
A. Paskevich, J. Proença (Eds.): Formal Integrated
Development Environment 2021 (F-IDE 2021)
EPTCS 338, 2021, pp. 97–104, doi:10.4204/EPTCS.338.12

© Y. Moy
This work is licensed under the
Creative Commons Attribution License.

How the Analyzer can Help the User Help the Analyzer

Yannick Moy
AdaCore

moy@adacore.com

The automation offered by modern program proof tools goes hand in hand with the capability to
interact with the tool when the verification fails. The SPARK proof tool tries to help the user by
providing the right information, so that the user can help the tool complete the proof. In this article,
we present these mechanisms and how they work concretely on a simple running example.

1 Introduction

Program proof is the application of deductive verification techniques to programs. Industrial acceptability
of such tools relies on the high degree of automation provided by modern automatic provers, in particular
SMT solvers, when the source code is restricted to a suitable language subset. SPARK 1 is an example of
such a FLOSS industrial tool for Ada programs. It is available freely online as part of GNAT Community
Edition 2.

While striving to offer the most automation to our users, we have also recognized early on the need
for interactions when the analyzer cannot complete the verification automatically. In those cases, the task
for the analyzer is to display to the user the right information that will allow her to provide in exchange
the pieces of information that are required for the analyzer to complete the verification.

Over the years, we have come up with a variety of solutions to address this challenge, trying to adapt
these solutions to the degree of expertise of the user. All these solutions came from discussions (usually
by email) with industrial users of SPARK, as part of the support activity that they subscribed to: a user
asks about a puzzling message or a problem with proving a property; we explain the possible problem
and show how this can be investigated; through discussion we together come up with a way to include
part of this explanation in the messages of the analyzer. We have lots of anecdotal evidence that this
helps users, in the form of positive feedback to our message improvements. We are presenting these
solutions in this article, in the hope that they can be useful to others, and serve as a basis for better future
solutions, as the challenges presented here are common to most similar analyzers.

2 The Nurse: Providing First Aid

At a minimum, the analyzer should help the user understand what is the problem, using in particular
clear messages with precise locations. This is not always enough, due to the complexity of the detailed
program semantics at play which may elude the user. This difficulty is compounded by the lack of
expertise for novice users of the programming language. The solution we have adopted in SPARK is to
augment the basic message with additional information explaining the immediate cause of the problem.
Let’s consider a procedure Erase which replaces every character in a string with the blank character:

1https://www.adacore.com/sparkpro
2https://www.adacore.com/download

http://dx.doi.org/10.4204/EPTCS.338.12
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://www.adacore.com/sparkpro
https://www.adacore.com/download


98 How the Analyzer can Help

procedure Erase (S : out String) is
begin

for J in 1 .. S’Length loop
S (J) := ’ ’;

end loop;
end Erase;

When running GNATprove (the name of the analysis tool for SPARK) on that code, it issues the following
message:

strings.adb:6:13: medium: array index check might fail
6 | S (J) := ’ ’;
| ˆ here

e.g. when J = 1
and S’First = 2

reason for check: value must be a valid index into the array

The main message line contains the precise location of the message, its severity, and the message text
indicating which property might be violated. Here, this is an array index check, which corresponds to the
run-time check when accessing an array in SPARK. The next two lines are only present in command-line
usage, and help visually locate the issue outside of an IDE. So far, this is what every tool diagnostic
should contain.

The purpose of the remaining lines is to help the user understand the reason for the message to be
issued. The counterexample introduced by “e.g.” gives concrete values of variables which lead to a
property violation. Here, when J is one and the string S starts at index two (denoted in SPARK by
S’First), the assignment attempts to write outside of the bounds of the array. This is reinforced by the
last line, which gives the reason for a check at this location: assigning into an array in SPARK requires
the index to be within bounds.

These messages are particularly useful for beginners, who may not know that arrays (and among
them, strings) in SPARK may start at other indexes than one, or who may not realize that assigning into
an array involves implicitly a run-time check that this assignment is within bounds.

The “reason for the check” provides additional context which can be useful also to more advanced
users, in cases where the details of the language semantics requiring a check are more complex. It also
facilitates understanding exactly in which part of a longer expression a check originates, as there might
be many similar checks on the same line.

