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Hybrid systems theorem proving provides strong correctness guarantees about the interacting dis-
crete and continuous dynamics of cyber-physical systems. The trustworthiness of proofs rests on
the soundness of the proof calculus and its correct implementation in a theorem prover. Correctness
is easier to achieve with a soundness-critical core that is stripped to the bare minimum, but, as a
consequence, proof convenience has to be regained outside the soundness-critical core with proof
management techniques. We present modeling and proof management techniques that are built on
top of the soundness-critical core of KeYmaera X to enable expanding definitions, parametric proofs,
lemmas, and other useful proof techniques in hybrid systems proofs. Our techniques steer the uni-
form substitution implementation of the differential dynamic logic proof calculus in KeYmaera X to
allow users choose when and how in a proof abstract formulas, terms, or programs become expanded
to their concrete definitions, and when and how lemmas and sub-proofs are combined to a full proof.
The same techniques are exploited in implicit sub-proofs (without making such sub-proofs explicit
to the user) to provide proof features, such as temporarily hiding formulas, which are notoriously
difficult to get right when implemented in the prover core, but become trustworthy as proof manage-
ment techniques outside the core. We illustrate our approach with several useful proof techniques
and discuss their presentation on the KeYmaera X user interface.

1 Introduction

Hybrid systems theorem proving provides strong correctness guarantees about the interacting discrete
and continuous dynamics of cyber-physical systems. Theorem proving is most valuable early in the
design of a system, since it is not merely a technique to prove the correctness of an already correct sys-
tem, but also shines when analyzing a system in all its subtleties to discover unknown or only partially
known properties of the system. The trustworthiness of proofs and analysis results, however, rests on
the soundness of the proof calculus and its correct implementation in a theorem prover. Typical theorem
prover implementations often opt for directly representing the rules of a proof calculus in the theorem
prover, for instance, with axiom schemata in [1,18], or with trusted implementations of rules (e.g., KeY-
maeraD [20]) or decision procedures (e.g., invariant computation [8] in the HHL prover [24]). The
downside of such an approach is not only that implementations of rules and their side conditions become
soundness-critical, but also that additional features often result in increasing the size of the soundness-
critical code base of the theorem prover. Correctness is easier to achieve with an LCF-style approach that
strips the soundness-critical core to the bare minimum, but, as a consequence, proof convenience has to
be regained outside the soundness-critical core with proof management techniques. The KeYmaera X [5]
theorem prover for hybrid systems takes an LCF-style approach; previous techniques expanded the ca-
pabilities of KeYmaera X primarily by providing tactics [4], e.g., for certifying solutions of differential
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equations [16], for certifying safety and liveness properties of differential equations [19,21], for stability
proofs [22], for code synthesis [3], for component-based modeling and verification [12], and for monitor
synthesis [10].

In this paper, we present modeling and proof management techniques that are built on top of the
soundness-critical core of KeYmaera X to enable structuring and modularizing models with definitions
and modularizing proofs with lemmas. These modeling and proof management techniques were devel-
oped primarily with interactive proofs in mind, but may also be beneficial for automation (e.g., hierarchi-
cal definitions may serve as proof hints). Useful proof techniques for explicit proof management include
expanding definitions of the model during a proof, parametric proofs to make progress in proofs despite
unknown system properties (e.g., loop invariants), and creating and applying lemmas. Our techniques
steer the uniform substitution implementation of the differential dynamic logic proof calculus in KeY-
maera X to allow users choose when in a proof and how abstract formulas, terms, or programs become
expanded to their concrete definitions, and when and how lemmas and sub-proofs are combined to a
full proof. The same techniques are exploited in implicit sub-proofs (without making such sub-proofs
explicit to the user) to hide technicalities of the prover implementation whose details are irrelevant to the
user, or to provide proof features, such as temporarily hiding formulas, which are notoriously difficult to
get right when implemented in the prover core, but become trustworthy as proof management techniques
outside the core. On the user interface, we attempt to make such proof features available as part of the
usual user interactions: for example, when a tactic asks for input (e.g., a loop invariant), users start a
parametric proof simply by using uninterpreted function and predicate symbols as tactic inputs, which
then appear like elements of the input model whose concrete interpretations can be defined and expanded
at a later point in the proof. That way, users can focus on exploring and understanding a system by way
of formal proof to provide insight to the theorem prover when it becomes available during the proof.

