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This paper studies the relationship between disjunctive form, a syntactic normal form for the modal
µ calculus, and the alternation hierarchy. First it shows that all disjunctive formulas which have
equivalent tableau have the same syntactic alternation depth. However, tableau equivalence only
preserves alternation depth for the disjunctive fragment:there are disjunctive formulas with arbi-
trarily high alternation depth that are tableau equivalentto alternation-free non-disjunctive formulas.
Conversely, there are non-disjunctive formulas of arbitrarily high alternation depth that are tableau
equivalent to disjunctive formulas without alternations.This answers negatively the so far open ques-
tion of whether disjunctive form preserves alternation depth. The classes of formulas studied here
illustrate a previously undocumented type of avoidable syntactic complexity which may contribute
to our understanding of why deciding the alternation hierarchy is still an open problem.

1 Introduction

The modalµ calculus [2],Lµ , is a modal logic augmented with its namesake least fixpoint operatorµ
and the dual greatest fixpoint operator,ν . Alternating between these two operators gives the logic its
great expressivity [1] while both model checking and satisfiability remain pleasingly decidable. The
complexity of model checking is, at least currently, tied tothe number of such alternations, called the
alternation depth of the formula being checked [10]. The problem of deciding the least number of
alternations required to express a property, also known as the Rabin-Mostowski index problem, is a long
standing open problem.

Disjunctive normal form is a syntactic restriction onLµ formulas which first appeared in [9] and was
then used as a tool for proving completeness of Kozen’s axiomatization [14]. It is based on the tableau
decomposition of a formula which forces it to be in many ways well-behaved, making it a useful tool
for various manipulations. For instance, satisfiability and synthesis are straight-forward for disjunctive
formulas. In [5] it is used to analyse modalLµ from a logician’s perspective. More recently, disjunctive
form was found to allow for simple formula optimisation: if aformula is equivalent to a formula with-
out greatest fixpoints, then such a formula is easily produced by simple syntactic manipulation on the
disjunctive form of the formula [11].

Each of these results uses the fact that any formula can be effectively transformed into an equivalent
disjunctive formula with the same tableau – indeed, disjunctive form is perhaps the closest one gets to
a canonical normal form forLµ . The transformation itself, described in [9], is involved and it has so
far been an open question whether it preserves the alternation depth of formulas. If this was the case, it
would be sufficient to study the long-standing open problem of the decidability of the alternation hierar-
chy on this well-behaved fragment.

In this paper, we show that although the disjunctive fragment of Lµ is itself well-behaved with respect
to the alternation hierarchy, the transformation into it does not preserve alternation depth.
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The transformation into disjunctive form takes the tableaudecomposition of a formula, and produces
a disjunctive formula that generates the same tableau. The first contribution of this paper is to show
that all disjunctive formulas generating the same tableau have the same alternation depth. This result
brings some clarity to the transformation into disjunctiveform since one of the more difficult steps of the
construction is representing the parity of infinite paths ofthe tableau with a finite priority assignment.
The result presented here means that all valid choices are just as good, as all yield a disjunctive formula of
the same alternation depth. As a result, the alternation hierarchy is decidable for the disjunctive fragment
of Lµ with respect to tableau equivalence, a stricter notion of equivalence than semantic equivalence, as
defined in [14].

The second contribution of this paper is to show that this does not extend to non-disjunctive formulas.
Not only does tableau equivalence not preserve alternationdepth in general, but the alternation depth of a
formula does not guaranteeanyupper bound on the alternation depth of equivalent disjunctive formulas.
Indeed, for arbitrarily largen, there are formulas with a single alternation which are tableau equivalent
only to disjunctive formulas with at leastn alternations.

Conversely, there are formulas ofLµ with arbitrarily large alternation depth which are tableauequiv-
alent to a disjunctive formula without alternations. This shows that the alternation depths of tableau
equivalent formulas are only directly related within the disjunctive fragment.

The signficance of these results in twofold. First, they outline the limits of what can be achieved
using disjunctive form: disjunctive form does not preservealternation depth so despite being a useful
tool for satisfiability-related problems, it is unlikely tobe of much help in contexts where the alternation
depth of a formula matters, such as model-checking or formula optimisation beyond the first levels of
the alternation hierarchy.

Secondly, and perhaps most significantly, these results impact our understanding of the alternation
hierarchy. This paper’s results imply that deciding the alternation hierarchy for the disjunctive fragment
of Lµ , an open but easier problem, is not sufficient for deciding the alternation hierarchy in the general
case. The counterexamples used to show this illustrate a previously undocumented type of accidental
complexity which appears to be difficult to identify. These may shed light on why deciding the alternation
hierarchy is still an open problem and examplify a category of formulas with unnecessary alternations
which need to be tackled with novel methods.

Related work Deciding the modalµ alternation hierarchy is exactly equivalent to deciding the Rabin-
Mostowski index of alternating parity automata. The corresponding problem has also been studied for
automata operating on words [3] and automata which are deterministic [13, 12], or non-deterministic
[4, 7] rather than alternating. As will be highlighted throughout this paper, many of the methods used
here are similar to methods applied to different types of automata.

2 Preliminaries

2.1 The modalµ calculus

For clarity and conciseness, the semantics ofLµ are given directly in terms of parity games. As is well
documented in the literature, this approach is equivalent to the standard semantics [2]. The following
definitions are fairly standard, although we draw the reader’s attention to the use of the less typical
modality→B in the syntax ofLµ and the unusual but equivalent definition of alternation depth.
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Definition 1. (Lµ) Given a set of atomic propositionsProp= {P,Q, ...} and a set of fixpoint variables
Var = {X,Y, ...} , the syntax ofLµ is given by:

φ :=⊤ | ⊥ | P | ¬P | X | φ ∧φ | φ ∨φ | →B whereB is a set of formulas| µX.φ | νX.φ

The modality→B replaces the more usual modalities♦φ and�φ . If B is a set of formulas,→B

stands for(
∧

φ∈B ♦φ)∧�
∨

φ∈B φ : every formula inB must be realised in some successor state and each
successor state must realise at least one of the formulas inB. The modalities♦φ and�φ are expressed
in this syntax by→{φ ,⊤} and→{φ}∨→⊥ respectively, where⊥ denotes the empty set.

