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This paper proposes the use of notebooks for the design documentation and tool interaction in the
rigorous design of embedded systems. Conventionally, a notebook is a sequence of cells alternating
between (textual) code and prose to form a document that is meant to be read from top to bottom, in
the spirit of literate programming. We extend the use of notebooks to embedded systems specified
by pCharts. The charts are visually edited in cells inline. Other cells can contain statements that
generate code and analyze the charts qualitatively and quantitatively; in addition, notebook cells can
contain other instructions to build the product from the generated code. This allows a notebook to be
replayed to re-analyze the design and re-build the product, like a script, but also allows the notebook
to be used for presentations, as for this paper, and for the inspection of the design. The interaction
with the notebook is done through a web browser that connects to a local or remote server, thus
allowing a computationally intensive analysis to run remotely if needed. The pState notebooks are
implemented as an extension to Jupyter. The underlying software architecture is described and the
issue of proper placement of transition labels in charts embedded in notebooks is discussed.

1 Introduction

This work addresses the design documentation and user interface aspects in the rigorous design of em-
bedded systems.

In the 80’s, Knuth argued that programs should be written as if they are the work of literature: “Let us
change our traditional attitude to the construction of programs: Instead of imagining that our main task is
to instruct a computer what to do, let us concentrate rather on explaining to human beings what we want
a computer to do” [22]. In his system for literate programming, there is a single source file containing
both the executable code and explaining prose. One tool, tangle, extracts the code for submission to a
compiler and another tool, weave, processes the embedded markup instructions to generate a hyperlinked,
pretty-printed document using TeX. Literate programming has been used for compilers [18], scientific
software [25], operating system [15], cryptography [20] as well as Knuth’s TeX system [23]. The ideas
have also influenced formal specification languages [2] and functional programming languages [3]. The
documentation facilities of languages like Java [4] also draw from literate programming, even if there
the prose is embedded in the code rather than on equal footing. The notebooks of Mathematica [16]
and Jupyter [11] and the worksheets of Maple [10] add interactivity to literate programming: code
fragments can be executed right in the editor and their results, which can be text, formulae, or diagrams,
are displayed inside the document. In Jupyter, prose can be formatted with markdown, an HTML-based
markup language, and is pretty-printed interactively, thus eliminating the edit-generate-process cycle of
Knuth’s weave.

System models are meant to be critiqued by humans as well as mechanically processed. It is therefore
fitting to consider a literate approach to designing those. This paper reports on the design decisions of the
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re-implementation of the pState user interface with notebooks [27]. The pState tool supports the holistic
design of embedded systems with pCharts, a visual formalism for embedded systems:

• The state of the system is described by hierarchical and concurrent states together with variables
within those states; transitions between states can be triggered by (external and internal) events,
can be timed (deterministic, nondeterministic within an interval, uniformly distributed within an
interval, exponentially distributed), and can be probabilistic. For (sub-) charts without probabilistic
transitions, executable code can be generated. Thus pCharts can model both the system under
development as well as its environment [28].

• Charts can be analyzed qualitatively and quantitatively. For the qualitative analysis, invariants
can be attached to hierarchical states and the correctness of the transitions with respect to the
accumulated invariant [33] is verified.

• For the quantitative analysis, costs can be attached to transitions and states (state costs accumu-
late linearly with time). Queries for the (minimal and maximal) reachability probability and for
expected (maximal and minimal) costs can be attached to states [29].

• Maximal execution times of transitions can be specified and are checked against the generated
code, taking the scheduler into account [30].

• Comments can be embedded in the charts and are preserved in the generated executable code. If
they are attached to states and transitions, then they are placed in the generated code where the
corresponding variables are declared or transition is taken [29].

Internally, pState first transforms the pChart model into probabilistic guarded commands with prior-
ity. That representation serves for further transformations:

• For (sub-) charts without probability, C code and Arduino code (Arduino is experimental) can be
generated [32].

• For (sub-) charts without probability, PIC assembly code for ATMega microcontrollers can be
generated and the worst-case execution time of the generated code can be analyzed [32].

• Whole charts are translated into the guarded command language of the PRISM probabilistic model
checker [24]. Invariants and quantitative queries are translated to PRISM PCTL formulae.

• Transition guards are compiled into formulae for the Yices SMT solver [17] to detect infeasible
paths; this is used to improve the WCET analysis of the generated code.

Interaction with notebooks can take place in different ways:

• Notebooks can be edited and executed through a web browser that connects to a (local or remote)
Jupyter server running a Python kernel with pState.

