X) x T(1) 225 T(X x 1) —2% T(X)

On the other hand, any mondd: Set — Set with TO = 1 is such that, for any, TX has azero
elemen® € TX, obtained agT!x)(x). This yields azero map0 :Y — TX for any X,Y, obtained as the
composition

Y s To - TX
with the mapsy : Y — T0 and & : 0 — X arising by finality and initiality, respectively. Now congir

the following map:

oTp1,pyoT
T(X 4) “HTPLRETR) o Ty 1)

wherep; = [Nx,0] : X+Y — TX andp, = [0,ny] : X+Y — TY.

Definition 3.1. A monadT : Set — Set is calledadditive] (partially additivg if TO =1 and the map in
(@) is an isomorphism (respectively monomorphism).

1Additive monads were studied in 14, 3].
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The (partial) inverse of the mafux o Tps, iy o Tp2) can be used to define a (partial) addition on
the setTX, given by T[1x,1x] o gx x, wheregx x : TX x TX — T(X + X) is the (partial) left inverse of
(Ux o Tpy, ty o Tp2):

(uxoTpy,pyoT p2)
T|[1x,1x]
TX%T(X—I—X)Q TXxTX

That is,a+ b is defined if and only ifa,b) € Im({ux o Tp1, ty oTp2>)E.

[3, Section 5.2] explores the connection between additeeymutative monads and commutative
semirings. The next result provides a generalisation ttighgr additive, commutative monads and
partial commutative semirings.

The proof of Proposition 312 is a slight adaptation of theesponding proofs in[3, Section 5.2].
Proposition 3.2. Let T be a commutative, (partially) additive monad. Then:

1. (T1,e,n1(x)) is a commutative monoid.

2. (TX,0,+) is a (partial) commutative monoid, for each set X.

3. (T1,0,+,e,n1(x)) is a (partial) commutative semiring.

Proof (Sketch).The commutativity of the following diagram lies at the heafrthe proof of iteniB:

T[1x,1x]x 111 &)
TIx T1e—— T TA+1)xT1, ___(T1xT1)xT1
Ju1x1m

l(mxrrz,rrzxnz)

. AT+ (TIxT1) x(T1xT1)
l.)(.

5
T1 TA+1), ' TixT1

T[1x,1x]

whereary : TX x T1 — TX is the right action from Remaftk 3.1, addis the map(ty o Tpg, 1o Tpy)
used in the definition of- on T1. The compositiors o (T[1x,1x] x 11) o (q1,1 x 111) captures the
computation ofa+ b) e ¢, whereas the composition1x, 1x] og;1 o (e x @) o (Th X Tk, Th X Tk) captures
the computatiorae c+bec, with a,b,c € T1. The fact thatd commutes with the strength map (by
(iv) of [B] Lemma 15]), together witlar (1, 1) ande being essentially given by the double strength maps
dst1;11 anddsty 1, yields (e x ) o (1 X 7B, 7B X Th) o (O X 111) = d 0 ar(111), that is, commutativity
(via the plain arrows) of the right side of the above diagrarhis immediately results iaec+bec
being defined whenever+ b is defined, and hence in the commutativity of the right sidéhefdiagram
also via the dashed arrows. This, combined with the commmityabf the left side of the diagram (which

is simply naturality of the right actioa), gives(a+ b) ec = aec-+becwhenevera+ bis defined. O

Example3.2 Forthe monads in Examgdle 2.1, one obtains the commutatieisgs ({ L, T},V, L,A, T)
whenT = 22, (N® min, o, +,0) whenT = TWE, and the partial commutative semiriq@, 1], +, 0, *,1)
whenT = . (where in the latter case+ b is defined if and only i+ b < 1).

