
D. Miller and Z.Ésik (Eds.): Fixed Points
in Computer Science 2012 (FICS 2012)
EPTCS 77, 2012, pp. 15–22, doi:10.4204/EPTCS.77.3

Characteristic Formulae for Relations with Nested Fixed
Points∗

Luca Aceto Anna Ingólfsdóttir†

ICE-TCS, School of Computer Science
Reykjavik University
Reykjavik, Iceland

{luca,annai}@ru.is

A general framework for the connection between characteristic formulae and behavioral semantics
is described in [2]. This approach does not suitably cover semantics defined by nested fixed points,
such as then-nested simulation semantics forn greater than 2. In this study we address this deficiency
and give a description of nested fixed points that extends theapproach for single fixed points in an
intuitive and comprehensive way.

1 Introduction

In process theory it has become a standard practice to describe behavioural semantics in terms of equiv-
alences or preorders. A wealth of such relations has been classified by van Glabbeek in his linear
time/branching time spectrum [4]. Branching-time behavioural semantics are often defined as largest
fixed points of monotonic functions over the complete lattice of binary relations over processes.

In [2] we give a general framework to reason about how this type of behavioral semantics can be
characterized by a modal logic equipped with a greatest fixedpoint operator, or more precisely by char-
acteristic formulae expressed in such a logic. In that reference we show that a behavioural relation that
is derived as a greatest fixed point of a function of relationsover processes is given by the greatest fixed
point of the semantic interpretation of a logical declaration that expresses the function in a formal sense
that is defined in present paper. Roughly speaking if a logical declaration describes a monotonic func-
tion over a complete lattice then its fixed point describes exactly the fixed point of the function. In [2]
preorders and equivalences such as simulation preorder andbisimulation equivalence are characterized
following this approach in a simple and constructive way. However, when the definition of a behavioural
relation involves nested fixed points, i. e. when the monotonic function that defines the relation takes an-
other fixed point as an argument, things get more complicated. The framework offered in [2] only deals
with nesting on two levels and in a rather clumsy and unintuitive way. Furthermore it does not extend
naturally to deeper nesting, like for then-nested simulations forn > 2. In this study we address this
deficiency and define a logical framework in which relations obtained as a chain of nested fixed points
of monotonic functions can be characterized following general principles. This extends the approach for
single fixed points in an intuitive and comprehensive way.

As the applications we present in the paper only deal with nesting of greatest fixed points, this study
only focuses on greatest fixed points. However it is straightforward to extend it to deal with alternating
nesting of both least and greatest fixed points. We also believe that our approach gives some idea about
how fixed point theories in different domains can be comparedin a structured way.

∗Supported by the project Processes and Modal Logics’ (project nr. 100048021) of the Icelandic Research Fund.
†Supported by the VELUX visiting professorship funded by theVILLUM FOUNDATION.

http://dx.doi.org/10.4204/EPTCS.77.3

16 Fixed points

The remainder of the paper is organized as follows. Section 2presents some background on fixed
points of monotone functions. Section 3 briefly introduces the model of labelled transition systems and
some results on behavioural relations defined as greatest fixed points of monotonic functions over binary
relations. The logic we shall use to define characteristic formulae in a uniform fashion is discussed in
Section 4. The key notion of a declaration expressing a monotone function is also given in that section.
Section 5 is devoted to an application of our framework to thelogical characterization of the family of
nested simulation semantics.

2 Posets, monotone functions and fixed points

In this section we introduce some basic concepts we need in the paper.

Definition 2.1

• A partially ordered set, or poset, (A,⊑A) (usually referred to simply as A) consists of a set A and a
partial order⊑A over it.

• If A is a poset and M⊆ A, then a∈ A is anupper boundfor M if m⊑A a for all m∈ M. a is aleast
upper bound(lub) for M if it is an upper bound for M and if whenever b is an upper bound for M
then a⊑A b.

• A poset A is acomplete latticeif the lub for M exists for all M⊆ A.

• For posets A and B, a functionφ : A→B is monotone if it is order preserving; it is anisomorphism
if it is bijective and bothφ and its inverseφ−1 are monotone. We let A→monoB denote the set of
monotone functions from A to B.

• If A is a poset and f∈ A →monoA, then x∈ A is a fixed point of f if f(x) = x. We writeν f (or
νx. f (x)) for the greatest fixed point of f if it exists.