Only part of the counterexample is displayed above as part of the message. A counterexample is
really a trace inside the subprogram consisting in multiple program points with values of variables at
each program point. In the GNAT Studio IDE, the user can choose to display the trace with a simple
click on a magnify icon next to the message.

Still in this category of first-aid help, GNATprove strives to present the user with the smallest sub-
property that cannot be proved, in cases where the property to prove is a conjunction of smaller sub-
properties or a universally quantified property. This is particularly useful when attempting to prove the
precondition of a call or a loop invariant, which typically are a conjunction of sub-properties. This
requires GNATprove to split unproved properties further until a leaf sub-property is not proved.

3 The Investigator: Looking for Probable Cause

Once the user understands the immediate cause of the problem, the next step is to understand its root
cause. Similar to the use of backtrace when debugging a program, the analyzer should provide informa-
tion on the context of the problem that helps identify the missing link in the chain of deductions that the



Y. Moy 99

user does in her head. In particular, programmers rely on operational semantics to understand program
executions, while the analyzer relies on axiomatic semantics which may abstract away crucial details of
the operational semantics. The solution we have adopted in SPARK is to output additional information
related to the problem when there is a chance that it might have been overlooked by the user. Let’s fix
our implementation of Erase by iterating over the range of string S:

procedure Erase (S : out String) is
begin

for J in S’Range loop
S (J) := ’ ’;

end loop;
end Erase;

and let’s add a contract to Erase specifying in a postcondition that all characters in S should be blank on
return:

procedure Erase (S : out String)
with Post ⇒ All_Blanks (S);

which is defined recursively over the range of S:
function All_Blanks (S : String) return Boolean is
(if S = "" then True
else S (S’First) = ’ ’

and then All_Blanks (S (S’First + 1 .. S’Last)));

When running GNATprove on that code, it issues the following messages:
strings.ads:9:19: medium: postcondition might fail

9 | with Post => All_Blanks (S);
| ˆ˜˜˜˜˜˜˜˜˜˜˜˜

possible fix: loop at strings.adb:5 should mention S in a loop invariant
5 | for J in S’Range loop
| ˆ here

The three last lines are new compared to the messages in the previous section. GNATprove points
here to a possible cause for the failure to prove the postcondition, which is that the loop in Erase has no
loop invariant. It comes to this conclusion by looking at the variables which are mentioned (explicitly or
implicitly) in the property to prove, here only S, and traverses the code in reverse execution order from
the program point where the property should hold. During this traversal, it correctly identifies here that
the loop modifies S without specifying how those changes impact the value of S inside a loop invariant,
which is a likely cause for not being able to prove the postcondition.

A common pitfall of program proof is the frame problem. For automatic provers to be able to reason
about formulas that represent the program semantics, these formulas necessarily must encode small parts
of the whole program semantics. Thus GNATprove defines a frame for each property to check, that
only presents a subset of the information available in the program, abstracting in particular subprogram
calls as the corresponding subprogram contract and loop iterations as the loop invariant for that loop.
When the user did not write a contract for a subprogram, or did not write a loop invariant for a loop,
GNATprove may still be able to analyze the corresponding call/loop precisely by inlining the call or
unrolling the loop. But this is not always the case, which raises the question of how these internal tool
decisions are communicated to the user. Because this kind of information was a source of confusion for
beginners, GNATprove only outputs it when instructed to do so with the switch --info, in which case it
issues here the following messages:
strings.adb:5:24: info: cannot unroll loop (too many loop iterations)
strings.ads:6:18: info: expression function body not available for proof

("All_Blanks" might not return)



100 How the Analyzer can Help

The first line informs the user that the loop in Erase could not be unrolled (hence it requires a loop
invariant) because doing so would require too many loop iterations. Indeed, a string in SPARK is an
array over the range of positive (32-bits) integers, a range much too large to unroll the loop.