2A similar, buttotal, addition operation is defined in 14, 3] for additive monads
3This is sometimes called thmpical semiring
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4 Generalised Relations and Relation Lifting

This section introduces generalised relations valued artgb commutative semiring, and shows how to
lift polynomial endofunctors oBet to the category of generalised relations. We begin by fixipgréal
commutative semiringS, +,0,e,1), and noting that the partial monoi®,+,0) can be used to define a
preorder relation o as follows:

xCvy ifand only if there existgz € Ssuch thak+z=y

for x,y € S It is then straightforward to show (using the definition gbatial commutative semiring)
that the preorde has Oc Sas bottom element, and is preservedshiy each argument. Proper (i.e. not
partial) semirings where the preordetlis a partial order are callathturally ordered5]. We here extend
this terminology to partial semirings.

Exampled4.1 For the monads in Example 2.1, the preorders associate@ fadbced partial semirings
(see Example_312) are all partial ordegson{ L, T} for T= 2, <on|0,1] for T =.&, and> onN®
for T="Tw.

We let Rel denote the categﬂywith objects given by triplegX,Y,R), whereR: X xY — Sis a
function defining amulti-valued relation(or S-relatior), and with arrows fromX,Y,R) to (X',Y',R))
given by pairs of function$f,g) as below, such th&®C R o (f x g):

f
X xY —2 X/ %Y

| e |

S—————=S

Here, the ordeZ on Shas been extended pointwiseSoelations with the same carrier.

We write Rely y for the fibre over(X,Y), that is, the full subcategory d¢tel whose objects ar&
relations overX x Y and whose arrows are given lf$x,1y). It is straightforward to check that the
functorq: Rel — Set x Set taking (X,Y,R) to (X,Y) defines a fibration: the reindexing functdr,g)* :
Relx/ys — Relx vy takesR : X' xY' — StoR o (f xg) : X xY = S

We now proceed to generalising relation liftingSoelations.

Definition 4.1. Let F: Set — Set. Arelation lifting of F is a functofl I : Rel — Rel such that el =
(FxF)oq:

Rel — ' L Rel

o |s

Set x Set —— Set x Set
FxF

We immediately note a fundamental difference comparedaodstrd relation lifting as defined in
Sectior Z.1L. While in the case of standard relations eadattduadmits exactly one lifting, Definitidn 4.1
implies neither the existence nor the uniqueness of adiftiwe defer the study of a canonical lifting
(similar to Rel(F) in the case of standard relations) to future work, and show toodefine a relation
lifting of F in the case whef is a polynomial functor. To this end, we make the additiorssiuanption
that the unit 1 of the semiring multiplication is a top elemg@vhich we also write a3’) for the preorder

4To keep notation simple, the dependencySis left implicit.
5Given the definition of the fibratiog, such a functor is automatically a morphism of fibrations.
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C. Recall thatZ also has a bottom element (which we will sometimes denote hyiven by the unit
0 of the (partial) semiring addition. The definition of théateon lifting of a polynomial functoiF is by
structural induction ofr and makes use of the semiring structureSon

e If F =Id, Rel(F) takes arGrelation to itself.
e If F =C, Rel(F) takes arSrelation to the equality relatioBq(C) : C x C — Sgiven by

Tifc=¢
1 otherwise

EqC(C’ C/) = {

e If F =F; xR, Rel(F) takes arGrelationR: X x Y — Sto:

(T XTH, TR X Th) Rel(F1)(R)xRel(F2)(R)

(FIX X FX) x (FY x BY) ——— (FIX x F1Y) x (FX x RY) SxS%S

The functoriality of this definition follows from the presation of C by e (see Sectiohl3).
o if F=Fi +F, Rel(F)(R) : (FiX+ F2X) x (FY +FY) — Sis defined by case analysis:

Rel(F)(R)(u,v) ifi=]
1 otherwise

Rel(F)(R)(1i (u),1j(v)) = {

fori,j € {1,2}, ue FX andv € F}Y. This definition generalises straightforwardly from bin&w
set-indexed coproducts.