• If A and B are posets, f∈ A →mono A and φ ∈ A →mono B is an isomorphism then we define
φ∗ f : B→ B asφ∗ f = φ ◦ f ◦φ−1.

Note that thelub of a subset of a posetA is unique if it exists and the same holds for greatest fixed points
of monotone functions over posets. It is well known, that ifA andB are posets/complete lattices andI is
some set, then the Cartesian productA×B and the function spaceI → A are a posets/complete lattices
under the pointwise ordering. The following theorem is due to Tarski.

Theorem 2.2 ([10]) If A is a complete lattice and f∈ A →monoA, then f has a unique greatest fixed
point.

The theorem below is proved in [2] and is the key to the generaltheory we present in this paper.

Theorem 2.3 Let A and B be posets, f∈ A→monoA andφ : A→ B be an isomorphism. Thenν f exists
iff ν(φ∗ f) exists. If these fixed points exist thenφ(ν f) = ν(φ∗ f).

3 Labelled transition systems and behavioural relations

It has become standard practice to describe behavioural semantics of processes by means of alabelled
transition systemas defined below.

Definition 3.1 ([7]) A labelled transition system (LTS)is a triple P= (P,A,→) where

• A is a finite set (of actions),

Aceto & Ingólfsdóttir 17

• P is a finite set (of processes), and

• →⊆ P×A ×P is a transition relation.

As usual, we writep
a

−→ p′ for (p,a, p′) ∈→. Throughout this paper we assume that the setA is fixed.
As LTSs are in general to concrete, processes are compared bypreorders or equivalences. These are

often obtained as the greatest fixed points to monotone endofunctions on the complete latticeP(P×P).
We will show some example of such functions but first we state and prove some properties.

Definition 3.2 If F ∈ P(P×P)→monoP(P×P) and A∈ P(P×P), we define

• F̃ : S 7→ (F (S−1))−1, and

• F ∩A : S 7→ F (S)∩A.

The following lemma will be applied below.

Lemma 3.3 LetF ∈ P(P×P)→monoP(P×P) and A∈ P(P×P). Then

• F̃ ,F ∩A∈ P(P×P)→monoP(P×P),

• νF̃ = (νF)−1 and

• F̃ ∩A= F̃ ∩A−1.

Proof The first two statements are proved in [2]. To prove the third one we proceed follows:

(F̃ ∩A)(S) = ((F ∩A)(S−1))−1 = (F (S−1))−1∩A−1 = (F̃ ∩A−1)(S).

We will complete this section by giving some examples of endofunction that define some standard be-
havioural preorders and equivalences [4, 1].

Definition 3.4 LetF : P(P×P)→ P(P×P) be defined as follows:

(p,q) ∈ F (S) iff ∀a∈ A, p′ ∈ P.p a
−→ p′ ⇒∃q′ ∈ P.q

a
−→ q′∧ (p′,q′) ∈ S.

It is easy to check thatF is monotonic and therefore it has a greatest fixed point.

Definition 3.5 We define:

• Fsim= F and⊑sim= νFsim (simulation preorder),

• Fopsim= F̃ and⊑opsim= νFopsim(inverse simulation preorder),

• ∼sim=⊑sim∩ ⊑opsim(simulation equivalence) and

• Fbisim= Fsim∩Fopsimand∼bisim= νFbisim (bisimulation equivalence).

4 Equational modal ν-calculi with nested fixed-points

In this section we introduce variants of the standard equational modalµ-calculus [8]. Like in [9] these
variants only allow for nested fixed points, i. e. where the logical languages form a hierarchy where fixed
points in a language on one level are allowed as constants in the logic on the level above. Our approach,
however, differs from the original one in the sense that the fixed-point operator is explicit in the syntax
and can therefore be used in logical expressions. In this study we only focus on greatest fixed points
(which explains the title of this section) but the frameworkcan easily be extended to involve nesting

18 Fixed points

of both greatest and least fixed points. The logical languages we introduce depend on the implicitly
assumed fixed finite setA.

Our basic logicM is the standard Hennessy-Milner Logic (HML) [6] without variables. This logic
is generated byΣ = (Σ0,Σ1,Σ2) whereΣ0 = {tt, ff} are the constants or the operators of arity 0,Σ1 =
{〈a〉, [a],a ∈ A} are the operators of arity 1, andΣ2 = {∧,∨} are the operators of arity 2.