The remainder of this paper is structured as follows: Section 2 introduces differential dynamic logic
and the relevant core and user interface features of KeYmaera X. Section 3 gives an example proof that
combines and illustrates several of the desired proof management techniques, Section 4 and Section 5
discuss the underlying lemma application and proof techniques and their appearance on the user interface,
and Section 6 concludes the paper with a discussion of related and future work.

2 Preliminaries

Differential Dynamic Logic by Example Differential dynamic logic dL [16, 17] is a specification
language and verification calculus for hybrid systems written as hybrid programs. The syntax of hybrid
programs (HP) is described by the following grammar where α,β are hybrid programs, x is a variable
and e, f (x) are terms, Q is a logical formula:

α,β ::= x :=e | ?Q | x′ = f (x)&Q | α ∪β | α;β | α∗

Assignments x :=e and tests ?Q (to abort execution and discard the run if Q is not true) are as usual.
Differential equations x′ = f (x)&Q are followed along a solution of x′= f (x) for any duration as long as
the evolution domain constraint Q is true at every moment along the solution. Nondeterministic choice
α ∪ β runs either α or β , sequential composition α;β first runs α and then β on the resulting states
of α , and nondeterministic repetition α∗ runs α any natural number of times. For example, the hybrid
program below (

if (x < 1){y :=−x} else {y := ∗; ?y > 2}︸ ︷︷ ︸
ctrl

; x′ =−xy︸ ︷︷ ︸
ode

)∗
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repeats program ctrl followed by differential equation ode arbitrarily often; program ctrl is a choice
between setting y to the value of −x when x < 1 or else picking any y > 2. The combined effect of ctrl
and ode is an exponential increase/decay of x with a rate depending on the choice of y. When programs
become more complicated, it is useful to literally modularize hybrid programs into ctrl, ode etc. using
program symbols and use definitions as a structuring mechanism for models.

The formulas of dL describe properties of hybrid programs, summarized by the following grammar
where P,Q are formulas, e, ẽ are terms, x is a variable and α is a hybrid program:

P,Q ::= e≥ ẽ | ¬P | P∧Q | P∨Q | P→ Q | P↔ Q | ∀xP | ∃xP | [α]P | 〈α〉P

The operators of first-order real arithmetic are as usual with quantifiers ranging over the reals. Formula
[α]P is true in a state iff formula P is true after all ways of running hybrid program α , which is useful
for expressing safety properties. Dually, liveness properties are expressed with 〈α〉P, which is true in a
state iff P is true after at least one run of α .

Γ1 ` ∆1 (subgoal1) . . . Γn ` ∆n (subgoaln)
Γ ` ∆ (conclusion)

(a) A Provable representing proof state in the KeYmaera X core

Tactics menu A

Deduction B

Explanation C

D

(b) User interface displays the open subgoals of a proof. Tactics menu A lists proof tactics and automation,
deduction view B lists the open subgoals (one tab per subgoal), explanation C illustrates the last applied proof
step and lists the recorded proof history as a tactic. Subgoal 1 is selected D and its sequent p,q∧ r ` p is displayed.

Figure 1: Proof state data structure and rendering on the user interface

Proofs in the KeYmaera X Core The KeYmaera X prover core represents proof state as derived rules
called Provables, which list the conclusion to prove and the open subgoals, as illustrated in Fig. 1a.
Conclusion and subgoals are each represented with a sequent of the form Γ ` ∆: assumptions are in Γ,
∆ lists the alternatives to prove. The meaning of sequent Γ ` ∆ is that of dL formula

∧
p∈Γ p→

∨
q∈∆ q.

Validity of the subgoals justifies validity of the conclusion; a proof is closed when there are no more
open subgoals. The user interface of KeYmaera X in Fig. 1b displays proof state in its deduction view

B , provides automation and tactics A to progress in the proof, and lists proof step explanations C as
well as a tactic summarizing the recorded proof history. Proofs can be started from an initial conjecture,
as well as from a (partial) tactic that advances the proof state according to the tactic steps and displays
the remaining proof goals (further manual steps are then recorded and extend the provided tactic). The
deduction view strives for close mnemonic similarity to text books [9,11] while maximizing screen estate
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use (it displays open subgoals in tabs to utilize the full screen width for each subgoal). In principle, the
user interface could use typesetting libraries such as MathJax, to resemble textbook appearance even
more closely, but such attempts were abandoned for rendering performance reasons.