The second line informs the user of another problem here: although function All_Blanks was defined
as an expression function (a purely functional expression for a function, which can readily be translated
into an axiom for proof), its defining expression cannot be used for interpreting the postcondition here.
Indeed, All_Blanks is defined recursively, which makes it possible that it does not return on some
inputs. In such cases, it would be unsound for GNATprove to treat its defining expression as an axiom in
proof, which prevents using it here. There are multiple ways to solve this problem, either by providing
a subprogram variant in order to prove termination, or by expressing All_Blanks differently without
recursion.

Still in this category of probable cause, GNATprove can attempt to detect inconsistencies in spec-
ifications or code, by trying to prove that the logical context for a given branch in the specification
or the program entails the False proposition. As this involves additional calls to automatic provers,
hence has an impact on running time, this is only done when the user chooses to do so with the switch
--proof-warnings.

4 The Magician: Suggesting a Possible Fix

The ultimate goal of interactivity is to suggest a possible fix to the user, in those (alas, few!) cases where
it is possible, either because some information is clearly missing, or because a faulty pattern can be
recognized. Our experience with SPARK has shown a few such cases where the analyzer just stops short
of fixing the code itself. Let’s add a loop invariant to the loop in Erase:

procedure Erase (S : out String) is
begin

for J in S’Range loop
S (J) := ’ ’;
pragma Loop_Invariant (for all K in S’First .. J ⇒ S (K) = ’ ’);

end loop;
end Erase;

and reimplement All_Blanks without recursion as follows:
function All_Blanks (S : String) return Boolean is
begin

for J in S’Range loop
if S (J) 6= ’ ’ then

return False;
end if;

end loop;
return True;

end All_Blanks;

When running GNATprove on that code, it issues the following messages:

strings.ads:7:19: medium: postcondition might fail, cannot prove All_Blanks (S)
7 | with Post => All_Blanks (S);
| ˆ˜˜˜˜˜˜˜˜˜˜˜˜

possible fix: you should consider adding a postcondition to function All_Blanks
or turning it into an expression function

The poscondition of Erase still cannot be proved. GNATprove this time has a more precise sug-
gestion for the solution, which is to add a postcondition to All_Blanks or to turn it into an expression



Y. Moy 101

function. Indeed, GNATprove handles differently regular functions, which may themselves contain im-
perative constructs like loops, and so-called expression functions, which can be readily interpreted in
logical terms. Another option would be to add a postcondition to All_Blanks, which the message also
mentions.

A similar case where GNATprove can suggest a precise fix to the user relates to the choice made
in GNATprove to prove the absence of run-time errors inside preconditions independently from calling
contexts. So if a subprogram has the expression (A and B) as a precondition, neither the evaluation of
A nor the evaluation of B should lead to an error. In many cases though, evaluating B might require
that A evaluates to True, and in such cases the precondition should be expressed using the shorthand
connective “and then” as (A and then B). GNATprove detects cases where the user could have used “and
then” instead of “and” in preconditions to protect against errors, and suggests this possible fix.

Another such case is the well-known misuse of a conditional inside an existential quantification,
which beginners are almost certain to be bitten by at some point. When it finds such a syntactic construct
(for some X => (if P then Q)) which will evaluate to True whenever P is False, GNATprove issues a
warning suggesting the likely fixes:

file:line:column: warning: suspicious expression
did you mean (for all X => (if P then Q))
or (for some X => P and then Q) instead?

While this degree of feedback to the user is highly desirable, it is hard to produce in general, outside
of the specific common cases described above.

5 The Surgeon: Looking at the Innards

This exploration would not be complete if we did not present the way for users to look at the innards of a
Verification Condition, in cases where the analyzer did not present the information needed to understand
the problem. Note however that the preferred means to investigate such unproved properties in SPARK
is through so-called auto-active verification, where the user states intermediate properties through ghost
code (assertions and lemmas). Let’s define All_Blanks as an expression function whose body is the
same universally quantified property that we wrote in the loop invariant:

function All_Blanks (S : String) return Boolean is
(for all J in S’Range ⇒ S (J) = ’ ’);