The formulae inM are interpreted over an LTS(P,A,→) as the set of elements fromP that satisfy
them. Satisfaction is determined by a semantic function that is defined below. ForM ⊆P we let〈·a·〉M =

{p∈ P | ∃q∈ M.p
a

−→ q}, and[·a·]M = 〈·a·〉M whereM is the complement of the setM.

Definition 4.1 The semantic functionM [[]] is defined as follows:

1. M [[tt]] = P, M [[ff]] = /0,

2. M [[F1∧F2]] = M [[F1]]∩M [[F2]], M [[F1∨F2]] = M [[F1]]∪M [[F2]],

3. M [[〈a〉F]] = 〈·a·〉M [[F]], M [[[a]F]] = [·a·]M [[F]].

The logicV is the standard Hennessy-Milner logic with variables that was introduced in [9]. It assumes
a finite index setI and anI -indexed set of variablesX . In what remains of this paper we assume a fixed
pair of suchI andX , unless stated otherwise.

As the elements ofV typically contain variables, they have to be interpreted with respect to a variable
interpretationσ ∈P(P)I that associates to eachi ∈ I the set of processes inP that are assumed to satisfy
the variableXi. The semantic functionV [[]] in this case takes a formulaF and aσ ∈P(P)I and delivers
an element ofP(P).

Definition 4.2 The semantic functionV [[]] is defined as follows:

1. V [[F]]σ = M [[F]] if F ∈ Σ0,

2. V [[Xi]]σ = σ(i), i ∈ I,

3. V [[F1∧F2]]σ = V [[F1]]σ ∩V [[F2]]σ , V [[F1∨F2]]σ = V [[F1]]σ ∪V [[F2]]σ ,

4. V [[〈a〉F]]σ = 〈·a·〉V [[F]]σ , V [[[a]F]]σ = [·a·]V [[F]]σ .

In [9] the meaning of the variables in the logicV is defined by means of a declaration, or a function
D : I → V . Intuitively the syntactic function generates a monotonicendofunctionV [[D]] over P(P)I

defined by(V [[D]])(i) = V [[D(i)]] for all i ∈ I . By Theorem 2.2,V [[D]] has a unique largest fixed point
νV [[D]] ∈ P(P)I that can be used to give the semantics for the variables and the formulae that contain
those in the logicV . We can then use this to extend the logicM with {νD(i)|i ∈ I} as constants
interpreted as{νV [[D]](i)|i ∈ I}. By this we get a logicM ′ that is generated byΣ′ = (Σ0∪{νD(i)|i ∈
I},Σ2,Σ3). Then this procedure can be repeated for another declaration that possibly depends onνD as
a constant and withM ′ as the basic logic. The following example shows how this construction works.

Example Let I = {1}, X = {X1} andA = {a,b} and let the property “invariantly〈a〉tt” be defined
as the greatest fixed point corresponding to the declarationD0 defined asD0(1) = 〈a〉tt ∧ [a]X1∧ [b]X1.
To interpret this we defineM = M0 andV0 = V whereM andV have the meaning described above.
The derived semantic functionV0[[D0]] : P(P){1} → P(P){1} is easily shown to be monotonic and has
the greatest fixed pointνV0[[D0]] ∈ P(P){1}. Now we defineM1 as the extension ofM0 that is gener-
ated byΣ1 = ({tt, ff ,νD0(1)},Σ1,Σ2), i.e. hasνD0(1) as a constant that is interpreted asνV0[[D0]](1),
i.e.M1[[νD0(1)]] = νV0[[D0]](1).

Next let us assume that we have the declarationD1 : {1} → V1 whereV1 is the variable logic gener-
ated by({tt, ff ,νD0(1),X1},Σ2,Σ3) andD1 is defined asD1(1) = 〈b〉νD0(1)∧ [b]X1 . As before the dec-
laration is interpreted overP(P){1} but usingM1[[]] to interpret the constantνD0(1). AgainD1 is inter-
preted by usingV1[[]] which leads to a monotonic endofunctionV1[[D1]] overP(P){1} with a fixed point

Aceto & Ingólfsdóttir 19

νV1[[D1]]. The logicM2 is now defined as the one generated byΣ2 = ({tt, ff ,νD1(1),νD2(1)},Σ2,Σ3)
whereM0[[]] andM1[[]] are used to define the meaning ofνD1(1) andνD2(1) respectively.

