The polyadic mu-calculus is a modal fixpoint logic whose formulas define relations of nodes rather than just sets in labelled transition systems. It can express exactly the polynomial-time computable and bisimulation-invariant queries on finite graphs. In this paper we show a hierarchy result with respect to expressive power inside the polyadic mu-calculus: for every level of fixpoint alternation, greater arity of relations gives rise to higher expressive power. The proof uses a diagonalisation argument. |