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In a series of recent work, we have introduced a general framefor quantitative reasoning in
specification theories. The contribution of this paper istiow how this framework can be applied
to yield a robust specification theory for timed specificasio

1 Introduction

Specification theories allow to reason about behaviorssitsys at the abstract level, which is needed in
various application such as abstraction-based model oigeédr programming languages, or composi-
tional reasoning. Depending on the application for whigythre used, such specification theories may
come together with (1) a satisfaction relation that allowdécide whether an implementation is a model
of the specification, (2) a notion of refinement for determgnthe relationship between specifications
and their set of implementations, (3) a structural compmsivhich at the abstract level mimics the be-
havioral composition of systems, (4) a quotient that alltmsynthesize specifications from refinements,
and (5) a logical composition that allows to compute intefisas of sets of implementations!, [2].

Prominent among existing specification theories, outsidecs, is the one ofmodal transition sys-
tems[6l14--16/ 18, 22, 23] which are labeled transition systeqmspped with two types of transitions:
musttransitions that are mandatory for any implementation, magitransitions which are optional for
an implementation. So far, existing modal specificatiomties have relied on Boolean versions of both
the refinement and the satisfaction relation. They are héagde in the sense that they are unable
to quantify the impact of small variations of the behaviottle environment in which a component is
working. In a series of recent workl![3-5], and building on ael theory of quantitative analysis of
systems|[[10, 11, 13, 20,26], we have leveraged this probleextending modal specifications from the
Boolean to the quantitative world and introducing truly qtikative versions of the operators mentioned
above.

The contribution of this paper is to show how our general ¢tative framework from([[4] can be
used to define a notion of robustness for timed modal spetiifitcg or model event-clock specifications
(MECS) [7]. We first observe that the notion of refinement e in [7] is not adequate to reason on
MECS in a robust manner. We then propose a new version of nefinethat can capture quantitative
phenomena in a realistic manner, and proceed to exhibitriyepties of the above specification-theory
operators with respect to this quantitative refinement. iégsvsthat structural composition and quotient
have properties which are useful generalizations of thairdard Boolean properties, hence they can be
employed for robust reasoning on MECS without problem. Gociion, on the other hand, is generally
not robust (similarly to the problems exposed!in [3]), bugether with the new operator of quantitative
widening can be used in a robust manner.
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2 Quantitative Specification Theories

General quantitative specification theories have beeadntred in[[4]. These consist of
e a specification formalism: modal transition systems witiela drawn from a seéipec,
e adistance on traces of labet; : Spec x Spec — R>p, and

e operations on specifications which allow high-level reasgpand which generally are continuous
with respect to the natural distance on specifications ieddny the trace distance.

Below we give a more detailed account of these things, inrorade able to apply them to modal
event-clock specifications later.

2.1 Structured Modal Transition Systems

We assume that the sgpec of labels comes with a partial ordérs,.. modelingrefinemenof data: if
K Cspec £, thenk is more refined (leaves fewer choices) tiiaiThe seimp = {k € Spec | k' Cgpec kK=
k' =k} is called the set oimplementation labejghese are the data which cannot be refined further.
We let[k] = {K' € Imp | K C k} denote the set of implementation refinements of a l&behd we
assume tha§pec is well-formed in the sense thilt] # 0 for all k € Spec: any specification label can be
implemented.
A structured modal transition syste(BMTS) is a tuple(S s, --+s,—s) consisting of a ses of
states, an initial statg) € S, andmustandmaytransitions—:s, --+s C Sx Spec x Sfor which it holds

that for alls—k>gs’ there iss—fess’ with k Espec £. This last condition is one afonsistencyeverything
which is required, is also allowed.