The KeYmaera X core is stateless, it does not keep track of proof state. Instead, tactics and proof
management outside the core keep track of Provables and instruct the core to apply operations on
Provables to transform proof state, see [11] for a description of how tactics combine axioms and a
comparison to alternative implementation approaches. Major core operations are to

• create a Provable, which is allowed only from a small number of sources, the most important

ones are
Γ ` ∆

Γ ` ∆
, R

∗
Γ ` ∆

,
∗

` dL axiom
(from left to right: starting a proof by justifying the

conjecture from itself, real arithmetic facts, and dL axioms);

• apply another Provable, whose conjecture matches a subgoal syntactically to replace the existing
subgoal with the subgoals of the other Provable, which we exploit for applying lemmas;

• apply uniform substitution to replace predicate symbols with formulas, function symbols with
terms, and program symbols with hybrid programs, which is useful to support definitions.

A typical proof, illustrated in Fig. 2a, retrieves an initial Provable from the KeYmaera X core and then
proceeds by handing back the Provable to the core together with a proof rule to retrieve a follow-up

` y > 0→ x2y≥ 0
` y > 0→ x2y≥ 0

y > 0 ` x2y≥ 0
` y > 0→ x2y≥ 0

∗
Ry > 0 ` x2y≥ 0

∗
` y > 0→ x2y≥ 0

→R 1 R 2

(a) A simple proof instructing the core to create a new Provable, apply rule→R in step 1 , and apply R in step 2 ,
which obtains a Provable from a trusted solver and applies it to the remaining subgoal to close the proof.

Step→R 1

apply hint R 2

ASCII Provable A

Tactic B

(b) Presentation of step→R 1 on the user interface as a sequent proof. The final Provable is printed directly from
the KeYmaera X core in ASCII syntax, the tactic below lists the steps to reproduce the proof from the conjecture.

Figure 2: Steps in a proof in the core vs. presentation on the user interface
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p ` [a]q p ` [b]q
` p→ [a∪b]q

x > 0 ` [x′ =−x]x > 0 x > 0 ` [(x := x
2)
∗]x > 0

` x > 0→ [x′ =−x∪ (x := x
2)
∗]x > 0

US 1

Figure 3: Uniform substitution σ = {p 7→ x > 0,a 7→ x′ =−x,b 7→ (x := x
2)
∗,q 7→ x > 0} on an entire

Provable has uniform effect across subgoals and conclusion [16, Thm. 27].

Provable. This process is repeated until all subgoals are either reduced to dL axioms or valid formulas
in real arithmetic, so no more subgoals remain. At any point in this process can proof state be stored and
used later as a lemma (even in other proofs). This entire process is hidden from the user, who instead is
presented the sequent proof in Fig. 2b.

KeYmaera X proofs appeal to uniform substitution from dL axioms [16]: for example, the test axiom
[?q]p↔ (q→ p), which is an ordinary dL formula, together with uniform substitution σ = {q 7→ x >
0, p 7→ [x′ =−x]x≥ 0} can be used to obtain a concrete instance of this axiom during a proof as follows:

US
[?q]p↔ (q→ p)

[?x > 0][x′ =−x]x≥ 0↔ (x > 0→ [x′ =−x]x≥ 0)
.

Uniform substitution is mainly used as a mechanism to instantiate axioms soundly, but through [16, Thm.
27] it is also useful to replace symbols in entire Provables soundly, as illustrated in Fig. 3. In this paper,
we are going to exploit its application to entire Provables in order to implement proof features such as
expanding definitions during a proof and an extended lemma mechanism that is able to bridge syntactic
differences between the lemma conclusion and its application target.

