
A. Paskevich, J. Proença (Eds.): Formal Integrated

Development Environment 2021 (F-IDE 2021)

EPTCS 338, 2021, pp. 46–52, doi:10.4204/EPTCS.338.7

A Logic Theory Pattern for Linearized Control Systems*

Andrea Domenici Cinzia Bernardeschi

Department of Information Engineering
University of Pisa

Pisa, Italy

{andrea.domenici,cinzia.bernardeschi}@unipi.it

This paper describes a procedure that system developers can follow to translate typical mathematical

representations of linearized control systems into logic theories. These theories are then used to

verify system requirements and find constraints on design parameters, with the support of computer-

assisted theorem proving. This method contributes to the integration of formal verification methods

into the standard model-driven development processes for control systems. The theories obtained

through its application comprise a set of assumptions that the system equations must satisfy, and a

translation of the equations into the logic language of the Prototype Verification System theorem-

proving environment. The method is illustrated with a standard case study from control theory.

1 Introduction

The design of modern control systems relies both on theory and on experiment. Experiment often takes

the form of simulation, in a process known as model-driven development (MDD). Both the theory- and

the experiment-based activities start from a mathematical system model, but in one case the model is

a static subject of formal analysis, and in the other one it is an active system under observation. This

implies that developers involved in the two branches of development require different kinds of knowledge

and the model itself may have to be expressed with different notations.

The present paper is an initial contribution to a better integration between formal analysis and MDD,

as it provides a systematic way to translate a mathematical system description into a logic theory that

can be analyzed with the support of an interactive theorem prover. The proposed procedure is tailored to

basic linearized control systems and it follows a high-level pattern, so that its application requires some

creativity on the part of the developers. The procedure supports developers in providing them with a

framework upon which to build system-specific theories. Parts of the procedure can be embodied into

code templates for specific classes of systems. This work also tries to contribute in adding support for

control system development to the large body of theories for the Prototype Verification System (PVS) [4].

In particular, a solution for a technical problem related to the PVS type system is proposed (Sect. 4.1

and 4.2).

The PVS environment is introduced in Sect. 2, Sect. 3 describes the system used as an example,

Sect. 4 describes the procedure within the example, and the procedure is exposed in general terms in

Sect. 5. Conclusions are drawn in Sect. 6.

2 The PVS theorem-proving environment

The PVS is an interactive theorem prover for theories in higher-order logic. Theories are written in a

rich, strongly-typed language. In this paper, only the features needed to understand the examples are

*This research was funded by the Italian Government under the CrossLab program, “Dipartimenti di Eccellenza” project.

http://dx.doi.org/10.4204/EPTCS.338.7

A. Domenici & C. Bernardeschi 47

introduced.
The type system rests on the fundamental concepts of reals, rationals, integers, etc., whose properties

and operations are formally defined in the built-in theories of the prover. Subtypes (e.g., posreal,
positive reals) and types of arbitrary complexity can be defined upon this basis. In particular, function
types are defined as in this example:

phi: VAR [real -> real]

where phi is defined as a function variable ranging over the set of functions from reals to reals. A
function constant (not to be confused with a constant function) is defined, e.g., as

x: VAR real

f(x): real = -(g/R)*sin(x)

Formulae are made of predicates (functions returning a Boolean value), logical connectives, and quanti-

fiers. A LET ... IN clause introduces a definition into the following expression. A COND expression

selects one value from a set, associated with one of a set of mutually exclusive Boolean expressions.

Several theories from the NASALIB package [3] are used in this work, in particular, those related to

mathematical analysis and vectors. Type Vect2 represents the set of real 2-vectors. Function vect2 is a

constructor, and p(0) (or p(1)) is the first (second) element of a vector p.
Logical statements to be proved are expressed as logic formulae introduced by a label and a keyword

such as LEMMA or THEOREM:

label: LEMMA f(phi, theta) = g(theta)

In the interactive theorem prover, the user selects one lemma as the initial goal and applies prover

commands to transform it. The commands are based on the inference rules of sequent calculus [6]

and perform transformations of various complexity. In particular, they may recursively split a goal into

subgoals. A proof terminates successfully when all subgoals are satisfied.