An SMTS (S s,--+s,—s) IS animplementationf —s=--+5C Sx Imp x S i.e. an ordinary
labeled transition system with labelslinp. Hence in an implementation, all optional behavior has been
resolved, and all data has been refined to implementati@tslab

A modal refinemendf SMTSS T is a relationR C Sx T such that for anys,t) € R,

k ¢
e wheneveis--»ss, then alsd --»7 t’ for somek Cgpec £ and(s,t') € R,

e whenevet iﬁ t’, then alscs L>g,s’ for somek Cspec £ and(s,t’) e R

Thus any behavior which is permitted $is also permitted i, and any behavior required his also
required inS. We writeS<n, T if there is a modal refineme®RC Sx T with (s,tp) € R, andS=., T if
there is a two-sided refineme8K, T andT <, S

Theimplementation semantic a SMTSSis the seflS§] = {I <, S| | is an implementatiop, and
we writeS<; T if [§] C [T], saying thaSthoroughly refineg .

2.2 Distances

The above setting is puretyualitative i.e. Boolean: a refinemer® <., T either holds, or it does not; a
transition systenh either is an implementation of a specificatigror it is not. In order to turn this setting
into aquantitativeone, where we can reason aboobustnesf refinements and implementations, we
need to introduceistances

We have in[[11] developed a general framework which allows#&son about a variety of such system
distances in a uniform way. To apply this to specificatioasSpec™ = Spec* U Spec® denote the set of
finite and infinite traces ovépec, and letdy : Spec™ x Spec® — R>oU{} be an extended hemimetric.
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Recall that this means thdf (g, 0) = 0 for all o € Spec”™, and thatly (01, 02) + dr (02, 03) > dr (01, 03)
for all 01, 02,03 € Spe€. Note that a$pec C Spec”, dy induces a hemimetric obpec.

Let M be an arbitrary set anl = (RoU {»})M the set of functions fronM to the extended non-
negative real line. Theil is a complete lattice with partial ordé€fy, given bya Cr, 8 if and only if
a(x) < B(x) for all x e M, and with an additiorby, given by (a @, B)(X) = a(x) + B(x). The bottom
element oflL is also the zero of>y, and given byLy,(x) = 0, and the top element iB, (x) = c. We also
define a metric ol by dr, (a, B) = supewm |0 (X) — B(X)].

LetF : Spec x Spec x I. — IL be a function with the following properties:

e F is continuous in the first two coordinate&:(-,k,a) and F(k,-,a) are continuous functions
Imp — LL for all k € Spec, a € LL.

e F is monotone in the third coordinate:(k, ¢, ) is a monotone functiofi. — IL for all k, ¢ € Spec.
e F(-,-, L) extendsdy: for allk, ¢ € SpecF (k. ¢, Ly,) =dr(k,?).

e F acts as a Hausdorff metric [21] when specification labels/ewed as sets of implementation
labels: for allk, £ € Spec anda € L, F(k, £, @) = SURnefq iNfrepeg F (M0, a).

e Sets of implementation labels are closed with respedt:tdor all k,/ € Spec anda € I with
F(k,¢,a) # T, there arane [K], n e [¢] with F(m,4,a) = F(k,n,a) = F(k, 4, a).

e F satisfies an extended triangle inequality: for lalf,m € Spec and a,p € L, F(k,4,a) &L,
F(€7m>B) g]L F(k7m7a@]LB)'

As the last ingredients, létr : Spec” x Spec” — L andg: L. — R>oU {} be functions such that
g is monotone wittg(_Ly) = 0,g(a) # o for a # T, andgo hr = dr, and such thatr has a recursive
characterization, using, as follows:

F (0o, To,hr (0}, 1Y) if 0,1 #¢,
hr(o,7) =< T, fo=¢T1#c0oro#£e1=¢, (1)
1 fo=t1=¢.

Heree € Spec® denotes the empty sequence, and for anySpec”, gp denotes its first element amd
the tail of o with the first element removed.

For technical reasons, we will work mostly with the auxiidunction hr : Spec® x Spec® — L
below instead of the distanak ; indeed, the framework i [4] has been developed completélyout
reference to the distanag which, from a point of view of applications, should be theuattfunction
of interest. This is due to the fact that the recursive charamation in [1) needs to “live” irlL to be
applicable to non-trivial distancest. [11]].