3 Implicit and Explicit Proof Management by Example

The main motivation for proof management is to allow users expand definitions and structure proofs
at their discretion, as well as to enable future automated definition expansion and contraction [26]. For
example, consider the KeYmaera X input file in Fig. 4a that uses predicate definitions A(x) ≡ x = 2 to
capture assumptions about initial values of x and S(x)≡ x≥ 0 to describe the desired safety property, as

Definitions
Bool A(Real x) <-> x=2;
Bool S(Real x) <-> x>=0;
HP ctrl ::= { if (S(x)) x:=2*x; }; /* ?S(x);

↪→ x:=2*x; ++ ?!S(x);?true; */
HP ode ::= { {x’=-x} };

End.

ProgramVariables Real x; End.

Problem A(x) -> [{ctrl;ode;}*]S(x) End.

(a) Definitions in the KeYmaera X input syntax (b) Definitions menu

Figure 4: Predicate and program definitions in KeYmaera X
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well as program definitions ctrl, which doubles the value of any non-negative x, and the differential equa-
tion ode, which models exponential decay. The definitions populate the “Defs” menu in KeYmaera X that
allows users to expand definitions collectively (expandAllDefs) or selectively (e.g., expand "ctrl")
during a proof, see Fig. 4b. The menu automatically adjusts to the symbols of the currently selected
subgoal (in the background in Fig. 4b).

As a safety question example, we want to answer whether repeated execution of ctrl;ode keeps the
value of x non-negative when started at x = 2. In the proof, we want control over when to expand
definitions, and we want to structure the proof into a main theorem and supporting lemmas. Fig. 5
illustrates the proof steps.

∗
ode x≥ 0 ` [x′ =−x]x≥ 0

[?],→R ` [?x≥ 0][x′ =−x]x≥ 0

(a) Exponential decay lemma

∗
id using S(x) S(x) ` P,S(x)
¬L S(x),¬S(x) ` P

[?],→R S(x) ` [?¬S(x)]P
→R ` S(x)→ [?¬S(x)]P

(b) Unsatisfied control guard lemma

Fig.5a
by S(x) ` [ode]S(x)

∗
autoS(x) ` [?S(x);x := 2x]S(x)

MR S(x) ` [?S(x);x := 2x][ode]S(x)
Fig.5b

by S(x) ` [?¬S(x)][ode]S(x)
[∪],∧R S(x) ` [?S(x);x := 2x∪ ?¬S(x)][ode]S(x)
expand S(x) ` [ctrl][ode]S(x)

[;] S(x) ` [ctrl;ode]S(x)

(c) Induction step lemma, appeals to exponential decay lemma and unsatisfied guard lemma
∗

R x = 2 ` x≥ 0
expand A(x) ` S(x)

Fig.5c
by S(x) ` [ctrl;ode]S(x)

∗
idS(x) ` S(x)

loop A(x) ` [(ctrl;ode)∗]S(x)
→R ` A(x)→ [(ctrl;ode)∗]S(x)

(d) Main theorem proves loop induction base case and use case, appeals to Fig. 5c for the induction step.

Figure 5: The substitutions collected during step expand and step by are σ = {A(·) 7→ ·= 2,S(·) 7→ · ≥
0,ctrl 7→ ?S(x)∪ ?¬S(x),ode 7→ x′ =−x,P 7→ [ode]S(x)}, so the proof shows validity of the concrete
formula x = 2→ [

(
(?x≥ 0∪ ?¬x≥ 0);{x′ =−x}

)∗
]x≥ 0.

The proof proceeds from the initial conjecture A(x) ` [(ctrl;ode)∗]S(x) bottom-to-top, with proof
step justifications annotated to the left of the horizontal bars. Validity transfers top-to-bottom, so validity
of the sequents (subgoals) above a horizontal bar justifies validity of the conclusion below the horizontal
bar. The first step→R makes the left-hand side of the implication available as assumptions A(x). Next,
step loop induction splits the proof into three subgoals: the base case A(x) ` S(x), which closes by real
arithmetic R after expanding the definitions, the use case S(x) ` S(x) that is trivially true by step id, and
the induction step. The induction step in Fig. 5c first addresses the sequential composition with step [;]
to isolate ctrl from ode, then expands ctrl to split into its two cases: (i) on the left branch, the condition
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of if (S(x)) is true (represented with ?S(x)) and preserved by the program ?S(x);x := 2 as witnessed by
a monotonicity step MR and, thus, the exponential decay lemma applies; (ii) on the right branch with its
leading test ?¬S(x) the unsatisfied control guard lemma applies.