When running GNATprove on that code, it proves the postcondition of Erase, but issues messages
related to possible reads of uninitialized data (which were in fact issued on previous versions of the
example), of the form:

file:line:column: "S" might not be initialized

The reason is that, by default, GNATprove checks correct data initialization by data flow analysis
instead of proof, which is not sufficient here to prove that S is progressively initialized in the loop, which
ends with S being completely initialized, and that only the initialized part of S is read in the loop invariant.
The solution here is to indicate to GNATprove that we want it to treat S as partially initialized, and to use
proof to demonstrate correct initialization before use:

procedure Erase (S : out String)
with Post ⇒ All_Blanks (S),

Relaxed_Initialization ⇒ S;



102 How the Analyzer can Help

The effect is not immediately visible, as GNATprove keeps issuing messages about possible reads of
uninitialized data. Ignoring for a moment that the User’s Guide explains how to deal with such cases, we
can try to understand by ourselves the underlying model used in proof to deal with initialization. Through
a contextual menu, we can start manual proof on one of the unproved check, which opens multiple panels
in the IDE [8]: a panel showing the proof tree (consisting in the tree of transformations and sub-goals),
a panel displaying the current goal with names translated to reflect source code variable names (with
hypotheses and conclusion), and a panel to enter commands to interact with the tool. After introducing
quantified variables and hypotheses with the command split_vc, the goal looks like this:
goal def’vc : __attr__init (get2 S _f) = True

We can display the definition of get2:
> print get2
function get2 (f:’a -> ’b) (x:’a) : ’b = f \@ x

This is the application of a map representing the string to an index in order to get the corresponding
element. Thus, the Verification Condition here looks at some attribute __attr__init representing the
initialization status of this value, which should be the boolean True to denote that the value has been ini-
tialized. We can search for occurrences of __attr__init in the background theory encoding the program
semantics and in the hypotheses encoding the subprogram execution, using the command search:
> search __attr__init
type character__init_wrapper =

| character__init_wrapper’mk (rec__value:character) (__attr__init:bool)

function character__init_wrapper___attr__init__projection (a1:
character__init_wrapper) : bool = __attr__init a1

Here it returns elements of the background theory which allow to attach an initialization value to a
character using type constructor character__init_wrapper’mk and to retrieve the corresponding value
from the pair using function character__init_wrapper___attr__init__projection. And indeed the
constructor is used to define what it means to initialize a character in function to_wrapper:
function to_wrapper (x:character) : character__init_wrapper =

character__init_wrapper’mk x True

which is used in one of the hypotheses to indicate that S(J) is initialized after the assignment inside the
loop:
H1 : S = set2 S1 J (to_wrapper o)

So we only get that the element at the current index J of the string S is initialized, which is not
sufficient here. What we need is to specify in a loop invariant that elements up to the current index have
been initialized, using the attribute ‘Initialized in SPARK:

pragma Loop_Invariant (for all K in S’First .. J ⇒ S (K)’Initialized);

With that additional loop invariant, everything is proved about Erase, including the additional post-
condition that S is fully initialized on return:

procedure Erase (S : out String)
with Post ⇒ All_Blanks (S) and then S’Initialized,

Relaxed_Initialization ⇒ S;

As visible from this example, looking at the innards of proof requires some expertise which can only
be acquired with time, to understand the mapping from source language constructs to logical encodings.
The use of source variable names likeS and J in the Verification Condition presented to the user is a first
step towards more systematic roundtrip translation into constructs at the source code level, to facilitate
this understanding.



Y. Moy 103

6 Related and Future Works

Counterexamples are the main feature discussed in the context of interacting with program proof tools [6,
12]. Ideally, a counterexample captures in an understandable executable trace why a property cannot be
proved, by exhibiting a consistent example where the property does not hold. In reality, after multiple
person-year efforts to develop and improve counterexamples in the context of SPARK [7], there is still
much to be desired here.

On the one hand, counterexamples are very valuable to beginners, to point at implicit assumptions
they might have about the language or program semantics as well as misunderstandings about the way
program proof in general or the specific SPARK proof tools work. This is particularly valuable for
proving implicit properties of programs like absence of run-time errors, as programmers are not used to
thinking about non-happy paths: How can a signed integer division overflow? How can a floating-point
multiplication between positive values give zero as a result? On the other hand, counterexamples can be
confusing when they are either spurious because they only reflect a limitation of the underlying provers
(e.g. regarding non-linear arithmetic) or they do not represent a possible execution but only a limitation
of the approach (e.g. related to the frame problem).