We will now generalize this procedure and define our hierarchy of nested fixed point logics, derived
from a sequence of nested declarationsD j , j = 1,2, . . . ,N, i.e. where for eachn< N, Dn+1 is allowed to
depend on the constantstt, ff andνD j(i) for j ≤ n andi ∈ I . In the definition we assume a finite index
setI and anI -indexed variable setX . We use the notationG (Σ0) for the logic generated by(Σ0,Σ1,Σ2)
andGI (Σ0) for the logic generated by(Σ0∪X ,Σ1,Σ2).

Definition 4.3

• Define

– Σ0
0 = {tt, ff},

– M0 = G (Σ0
0) and

– V0 = GI (Σ0
0).

• For n≥ 1, if Dn : I → Vn, define

– Σn+1
0 = Σn

0∪{νDn(i)|i ∈ I},

– Mn+1 = G (Σn+1
0) and

– Vn+1 = GI (Σn+1
0).

To define the semantic functions associated with these logics we need the following lemma.

Lemma 4.4 Assume thatM = G (C) andV = GI (C) for some set of constants C whereM [[c]] is well
defined for all c∈C. Then for all D: I → V , the derived semantic functionV [[D]] defined by

∀i ∈ I .(V [[D]]σ)(i) = V [[D(i)]]σ

is in P(P)I →monoP(P)I and hence, by Theorem 2.2,νV [[D]] ∈ P(P)I exists.

Now we are ready to define the semantic functions forMn andVn for all n≥ 0.

Definition 4.5

• M0 = M andV0 = V as defined in Definition 4.1 and 4.2 respectively.

• For n≥ 0 the semantic functions forMn+1 is defined as follows:

1. Mn+1[[F]] = Mn[[F]] if F ∈ Σn
0,

2. Mn+1[[(νDn)(i)]] = νVn[[Dn]](i) for i ∈ I,

3. Mn+1[[F1∧F2]] = Mn+1[[F1]]∩Mn+1[[F2]], Mn+1[[F1∨F2]] = Mn+1[[F1]]∪Mn+1[[F2]],

4. Mn+1[[〈a〉F]] = 〈·a·〉Mn+1[[F]], Mn+1[[[a]F]] = [·a·]Mn+1[[F]].

• For n≥ 0 the semantic function forVn+1 is defined as follows:

1. Vn+1[[F]]σ = Mn+1[[F]] if F ∈ Σ0
n,

2. Vn+1[[Xi]]σ = σ(i), i ∈ I,

3. Vn+1[[F1∧F2]]σ = Vn+1[[F1]]σ ∩Vn+1[[F2]]σ , Vn+1[[F1∨F2]]σ = Vn+1[[F1]]σ ∪Vn+1[[F2]]σ ,

4. Vn+1[[〈a〉F]]σ = 〈·a·〉Vn+1[[F]]σ , Vn+1[[[a]F]]σ = [·a·]Vn+1[[F]]σ .

20 Fixed points

4.1 Characteristic Formulae by means of Declarations

The aim of this section is to show how each processp∈ P can be characterized up to a binary relation
⊲⊳ over processes (such as an equivalence or a preorder) by a single formula, the so called characteristic
formula for p up to⊲⊳.

To achieve this, we takeI =P in the definitions in the previous section. A declarationD for a variable
logic V assigns exactly one formulaD(p) from V to each processp∈ P. We have seen that each such
function induces an endofunctionV [[D]] ∈P(P)P →monoP(P)P and thereforeV [[D]] exists. This leads
to the following definition:

Definition 4.6 A declaration D for the logicV characterizes⊲⊳⊆ P×P iff for each p,q∈ P,

(p,q) ∈⊲⊳ iff q ∈ (νV [[D]])(p).

In what follows, we will describe how we can devise a characterizing declaration for a relation that is
obtained as a fixed point, or a sequence of nested fixed points of monotone endofunctions, which can be
expressed in the logic. In order to define this precisely we use the notation introduced in Definition 4.7
below.
Definition 4.7 If S⊆ P×P we define the variable interpretationσS∈ P(P)P associated to S by

σS(p) = {q∈ P | (p,q) ∈ S}, for each p∈ P.

ThusσS assigns top all those processesq that are related to it viaS.
Definition 4.8 A declaration D forV expressesa monotone endofunctionF onP(P×P) when

(p,q) ∈ F (S) iff q ∈ V [[D(p)]]σS= (V [[D]]σS)(p),

for every relation S⊆ P×P and every p,q∈ P.
We need the following to prove our main result.
Definition 4.9 Let Φ : P(P×P)→ P(P)P be defined byΦ(S) = σS.