We assume all SMTS to mmpactly branching9], that is, for any SMTS and anys € S the sets

{k € Spec | s-5 s’} and{k € Spec | s s’} are to be compact under the hemimetiic A SMTS S

is said to bedeterministicif it holds for alls€ S s —k—1+5 S, S —k—2+5 s, for which there ik € Spec with
hT(k, kl) 75 TL anth(k, kg) 75 T, thatk; = ky ands; = s,.

2.3 Operations

Any specification theory comes equipped with certain opemnatwhich allow high-level reasoningl[2]:
refinement, structural composition and quotient, and carijan. For our quantitative framework, we
add an operation afideningwhich allows to systematically relax specifications.
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Themodal refinement distance,d Sx T — RoU {} between the states of SMTST is defined
using an auxiliary functiorhy, : Sx T — IL, which in turn is defined to be the least fixed point to the
equations

sup inf F(k,¢,hn(S,t"),
S—‘—(»SS’ t—f»-rt’
sup inf F(k ¢ hn(s,t)).

t L}'r t/ S—k>55/

hm(s,t) = max

We letdy, = gohm, using the functiorg : L — R>oU {e} from above. Alsofn(S,T) = dm(o,to), and
we write S<{, T if dn(ST) Cr, a. This definition is an extension of the one simulation distance
in [13], and the proof of existence of the least fixed pointisilar to the one in[[20]. Note also thalt;,
extends the refinement relatigfy, in the sense tha<n,t impliesdny(s,t) = 0.

Thethorough refinement distanéde®m an SMTSSto an SMTST is

h(ST)= sup inf du(l,J),
€[] Je[T]
and we writeS< T if &(ST) C, a. Again,S<; T impliesd/(ST) = 0. It can be shown [4] that
bothdy, andd; obey triangle inequalities in the sense thatS, T) + dm(T,U) > dn(SU) andd (S T) +
&(T,U) > d(SU) for all SMTSS, T,U. Also, &,(ST) < dn(S,T) for all SMTSS, T, andd(ST) =
dm(S,T) if T is deterministic([4].

To introducestructural compositiorand quotientof SMTS, one needs corresponding operators on
labels. Let thusD : Spec x Spec — Spec and® : Spec x Spec — Spec be partial label operators which
satisfy the following conditions:

e Forallk,¢,K ¢ € Spec, if hy(k,¢) # T andhy (K, ¢') # Tr, thenk© K is defined if and only if

(/¢ is defined;
o for all k,Z,m e Spec, £Qkis defined andn Cspe. £ OK if and only if k@ mis defined ank ©
m ESpec l
e forall /,/' € Spec, the following conditions are equivalent:
— there existk € Spec for which bothhr (k,¢) # T, anddr (K, ¢') # Tr;
— there existsn € Spec for which both? ® mand/#’ © mare defined;
— there existsn € Spec for which bothm® £ andme ¢ are defined.

The structural compositiorof SMTS S, T is then the SMTS|T = (Sx T, (so,t0), - —*g|1, —gT)
with transitions defined as follows:

s-55e¢  t-Lrtt kotdefined  s—5¢8 t-Srt KO ! defined
kot kot
(5t) “Dgpr (S,1) (st) X (s,1)

It can be shown[[5] that for all SMTS, S, T, T/, S<,, T andS <, T' imply S||S <, T||T".
For a quantitative generalization of this, we need a funcBo I x I. — I which permits to infer
bounds on distances on synchronized labels. We assum® thanonotone in both coordinates, has
P(lp,Llr)=1p,P(a,Ty) =P(Ty,a) =Ty forall a € L, and that