To reduce the possibility of confusion, we decided recently in SPARK to only enable counterexam-
ples by default at higher levels of proof effort (when multiple provers are invoked for more than a few
seconds per Verification Condition), so that counterexamples are generated in fewer cases and only in
cases deemed difficult to prove. In parallel, we are working on using symbolic execution to verify the
execution trace represented by a counterexample, in order to filter out spurious counterexamples and to
better label the underlying error as a property violation or as a frame problem. Previous work on symbolic
or concrete execution have shown benefits for better exploiting counterexamples [13, 10, 9, 5, 14].

Our experience with SPARK is that engineers have difficulties understanding the axiomatic semantics
on which program proof is based. Their main mode of reasoning about programs is through whole-
program operational semantics, which is supported by tools such as debuggers, fuzzers, profilers, etc. It
is thus critical to provide tool feedback highlighting gaps between the two semantics which may explain
why a property cannot be proved, such as the messages that we presented in the section 3. This is an area
where we will continue to look for ideas and improvements in the coming years.

7 Conclusion

Program proof is intrinsically an interactive effort between a human and a machine, as complete automa-
tion is not achievable. Thus, we are doomed to hit the so-called Left-Over Principle of automation [1, 2],
which is that tasks that are not automated are precisely tasks where humans may not fare well either, be-
cause they are very infrequent or complex. More generally, the general understanding of the cooperation
between the user and the tool in program proof could be improved, which may require the help of cogni-
tive science [11]. And notations used to convey information to the tool could also benefit from the point
of view of cognitive science [4]. Just looking at the specific issue of tool messages, the lessons learned
from research on compiler error messages have direct implications for the design and implementation of
program proof tools [3]. In this article, we presented the current state of such machine-to-human interac-
tions in the SPARK technology, in the hope that it can trigger interesting human-to-human interactions
in the community around proof tools.



104 How the Analyzer can Help

References
[1] https://www.kitchensoap.com/2012/09/21/a-mature-role-for-automation-part-i/ and

https://www.kitchensoap.com/2013/08/20/a-mature-role-for-automation-part-ii/.

[2] https://queue.acm.org/detail.cfm?id=2841313.

[3] Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bouvier, Brian Harrington, Amir Kamil, Amey
Karkare, Chris McDonald, Peter-Michael Osera, Janice L. Pearce & James Prather (2019): Compiler Error Messages
Considered Unhelpful: The Landscape of Text-Based Programming Error Message Research. In: Proceedings of the
Working Group Reports on Innovation and Technology in Computer Science Education, ITiCSE-WGR ’19, Association
for Computing Machinery, New York, NY, USA, p. 177–210, doi:10.1145/3344429.3372508.

[4] A. F. Blackwell, C. Britton, A. Cox, T. R. G. Green, C. Gurr, G. Kadoda, M. S. Kutar, M. Loomes, C. L. Nehaniv,
M. Petre, C. Roast, C. Roe, A. Wong & R. M. Young (2001): Cognitive Dimensions of Notations: Design Tools for Cog-
nitive Technology. In Meurig Beynon, Chrystopher L. Nehaniv & Kerstin Dautenhahn, editors: Cognitive Technology:
Instruments of Mind, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 325–341, doi:10.1007/3-540-44617-6 31.

[5] Maria Christakis, K. Rustan M. Leino, Peter Müller & Valentin Wüstholz (2016): Integrated Environment for Diagnosing
Verification Errors. In: 22nd International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’16), pp. 424–441, doi:10.1007/978-3-662-49674-9 25.

[6] David R. Cok (2010): Improved usability and performance of SMT solvers for debugging specifications. Int. Journal on
Software Tools for Technology Transfer 12(6), pp. 467–481, doi:10.1007/s10009-010-0138-x.