Remark4.2. A more general definition of relation lifting, which applies arbitrary functors orbet, is
outside the scope of this paper. We note in passing that statateon lifting could be defined by starting
from ageneralised predicate lifting : F o Pqg = PgoF for the functorF, similar to the predicate liftings
used in the work on coalgebraic modal lodic|[17]. Here, thet@variant functorPg : Set — Set°P
takes a seK to the hom-sebet(X,S). Future work will also investigate the relevance of the ltesin
[6l [7] to a general definition of relation lifting in our setty. Specifically, the work in loc. cit. shows
how to construct truth-preserving predicate liftings agdadity-preserving relation liftings for arbitrary
functors on the base category of awvere fibrationto the total category of that fibration.

For the remainder of this paper, we tal&+,0,e,1) to be the partial semiring derived in Sectidn 3
from a commutative, partially additive mondd and we viewS as the set of truth values. In the case of
the powerset monad, this corresponds to the standard vieslations as subsets, whereas in the case of
the sub-probability distribution monad, this results ilatens given by valuations in the interviél, 1].
Exampled.3. LetF : Set — Set be given byFX = 1+ Ax X, with Aa set (of labels), and I1¢5,+,0,e,1)
be the partial semiring with carri@rl defined in Sectioh] 3.

e ForT = 2, Rel(F) takes a (standard) relatidhC X x Y to the relation
{(20x), 11(x)yU{((@ %), (a,y)) [ac A (xy) € R}
e ForT =.7,Rel(F) takesR: X x Y — [0,1] to the relatiorR : FX x FY — [0, 1] given by
R(11(x),11(x) =1 R((a,x),(ay)) = R(X,y) R(u,v) = 0 in all other cases
e ForT =Ty, Rel(F) takesR: X x Y — N* to the relatiorR : FX x FY — N* given by
R(11(x),12(x)) =0 R((a,x),(ay)) = R(x,y) R(u,v) =« in all other cases
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5 From Bisimulation to Traces

Throughout this section we fix a commutative, partially &iddimonadT : Set — Set and assume,
as in the previous section, that the natural preofdenduced by the partial commutative semiring
obtained in Sectiohl3 has the multiplication unit(x) € T1 as top element. Furthermore, we assume
that this preorder is aw°P-chain completgartial order, whereo°P-chain completeness amounts to any
decreasing chairy 2 xo ... having a greatest lower bound.X. These assumptions are clearly
satisfied by the orders in Exampple}4.1.

We now show how combining the liftings of polynomial funcaio the category of generalised
relations valued in the partial semirinbl (as defined in Sectidn 4) with so-calledtension liftings
which arise canonically from the mondd can be used to give an account of the linear-time behaviour
of a state in a coalgebra with branching. The type of such Eebea can be any composition involving
polynomial endofunctors and the branching mofadlthough compositions of typEoF, Go T and
GoToF with F andG polynomial endofunctors are particularly emphasised iatibllows.

We begin with some informal motivation. Whdtel is the standard category of binary relations,
recall from Sectiofi 2]2 that aR-bisimulation is simply aRel(F)-coalgebra, and that the largdst
bisimulation between tw& -coalgebragC, y) and (D, &) can be obtained as the greatest fixpoint of the
monotone operator oRelc.p Which takes a relatioR to the relationy x d)*(Rel(F)(R)). Generalising
the notion ofF-bisimulation from standard relations 1d.-relations makes little sense when the systems
of interest ard--coalgebras. However, when considering say, coalgebrggpefT o F, it turns out that
liftings of F to the category ofr 1-relations (as defined in Sectibh 4) can be used to destritdimear-
time behaviourof states in such a coalgebra, when combined with suitaftlegé of T to the same
category of relations. To see why, let us consider labelladsition systems viewed as coalgebras of
type Z(1+Ax1d). In such a coalgebrg: C — Z(1+ A x C), explicit termination is modelled via
transitionsc — 11(x), whereas deadlock (absence of a transition) is modellgda@s= 0. In this case,
Rel(Z?) oRel(1+ A x Id) is naturally isomorphic t®el(Z7(1+ A x Id))ﬁ, and takes arelatioRC X x Y
to the relatiorR C 2(1+Ax X) x Z(1+AxY) given by

if 11(x) € U theniy(x) € V, and conversely

(U,V)eR ifandonlyif <. _ _
if (a,x) € U then there existéa,y) € V with (x,y) € R, and conversely