Without loss of expressivity, this syntax only allows for formulas in positive form: negation is only
applied to propositions. Furthermore, without loss of expressivity, but perhaps conciseness, we require
all formulas to be guarded: all fixpoint variables are withinthe scope of a modality within their binding
formula. For the sake of clarity, we restrict our study to theuni-modal case but expect the multi-modal
case to behave broadly speaking similarly. To minimise the use of brackets, the scope of fixpoint bindings
should be understood to extend as far as possible.

Definition 2. (Structures)A structureM = (S,s0,R,P) consists of a set of statesS, rooted at some initial
states0 ∈ S, and a successor relationR⊆ S×Sbetween the states. Every states is associated with a set
of propositionsP(s)⊆ Prop which it is said to satisfy.

Definition 3. (Parity games)A parity game is a potentially infinite two-player game on a finite graph
G = (V0,V1,E,vI ,Ω) of which the verticesV0∪V1 are partitioned between the two players Even and Odd
and annotated with positive integer priorities viaΩ : V0∪V1 → N. The even player and her opponent,
the odd player, move a token along the edgesE ⊆V0∪V1×V0∪V1 of the graph starting from an initial
positionvI ∈ V0 ∪V1, each choosing the next position when the token is on a vertexin their partition.
Some positionsp might have no successors in which case they are winning for the player of the parity
of Ω(p). A play consists of the potentially infinite sequence of vertices visited by the token. For finite
plays, the last visited parity decides the winner of the play. For infinite play, the parity of the highest
priority visited infinitely often decides the winner of the game: Even wins if the highest priority visited
infinitely often is even; otherwise Odd wins. Note that sincesome readers may be used to an equivalent
definition using the lowest priority to define the winner, whenever possible, “most significant” will be
used to indicate the highest priority.

Definition 4. (Strategies)A positional strategyσ for one of the players inG = (V0,V1,E,vI ,Ω) is a
mapping from the player’s positionss, in V0 for Even and inV1 for Odd, in the game to a successor
positions′ such that(s,s′) ∈ E. A play respects a player’s strategyσ if the successor of any position in
the play belonging to the player is the one dictated byσ . If σ is Even’s strategy andτ is Odd’s strategy
then there is a unique playσ ×τ respecting both strategies from every position. The winnerof the parity
game at a position is the player who has a strategyσ , said to be a winning strategy, such that they
win σ × τ from that position for any counter-strategyτ . The following states that such strategies are
sufficient: players do not need to take into account the history of a play to play optimally.

Fact 5. Parity games are positionally determined: for every position either Even or Odd has a winning
strategy [6].

This means that strategies gain nothing from looking at the whole play rather than just the current
position. As a consequence, we may take a strategy to be memoryless: it is a mapping from a player’s
positions to a successor.
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For anyLµ formulaφ and a structureM we define a parity gameM ×φ , constructed in polynomial
time, and say thatM satisfiesφ , writtenM |= φ , if and only if the Even player has a winning strategy
in M ×φ .

Definition 6. (Model-checking parity game)For any formulaφ of modalµ , and a modelM , define a
parity gameM × φ with positions(s,ψ) wheres is a state ofM andψ is either a proper subformula
of φ , or the formula

∨
B, or the formula♦ψ for any→B and ψ ∈ B in φ . The initial position is

(s0,φ) wheres0 is the root ofM . Positions(s,ψ) whereψ is a disjunction or♦ψ ′ belong to Even while
conjunctions and positions→B belong to Odd. Other positions have at most one successor; let them be
Even’s although the identity of their owner is irrelevant. There are edges from(s,ψ ∨ψ ′) and(s,ψ ∧ψ ′)
to both(s,ψ) and(s,ψ ′); from (s,µX.φ) and(s,νX.φ) to (s,φ); from (s,X) to (s,νX.ψ) if X is bound
by ν , or (s,µX.ψ) if it is bound byµ ; finally, from (s,→B) to every(s′,

∨
B) where(s,s′) is an edge in

M , and also to every(s,♦ψ) whereψ ∈ B and from(s,♦ψ) to every(s′,ψ) where(s,s′) is an edge in
the modelM . Positions(s,P),(s,¬P),(s,⊤) and(s,⊥) have no successors. The parity function assigns
an even priority to(s,⊤) and also to(s,P) if ssatisfiesP in M and to(s,¬P) if sdoes not satisfyP in M ;
otherwise(s,P) and(s,¬P) receive odd priorities, along with(s,⊥). Fixpoint variables are given positive
integer priorities such thatν-bound variables receive even priorities whileµ-bound variables receive odd
priorities. Furthermore, wheneverX has priorityi, Y has priority j andi < j, X must not appear free in
the formulaψ bindingY in µY.ψ or νY.ψ . In other words, inner fixpoints receive lower, less significant
priorities while outer fixpoint receive high priorities. Other nodes receive the least priority used, 0 or 1.

We now use parity games to define the semantics ofLµ .

Definition 7. (Satisfaction relation)A structureM , rooted ats0 is said to satisfy a formulaΨ of Lµ ,
written M |= Ψ if and only if the Even player has a winning strategy from(s0,Ψ) in M ×Ψ .