The main proof management features used in the proof are step expand to expand definitions, step by
to apply a lemma, and using to temporarily restrict reasoning to certain formulas. To users, the proof
in Fig. 5 appears as if they were working on a single Provable and the proof steps were combined
immediately. Doing so, however, would require extensive changes to the soundness-critical core and
violate the local nature of its reasoning. Behind the scenes, this proof therefore requires a shift from
operating on a single Provable to keeping track of loosely connected sub-proofs outside the prover
core; these sub-proofs fit together only after applying the substitutions collected during the proof. In the
following sections, we provide details on explicit proof management that structures proofs into lemmas
and implicit proof management that delays merging Provables and applying uniform substitutions.

4 Explicit Proof Management with Lemmas

The KeYmaera X input format allows explicit proof management in the input format for users to structure
their problem descriptions into lemmas that are shared between proofs, and theorems, which appeal to
lemmas to show some of their subgoals. For example, the “Exponential decay” and “Unsatisfied control
guard” lemmas from Fig. 5a and Fig. 5b are expressed in the KeYmaera X ASCII input syntax below,
recorded from the steps of the interactive proofs in Fig. 5a and Fig. 5b. Optional “/” in lemma names
structure the lemmas into folders on both the user interface and the file system.

Lemma "FIDE21/Exponential decay"
ProgramVariables Real x; End.
Problem x>=0 -> [{x’=-x}]x>=0 End.
Tactic "Recorded" implyR(’R=="x>=0 -> [{x’=-x}]x>=0"); ODE(’R=="[{x’=-x}]x>=0") End.
Tactic "Automated proof" autoClose End.

End.
Lemma "FIDE21/Unsatisfied control guard"
Definitions /* constants, functions, properties, programs */
Bool S(Real x);
Bool P(Real x);

End.
ProgramVariables Real x; End. /* variables */
Problem S(x) -> [?!S(x);]P(x) End. /* specification in dL */
Tactic "Interactive proof"
implyR(’R=="S(x) -> [?!S(x);]P(x)");
testb(’R=="[?!S(x);]P(x)");
implyR(’R=="!S(x) -> P(x)");
notL(’L=="!S(x)");
id using "S(x)"

End.
Tactic "Automated proof" autoClose End.

End.

The “Induction step” lemma below uses the earlier two lemmas in its proof. It follows the steps
in Fig. 5c largely verbatim, but the specific lemma application steps are worth noting. Applying the
“Exponential decay” lemma is straightforward by auto, since it uses S(x) and ode in their expanded form
as the only difference between the subgoal and the lemma conclusion. The “Unsatisfied control guard”
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lemma, however, introduces a new predicate symbol P(x), which is neither present in the induction step
nor in the original conjecture. We, therefore, use substitution σ = {P(x) 7→ [x := x][?true][x′ =−x]S(x)}
to tell the lemma application mechanism how to resolve P(x).1

Lemma "FIDE21/Induction step"
Definitions
Bool S(Real x) <-> x>=0;
HP ctrl ::= { if (S(x)) { x:=2*x; } };
HP ode ::= { {x’=-x} };

End.
ProgramVariables Real x; End.
Problem S(x) -> [ctrl;ode;]S(x) End.
Tactic "Proof induction step"
implyR(’R=="S(x)->[ctrl;ode;]S(x)");
composeb(’R=="[ctrl;ode;]S(x)");
expand "ctrl";
choiceb(’R=="[?S(x);x:=2*x;++?!S(x);?true;][ode;]S(x)");
andR(’R=="[?S(x);x:=2*x;][ode;]S(x) & [?!S(x);?true;][ode;]S(x)"); <(
"[?S(x);x:=2*x;][ode;]S(x)":
MR("S(x)", ’R=="[?S(x);x:=2*x;][ode;]S(x)"); <(
"Use Q->P": expand "S"; autoClose,
"Show [a]Q": useLemma("FIDE21/Exponential decay", "US({‘S(x)~>x>=0 :: ode;~>{x

↪→ ’=-x} :: nil‘});unfold;id")
),

"[?!S(x);?true;][ode;]S(x)":
composeb(’R=="[?!S(x);?true;][ode{|^@|};]S(x)");
useLemma("FIDE21/Unsatisfied control guard", "US({‘P(x)~>[x:=x;][?true;][{x’=-x}]

↪→ S(x) :: nil‘});unfold;id")
)

End.
End.