Thus, the largest”(1+ A x Id)-bisimulation between two coalgebrés, y) and(D, d) can be computed
as the greatest fixpoint of the operatorReic p obtained as the composition

RCCxD R c FexFDRL R, c 2(FC)x 2(FD) 2SR cexD  (2)

whereF =1+ A x Id. Note first thaRel(2?) (defined in Sectioh 2] 1 for an arbitrary endofunctorSer)
takes a relatiofR C X x Y to the relatiorR C Z2(X) x Z(Y) given by

(U,V) e R ifand only if for all x € U there existy € V with (x,y) € R, and conversely

Now consider the effect of replaciriRel(#?) in @) with the lifting L : Rel — Rel that takes a relation
RC X x Y to the relationrR C Z(X) x Y given by

(U,y) e R ifand only if there existx € U with (x,y) € R

6A similar observation holds more generally f6f o F with F a polynomial endofunctor. In general, only a natural trans-
formationRel(F o G) = Rel(F) o Rel(G) exists, se€ [11, Exercise 4.4.6].
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To do so, we must change the type of the coalgébra) from &7 oF to justF. A closer look at the
resulting operator oRelc p reveals that it can be used to test for the existence of a mattface: each
state of thd=-coalgebrgD, §) can be associatechaaximal tracei.e. an element of the fin&l-coalgebra,

by finality. In particular, wherF = 14 A x Id, maximal traces are either finite or infinite sequences of
elements ofA. Thus, the greatest fixpoint of the newly defined operatoRea.p corresponds to the
relation onC x D given by

c >y d if and only if there exists a sequence of choices of transstigtarting front € C that leads to
exactly the same maximal trace (elemenfdf) A%) as the single trace af € D

This relation models the ability of the stat¢o exhibit the same trace as thatdbf

The remainder of this section formalises the above intuii@nd generalises them to arbitrary mon-
adsT and polynomial endofunctoiis, as well as to arbitrary compositions involving the mofaend
polynomial endofunctors. We begin by restricting attemtio coalgebras of typ& o F, with the monad
T capturing branching and the endofunckodescribing the structure of individual transitions. Insthi
case it is natural to view the elements of the fiRatoalgebra as possiblaear-time observable be-
haviours of states ifi o F-coalgebras. Similarly to the above discussion, wé@ey) and(D, d) denote
aT oF-coalgebra and respectively &acoalgebra. The lifting of to T1-relations will be used as part
of an operator otRelc p. In order to generalise the lifting above to arbitrary monadg, we recall the
following result from [15], which assumes a strong mofiadn a cartesian closed category.

Proposition 5.1([15, Proposition 4.1]) Let (B, 3) be aT-algebra. For any f: X xY — B, there exists
a uniquel-linear f : TX x Y — B making the following triangle commute:

TXxY ——B

nx XlYT /

XxY

In the above, dinearity is linearity in the first variable. More precisely, foralgebras(A, a) and
(B,B), amapf : AxY — Bis called tlinear if the following diagram commutes:

t/
T(A) xY 2% T(AxY) L 7(B)

. :

AxY : B

Clearly 1-linearity should be expected of the liftihgR) : TX xY — T1 of arelationR: X xY — T1,
as this amounts tb(R) commuting with theT-algebra structure€T' X, ux) and(T1, y1). Given this, the
diagram of Propositioh 5.1 forces the definition of the gah&ed lifting.