Note that the definition of the model-checking parity game requires a priority assignment to fixpoint
variables in a formula that satisfies the conditions thatν-variables receive even priorities,µ-variables
receive odd priorities and wheneverX has priorityi, Y has priority j and i < j, X must not appear free
in the formulaψ binding Y in µY.ψ or νY.ψ . For any formula, there are several valid assignments.
For example, one could assign a distinct priority to every fixpoint, with the highest priority going to the
outermost bound fixpoint and the priorities decreasing the further into the formula a fixpoint is bound.
We further restrict a parity assignment to be surjective into an initial fragment ofN: if a priority is
unused, all greater priorities can be reduced by 2. We define the alternation depth of a formula to be
the minimal valid assignment. Although variations of this definition exists, our motivation is to match
closely the alternations required in the model checking parity game.

Definition 8. Let a priority assignment be a functionΩ : Var → {0...n} for some integern, which is
surjective on at least{1, ...,n}, such that ifΩ(X) < Ω(Y) thenX does not appear free in the formula
binding Y and the parity ofΩ(X) is even forν-bound variables and odd forµ-bound variables. We
don’t require the priority 0 to be used, but include it in the co-domain for simplicity. In this paper, we
take the alternation depth of a formula to be the co-domain ofthe least priority assignment of a formula.
The correspondance with the priorities of the model checking parity game should make it clear that
this definition is equivalent to the more typical syntactic ones in the literature, for example in [2]. An
alternation free formula is a formula which has both priority assignements with co-domain{0,1} and
{0,1,2} where 0 is not used.

Deciding whether a formula is equivalent to a formula with smaller alternation depth is a long stand-
ing open problem.
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2.2 Tableau decomposition

Definition 9. (Tableau)A tableauT = (T,L) of a formulaΨ consists of a potentially infinite treeT of
which each noden has a labelL(n) ⊆ sf(Ψ) wheresf(Ψ) is the set of proper subformulas ofΨ. The
labelling respects the following tableau rules with the restriction that the modal rule is only applied where
no other rule is applicable.

{Γ,φ ,ψ}
(∧)

{Γ,ψ ∧φ}
{Γ,φ} {Γ,ψ}

(∨)
{Γ,ψ ∨φ}

{Γ,φ}
(σ) with σ ∈ {µ ,ν}

{Γ,σX.φ}

{Γ,φ}
(X) whereX is a fixpoint variable bound byσX.φ , with σ ∈ {µ ,ν}

{Γ,X}

{ψ}∪{
∨

B|→B ∈ Γ,B 6= B′} for every→B′ ∈ Γ,ψ ∈ B′

(→)
{Γ}

Note that each branching node is either a choice node, corresponding to a disjunction, or a modal
node. Although the rules only contain a binary disjunctive rule, we may write, for the sake conciseness,
a sequence of binary choice nodes as a single step. Also note that when a modal rule is applied, all
formulas in a label are either modal formulas or literals, that is to say propositional variables and their
negations. The latter form the modal node’s set of literal and are a semantically important component of
the tableau. An inconsistent set of literals is equivalent to ⊥ and a node with such a set of literals in its
label has no successors.

Sequences of subformulas along a path in the tableau are called traces and correspond to plays in the
model checking parity game. Aµ-trace is a trace winning for the Odd player.

Definition 10. (µ-trace)Given an infinite branch in a tableau, that is to say a sequencen0n1... of nodes
starting at the root, whereni+1 is a child ofni , a trace on it is an infinite sequencef0 f1... of formulas
satisfying the following: each formula is taken from the label of the corresponding node,fi ∈ L(ni) for
all i ≥ 0; successive formulasfi and fi+1 are identical if fi is not the formula that the tableau rule from
ni to ni+1 acts on; if the tableau rule fromni to ni+1 is a disjunction, conjunction, or fixpoint binding
elimination acting onfi , then fi+1 is an immediate subformula offi ; if the tableau rule fromni to ni+1 is
a modality, thenfi has to be a formula→B and fi+1 is either

∨
B or a formulaψ ∈ B; if the tableau

rule fromni to ni+1 is a fixpoint regeneration acting on the fixpoint variablefi , then fi+1 is the binding
formula for fi. A trace is aµ-trace if the most significant fixpoint variable that regenerates infinitely
often on it is aµ-variable.

Since labels are to be thought of as conjuncts, it is sufficient for an infinite path in a tableau to allow
oneµ-trace for the infinite path to be winning for the Odd player.

Definition 11. (Parity of a path)An infinite path in a tableau is said to be even if there are noµ-traces
on it, otherwise it is said to be odd.

Note that the order of applications of the tableau rules is non deterministic so a formula may appear
to have more than one tableau. However, tableau equivalence, defined next, only looks at the structure of
branching, whether branching nodes are modal or disjunctive, the literals at modal nodes and the parity
of infinite paths, so a formula has a unique tableau, up to tableau equivalence. We define tableau cores
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to be the semantic elements of the tableau – node types, literals at modal nodes, branching structure and
the parity of infinite paths – which do not depend on the syntaxof the generating formula. Finally, we
define trees with back edges which are finite representationsof tableau cores.

Definition 12. (Tableau core)A tableau core isC = (C,Ω) whereC is a potentially infinite but still
finitely branching tree of which the nodes are either modal nodes or disjunctive nodes and modal nodes
are decorated with a set of literals.Ω is a parity assignment with a finite prefix ofN as co-domain. An
infinite path inC is of the parity of the most significant priority seen infinitely often. C = (C,Ω) is a
tableau core forT = (T,L) if once the sequences of disjunctions inT are collapsed into one non-binary
disjunction there is a bijectionb between the branching nodes ofT and the nodes ofC which respects
the following: the successor relation in the sense thatb(i) is a child ofb( j) in C if and only if i is a child
of j in T, whether nodes are modal or disjunctive, the literals at modal nodes, and the parity of infinite
paths. That is to say, if a path inT maps to a path inC then the highest priority seen infinitely often on
the path inC is even if and only if the path inT has noµ-trace.