3 Equilibrium of a pendulum

A rigid pendulum with a fixed pivot is a simple example of a second-order dynamical system [5]. A

pendulum consists in a bob of mass M and a rod of length R. The pivot has a coefficient b of viscous

friction. The pendulum is controlled with a driving torque τ applied at the pivot. The dynamic model of

the system is then

Iθ̈ +bθ̇ +MgRsin(θ) = τ ,

where θ is the angular displacement from the vertical axis, I = MR2 is the rotational inertia, and g is the

gravitational acceleration. Taking θ and θ̇ as the state variables, the state-space representation for the

free evolution of the system is
{

ẋ1 = θ̇

ẋ2 =−(g/R)sin(θ)− (b/I)θ̇ ,

where the right-hand members of the equalities are the system’s generating functions (GF). The equilib-

rium points are P1 = (0,0) and P2 = (π,0).

4 A logic theory

This section shows how a theory can be developed for the formal study of a dynamical system such as

the one introduced above.

48 A Logic Theory Pattern

In a standard approach, the system is linearized near an equilibrium point, i.e., its GFs (f1 and f2)

are replaced by their differentials. The linearized system is expressed as

ẋ = Jx ,

where x is the state vector and the Jacobian matrix J is defined as

J =

∂ f1

∂θ

∂ f1

∂ θ̇
∂ f2

∂θ

∂ f2

∂ θ̇

.

4.1 System model

The first step in building the system’s theory is then to express the GFs and their partial derivatives (PD)

in the PVS language. Translating mathematical formulae into PVS is obviously straightforward, but the

theory must provide the means to verify the correctness of the procedure. In particular, it is necessary to

verify that the functions are actually differentiable, and that the derivatives have been calculated correctly.

Dealing with these issues leads to coping with some limitations in the available PVS libraries. In fact, to

the best of the authors’ knowledge, there are currently no PVS theories available about partial derivation.

However, a rich collection of theories about functions of a single variable is available, which can be used

as a basis for a treatment of multi-variable functions.

This work takes a pragmatic approach: Instead of trying to build a general theory of multi-variable

functions, ad hoc theories are developed for specific systems, trying to strike a satisfactory compromise

between generality (and elegance) and synthesis.

From calculus textbooks, the PD of a function f :Rn →R wrt a variable xi in a point P0 =(x01, . . . ,x0n)
is the ordinary derivative of the restriction φ : R→R of f to the set {x01, . . . ,xi, . . . ,x0n}. This is usually

translated as “take the derivative of f wrt xi, keeping the other variables constant”. Unfortunately, the

PVS type checker “does not know” how to keep variables constant: A variable is supposed to be variable

and a constant is supposed to be constant. More precisely, it is not possible to treat a multi-variable func-

tion as a single-variable one, take its single-variable derivative and turn it into a multi-variable function.

In the approach proposed in this work, a developer must write the GFs, the points where the system

is linearized, the single-variable restrictions, the (ordinary) derivatives of the restrictions, and the PDs of

the GFs. With an explicit definition of the single-variable restrictions and their derivatives, it is possible

to check the correctness of the “hidden step” in the common calculation of PDs. The pendulum system

can then be defined as in the following. First, parameters, variables, GFs, and equilibrium points:

M, R, b: posreal % mass, length, viscous friction

g: posreal % (standard) gravitational acceleration

I: posreal = M*sq(R) % rotational inertia

tau: VAR real % applied torque

theta, dtheta: VAR real % (state variables) angular displmt., time derivative

% generating functions

p: VAR Vect2 % a generic point p = (theta, dtheta)

f1(p): real = p(1) % p(1) = dtheta

f2(p): real = -(g/R)*sin(p(0)) - (b/I)*p(1) % p(0) = theta

% equilibrium points

A. Domenici & C. Bernardeschi 49

P1: Vect2 = vect2(0, 0); X1: real = P1(0); Y1: real = P1(1)