Definition 5.2. Theextension liftingLt : Rel — Rel is the functor taking a relation RX xY — T1to
its uniquel-linear extensiorR: TX x Y — T1.

Remark5.1 It follows from [15] that a direct definition of the relatioR: TX xY — T1 is as the
composition

T(R) M

sty 2
TX XY Y5 T(X x Y) T21 T1

This also yields functoriality of.+, which follows from the functoriality of its restriction teach fibre
categoryRely y, as proved next.
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Proposition 5.3. The mapping R Relx y — R € Relyx y is functorial.

Proof (Sketch).LetR,R € Relx y be such thaRC R. Hence, there exis8c Relx y such thaR+S=R
(pointwise). To show thaR C R, it suffices to show thati; o T(R) = 0 T(R) (pointwise). To this end,
we note that commutativity of the mapwith the monad multiplication, proved inl[3, Lemma 15 (iii)]
and captured by the commutativity of the lower diagram bepaa the plain arrows)

——— ]

| |

Hiv1

T?(1+1) ——T(1+1)
+ +
T lTé [
|
T(T1xT1) 5| 101

l(Tm,Tr@ \

\

T21x T2l ——T1xT1
Hax Hy

also yields commutativity of the whole diagram (via the dashrrows). This formalises the commuta-
tivity of + (defined asT'! o g; 1) with the monad multiplication. Now pre-composing this conotative
diagram (dashed arrows) with the map

T(XxY) —— T(T1x T1)
given by the image undér of the map(x,y) — (R(x,y),S(x,y)) yields
(Mo T(R) + (H1oT(S)) = o T(R+S) = pyo TR
and therefore, using the definition ©f p; o T(R) C iy o T(R). This concludes the proof. O

Thus,L is a functor making the following diagram commute:

Rel— " 4 Rel

ql l“

Set x Set — Set x Set
TxId

We are finally ready to give an alternative account of maxitraales ofT o F-coalgebras.

Definition 5.4. Let (C,y) denote aT o F-coalgebra, and le{Z, ) denote the final F-coalgebra. The
maximal trace mapr, : C — (T1)% of y is the exponential transpose of the greatest fixpoinER Z —
T1 of the operator? : Relc z — Relc z given by the composition

Rel(F L Q)
ReIC.z ﬂ) Re||:c’|:z —T) Re|-|—(|:c)7;:z M) ReIC.z

The above definition appeals to the existence of least fixpanchain-complete partial orders, as
formalised in the following fixpoint theorem frori[4].
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Theorem 5.5([4], 8.22]). Let P be a complete partial order and lét: P — P be order-preserving. Then
0 has aleast fixpoint.

Definition[5.4 makes use of this result applied to th&al of the orderC. Our assumption thdt
is weP-chain complete makes the dual order a complete partiar.ofdenotonicity of the operator in
Definition[5.4 is an immediate consequence of the funcityiaf Rel(F), Lt and(y x d)*.

[4] also gives a construction for the least fixpoint of an odeserving operator on a complete
partial order, which involves taking a limit over an ordiiiatlexed chain. Instantiating this construction
to the dual of the orderL yields an ordinal-indexed sequence of relatioRg), where:

e Ry= T (i.e. the relation oi€ x D given by(c,d) — 1),

1 Ra+1=:@KRaL
e Ry =Tg.Rg, if ais alimit ordinal.

Remark5.2 While in the casel = 7, restricting to finite-state coalgebr&s, y) and (D, d) results in
the above sequence of relations stabilising in a finite numbsteps, forT = . or T = Ty this is
not in general the case. However, for probabilistic or wiidhcomputations, an approximation of the
greatest fixpoint may be sufficient for verification purpgossce a threshold can be provided as part of
a verification task.