Definition 13. (Tableau equivalence)Two tableaus(T0,L0) and(T1,L0) are equivalent if their cores are
bisimilar with respect to their branching structure, whether nodes are disjunctive or modal, the literals
at modal nodes and the parity of infinite branches. Two formulas are tableau equivalent if they generate
equivalent tableaus.

Definition 14. (Tree with back edges)Tableaus are potentially infinite but regular, so they allowfinite
representations. A finite representation of a tableauA = (A,Ω) is a finite tree with back edges,A which
is bisimilar to the core of the tableau. Every node is either amodal node or a disjunctive node and modal
nodes are associated with a set of literals. The tree has a priority assignmentΩ which assigns priorities
to nodes such that the highest priority on an infinite path is of the parity of that path.

To summarise, a tableauT is a potentially infinite tree labelled with sets of subformulas – it is
specific to the formula which labels its root; a tableau core,C is a potentially infinite object which
carries the same semantics but is not specific to one formula;finally, a tree with back edges, calledA
because of its resemblance to alternating parity automata,is a finite representation of a tableau core.
The next section will present the one-to-one correspondence between disjunctive formulas and trees with
back edges.

Theorem 15. [9] Tableau equivalent formulas are semantically equivalent.

Note that tableau equivalence is a stricter notion than semantic equivalence;ψ ∨¬ψ and⊤ have
different tableau for example.

2.3 Disjunctive normal form

Disjunctive form was introduced in [9] as a syntactic restriction on the use of conjunctions. It forces
a formula to follow a simple structure of alternating disjunctions and modalities where modalities are
qualified with a conjunction of propositions. Such formulasare in many ways well-behaved and easier
to manipulate than arbitraryLµ formulas.

Definition 16. (Disjunctive formulas)The set of disjunctive form formulas of (unimodal)Lµ is the
smallest setF satisfying:

• ⊥,⊤, propositional variables and their negations are inF ;

• If ψ ∈ F andφ ∈ F thenψ ∨φ ∈ F ;

• If A is a set of literals andB ⊆ F (B is finite), then
∧

A ∧→B ∈ F ;
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• µX.ψ andνX.ψ as long asψ ∈ F .

Every formula is known to be equivalent to an effectively computable formula in disjunctive form [9].
The transformation into disjunctive form involves taking the formula’s tableau decomposition and com-
pressing the node labels into a single subformula. The tricky part is finding a tree with back edges and its
priority assignment to represent the tableau finitely, including the parity of infinite paths. The transfor-
mation then turns the tree with back edges into a disjunctiveformula with alternation depth dependent on
the priority assignment. Conversely, a disjunctive formula and its minimal priority assignment induces a
tree with back edges representing its tableau. The minimal priority function required to finitely represent
a tableau is therefore equivalent to the minimal alternation depth of a disjunctive formula generating
the tableau. The following theorem recalls the construction of disjunctive formulas from trees with back
edges labelled with priorities from [9] and shows that the alternation depth of the resulting formula stems
from the priority assignment of the tree with back edges.

Theorem 17. Let A = (A,Ω) be a tree with back edges that is bisimilar to a core of the tableauT

with priority assignmentΩ with co-domain{0...q}. Then there is a disjunctive formula with alternation
depth{0...q} which generates a tableau equivalent toT .

Proof. First of all, we constructA ′ = (A′,Ω′), bisimilar toA but with a priority assignment with the
following property: on all paths from root to leaf, the priorities of nodes that are the targets of back edges
occur in decreasing order. This is straight-forward by looking at the infinite tableau coreA unfolds into,
remembering which nodes stem from the same node inA and their priority assigned byΩ. First consider
all branches that see the highest priorityq infinitely often and cut them short by creating back edges at
nodes of priorityq, pointing to the bisimilar ancestor node (also of priorityq) that is closest to the root.
Then repeat this for each priority in decreasing order, but for each priorityq− 1 treat the ancestor of
priority q that back edges point to (if it exists) as the root, so that nodes that have back edges pointing
to them end up in decreasing order of priority. Note that every cycle is now dominated by the priority of
the first node from the root seen infinitely often.

The disjunctive formula is then obtained by assigning a subformula f (n) to every node ofA as
follows. If n is a leaf with literalsQ, then f (n) =

∧
Q; if n is a disjunctive node with childrenn0 and

n1, then f (n) = f (n0)∨ f (n1); if n is the source of a back edge of which the target ism, then f (n) = Xm

whereXm is a fixpoint variable; ifn is a modal node, thenf (n) =
∧

Q∧→B whereQ is the set of literals
atn andB is the set off (ni) for ni children ofn; other nodes inherit the formula assigned to their unique
child. If n is the target of a back edge,f (n) is obtained as previously detailed but in addition, it bindsthe
fixpoint variableXn with a ν-binding if n is of even parity and with aµ-binding otherwise.

If r is the root node ofA′, then f (r) is a disjunctive formula that generates a tableau that is equivalent
to T . This should be clear from the fact that the tableau off (n) consists of the infinite tree generated
by A′ and the labellingL(n) = { f (n)} for all n. Ω′ restricted to the target of back edges is a priority
assignment for the disjunctive formulaΨ = f (n) since it respects the parity of paths and on each branch
the priorities occur in decreasing order. This guarantees that if Ω′(X) < Ω′(Y) thenX is not free in the
formula bindingY.

ThereforeΨ has a tableau that is equivalent toT and accepts a priority assignment with co-domain
{0...q}.