P2: Vect2 = vect2(pi, 0); X2: real = P2(0); Y2: real = P2(1)

Then the restrictions are defined by applying the GFs to points with one variable and one arbitrary
constant co-ordinate, and their derivatives are computed:

X, Y: real

P: Vect2 = vect2(X, Y) % an arbitrary constant point

phi1_x(theta): real = f1(vect2(theta, Y)) % restr. of f1 wrt theta

phi1_y(dtheta): real = f1(vect2(X, dtheta)) % " dtheta

phi2_x(theta): real = f2(vect2(theta, Y)) % restr. of f2 wrt theta

phi2_y(dtheta): real = f2(vect2(X, dtheta)) % " dtheta

% derivatives of the restrictions

dphi1_x(theta): real = 0; dphi1_y(dtheta): real = 1

dphi2_x(theta): real = -(g/R)*cos(theta); dphi2_y(dtheta): real = -(b/I)

Finally, the PDs of the GFs are declared:

df1_dx(p): real = 0 % partial derivative of f1 wrt theta

df1_dy(p): real = 1 % partial derivative of f1 wrt dtheta

df2_dx(p): real = -(g/R)*cos(p(0)) % partial derivative of f2 wrt theta

df2_dy(p): real = -(b/I) % partial derivative of f2 wrt dtheta

By convention, letters x and y refer to the first and second state variable (θ and θ̇), respectively.

4.2 Model consistency

In order to verify the correctness of ordinary differentiations, the NASALIB theories are used. For
example, the following lemma states that the dphi1_x is indeed the derivative of phi1_x wrt theta,
using function deriv defined in the NASALIB derivative theory:

der1theta: LEMMA deriv(phi1_x, theta) = dphi1_x(theta)

Then the PDs must be proved to be extensions of the derivatives of the GFs’ restrictions. Predicates
xrestricts? check if a function φ : R→ R is a restriction of a function f : R2 → R (and conversely).

x, y: VAR real

f: VAR [Vect2 -> real] % a generic f: (R x R) -> R

phi: VAR [real -> real] % its restriction phi: R -> R

xrestricts?(phi, f, p): bool = FORALL (x): phi(x) = f(vect2(x, p(1)))

yrestricts?(phi, f, p): bool = FORALL (y): phi(y) = f(vect2(p(0), y))

These predicates are then used first to show that phi1_x etc. are restrictions of the respective GFs,
and then that the PDs df1_dx etc. are extensions of the derivatives of the restrictions. For example:

restr1x1: LEMMA xrestricts?(phi1_x, f1, P)

extens1: LEMMA

xrestricts?(dphi1_x, df1_dx, P) AND yrestricts?(dphi1_y, df1_dy, P)

After the consistency of the various functions written by the developer has been verified, the task
remains to check that linearizing the system at the equilibrium points is mathematically sound, i.e., that
the GFs are differentiable. Elementary calculus provides a sufficient condition for differentiability: “If
f has a partial derivative in a point P0 and the other partial derivatives exist in a ball around P0 and
are continuous in P0, then f is differentiable in P0”. These conditions can be checked with NASALIB
theories on ordinary differentiation and on continuity in Euclidean spaces. e.g.:

% does a partial derivative of f1 exist in P1?

exist_pd1P1?: bool = derivable?(phi1_x, X1) OR derivable?(phi1_y, Y1)

% is the partial derivative of f1 continuous at P1?

continuous_pdx1P1?(S: VAR set[Vect2]): bool = continuous_at?(df1_dx, X1, P1)

50 A Logic Theory Pattern

4.3 Linearization

Finally, the Jacobian and its trace and determinant can be defined at the points of equilibrium. The
matrices NASALIB theory was not used as deemed unnecessarily complex.