• Notebooks can be rendered through GitHub or a service like http://nbviewer.jupyter.org; editing
and execution is not possible, but all parts of the notebook can be inspected. For example, this
notebook can be viewed at its GitLab Repository [9]. At the time of writing, the GitLab notebook
renderer has several limitations. One is that only png (bitmap) images work as expected, which
necessitates that all images in this notebook are bitmaps. A more fundamental limitation is that
citations and references to figures are not displayed properly in notebooks, but are in the generated
pdf file.

https://gitlab.cas.mcmaster.ca/lime/pstate-jupyter/blob/master/docs/submission.ipynb
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Figure 1: Intermediate event code generation inside a Jupyter notebook

• Notebooks can be converted to pdf; editing and execution is not possible and hidden cells will be
suppressed. A pdf version of this notebook (possibly the version the reader is perusing) has been
converted with a dedicated converter [5] for the purpose of publication.

For example, a new chart is created by calling pChart("filename") in a code cell and assigning
it to a Python variable. The JSON representation of the chart would then be stored in the file named
__pcharts__/filename.pchart. Below, a new chart is assigned to sender_receiver. Displaying
the value of sender_receiver opens then a cell for editing; the menu with the commands for drawing
AND, XOR states, transitions, etc. appears only interactively and is not visible in this notebook.

1 from p s t a t e import pC ha r t
2 s e n d e r r e c e i v e r = pCh a r t ( ’ s e n d e r r e c e i v e r ’ )
3 g e n e r a t e d i n t e r m e d i a t e c o d e = s e n d e r r e c e i v e r . code ( )
4 s e n d e r r e c e i v e r # d i s p l a y t h e e d i t o r

The chart is a Python object on which methods can be called: sender_receiver.code(), for
example, would generate intermediate code for the chart. Other methods can then inspect invariants,
events, and costs. Figure 1 is a screenshot where the chart code_gen_demo is displayed and in the
following cell, the intermediate code is generated and displayed.

2 The pState-Jupyter Architecture

Jupyter notebooks are a document format that interleave prose in markdown cells, code cells, and code
execution results. Notebooks, including the code execution results, are stored in JSON files. The three
major components that make up the interactive environment for running notebooks are the server, the
frontend, and the kernel. An architecture diagram is depicted in Figure 2.

The server interacts with the file system to store notebooks. Communication between the frontend
and the server is done via HTTP requests/responses. Frontends may also request the creation of a kernel

https://gitlab.cas.mcmaster.ca/parksj6/pstate-jupyter-eptcs-exporter
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and the server has the responsibility of spawning the appropriate kernel process and providing it with
connection details so that the kernel and frontend can connect directly. Kernels exist for numerous
programming languages. For pState, we use the IPython kernel.

The frontend provides the graphical user interface for viewing and editing the notebook prose and
code. When connected to a kernel it may also send a code cell to the kernel for execution; for pState,
these are Python commands that are interpreted by the Python kernel. The result is sent to the frontend
and displayed. Frontends commonly support rendering image formats such as PNG, JPEG, and SVG, as
well as richer formats including LaTeX equations, HTML, and JavaScript.

The kernel is a process responsible for executing notebook code, as well as providing other language
features such as code completion. The communication with the frontend is via the Jupyter messaging
protocol. This communication is two-way, allowing the frontend to make requests to the kernel and
vice-versa.

Embedding pState into a Jupyter notebook requires the coordination of two components, one on
the frontend for viewing and graphically editing pCharts and another on the backend for compiling,
analyzing, and generating code for pCharts.

The frontend is a web application written in TypeScript [14], which is compiled to JavaScript to
run in a browser, and built on the React [12] and Redux [13] frameworks. In a Redux application,
the entire state of the application is a single JavaScript object. This state is immutable and modified
by pure reducers that are triggered via dispatched actions. Additionally the state and actions are JSON
serializable, making synchronization and remote action dispatching possible. When the state changes,
React renders a virtual view of the changed state, compares it to the concrete view, and makes the
necessary changes to the concrete view so that it matches the virtual view. The concrete view is an
HTML element with inline SVG for most of the chart drawing.

The backend component is a Python library that lives in the kernel, as the pState interface must be
accessible to user code written in the notebook. Code written in the notebook is sent to the Python kernel
for execution. Every pChart is a Python object; “displaying” the object opens the inline editor. Methods
of a pChart object are called for analysis and code generation.

The frontend is connected to the backend via the Jupyter messaging protocol’s comm messages. As
such, the components communicate through asynchronous message passing. The backend sends chart
updates, dispatches user interface actions, and sends chart errors or analysis results to the frontend to
display to the user. The frontend sends compilation or analysis requests as well as chart modifications to
the backend.

3 Interface

In the notebook context the graphical editor is to be used when it is helpful. All of the functionality of the
editor is also accessible via the Python object residing in the kernel. This allows for scripting changes to
the diagram in addition to graphically editing it, which in the notebook format is side by side.

Future work on the backend will widen the pChart API to support programatically varying constants.
With this feature we anticipate Jupyter users will bring the libraries and tools they are familiar with to
integrate with pState. Such examples include Matplotlib [8] or bqplot [1] for plotting analysis results
and ipywidgets [6] to create interactive interfaces for modulating constants defined within their pCharts.