Conversely, a disjunctive formula induces a tree with back edges generating its tableau by taking its
tableau until each branch reaches a fixpoint variable which is the source of a back edge to its binding
formula. The priority assignment of the formula is also a priority assignment for the tree with back-edges.
This yields a one-to-one correspondence between trees withback edges and disjunctive formulas.
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3 Tableau equivalence preserves alternation depth for disjunctive Lµ

This section argues that all disjunctive formulas generating the same tableauT have the same alternation
depth. The structures used to identify the alternation depth are similar to ones found in [8] to compute the
Rabin-Mostowski index of a parity games and the flowers described in [12] to find the Rabin-Mostowski
index of non-deterministic automata. Here I show that tableau equivalence preserves these structures and
consequently also the alternation depth of disjunctive formulas.

Definition 18 describes a witness showing that the priority assignmentΩ of a tree with back edges
A = (A,Ω) representingT requires at leastq priorities. This witness is preserved by bisimulation with
respect to node type, literals and parity of infinite branches. Since all finite representations of a tableau
T are bisimilar with respect to these criteria, they all have the same maximal witness, indicating the
least number of prioritiesT can be represented with.

Informally, the witness of strictness is a series of cycles of alternating parity where each cycle is
contained within the next.

Definition 18. (q-witness)A q-witness in a tree with back edges(A,Ω) representing a tableauT consists
of q cyclesc1...cq such that for eachi ≤ q, the cycleci is of the parity ofi and for all 0< i < q, the cycle
ci is a subcycle ofci+1.

Lemma 19. If a tree with back edges(A,Ω) has a q-witness, then the co-domain of the priority assign-
mentΩ has at least q elements.

Proof. Given aq-witnessc1...cq, for every pair of cyclesci andci+1, since they are of different parity and
ci is contained inci+1, the dominant priority onci+1 must be strictly larger than the dominant priority on
ci . Therefore there must be at leastq priorities in the cyclecq which contains all the other cycles of the
witness.

Lemma 20. If a tree with back edgesA representing a tableuT does not have a q-witness, then there is
an tree with back edgesA ′ which also representsT but has a priority assignment with fewer priorities.

Proof. Assume a tree with back edgesA = (A,Ω) representingT with a priority assignment with co-
domain{0...q} does not have aq witness. LetSq be the set of nodes of priorityq. Let Si−1 for 1< i ≤ q
be the set of nodes of priorityi −1 which appear as the second highest priority in a cycle whereall the
nodes of highest priority are inSi , and as the nodes of highest priority in some cycle. Note thatif S1

was non-empty, then there would be aq-witness, soS1 and consequentlyS0 must be empty. Then define
a new priority function as follows: the new priority function Ω′ is asΩ, except for nodes in anySi –
these receive the priorityi −2 instead of the priorityi. SinceS1 andS0 are empty, this is possible whilst
keeping all priorities positive.Ω′ with co-domain{0...q− 1} preserves the parity of infinite branches
since there are no cycles in which the priority of all dominant nodes is decreased more than the priority
of all sub-dominant nodes and each node retains the same parity. Therefore, if a finite representation of
T does not have aq-witness, then there is a finite representationA ′ = (A,Ω′) with a smaller priority
assignment.

Lemma 21. All tableau equivalent trees with back edges have the same q-witnesses: for all q, either all
or none of the trees with back edges representing a same tableau T have a q-witness.

Proof. First we recall that ifA is the finite representation ofT induced by a disjunctive formulaΨ
then the tableau ofT is an infinite tree bisimilar toA with respect to node type, literals and parity of



M.K. Lehtinen 125

infinite branches. Hence any finite representation ofT is bisimilar toA . It then suffices to show that
q-witnesses are preserved under bisimulation. This is straight-forward: letA ′ be bisimilar to a finite
tree with back edgesA with respect to node type, literals at modal nodes and the parity of infinite paths.
Then infinite paths inA are bisimilar to infinite paths inA ′. Since bothA andA ′ are finite, an infinite
path stemming from a cycle inA is bisimilar to a cycle inA ′. A q-witness contains at least one node
which lies on all the cycles of the witness. IfA hasq cycles, call the node on all of its cyclesn and
consider (one of) the deepest node(s)n′ in A ′ bisimilar ton. That is to say, choosen′ such that if another
node bisimilar ton′ is reachable fromn′, it must be an ancestor ofn′. Sincen′ is bisimilar ton, there
must be a cyclec′i bisimilar to eachci reachable fromn′. Sincen′ is maximally deep, it is contained in
each of these cyclesc′i . Then, aq-witness can be reconstructed inA ′ by taking the cyclec′1, and then
for eachi > 0 the cycle consisting of allc′j , j ≤ i . Since allc′i cycles haven′ in common, there is a cycle
combiningc′j , j ≤ i for any i. Since bisimulation respects the parity of cycles, this yields aq-witness in
A ′.

Theorem 22. All disjunctive formulas with tableauT have the same alternation depth.

Proof. All trees with back edges representing the same tableauT have the same maximal witness,
from the previous lemma, so from Lemma 20 they accept a minimal priority function with domain
{0...q}. Since a disjunctive formula induces a tree with back edges with a minimal priority function
corresponding to the formula’s alternation depth, any two disjunctive formulas that are tableau equivalent
must have the same alternation depth.

This concludes the proof that tableau equivalence preserves alternation depth on disjunctive formulas.
The restriction to disjunctive formulas is crucial: as the next section shows, in the general case tableau
equivalent formulas may have vastly different alternationdepths.

4 Disjunctive form does not preserve alternation depth

Every formula has a tableau which allows it to be turned into asemantically equivalent disjunctive
formula. This section studies the relationship between a formula’s alternation depth and the alternation
depth of its tableau equivalent disjunctive form. As the previous section shows, any two disjunctive
formulas with the same tableau have the same alternation depth; therefore comparing a non-disjunctive
formula to any tableau equivalent disjunctive formula willdo.