JP1(i, j: below(2)): real = % Jacobian at P1

LET idx = 3*(i - 1) + j IN COND

idx = 1 -> df1_dx(P1), idx = 2 -> df1_dy(P1),

idx = 3 -> df2_dx(P1), idx = 4 -> df2_dy(P1)

ENDCOND

trJP1: real = JP1(1, 1) + JP1(2, 2) % trace of JP1

detJP1: real = JP1(1, 1)*JP1(2, 2) - JP1(1, 2)*JP1(2, 1) % determinant of JP1

Then, the characteristic polynomial, its discriminant, and the eigenvalues:

lam: VAR complex

csq(lam): complex = lam*lam % complex square

charpolJP1(lam): complex = csq(lam) - trJP1*lam + detJP1

% discriminant

discrJP1: real = discr(1, -trJP1, detJP1)

% eigenvalues

lam1: complex =

IF (discrJP1 >= 0) THEN root(1, -trJP1, detJP1, -1)

ELSE trJP1/2 - i*sqrt(-discrJP1)/2

ENDIF

lam2: complex =

IF (discrJP1 >= 0) THEN root(1, -trJP1, detJP1, 1)

ELSE trJP1/2 + i*sqrt(-discrJP1)/2

ENDIF

This code has a regular structure and has very few dependencies on the developer-provided code, so it

could be easily turned into a template.

4.4 Analysis

Within this theory, it is possible to prove properties of the system, and, in particular, to find constraints
on the physical parameters. For example, it has been proved that the system has non-oscillating solutions
in P1 (i.e., the discriminant of the characteristic polynomial is positive) if and only if the ratio of viscous
friction to rotational inertia is greater than four:

lem4: LEMMA K = b/I AND K > 4 IFF discrJP1 > 0

The proof with the PVS proof assistant is straightforward, involving only simple manipulations, such

as introducing previously proved lemmas and expanding definitions. Similarly, it has been proved that

P2 is unstable.

5 General procedure

The above process can be described in a more general and schematic procedure as shown below. It may

be noted that, after a developer has written the system model in PVS, most of the remaining theory, e.g.,

the lemmas in Sec. 4.2 and the definitions in Sec. 4.3, is a set of boilerplate definitions that could be

generated with a template-processing software.

A. Domenici & C. Bernardeschi 51

System model

The developer defines (a) the state variables x1, . . . ,xn (theta and dtheta in Sec. 4.1), (b) the system

parameters k1, . . . ,kl (as constants, e.g., M, R, b, g), (c) the system generating functions f1, . . . , fn (f1,

f2), (d) the equilibrium points (P1, P2), (e) the restrictions φ11, . . . ,φnn (phi1_x, . . .phi2_y) of the GFs,

(f) the derivatives φ ′
11, . . . ,φ

′
nn (dphi1_x, . . .dphi2_y) of the restrictions, and (g) the partial derivatives

∂ f1

∂x1
, . . . , ∂ fn

∂xn
(df1_dx, . . .df2_dy) of the GFs.

Model consistency

The theory contains predicates and lemmas to check that (a) the φi j’s are actually the restrictions of the

fi’s, (b) the φ ′
i j’s are actually the derivatives of the φi j’s, (c) the

∂ fi

∂x j
’s are extensions of the φi j’s, and (d)

the generating functions are differentiable, as shown in Sec. 4.2. In this phase, lemmas such as restr1x1

and extens1 formalize the concept of PD in a way that is acceptable to a higher-order logic type checker.

Linearization

For each equilibrium point, write (a) the Jacobian matrix (JP1 in Sec. 4.3), (b) the functions of the

Jacobian needed to write the characteristic polynomial, e.g., trace and determinant (trJP1 and detJP1)

for second-order systems), (c) the characteristic polynomial (charpolJP1), (d) functions of the polyno-

mial needed to characterize the set of eigenvalues, e.g., the discriminant (discrJP1) for second-order

systems), and (e) the expressions of the eigenvalues (lam1, lam2).