F(koK, ol ,P(a,a’)) Cr P(F(k.4,a),F(K,¢ a"))
for all k, £,k ,¢' € Spec anda,a’ € IL for whichk® k' and/ @ ¢’ are defined. TheR can be used to

bound distances between structural compositions: for SETS S, T', we haveh,(S||S,T||T') Cr
P(hm(ST),hm(S,T’)) [, Thm. 2].
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For the definition of quotient, we first need to introdymeining For a SMTSSand a subseB C S
of states, the pruningg(S) is given as follows: Define austpredecessor operatere : 25 — 25 by
pre(S) = {s€ S| JkeSpec,s €S:s LN s’} and letpre* be the reflexive, transitive closure pfe.
Thenpg(S) exists ifsy ¢ pre*(B), and in that casgs(S) = (S, %0, --+p, —p) With S, = S\ pre*(B),
-—2p=--+N(S xSpec x ), and—p = — N (S x Spec x ).

Thequotientof an SMTST by an SMTSSis the SMTST \\ S= pg(T x SU{u}, (to, %), -—*T1\s —T\3)
given as follows (if it exists):

t-fort! s-s¢8¢  rokdefined t-‘srtt  s—sg8  rokdefined
Sk 9k
(t,9) _§')T\\S (t,s) (t,s) £>T\\s ()

t St Vs—5g9: fokundefined
(t,s)eB

m € Spec VS—I—(+SS’ : k® mundefined m € Spec

m m
(t,s) -=»1\sU U--s\su

Note the extra universal statewhich is introduced here. The standard property of quoiiis fol-
lows [5]: For SMTSS, T, X, for which Sis deterministic and \\ S exists,X <i T \\ Sif and only if
S|IX <m T. Note that this property impliesniqguenesgup to =) of quotient [12]; hence if quotient
exists, it must be defined as above.

For quantitative properties of quotient, we must again ltmlproperties of the label operatey
which can ensure them. We say tlgtis quantitatively well-behaved it holds for all k,Z,m € Spec
that/ © k is defined andvr (m, ¢ © k) # Ty, if and only if k© mis defined andlr (k@ m,¢) # T, and
in that caseF(m, /o k,a) Jr, F(kom,Z,a) for all a € IL. For such a quantitatively well-behavex
it can be shown[[4, Thm. 3] that for all SMTS T, X such thatSis deterministic and’ \\ S exists,
hm(X, T\'S) I hm(S|X, T).

For conjunctionof SMTS, we need a partial label operatdr: Spec x Spec — Spec for which it
holds that

o forall k,¢ € Spec, if ko ¢ is defined, thek ® ¢ Cspec kKandk® £ Cspec £
e forall k,/,me Spec for whichmCg,ec kandmCsgpec £, KO £ is defined anan Cspec kK@ ¢, and

e for all £,/ € Spec, there existk € Spec for which hy (k,¢) # T, andhy (k,¢') # Ty, if and only
if there existam € Spec for which ¢/ ® mand/’ ® mare defined.

The conjunction of two SMTS, T is the SMTSSAT = pg(Sx T, (S0,t0), --+s\7, —>saT) given as
follows:

sXues  t-Srt Kkoldefined  s-fss8  t-Srt kol defined
(st) “Lher (8,1 (st) et (3,1)

s-55¢¢  t Lyt kot defined
kot
(st) Ligir (8,1)
sXed  Vt-lsrt:kolundefined t—‘srt! Vs-Sse ko ¢ undefined
(st)eB (st)eB
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With this definition, it can be shown|[5] that conjunctionsaasgreatest lower boundGiven SMTS
S T for whichSAT is defined, we havBAT <, SandSAT <, T, and ifSor T is deterministic antl
is a SMTS for whichJ <p, SandU <, T, thenSAT is defined and) <, SAT. We again note that this
property implies uniqueness, up#g,, of conjunction: if conjunction exists, it must be given &®ee.