The first subsection demonstrates that not only does disjunctive form not preserve alternation depth,
but also that there is no hope for bounding the alternation depth of disjunctive formulas with respect to
their semantic alternation depth: for anyn there are one alternation formulas which are tableau equiva-
lent to n alternation disjunctive formulas. In other words, the alternation depth of aLµ formula, when
transformed into disjunctive form, can be arbitrarily large. Conversely, as shown in the second subsec-
tion, formulas of arbitrarily large alternation depth can be tableau equivalent to a disjunctive formula
without alternations. Hence the alternation depth of tableau equivalent formulas are only related within
the disjunctive fragment.

4.1 Disjunctive formulas with large alternation depth

While the main theorem is proved by Example 27, the Examples 23 and 25 leading up to it should give
the interested reader some intuition about the mechanics which lead the tableau of a formula to have
higher alternation depth than one might expect.
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*
Y,X W

→{Y}, Ā,→{X} Ā,→{W}

→{Y}, Ā∧→{X} Ā ∧→{W}

*
Y Z

→{Y},A A,→{Z}
→{Y},A A ∧→{Z}

* →{Y},(Ā∧→{X})∨A (Ā∧→{W})∨ (A ∧→{Z})

νY.→{Y}∧µX.(Ā∧→{X})∨A νZ.µW.(Ā∧→{W})∨ (A ∧→{Z})

Figure 4.1: Tableaus forνY.→{Y}∧µX.(Ā∧→{X})∨A andνZ.µW.(Ā∧→{W})∨ (A ∧→{Z})

Example 23. The first example is a rather simple one: a disjunctive formula with one alternation that
can be expressed in non-disjunctive form without any alternations. The disjunctive formulaνX.µY.(A∧
→{X})∨ (Ā∧→{Y}) signifies that all paths are infinite andA occurs infinitely often on all paths. Com-
pare it to the formulaνX.→{X}∧µY.(Ā∧→{Y})∨A which is alternation free.

The tableaus of both these formulas are shown side by side in Figure 4.1. Both branches regenerate
into either exactly the ancestral node marked * or a node thatreaches a node identical to the one marked
* in a single non branching step.
The cores of the two tableaus, that is to say their branching nodes, are clearly isomorphic with respect to
the node type and branching structure. Furthermore, for both formulas, there isµ-trace on any path that
only goes through the left hand branch infinitely often. There is noµ trace onanypath that goes through
the right hand path infinitely often, for either formula. As aresult, both tableaus agree on the parity of
infinite branches. The two formulas are tableau equivalent and therefore also semantically equivalent.

Remark 24. Observe that there is nothing obviously inefficient about how the disjunctive formula han-
dles alternations. Indeed, simply inverting the order of the fixpoints yields a formulas which can not be
expressed without an alternation:µX.νY.A∧→{X}∨ Ā∧→{Y}.

While the above example proves that disjunctive form does not preserve alternation, it must be noted
that the alternating parity automata corresponding to these formulas require in both cases two priorities,
although only one requires an alternation. The next exampleshows formulas in which the number of
priorities is not preserved either.

Example 25. This example and the following ones will be built on one-alternation formulas consisting
of single µ/ν alternations embedded in one another without interfering with each other, i.e. all free
variables within the inner formulaφ1 are bound by the inner fixpoint bindings. This means that the
formula accepts a priority assignment with co-domain{0,1}. Without further ado, consider the formula
in question:

α = µX0.νY0.(A∧→{X0})∨ (B∧→{Y0)∧µX1.νY1.(C∧→{X1})∨ (D∧→{Y1})∨E

The following Lemma shows it to be equivalent to a formula which requires a priority assignment
with co-domain{0...3}.

Lemma 26. The formulaα is tableau equivalent to a disjunctive formula which requires a parity as-
signment with co-domain{0...3}:

β = µX0.νY0.µX1.νY1.(A∧C∧→{X0})∨ (A∧D∧→{X0})∨ (A∧E∧→{X0})

∨(B∧E∧→{Y0})∨ (B∧C∧→{X1})∨ (B∧D∧→{Y1})
(4.1)
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*
Y0,Y1

(B,→{Y0},D,→{Y1})

(B∧→{Y0}), (D∧→{Y1})

*
Y0,X1

(B,→{Y0},C,→{X1})

(B∧→{Y0}), (C∧→{X1})

*
Y0

(B,→{Y0},E)

(B∧→{Y0},E)

(B∧→{Y0}),(C∧→{X1})∨ (D∧→{Y1})∨E

*
X0,Y1

(A,→{X0},D,→{Y1})

(A∧→{X0}), (D∧→{Y1})

*
X0,X1

(A,→{X0},C,→{X1})

(A∧→{X0}), (C∧→{X1})

*
X0

(A,→{X0},E)

(A∧→{X0},E)

(A∧→{X0}),(C∧→{X1})∨ (D∧→{Y1})∨E

*(A∧→{X0})∨ (B∧→{Y0}),(C∧→{X1})∨ (D∧→{Y1})∨E

µX0.νY0.(A∧→{X0})∨ (B∧→{Y0})∧µX1νY1(C∧→{X1})∨ (D∧→{Y1})∨E

Figure 4.2: Tableau forα

*
Y1

(B,D,→{Y1})

(B∧D∧→{Y1})

*
X1

(B,C,→{X1})

(B∧C∧→{X1})

*
Y0

(B,E,→{Y0})

(B∧E∧→{Y0})

(B∧E∧→{Y0})∨ (B∧C∧→{X1})∨ (B∧D∧→{Y1})

*
X0

(A,D,→{X0})

(A∧D∧→{X0})

*
X0

(A,C,→{X0})

(A∧C∧→{X0})

*
X0

(A,E,→{X0})

(A∧E∧→{X0})