Remark5.3. By replacing the=-coalgebraZ, ) by (1, a~1) with (1, a) aninitial F -algebra, one obtains
an alternative account dihite traces of states it o F-coalgebras, with thénite trace magftr, : C —
(T1)! of aT o F-coalgebraC, y) being obtained via the greatest fixpoint of essentially #raesoperator
0, but this time orRelc;. In fact, one can use arfy-coalgebra in place ofZ,{), and for a specific
verification task, a coalgebra with a finite state space, @dingoa given linear-time behaviour, might be
all that is required.

Remark5.4. The choice of functoF directly impacts on the notion of linear-time behaviourr Egam-
ple, by regarding labelled transition systems as coalgebiitype &7 (A x Id) instead of#?(1+ A x Id)

(i.e. not modelling successful termination explicitlynite traces are not anymore accounted for — the
elements of the findF-coalgebra are given by infinite sequences of elements dthis should not be
regarded as a drawback, in fact it illustrates the flexipit our approach.

Examples.5. Let F denote an arbitrary polynomial functor (e.g+2A x Id).

e ForT = &2, the extension liftingL 4 : Rel — Rel takes a (standard) relatidR C X x Y to the
relationL »(R) C Z(X) x Y given by

(U,y) € L»(R) if and only if there existx € U with (x,y) € R

As a result, the greatest fixpoint 6f relates a statein a &2 o F-coalgebraC, y) with a statez of
the finalF-coalgebra if and only if there exists a sequence of choitése unfolding ofy starting
from c, that results in arfF-behaviour bisimilar t@ This was made more precise A [1], where
infinite two-player games were developed for verifying wissta state of &2 o F-coalgebra has
a certain maximal trace (element of the fikratoalgebra).

e For T = T, the extension liftingL » : Rel — Rel takes a valuatiorR: X x Y — [0,1] to the
valuationL #(R) : . (X) x Y — [0,1] given by

Ly(R)(P.y)= > ¢(X)=Rxy)

xesup(¢)
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Thus, the greatest fixpoint @f yields, for each state in.& o F-coalgebra and each potential maxi-
mal tracez, the probability of this trace being exhibited. As compgtthese probabilities amounts
to multiplying infinitely-many probability values, the grability of an infinite trace will often turn
out to be 0 (unless from some point in the unfolding of a paldicstate, probability values of 1
are associated to the individual transitions that matchrigcpéar infinite trace). This may appear
as a deficiency of our framework, and one could argue that aunedheoretic approach, whereby
a probability measure is derived from the probabilities witdi prefixes of infinite traces, would be
more appropriate. Future work will investigate the needafaneasure-theoretic approach. At this
point, we simply point out that in a future extension of thegant approach to linear-time logics
(where individual maximal traces are to be replaced by litieae temporal logic formulas), this
deficiency is expected to disappear.

e ForT = Ty, the extension liftind.yw : Rel — Rel takes aweighted relation RX xY — W to the
relationLw (R) : Tw(X) xY — W given by

Lw(R)(f,y) = min (f(x)+R(xy))
xesup(f)

for f : X - W andy € Y. Thus, the greatest fixpoint @f maps a pairc,z), with ¢ a state in a
Tw o F-coalgebra and a maximal trace, to theost(computed via the min function) of exhibiting
that trace. The case of weighted computations is somewffiateatit from our other two examples
of branching types, in that the computation of the fixpoimtrtst from a relation that maps each
pair of stategc, z) to the value G= N* (the top element foE-), and refines this down (w.r.t. the
order) through stepwise unfolding of the coalgebra stnestpand{.

The approach presented above also applies to coalgebrgpedto T with G a polynomial end-
ofunctor, and more generally to coalgebras whose type @irsdd as the composition of polynomial
endofunctors and the mondd with possibly several occurrencesfn this composition. In the case of
Go T-coalgebras, instantiating our approach yields differesatilts to the extension semantics proposed
in [12]. Specifically, the instantiation involves takiig, {) to be a finalG-coalgebra andC, y) to be an
arbitraryG o T-coalgebra, and considering the monotone operatdtett); given by the composition

Reloz — " Rebroz b Relg(1c).62 s Relc 7 3)

The following example illustrates the difference betweanapproach and that df [12].