The main theorem of Fig. 5d is expressed in KeYmaera X ASCII syntax below. Its proof uses the
“Induction step” lemma in a straightforward way.

Theorem "FIDE21/Combine lemmas"
Definitions
Bool A(Real x) <-> x=2;
Bool S(Real x) <-> x>=0;
HP ctrl ::= { if (S(x)) { x:=2*x; } };
HP ode ::= { {x’=-x} };

End.
ProgramVariables Real x; End.
Problem A(x) -> [{ctrl;ode;}*]S(x) End.
Tactic "Interactive proof"
implyR(’R=="A(x)->[{ctrl;ode;}*]S(x)");
loop("S(x)", ’R=="[{ctrl;ode;}*]S(x)"); <(
"Init": expandAllDefs; QE,
"Post": id,
"Step": expandAllDefs; useLemma("FIDE21/Induction step", "prop")

1The leading self-assignment x := x is a necessary technicality to make variable x must-bound because the differential
equation x′ =−x may run for duration 0.
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)
End.

End.

Structuring proofs into lemmas and theorems need not necessarily be done when creating the input
file. As an alternative, the KeYmaera X user interface allows users to start lemmas from any proof state;
lemma proofs remain linked from the tabs representing open subgoals in the main proof until finished.
Other pre-existing lemmas can be searched and applied from the user interface as in Fig. 6. Techniques
for implicit proof management and delayed substitution (used in the proofs above) are discussed next.

Figure 6: Applying a lemma from the lemma search dialog in KeYmaera X

5 Implicit Proof Management with Delayed Substitution

In this section, we discuss the fundamental proof management technique of delayed proof composition
and delayed uniform substitution, and then devise several applications of it for enabling parametric proofs
and delayed modeling, and for temporary sub-proofs focusing on some select aspects of a subgoal.

5.1 Delayed Proof Composition and Delayed Uniform Substitution

As illustrated in Section 2, the KeYmaera X core creates and modifies proof state without keeping track
of the steps of the proof. KeYmaera X records proof steps outside the core with a separate Provable

per proof step. This trace of Provables not only is the basis for rendering and navigating the sequent
calculus proof on the user interface, but also gives us freedom to choose when to combine Provables.
Instead of combining provables and applying uniform substitutions immediately at every step in the
proof, those separate Provables are combined to a single proof once all the steps are finished. The
advantage of delayed merging is that we can postpone the uniform effect [16, Thm. 27] of uniform
substitution across subgoals of a Provable. Without delayed merging, symbols that are expanded on one
branch would immediately be expanded uniformly across all other branches of the proof, even if those
other branches would prefer to continue using symbols in their unexpanded form. The different points
of expanding symbols are then reconciled in the final proof checking pass that combines Provables:
uniform substitutions that originate from explicit user interactions (e.g., from expanding definitions) are
combined with substitutions found through unification.
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5.2 Parametric Proofs and Delayed Modeling

Theorem proving is not merely a tool to just obtain a correctness proof about an already correct system; it
is a tool to explore and understand a system in all its subtleties and with all its corner cases thoroughly, to
discover properties of the system that are not or only partially known, and to discover and fix correctness
bugs in the process. We, therefore, frequently want to make progress in a proof without yet committing
to specific inputs or even without supplying a finished model and/or conjecture. For example, we may
want to analyze a loop, but do not yet know a concrete loop invariant that we could use in the proof.
An obvious technique is to use loop unrolling to debug the behavior of the loop body in an attempt
to manually identify a loop invariant candidate. However, this is usually not a suitable technique to
prove safety of a loop, and so requires duplicate proof effort once a loop invariant candidate is identified
through debugging (and perhaps several rounds of alternating debugging and proof attempts).