(A∧E∧→{X0})∨ (A∧D∧→{X0})∨ (A∧C∧→{X0})

* (A∧E∧→{X0})∨ (A∧D∧→{X0})∨ (A∧C∧→{X0})∨ (B∧E∧→{Y0})∨ (B∧C∧→{X1})∨ (B∧D∧→{Y1})

µX0.νY0.µX1.νY1.(A∧E∧→{X0})∨ (A∧D∧→{X0})∨ (A∧C∧→{X0})∨ (B∧E∧→{Y0})∨ (B∧C∧→{X1})∨ (B∧D∧→{Y1})

Figure 4.3: Tableau forβ

Proof. The tableaus for both formulas are written out in Figures 4.2and 4.3. The two tableaus are iso-
morphic with respect to branching structure, node type and the literals at modal nodes. To prove their
equivalence, it is therefore sufficient to argue that this isomorphism also preserves the parity of infinite
branches, that is to say that there is aµ-trace in an infinite path of one if and only if there is aµ-trace in
the corresponding infinite path of the other.

To do so, we look, case by case, at the combinations of branches that a path can see infinitely often
and check which have aµ trace in each tableau. First argue that the three right-mostbranches in both
tableaus are such that any path that sees them infinitely often has aµ-trace. This is witnessed in both
cases by the least fixpoint variableX0 which will dominate any trace it appears on and appears on a trace
on all paths going through one of these branches infinitely often. So, in both tableaus, any path going
through one of the right-most branches infinitely often is ofodd parity. Now consider the branch that
ends inY0 before regenerating to the node marked * in both tableaus. All traces on paths that go infinitely
often through this branch will seeY0 regenerate infinitely often. Therefore in both tableaus, a path going
through this branch infinitely has aµ trace if and only if it also goes through one of the three rightmost
branches infinitely often. Now consider the fifth branch fromthe right, the branch that regeneratesY0,X1

in one case and justX1 in the other. In both tableaus, a path that goes through this branch infinitely often
will have aµ trace unless it goes through theY0 branch infinitely often and doesn’t go through one of the
three right-most branches infinitely often. Finally, in both tableaus, a branch that only sees the left-most
branch infinitely often is of even parity since such a path does not admit anyµ-traces. However, if a
path sees this branch and some other branches infinitely often, its parity is determined by one of the
previously analysed cases. Since we have analysed all the infinite paths on these tableaus and concluded
that in each case the parity of a path is the same in both tableaus, this concludes the proof that the two
tableaus are equivalent.

The above example yields a disjunctive formula of alternation depth{0...3} which semantically only
requires alternation depth{0,1}. This proves that disjunctive form does not preserve the number of
priorities the model checking game of a formula requires.
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The next step is to generalise the construction of Example 25to arbitrarily many alternations to
prove that there is no bound on the number of alternations of adisjunctive formula tableau equivalent to
a non-disjunctive formula ofn alternations. To do so, we will first define the one-alternation formulas
αn inductively, based on the formula of Example 25. We then argue that the tableau ofαn admits a
(2n+1)-witness, proving thatαn is not tableau equivalent to any disjunctive formula of lessthan 2n+1
alternations. Due to the argument pertaining to traces in increasingly large tableaus, its details are,
inevitably, quite involved. However, the mechanics of the tableaus ofαn are not difficult; writing down
the tableau ofα2 and working out its disjunctive form should suffice to gain anintuition of the proof to
follow.

Example 27. In order to defineαn for anyn define:

a1 = µX1.νY1.((A1∧→{X1})∨ (B1∧→{Y1})∨E1)∧

µX0.νY0.(A0∧→{X0})∨ (B0∧→{Y0})∨E0

ai+1 = µXi+1.νYi+1.((Ai+1∧→{Xi+1})∨ (Bi+1∧→{Yi+1})∨Ei+1)∧ai

(4.2)

Then, define:

αn = µXn.νYn.((An∧→{Xn})∨ (Bn∧→{Yn}))∧an−1

In other words, the formula consists of nested clausesµXi.νYi .((Ai ∧→{Xi})∨ (Bi ∧→{Yi})∨Ei) con-
nected by conjunctions where the outmost clause does not have a∨E.

As the formula grows, its tableau becomes unwieldy, but its structure remains constant: it is just as
the tableau ofα with more branches. Figure 4.2 can be used as reference.

The tableau of anyαn follows this structure:

• The first choice node{(An∧→{Xn}∨Bn∧→{Yn}), ...,(A0∧→{X0}∨B0∧→{Y0}∨E0)} branches
into 2×3n modal nodes – ignoring the modalities attached to each literals for a moment, this is the
decomposition of(An∨Bn)∧ (An−1∨Bn−1∨En−1)...∧ (A0∨B0∨E0) into one large disjunction.

• Each choice leads to a modal node with some choice of propositional variables consisting of one
of An andBn and then for everyi < n one ofAi,Bi or Ei.

• These modal nodes have a single successor each, consisting of a set of fixpoint variables. In every
case, one of these isYn or Xn and there is only ever at most one fixpoint variable out of{Xi,Yi} for
eachi. These nodes will be referred to as regeneration nodes. Whena regeneration node does not
containXi norYi for somei, this corresponds toEi having been chosen rather thanAi or Bi.

• Nodes consisting of a set of fixpoint variables all regenerate, give or take a couple of non-branching
steps, into the same choice node, identical to the ancestralchoice node labelled:

{(An∧→{Xn}∨Bn∧→{Yn}), ...,(A0∧→{X0}∨B0∧→{Y0}∨E0)}

• An infinite trace in this tableau sees infinitely often only fixpoint variablesYi and/orXi for some
i. As a consequence if a path goes infinitely often through a regeneration node which does not
containXi or Yi , then there is no trace that seesXi infinitely often on that path.