Example5.6. ForG = 2 x |d” with A a finite alphabet andl = 22, Go T-coalgebras are non-deterministic
automata, whereas the elements of the fabalgebra are given by functiomsA* — 2 and correspond

to languages oveh. In this case, the greatest fixpoint of the operatofin (3) srapair(c,z), with c a
state of the automaton arzdch language oved, to T if and only if there exists a sequence of choices in
the unfolding of the automaton starting frarthat results in a deterministic automaton which accepts the
language denoted tzy Taking the union over aft such tha{c,z) is mapped tol' now gives the language
accepted by the non-deterministic automaton wits initial state, but only under the assumption that
for eacha € A, ana-labelled transition exists from any state of the automatbinis example points to
the need to further generalise our approach, so that ircpéatiit can also be applied to pairs consisting
of a Go T-coalgebra and &'-coalgebra, withG’ different from G. This would involve considering
relation liftings for pairs of (polynomial) endofunctordVe conjecture that taking and T as above
andG' = 1+ A x Id would allow us to recover the notion of acceptance of a finieedroverA by a
non-deterministic automaton.
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Finally, we sketch the general case of coalgebras whosadyixained as the composition of several
endofunctors orbet, one of which is a monad that accounts for the presence of branching in the
system, while the remaining endofunctors are polynomidljaimtly determine the notion of linear-time
behaviour. For simplicity of presentation, we only considealgebras of typ&o T o F, with the final
GoF-coalgebraz, {) providing the domain of possible linear-time behaviours.

Definition 5.6. Thelinear-time behaviouof a state in a coalgebréC, y) of type Go T oF is the greatest
fixpoint of an operato”’ on Relc z defined by the composition:

Rel(F) L Rel(G) (yx2)"
Relcz — Relpcpz —— Relt(ro) Fz it Relg(trc),cFz — Relcz (4)

The greatest fixpoint o measures the extent with which a state &a@l o F-coalgebra can exhibit a
given linear behaviour (element of the fifab F-coalgebra). Definition 516 generalises straightforwardl
to coalgebraic types given by arbitrary compositions of/pomial endofunctors and the mon@dwith
the extension liftind_t being used once for each occurrenc& ah such a composition.

Example5.7. Coalgebras of typ&o T oF, whereG = (1+ Id)* andF = Id x B, model systems with
branching, with both inputs (from a finite s&} and outputs (in a sé&). In this case, the possible linear
behaviours are given by special trees, with both finite afidita branches, whose edges are labelled by
elements ofA (from each node, one outgoing edge for eaehA), and whose nodes (with the exception
of the root) are either labelled by 1 (for leaves) or by an element Bf(for non-leaves). The linear-time
behaviour of a state in@o T o F-coalgebra is then given by:

o the set of trees that can be exhibited from that state, whens?,

e the probability of exhibiting each tree (with the probai@k corresponding to different branches
beingmultiplied when computing this probability), wheh=.#, and

e the minimum cost of exhibiting each tree (with the costs fedent branches beingddedwhen

computing this cost), wheh = Tyw.

The precise connection between our approach and earlide iwd®), [1,12] is yet to be explored.
In particular, our assumptions are different from those adf. tit., for example in[[9] the DCPQ
enrichedness of the Kleisli category Bfis required.

Remarlb.8. Our approach does ndirectly apply to the probability distribution monad (defined simrifa
to the sub-probability distribution monad, but with proliigies adding up to exactly 1), as this monad
does not satisfy the conditioR® = 1 of Definition[3.1. However, systems where branching is desd
using probability distributions can still be dealt with, bsgarding all probability distributions as sub-
probability distributions.