Parametric Proofs A powerful alternative technique are parametric proofs [16] to advance in a proof
without committing to concrete inputs early in a proof. Parametric proofs allow users to proceed with

∗
R x = 2 ` x≥ 1

expandx = 2 ` J(x)

∗
R x≥ 1 ` 1+ x−1

2 ≥ 1
expand J(x) ` J(1+ x−1

2 )
[:=] J(x) ` [x := 1+ x−1

2 ]J(x)

∗
R x≥ 1 ` x≥−1

expand J(x) ` x≥−1
loop x = 2 ` [(x := 1+ x−1

2 )
∗
]x≥−1

(a) Parametric sequent proof

(b) Starting a parametric proof in KeYmaera X by using an uninterpreted predicate symbol as tactic input; the
proof parameter is then definable from a text field in the “Defs” menu.

Figure 7: Parametric loop induction with abstract invariant J(x). The substitution σ = {J(·) 7→ · ≥ 1}
supplies a concrete loop invariant to close all three branches of the proof, but any other substitution
σ = {J(·) 7→ · ∼ y} with ∼∈ {≥,>} and y ∈ [−1,1] would work as well.
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abstract terms or formulas whose concrete shape is discovered later during the proof. Delayed merging
of Provables and delayed uniform substitution allow users to supply concrete terms, formulas, and
programs for function symbols, predicate symbols, and program symbols at any point in the proof, which
then get automatically applied to all prior proof steps upon composition of the final Provable.

In Fig. 7, step loop uses an uninterpreted predicate symbol J(x) instead of a concrete formula as
a loop invariant. That way, we can advance the proof on all three branches until we find that J(x)
simultaneously has to fit x = 2 ` J(x) in the induction base case, J(x) ` J(1+ x−1

2 ) in the induction step,
and J(x) ` x≥−1 in the induction use case. At this point, we can experiment with different choices of
J(x) and, ultimately, settle for σ = {J(·) 7→ · ≥ 1}. Uniformly substituting this choice into the entire
Provable concludes the proof by R on all branches.

Delayed Modeling Delayed merging of Provables and delayed substitution are also helpful to address
a common nuisance in proofs: missing assumptions about model parameters (e.g., to avoid division by
zero) are easily forgotten and their absence becomes apparent often only rather late in a proof. Using
an arity 0 predicate symbol in the model allows users to supply missing assumptions during a proof
as they are discovered, without requiring to redo the proof. For example, the proof in Fig. 8 uses an
arity 0 predicate symbol p� that can be used to collect missing assumptions as they become apparent in
the proof. The effect of collecting assumptions during the proof is achieved by simply augmenting the
concrete assumption with another fresh p�i.

∗
R x≥ 0,y 6= 0 ` x

y2 ≥ 0
expand x≥ 0, p� ` x

y2 ≥ 0
[:=] x≥ 0, p� ` [x := x

y2 ]x≥ 0

(a) Predicate p� to supply assumptions dur-
ing the proof. The substitution σ = {p� 7→
y 6= 0} results in the proof showing validity of
the sequent x≥ 0,y 6= 0 ` [(x := x

y2 )
∗]x≥ 0. (b) Providing assumptions with the “Defs” menu

Figure 8: Delayed modeling by using uninterpreted predicate symbols in the input

Note that a proof parameter J(x) cannot be used to introduce the missing assumption y 6= 0 because
that fact was not even available in the original conjecture and therefore would not be provable in the base
case of the induction proof. We use p� to allow limited fixing of model mistakes during the proof; in the
proof in Fig. 8 it is important that p� is an arity 0 predicate symbol whose free variables do not overlap
with the variables bound in the loop, so that it stays available in the induction step of the proof. The
conjecture of Fig. 8 is expressed below in KeYmaera X ASCII input syntax.