Lemma 28. The formulaαn is tableau equivalent only to disjunctive formulas which require a priority
assignment with2n+1 priorities.
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Proof. Using the above observations, we will show that the tableau for this formula requires at least
2n+1 alternating fixpoints. We describe a priority assignment to a subset of the nodes of the tableau of
αn such that on the paths within this subset, a path is even if andonly if the most significant priority seen
infinitely often is even. We then argue that this subset constitutes a 2n+1-witness.

Consider the paths of the tableau which only contain the following regeneration nodes:
• For all i, the nodes regenerating exactlyYnYn−1...Yi , and

• For all i the nodes regenerating exactlyYn...Yi+1XiYi−1...Y0.
For eachi, assign priority 2i to the node regeneratingYn...Yi and 2i + 1 to the node regenerating

Yn...Yi+1,Xi ,Yi−1, ...Y0. We now prove that this priority assignment is such that a path within this sub-
tableau is even if and only if the highest priority seen infinitely often is even.

First consider the nodesYn...Yi , which have been assigned even priority. A path that sees such a node
infinitely often can only have aµ-trace if it sees a node regerating someXj , j > i infinitely often. Such
a node would have an odd priority greater thanYn...Yi . Therefore, if the most significant priority seen
infinitely often is even, the path has noµ trace. Conversely, if a path seesYn...Xi...Y0 infinitely often and
no Yn...Yj where j > i infinitely often, then there is a trace which only regenerated Xi andYi infinitely
often. This is aµ trace sinceXi is more significant thanYi . This priority assignment therefore describes
the parity of infinite paths on this subset of paths ofT .

Any assignment of priorities ontoT should, on this subset of paths, agree in parity with the above
priority assignment. However, in any tree with back edges generating this tableau, this subset of paths
constitutes a 2n+ 1 witness:c0 is a cycle that only seesYn...Y0, c1 containsc0 and also seesYn...X1Y0

infinitely often and for alli > 1, the cyclec2i is one containingc2i−1 andYn...Yi while c2i+1 is one
containingc2i andYn...Xi...Y0. Each cyclec j is dominated by the priorityj, makingc0, ...,c2i+1 a 2i +1-
witness. Thus, using Theorem 22 any disjunctive formula with tableauT must require at least 2n+1
priorities.

This concludes the proof that for arbitraryn, there are one-alternationLµ formulas which are tableau
equivalent to disjunctive formulas withn alternations.

4.2 Disjunctive formulas with small alternation depth

The previous section showed that transforming a formula into disjunctive form can increase its alternation
depth. The converse is much easier to show: there are very simple formulas for which the transformation
into disjunctive form eliminates all alternations.
Lemma 29. For any formulaψ , the formula(µX.→{X}∨→⊥)∧ψ is tableau equivalent to a disjunc-
tive formula withoutν-operators.

Proof. The semantics of(µX.→{X}∨→⊥)∧ψ are that a structure must not have infinite paths andψ
must hold. ConsiderT , the tableau for(µX.→{X}∨→⊥)∧ψ . It is easy to see that every modal node
will either contain→{X} or→⊥. The latter case terminates that branch of the tableau, while the former
will populate every successor node withX which will then regenerate into(→{X}∨→⊥). As a result,
all infinite paths have aµ trace; there are no even infinite paths. Any disjunctive formula generatingT
will therefore only require theµ operator.

Taking ψ to be a formula of arbitrarily high alternation depth,(µX.→{X}∨→⊥)∧ψ shows that
the transformation into disjunctive form can reduce the alternation depth an arbitrarily large amount.
Together with the previous section, this concludes the argument that there are no bounds on the difference
in alternation depth of tableau equivalent formulas.
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5 Discussion

To summarise, we have studied how tableau decomposition andthe transformation into disjunctive form
affects the alternation depth of a formula. The first observation is that within the confines of the dis-
junctive fragment ofLµ , alternation depth is very well-behaved with respect to tableau equivalence: any
two tableau equivalent disjunctive formulas have the same alternation depth. However, the story is quite
different forLµ without the restriction to disjunctive form: the alternation depth of aLµ formula can not
be used to predict any bounds on the alternation depth of tableau equivalent disjunctive formulas and
vice versa.

Part of the significance of this result are the implications for our understanding of the alternation
hierarchy.

The formulas in Section 4 illutrate some of the different types of accidental complexity which
any procedure for deciding the alternation hierarchy wouldneed to somehow overcome. The formula
(µX.→{X}∨⊥)∧ψ , from Lemma 29 which is semantically aν-free formula for anyψ is an example
of a type of accidental complexity which the tableau decomposition eliminates. However, the formula in
Example 23 illustrate a more subtle form of accidental complexity that is immune to disjunctive form:
νX.µY.(A∧→{X})∨ (Ā∧→{Y}) is semantically alternation free while the syntactically almost identi-
cal formulaµX.νY.(A∧→{X})∨ (Ā∧→{Y}) is not. These formulas pinpoint a very specific challenge
facing algorithms that try to reduce the alternation depth of formulas; as such, they are valuable case
studies for those seeking to understand theLµ alternation hierarchy.

Finally, we showed that the following is decidable: for anyLµ formula, the least alternation depth
of a tableau equivalent disjunctive formula is decidable. This raises the question of whether the same is
true if we lift the restriction to disjunctive form, but keepthe restriction to tableau equivalence: for aLµ
formula, is the least alternation depth of any tableau equivalent formula decidable? Tableau equivalence
is a stricter equivalence to semantic equivalence, so this problem is likely to be easier than deciding
the alternation hierarchy with respect to semantic equivalence but it would still be a considerable step
towards understanding accidental complexity inLµ .

Acknowledgements I thank the anonymous reviewers for their thoughtful comments, which have
helped improve the presentation of this paper and relate this work to similar results for other automata.
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