Analysis

Use the functions from the linearization phase to write lemmas about system properties, e.g., Lemma lem4

in Sec. 4.4, relating stability to parameter ranges. In real life applications, this part will require most of

the total effort. It should be observed that a PVS theory need not be monolithic, so that the divide and

conquer principle can and should applied to cope with problem size and complexity. Also, formal analy-

sis requires specific expertise, but a systems engineer can easily learn the essentials to define the system

model and its requirements, leaving theorem proving to specialized developers (and their software).

6 Conclusions and further work

The procedure proposed in this paper had been used, before being laid down explicitly, in the analysis

of a simple robotic vehicle [2] and of a synchronous motor [1]. In both cases, formal verification was

complemented by simulation, and in the latter, by design space analysis. More precisely, formal ver-

ification had been used to find useful ranges of controller gains and design space analysis, supported

by the simulation environment, was used to find optimal values within those ranges. The present work

sketches a systematic way to deal with this kind of tasks. Clearly, the procedure shown in Sect. 5 needs

to be defined more in detail and templates for theory fragments have to be defined. Also, the analysis of

systems with a large state space will require more advanced strategies to develop appropriate theories.

References

[1] Cinzia Bernardeschi, Pierpaolo Dini, Andrea Domenici, Maurizio Palmieri & Sergio Saponara (2020): Formal

Verification and Co-Simulation in the Design of a Synchronous Motor Control Algorithm. Energies 13(16), p.

4057, doi:10.3390/en13164057.

http://dx.doi.org/10.3390/en13164057

52 A Logic Theory Pattern

[2] Andrea Domenici, Adriano Fagiolini & Maurizio Palmieri (2018): Integrated Simulation and Formal Verifi-

cation of a Simple Autonomous Vehicle. In Antonio Cerone & Marco Roveri, editors: Software Engineering

and Formal Methods, Lecture Notes in Computer Science 10729, Springer International Publishing, Cham,

pp. 300–314, doi:10.1007/978-3-319-74781-1_21.

[3] Bruno Dutertre (1996): Elements of mathematical analysis in PVS. In Gerhard Goos, Juris Hartmanis, Jan

van Leeuwen, Joakim von Wright, Jim Grundy & John Harrison, editors: Theorem Proving in Higher Order

Logics, Lecture Notes in Computer Science 1125, Springer Berlin Heidelberg, pp. 141–156, doi:10.1007/

BFb0105402.

[4] S. Owre, S. Rajan, J. Rushby, N. Shankar & M. Srivas (1996): PVS: combining specification, proof checking,

and model checking. In R. Alur & T.A. Henzinger, editors: Computer-Aided Verification, CAV ’96, LNCS

1102, Springer-Verlag, pp. 411–414, doi:10.1007/3-540-61474-5_91.

[5] J. E. Slotine & W. Li (1991): Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs, NJ.

[6] Raymond Merrill Smullyan (1968): First-order logic. Ergebnisse der Mathematik und ihrer Grenzgebiete,

Springer, Berlin, Heidelberg, doi:10.1007/978-3-642-86718-7.

http://dx.doi.org/10.1007/978-3-319-74781-1_21
http://dx.doi.org/10.1007/BFb0105402
http://dx.doi.org/10.1007/BFb0105402
http://dx.doi.org/10.1007/3-540-61474-5_91
http://dx.doi.org/10.1007/978-3-642-86718-7

	1 Introduction
	2 The PVS theorem-proving environment
	3 Equilibrium of a pendulum
	4 A logic theory
	4.1 System model
	4.2 Model consistency
	4.3 Linearization
	4.4 Analysis

	5 General procedure
	6 Conclusions and further work