Lemma 4.10
• Φ : P(P×P)→ P(P)P is an isomorphism.

• If A1,A2 ∈ P(P×P) andF1,F2 ∈ P(P×P)→monoP(P×P) then

– Φ(A1∩A2) = Φ(A1)∩Φ(A2),
– Φ∗(F1∩A1) = Φ∗(F1)∩Φ(A1) and
– Φ∗(F1∩F2) = Φ∗(F1)∩Φ∗(F2).

Proof The first part is proved in [2] whereas the second part followsdirectly from the definition ofΦ.

Corollary 4.11 Assume that D∈ P→ V andF ∈ P(P×P)→monoP(P×P). Then

D expressesF iff Φ∗(F) = V [[D]] iff D characterizesνF .

5 Applications

Following the approach in [2], we define declarationsD andD̃ that express the functionsF andF̃ that
were defined in Section 3.
Definition 5.1 Let

• Let D : p 7→
∧

a∈A
∧

p′∈P. p a
−→p′〈a〉Xp′ and

• D̃ : p 7→
∧

a∈A [a]
∨

p′∈P. p a
−→p′ Xp′ .

Aceto & Ingólfsdóttir 21

From [2] we have:

Lemma 5.2

• D expressesF and characterizesνF , and

• D̃ expressesF̃ and characterizesνF̃ .

Now we recall from [2] the declarations that characterize simulation equivalence and bisimulation equiv-
alence.

Definition 5.3 Define Dbisim= Dsim∧Dopsimand Dsimeq= νDsim∧νDopsim.

Lemma 5.4 Dbisim characterizes∼bisim and Dsimeqcharacterizes∼sim.

Proof Dbisim does not contain nested fixed points and can therefore be interpreted directly overV0 = V .
Now we proceed as follows:

Φ∗(Fbisim) = Φ∗(Fsim)∩Φ∗(Fopsim) = V [[Dsim]]∩V [[Dopsim]] = V [[Dsim∧Dopsim]] = V [[Dbisim]].

To interpretDsimeqwe defineΣ1 = {tt, ff}∪{νDsim(p)|p∈P} andΣ2 = Σ1∪{νDopsim(p)|p∈P} and let
M0,M1,M2 andV0,V1 be defined as before. ThenDsimeq: P→ V1. If we letFsimeq= νFsim∩νFopsim,
we get

Φ∗(Fsimeq) = Φ(νFsim)∩Φ(νFopsim) = νV1[[Dsim]]∩νV1[[Dopsim]] =

M2[[νDsim]]∩M2[[νDopsim]] = M2[[νDsim∧νDopsim]] = V1[[Dsimeq]].

The result now follows from Cor. 4.11.

Next we define the nested simulation preorders introduced in[5] by using the functionF . These
definition involve nesting of fixed points and are defined recursively on the depth of the nesting. The
1-nested simulation⊑(1)sim is just the simulation preorder⊑sim as defined in Section 3 and the function
F(1)sim is therefore the functionF . As the preorder⊑(n+1)sim depends on the inverse of the preorder
⊑(n)sim, which we call⊑(n)opsim, we simultaneously define the nested simulations and their inverse in
our recursive definition. The functions that define⊑(n)sim and⊑(n)opsimare calledF(n)sim andF(n)opsim

respectively.

Definition 5.5 (Nested simulations)

1. F(1)sim= F and⊑(1)sim= νF(1)sim,

2. F(1)opsim= F̃ and⊑(1)opsim= νF(1)opsim,

3. F(n+1)sim= F(1)sim∩νF(n)opsimand⊑(n+1)sim= νF(n+1)sim.

4. F(n+1)opsim= F(1)opsim∩νF(n)sim and⊑(n+1)opsim= νF(n+1)opsim.

We complete this note by defining a sequence of nested declarations and prove that they characterize the
sequence ofn-nested simulation preorders.