To generalize this to a quantitative greatest lower bounggmnty, we shall have reason to consider
two different properties of the label operatr The first is analogous to the one for structural composi-
tion above: we say tha is boundedby a functionC : I x I. — IL if C is monotone in both coordinates,
hasC(Lly,lr) = 1lg,C(a, Ty) =C(Tr,a) = Tg, for all a € IL, and if it holds for allk,£,m € Spec
for which dr (m, k) # c anddy (m,¢) # « thatk® ¢ is defined and

F(mko(,C(a,a’)) Er, C(F(mk,a),F(m/,a’))

for all a,a’ € IL. For such a bounde@ it can be shown[4] that i§, T, U are SMTS of whichSor T
is deterministic, and ihn(U,S) # T, andhym(U,T) # T, thenSAT is defined andn(U,SAT) Cp,
C(hm(U,9),hm(U,T)).

For the secondglaxedboundedness property of, we have to first introduce a notion @éiantitative
widening Fora € IL. and SMTSS, T, we say thaT is ana-wideningof Sif there isarelatioRC Sx T
for which (so,tp) € R and such that for alls,t) € R, s—'—(+35’ if and only ift —LT t/, ands —k>ss’ if
and only ift iﬁ t', for k Cspec 4, d(4,K) Cr, o, and(s,t’) € R. Thus up to unweighted two-sided
refinementT is the same aS, but transition labels i can bea “wider” than inS. (Hence als®& <, T,
but nothing general can be said about quantitative refinefren T to S, cf. [4].)

We say that the operatay is relaxed bounde®y a function familyC = {Cp ,: L x L — IL | B,y € IL}
if all Cg , are monotone in both coordinates, h&g, (L, lr) = 1w, Cg(a,Tr) =Cgy(TL,a) =
Tr for all a € L, and if it holds for allk,¢ € Spec for which there ism € Spec with hy(m,k) # T,
andhr(m,¢) # Ty, that there exisk', ¢’ € Spec with k Cspec K, £ Tspec ¢/, hr(K,K) = B # Tr,, and
hr(¢,¢) =y # Ty, such thatk ® ¢’ is defined, and then for ath € Spec with hy(m,k) # T, and
dT(m, E) 75 TL,

F(mKol,Cs(a,a’)) CrCp(F(mk,a),F(m,a’))

for all a,a’ € L. The following property can then be shown [4, Thm. 5]: BT be SMTS withS or
T deterministic. If there is an SMTS for which hy(U,S) # T, andhy(U,T) # T, then there exist
B- and y-wideningsS of SandT’ of T for which S AT’ is defined, and such thaf,(U,SAT') C,
Cp.y(hm(U,S),hm(U,T)) for all SMTSU for whichhn(U, S) # T, andhm(U,T) # Tr.

3 Robust Semantics of Modal Event-Clock Specifications

As an application of the framework laid out in this paper, veasider the modal event-clock speci-
fications (MECS) of[[7] and give them a robust semantics as SMlle choose MECS instead of a
more expressive real-time formalism sucheag timed automata |1] mainly for ease of exposition; it is
certainly possible to extend the work presented here aldwese formalisms.

We assume a fixed finite alphat¥and letd ¢ X denote a special symbol which signifies passage of
time. Let®(X) denote the set of closed clock constraints &ggiven by

dZ)>pi=a<k|lazk|@aAe (acZkeN,@,@cP(2)).
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A (real) clock valuation is a mapping: Z — Rxo; we say thau = ¢, for ¢ € ®(%), if u(a) satisfiesp
forallac Z, and we lef¢] = {u: Z — R>o | u = @}. Ford € R>¢ andb € X we define the valuations
u+d=Aa(u(a)+d) andufb] = Aa.(if a= bthen 0 elsai(a)). Note that for brevity we use lambda
notation for anonymous functions here.