The notebooks format necessitates that charts are as wide as all other cells, which are typically of the
width of a printed page, rather than filling the whole screen. The editor was designed to not overflow the
space it is allocated to render in. It is fully contained and therefore many editors may be present within

https://www.typescriptlang.org/
https://reactjs.org/
https://redux.js.org/
https://github.com/matplotlib/jupyter-matplotlib
https://github.com/bloomberg/bqplot
https://github.com/jupyter-widgets/ipywidgets
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Figure 2: Notebook architecture

the same webpage. Additionally any menus are kept to a minimum and hidden when not being edited
to leave as much space for the chart. To allow for large charts, a single chart (or rather the underlying
Python object) can have multiple views, which are kept automatically synchronized. These views can
provide an overview or “zoom” in particular states of the chart. Even then, the layout of charts is critical
for readability. Figure 3 is a screenshot of a chart that is displayed twice with the user working in the top
editor causing it to be in focus making the menus visible.

In the spirit of using the visual editor as a tool it implements some features for making editing quicker,
namely automatically positioning labels and drawing concurrent state separating lines with plans for
extending this list in the future with automatic reformating and connection path routing.

Concurrent states (AND states) visually separate their children with a dashed line. These lines are
drawn automatically by recursively splitting groups of child states with a dashed line spanning the entire
group across a single axis. Any groups left are split across the alternate axis until a group cannot be split
further. Figure 4 shows how the algorithm splits the child boxes A-F.

Transitions between states are broken down in connections between states and probabilistic/condi-
tional pseudo-states. These serve for splitting a transition depending on a probability or on a condition.
Like commonly done in drawing editors, the frontend requires states and pseudo-states to be positioned
manually, but automatically places the labels of connections. The frontend implements a variation of an
algorithm by Kakoulis and Tollis for labeling edges in hierarchical drawings [19]. It consists of three
steps,

1. finding viable label positions,
2. rating the positions on how good their placement is, and
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Figure 3: Duplicate editors open for a single pChart

Figure 4: Automatic “concurrent state” child splitting algorithm visualizaion
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Figure 5: Edge label placement computation visualization

3. choosing a subset of those positions (one for each label) that reduces the total ambiguity in the
relationship of label to connection.

Positions that collide with objects in the chart, including states and connections, are removed from
the set of potential positions. As pCharts are hierarchical state charts, nested states will have label
positions that overlap their parent states. When removing labels that collide with objects in the chart, the
algorithm must not consider collisions with parent objects that are conceptually behind the label. The
algorithm bases this decision on where the source state of the connection exists in the state hierarchy.

The costs is based on a force directed calculation for pulling towards the centroid of a connection
path and pushing away from other labels. This algorithm may result in placements that are still of high
cost. In these cases the editor renders a linking dotted line from the label to it’s connection to help
reduce the ambiguity in the resulting placement. In any case the user is also free to manually position
any labels that are not placed to their standards. Figure 5 shows the potential label positions along with
their computed costs (darker implies a “worse” placement) and resulting placement decision.

4 Conclusions

This project was initiated to explore if it is possible to adopt a notebook format for embedded system
design with hierarchical state charts. Using Jupyter notebooks, this turns out to be feasible, even if
with considerable complexity: a separation of the frontend and backend is necessary and the frontend
alone consists of 10,000 lines of TypeScript and uses two JavaScript frameworks. The advantages of the
separation are that the backend can run on a possibly remote server and only a browser is needed for
connecting to the backend; from the user’s point, the complexity is not visible but the benefits are obvi-
ous. The frontend implementation took approximately seven months which includes roughly two months
spent learning about web technologies. Connecting the frontend to the backend was quite painless due to
the design decisions made when implementing the editor, mainly using Redux’s design patterns including
immutable state and rendering the UI based on a single state object, allowing the efficient replacement
of the entire state for synchronization. As such the complexity for a reader to do the same is very much
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dependent on the implementation of the web interface.
At the time of writing, the backend still misses the integration of PRISM, Yices, and most of the

code generators of the original pState implementation; we hope to report on using the notebooks format
for full development soon. Additionally there are plans to integrate a simulation/animation tool into the
frontend as well as bringing the editor into the newer interface JupyterLab [7] which was recently (late
February 2018) released as a stable beta.

Notebooks have been proposed for documenting reproducible research [21]. The authors give nu-
merous examples, but also write “It is not yet very practical to write academic papers themselves as
notebooks, but we are working towards this”. We have managed to generate a pdf version of this paper
from a notebook.

More importantly, we believe that notebooks can support a rigorous design process: the notebook
format serves uniformly for designing, documenting, and for building the executable code. As they are
self-contained and can be replayed, they can be inspected by third parties. Notebooks may therefore
prove to be suitable for certification.
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