In the remainder of this section, we briefly explore the usefss of an operator similar @, which
employs a similar extension lifting arising from tHeuble strengttof the monadr. We begin by noting
that a result similar to Propositién 5.1 is proved|in/[15] focommutative monad on a cartesian closed
category.

Proposition 5.7 ([15, Proposition 9.3]) Let (B,[3) be aT-algebra. Then any fX xY — B extends
uniquely alongx x ny to a bilinear f : TX x TY — B, making the following triangle commute:

TXxTY — B

nx XUYT /

XxY
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Here, bilinearity amounts to linearity in each argument.

Definition 5.8. For a commutative monadl : Set — Set, thedouble extension liftind/; : Rel — Rel is
the functor taking a relation RX xY — T1to its unique bilinear extensioR: TX x TY — T1.

Remark5.9. An alternative definition of’; is as the composition dft with a dual lifting, which takes
arelationR: X x Y — T1 to its unique 2-linear extensidi: X x TY — T1.

Remark5.1Q Again, it can be shown that a direct definition of the relationTX x TY — T1 is as the
composition

T(R
LS TP U]

d
TX x TY =2 T(X x )

Proposition 5.9. The mapping R Relx y — R € Relx 1v is functorial.

We now fixtwo T o F-coalgebragC, y) and (D, &) and explore the greatest fixpoint of the operator
0" : Relcp — Relc p defined by the composition

Rel(F) L (yxq)*
Relc,p —— Relrc.pp —— Relr(ee) 1(Fp) — Relcp

As before, the operataf” is monotone and therefore admits a greatest fixpoint. Weeattuat this
fixpoint also yields useful information regarding the lindiane behaviour of states ih o F-coalgebras.
Moreover, this generalises to coalgebras whose types biteagy compositions of polynomial functors
and the branching monat. This is expected to be of relevance when extending thertiee view
presented here to linear-time logics and associated foverdication techniques. The connection to
formal verification constitutes work in progress, but thikofeing examples motivate our claim that the
lifting L’ is worth further exploration.

Examples.11 LetF : Set — Set be a polynomial endofunctor, describing some linear-tygealviour.

1. For non-deterministic systems (i#”. o F-coalgebras), the greatest fixpoint@frelates two states
if and only if they admit a common maximal trace.

2. For probabilistic systems (i.e” o F-coalgebras), the greatest fixpoint@f measures the proba-
bility of two states exhibiting the same maximal trace.

3. For weighted systems (i.€y o F-coalgebras), the greatest fixpoint@f measures th@int min-
imal cost of two states exhibiting the same maximal tracesd@®this, note that the liftinty, :
Rel — Rel takes a weighted relatioR: X x Y — W to the relatiorL{y (R) : Tw(X) x Tw(Y) =W
given by

Lw(R)(f,.g)=  min  (f(x)+9(y)+R(XxY))
xesup(f),yesup(g)

6 Conclusions and Future Work

We have provided a general and uniform account of the litigag-behaviour of a state in a coalgebra
whose type incorporates some notion of branching (captbyed monad orbet). Our approach is
compositional, and so far applies to notions of linear behavspecified bypolynomialendofunctors on
Set. The key ingredient of our approach is the notion of exteméifting, which allows the branching
behaviour of a state to be abstracted away in a coinductsreda.

Immediate future work will attempt to exploit the results[6f[7] in order to define generalised re-
lation liftings for arbitrary endofunctors orbet, and to extend our approach to other base categories.
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The work in loc. cit. could also provide an alternative dgstn for the greatest fixpoint used in Defini-
tion[5.8.

The present work constitutes a stepping stone towards geatwalic approach to the formal verifi-
cation of linear-time properties. This will employ line@me coalgebraic temporal logics for the speci-
fication of system properties, and automata-based tecbsifipu the verification of these properties, as
outlined in [2] for the case of non-deterministic systems.
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