Theorem 5.6

1. D(1)sim= D expressesF(1)sim and characterizes⊑(1)sim,

2. D(1)opsim= D̃ expressesF(1)opsim and characterizes⊑(1)opsim,

3. D(n+1)sim= D(1)sim∧νD(n)opsim expressesF(n+1)sim and characterizes⊑(n+1)sim,

22 Fixed points

4. D(n+1)opsim= D(1)opsim∧νD(n)sim expressesF(n+1)opsim an d characterizes⊑(n+1)opsim.

Proof We prove the statements simultaneously by induction onn. First we note thatD1,D2, . . . , where
D2i−2 =D(i)sim andD2i−1 = D(i)opsimfor i ≥ 1 is a sequence of nested declarations. For the casen= 1 we
get from Lemma 5.2 thatΦ∗(F(1)sim) = V0[[D(1)sim]] andΦ∗(F(1)opsim) = V1[[D(1)opsim]]. Next assume
that Φ∗(F(n)sim) = V2n−2[[D(n)sim]] andΦ∗(F(n)opsim) = V2n−1[[D(n)opsim]]. To prove 3. we proceed as
follows:

Φ∗(F(n+1)sim) = Φ∗(F(1)sim)∩Φ(νF(n)opsim) = V0[[D(1)sim]]∩νV2n−2[[D(n)opsim]] =

V2n−2[[D(1)sim∧νD(n)opsim]] = V2n[[D(n+1)sim]].

Finally, to prove 4. we have:

Φ∗(F(n+1)opsim) = Φ∗(F(1)opsem)∩Φ(νF(n)sim) = V1[[D(1)opsim]]∩νV2n−1[[D(n)sim]] =

V2n−1[[D(1)opsim∧νD(n)sim]] = V2n+1[[D(n+1)opsim]].

References

[1] L. Aceto, A. Ingolfsdottir, K.G. Larsen & J. Srba (2007):Reactive Systems: Modelling, Specification and
Verification. Cambridge University Press, doi:10.1017/CBO9780511814105.

[2] L. Aceto, A. Ingolfsdottir, P. B. Levy & J. Sack (2012):Characteristic Formulae for Fixed-Point Semantics:
A General Framework. Mathematical Structures in Computer Sciencedoi:10.4204/EPTCS.8.1. Special issue
devoted to selected papers from EXPRESS 2009, Cambridge University Press.

[3] Jan Bergstra, Alban Ponse & Scott A. Smolka, editors (2001): Handbook of Process Algebra. Elsevier.

[4] R. van Glabbeek (2001):The linear time–branching time spectrum. I. The semantics of concrete, sequential
processes. In Bergstra et al. [3], pp. 3–99, doi:10.1016/B978-044482830-9/50019-9.

[5] Jan Friso Groote & Frits W. Vaandrager (1992):Structured Operational Semantics and Bisimulation as a
Congruence. Information and Computation100(2), pp. 202–260, doi:10.1016/0890-5401(92)90013-6.

[6] M. Hennessy & R. Milner (1985):Algebraic laws for nondeterminism and concurrency. Journal of the ACM
32(1), pp. 137–161, doi:10.1145/2455.2460.

[7] R.M. Keller (1976): Formal verification of parallel programs. Communications of the ACM19(7), pp.
371–384, doi:10.1145/360248.360251.

[8] Dexter Kozen (1983):Results on the Propositional mu-Calculus. Theoretical Computer Science27, pp.
333–354, doi:10.1016/0304-3975(82)90125-6.

[9] Kim Guldstrand Larsen (1990):Proof Systems for Satisfiability in Hennessy–Milner Logic with Recursion.
Theoretical Computer Science72(2–3), pp. 265–288, doi:10.1016/0304-3975(90)90038-J.

[10] A. Tarski (1955):A Lattice-Theoretical Fixpoint Theorem and its Applications. Pacific Journal of Mathemat-
ics5(2), pp. 285–309. Available athttp://projecteuclid.org/euclid.pjm/1103044538.

http://dx.doi.org/10.1017/CBO9780511814105
http://dx.doi.org/10.4204/EPTCS.8.1
http://dx.doi.org/10.1016/B978-044482830-9/50019-9
http://dx.doi.org/10.1016/0890-5401(92)90013-6
http://dx.doi.org/10.1145/2455.2460
http://dx.doi.org/10.1145/360248.360251
http://dx.doi.org/10.1016/0304-3975(82)90125-6
http://dx.doi.org/10.1016/0304-3975(90)90038-J
http://projecteuclid.org/euclid.pjm/1103044538

	1 Introduction
	2 Posets, monotone functions and fixed points
	3 Labelled transition systems and behavioural relations
	4 Equational modal -calculi with nested fixed-points
	4.1 Characteristic Formulae by means of Declarations

	5 Applications