We denote byl = {[x,y] | X€ R>0,y € R>oU{},x <y} the set of closed extended non-negative real
intervals, and define addition of intervals pyr] +[I’,r'] = [l +1’,r +r’]. Aninterval clock valuatioris
amappings : £ — I associating with each symbak non-negative intervala) = [l,,ra] € I of possible
clock values. We say that= ¢, for ¢ € ®(Z), if there existsu : = — R>¢ for which u(a) € v(a) for
allae X andu |= ¢. Ford e T andb € X we definev+d = Aa.(v(a) + [d,d]) andu[b] = Aa.(if a=
bthen[0,0] elseu(a)).

A modal event-clock specificatigMECS) [7] is a tupleA = (Q, qo, --»a, —>a) cOnNsisting of a finite
setQ of locations, with initial locatiorgy € Q, andmayandmustedges--+a, —a C QX Z X P(Z) x Q
which satisfy that for al(q,a,g,q ) € —a there exist§qg,a,d',q’) € --»a with [g] C [d]. As before
we writeq —aig->A q instead of(q,a,09,q) € --+4, similarly for — . Figure[1 shows some examples of
MECS.

To facilitate robust analysis of MECS, we give their sen@antiot as usual timed transition sys-

tems[1] (or as modal region automata as in [7]), buhgerval timed modal transition systeri$MTS).
These are SMTS over

Spec = (2 x {[0,0}) U ({6} xT) € (2U{d}) x T,

with (a,[1,r]) Cspec (&, [I',1']) ifand only ifa=a/, 1 > I’, andr <r’ (hencel,r] C [I,r']), and thus with

Imp =2 x {0} U{d} x R>o. Hence an implementation is a usual timed transition systéth discrete
. a0 -, 5,d

transitionss — s’ and delay transitions — .

The semanticof a MECSA = (Q,qo, --+a,—a) is the ITMTS(A) = (S s, --+s,—s) given as
follows:

S={(q,v)|geQ,v:Z -1} S0 = (0o, AX.0)
—s={(aV) s (V) [ g 25ad v gV = vial} u{(@v) s (q V) [V = v+ L]}

—rs={@V) Bs@v) [0 Sadvi gV =viah U@y T s @) |V =vi L)

Note that the “real”, precise semantics/Afs a timed transition system [1] is an implementation of
(A), also any of the “relaxed” or “robust” semantics 0f[[8]/17,/28] are implementations df); any
robust semantics “lives” in our framework. As we are usingseld clock constraints for MEC$4) as
defined above is compactly branching.

Refinement of MECS is defined semanticaly<m B if (A) <n, (B)). Note that the refinement ofl[7]
is different (indeed it is not quantitative in our sense).d&yinition of modal refinement, a specification

S<m (A) is amore preciseor less relaxed, specification of the semanticé.ofiny delay intervals on
. o,flr . o oI o o
transitionss ‘[“)]SS, are contained in intervatls —[—+ ]GAD t’ (and similarly formusttransitions).

We are interested itiming difference®f (refinements of) MECS,e. in expressing how much two
ITMTS can differ in the timings of their behaviors. Given tfinite traceso = (ag,Xp), - - -, (@, X%,) and
o’ = (a0, Xp), - - -, (@n,X,) (note that the discrete labelsinJ {6} are the same), their timing difference is
|(X0+ X1+ +X%) — (Xg+ X, +---+X,)|, and what interests us is theaximaltiming difference at any
point of the runs. Hence we want the distance betweando’ to be max,—o_.n| ST oX — YnoX ], and



12 A Robust Specification Theory for Modal Event-Clock Automat

get get get
H@ H@ *) get<4 .
gran get<?2 /;axtra get<1 grant g%/éxtra grant
get< /'/ get<1 get< 3
get
S S S

Figure 1. An MECS mode§ of a resource specificationf. [7], and two refinement candidat&s, S.
As customary, we omimaytransitions which have an underlyimgusttransition with the same label.
Note thatS, <, SandS$, £m S butdy (S, S) = 1.

with the max.—o,...n replaced by sup., for infinite traces. This is precisely tmeaximum-lead distance
of [18,/26], and we show below how it fits in the framework ofsthiaper.