[7] Sylvain Dailler, David Hauzar, Claude Marché & Yannick Moy (2018): Instrumenting a Weakest Precondition Cal-
culus for Counterexample Generation. Journal of Logical and Algebraic Methods in Programming 99, pp. 97–113,
doi:10.1016/j.jlamp.2018.05.003. Available at https://hal.inria.fr/hal-01802488.

[8] Sylvain Dailler, Claude Marché & Yannick Moy (2018): Lightweight Interactive Proving inside an Automatic Program
Verifier. In Paolo Masci, Rosemary Monahan & Virgile Prevosto, editors: 4th Workshop on Formal Integrated Develop-
ment Environment, Electronic Proceedings in Theoretical Computer Science 284, Open Publishing Association, Oxford,
United Kingdom, doi:10.4204/EPTCS.284.1. Available at https://hal.inria.fr/hal-01936302.

[9] Martin Hentschel, Reiner Hähnle & Richard Bubel (2016): Deductive Software Verification — The KeY Book, chapter
Debugging and Visualization, pp. 383–413. Springer, doi:10.1007/978-3-319-49812-6 11.

[10] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx & Frank Piessens (2011): VeriFast: A
Powerful, Sound, Predictable, Fast Verifier for C and Java. In Mihaela Gheorghiu Bobaru, Klaus Havelund, Gerard J.
Holzmann & Rajeev Joshi, editors: NASA Formal Methods, 6617, pp. 41–55, doi:10.1007/978-3-642-20398-5 4.

[11] G. Klien, D. D. Woods, J. M. Bradshaw, R. R. Hoffman & P. J. Feltovich (2004): Ten challenges for making automation
a ”team player” in joint human-agent activity. IEEE Intelligent Systems 19(6), pp. 91–95, doi:10.1109/MIS.2004.74.

[12] Claire Le Goues, K. Rustan M. Leino & Michal Moskal (2011): The Boogie Verification Debugger. In Gilles Barthe,
Alberto Pardo & Gerardo Schneider, editors: Software Engineering and Formal Methods - 9th International Conference,
(SEFM), 7041, pp. 407–414, doi:10.1007/978-3-642-24690-6 28.

[13] Peter Müller & Joseph N. Ruskiewicz (2011): Using Debuggers to Understand Failed Verification Attempts. In
Michael J. Butler & Wolfram Schulte, editors: 17th International Symposium on Formal Methods, 6664, pp. 73–87,
doi:10.1007/978-3-642-21437-0 8.

[14] Guillaume Petiot, Nikolai Kosmatov, Bernard Botella, Alain Giorgetti & Jacques Julliand (2016): Your Proof Fails? Test-
ing Helps to Find the Reason. In: Tests and Proofs - 10th International Conference, 9762, pp. 130–150, doi:10.1007/978-
3-319-41135-4 8.

https://www.kitchensoap.com/2012/09/21/a-mature-role-for-automation-part-i/
https://www.kitchensoap.com/2013/08/20/a-mature-role-for-automation-part-ii/
https://queue.acm.org/detail.cfm?id=2841313
http://dx.doi.org/10.1145/3344429.3372508
http://dx.doi.org/10.1007/3-540-44617-6_31
http://dx.doi.org/10.1007/978-3-662-49674-9_25
http://dx.doi.org/10.1007/s10009-010-0138-x
http://dx.doi.org/10.1016/j.jlamp.2018.05.003
https://hal.inria.fr/hal-01802488
http://dx.doi.org/10.4204/EPTCS.284.1
https://hal.inria.fr/hal-01936302
http://dx.doi.org/10.1007/978-3-319-49812-6_11
http://dx.doi.org/10.1007/978-3-642-20398-5_4
http://dx.doi.org/10.1109/MIS.2004.74
http://dx.doi.org/10.1007/978-3-642-24690-6_28
http://dx.doi.org/10.1007/978-3-642-21437-0_8
http://dx.doi.org/10.1007/978-3-319-41135-4_8
http://dx.doi.org/10.1007/978-3-319-41135-4_8

	1 Introduction
	2 The Nurse: Providing First Aid
	3 The Investigator: Looking for Probable Cause
	4 The Magician: Suggesting a Possible Fix
	5 The Surgeon: Looking at the Innards
	6 Related and Future Works
	7 Conclusion