Problem A__0() -> x>=0 -> [x:=x/y()2;]x>=0 End.
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∗
RXx < 0∨ x = 0,y = x ` xy≤ y2

∗
R x < 0∨ x = 0,y > 0 ` xy≤ y2

WLiXx < 0∨ x = 0,y > 0 ` xy≤ y2

∨L Xx < 0∨ x = 0,y = x∨ y > 0 ` xy≤ y2

WL x < 0∨ x = 0,y = x∨ y > 0 ` xy≤ y2

(a) Wanted effect of temporarily hiding a formula: ignore for some proof steps, re-introduce when needed
∗

id x = 0,x = 1 ` x = 0
WLiXx = 0,x = 1 ` x = 0
 Xx = 0 ` [x := 1]x = 0

WL x = 0 ` [x := 1]x = 0

(b) Unsoundly ignoring temporarily hidden formula

x0 = 0,x = 1 ` x = 0
�USPX(x0),x = 1 ` x = 0
[:=] PX(x) ` [x := 1]x = 0
�US x = 0 ` [x := 1]x = 0

(c) Sub-proof with substitution σ = {PX(·) 7→ ·= 0}

(d) Hiding formulas temporarily on the user interface

Figure 9: Sub-proof allows hiding explicit formula structure to temporarily focus tactic application on
relevant formulas without sacrificing soundness.

5.3 Temporary Implicit Sub-Proofs with Select Formulas

Applying tactics, axioms, and proof rules has permanent effect on the proof state. For example, weak-
ening assumptions permanently removes formulas from the proof state; if weakening is done for con-
venience to focus on specific aspects of the proof, we cannot undo the effect of weakening when the
hidden formulas become useful again later in the proof. Not focusing, however, is not an option either,
because the mere presence of additional assumptions and formulas may result in duplicate proof effort or
intractable proofs (e.g., when applying real arithmetic decision procedures with non-trivial complexity).

We want to keep temporary operations separate from the soundness-critical prover core, because their
effect is not compatible with its local isolated reasoning principles. It would be unsound to temporarily
exclude formulas so that they are not affected by tactic applications. Fig. 9a illustrates an example with
the wanted effect of temporarily hiding formulas, but Fig. 9b shows that care needs to be taken to not
unsoundly exclude formulas temporarily from being affected by, e.g., the assignment axiom. In order to
fix Fig. 9b, the prover core would need to know which axiom or rule can soundly ignore temporarily hid-
den facts under what conditions. With an implicit sub-proof as in Fig. 9c we can temporarily focus tactic
application on some proof aspects without extending the KeYmaera X core or sacrificing soundness. As
an additional benefit, the abbreviations PX(x) have simpler structure than the fully expanded formulas,
which makes tactic applications less expensive even if they have to operate on PX(x).
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In tactics, temporarily focusing on a subset of the sequent formulas is supported with the notation
using. For example, the proof of Fig. 9a is expressed as follows:

(orL(’L)*; <(QE, skip)) using "y=x|y>0 :: x*y<=y^2 :: nil"; QE

This script advances the proof fully on the left branch, but postpones the final R (QE) step of the right
branch using skip until after the using block.

6 Conclusion

Uniform substitution in hybrid systems is a powerful technique for implementing hybrid systems theo-
rem provers in an LCF-style approach, but it comes at the expense of proof convenience when sticking
exclusively to core operations. We illustrated how proof convenience can be regained with proof man-
agement features that are implemented on top of uniform substitution outside the soundness-critical core
of a theorem prover, and we complement those features with modeling conventions and corresponding
treatment in the user interface.

This approach of using modeling conventions and making proof steps implicit through other user in-
teractions sits somewhat between auto-active verifiers and full interactive theorem proving. Auto-active
verifiers, such as Dafny [6, 7] and AutoProof [23] hide verification and interaction with the verifica-
tion tool entirely behind annotations in the analyzed code. Interactive theorem provers, such as Coq [2]
and Isabelle/HOL [14], primarily interact with users through scripts, such as structured proofs in Is-
abelle/Isar [13] and hide only little of the proof complexity behind other means of presentation even
in advanced editors [25] or when proofs are found automatically, e.g., with Sledgehammer [15]. Many
(hybrid systems) theorem provers (e.g., [1, 18, 20, 24]) opt for implementing their proof calculus using
axiom schemata or with trusted rules, which renders the features presented here soundness-critical. Our
proof management techniques, in contrast, provide proof convenience without sacrificing soundness.

For future work, we plan to automate unification steps in applying lemmas to bridge the syntactic
differences between lemma conclusion and target subgoal, and seek to exploit uniform substitution for
further proof techniques.
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