Note that the accumulating distance[af [3] measures songedntirely different: for the finite traces
above, it is|xg — Xp| + A [x1 — X | +--- + A"|X, — X |, hence measuring the sum of the differences in the
individual timings of transitions rather than the overathing difference. Thus the work laid out in/[3]
is not applicable to our setting, showing the strength ofntioee general approach 6f [4].

LetL = (R>oU{«} )%, the set of mappings froteadsto distances, defing : Imp x Imp x L — L
by
TL ifa#ad,

F((a,0),@.6),a) = {)\d.max(|d +t-tla(d+t-t)) ifa=a

and extend- to specifications by (k,¢,a) = SURne INfregq F(m,n,a). Defineg: L — R>qU{e} by
g(a) = a(0); the maximum-lead distance assuming the lead is zero. UWsingharacterization dfr
from (1), it can then be shown thd¢ = gohy : Spec™ x Spec” — R>oU{} is precisely the maximum-
lead distancegf. [13,18]. We also instantiate our definitions of modal anddligh refinement distance
for ITMTS; for MECSA, B we letdy(A,B) = dn((A), (B)), d(A,B) = d:((A), (B)).

Determinisnfor ITMTS is the same as in [3]: Ky, ks € Spec, withky = (a1, [11,r1]), ko = (a2, [12,12]),
then there i& € Spec with hy (k,ky) # T, andhy (k,ky) # Ty, if and only ifa; = ap. Hence an ITMTSS

. e . (a,l,ra]) (afl2.r2]) .
is deterministic if and only if it holds for al € Sthats --+ ss;ands --» ss;imply [l1,r1] = [l2,r2]

ands; = . For an MECSA, (A)) is hence deterministic if and only if for all locations g &% g: and

q &% gz imply that [g1] = [g2] andg; = gp. This is a stronger notion of determinism than(in [7]; we
will call it strong determinisnfor differentiation.

For structural compositiorof ITMTS we use CSP-style synchronization on discrete kbal inter-
section of intervals. Note that this is different from [3] iefn instead uses addition of intervals. Given
(a[l,r]),(@,][l",r']) € Spec we hence define

(a, [max(l,1"),min(r,r")]) if a=a and maxl,I’) < min(r,r'),
undefined otherwise

(a[l,rho @, r) = {

It can be shown thad is bounded byP(a,a’) = max(a,a’). Also, the notion of structural compo-
sition of ITMTS we obtain is consistent with the one of syrartized product ofi[7] (denoteé in that
paper). Figurél2 depicts some examples of structural coitipus
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Figure 2: AMECS modeT of a process accessing the resouéem Fig.[1, together with the structural
compositions§|T, §[|T, andS||T. Note thatdn(S(|T,§|T) = 1.

Theorem 1. Let A, B, A, B' be MECS. With| the notion of synchronized product of MECS from [7],
(AIIB) =m (A)[|(B). Additionally, dn(AA',B||B') < max(dm(A, B), dm(A’,B')).
Proof. (A||B) =m (A)]|(B) is clear from the definitions. For the second part, we Hgy@\||A’,B||B') C,

P(hm(A,B),hn(A',B")) = maxhm(A,B),hm(A',B')) by [4, Thm. 2], and ag: L — R>oU {0} is a ho-
momorphism, the claim follows. O

For quotientof ITMTS we define, for labelga, [I,r]), (&, [I’,r']) € Spec,

undefined ifa+#4d,

(a[l/,0]) ifa=adandl <I'"<r<r’,
(a[l’,r]) ifa=adandl <l'<r' <r,
@,[",r')o (a[l,r]) = { undefined ifa=a andl <r<l'<r’,
(a,[0,0]) ifa=a andl’<I<r<r’,
(a,[0,r]) ifa=adandl’<I<r<r’,
undefined ifa=a andl’ <r’' <I|<r.

The intuition is that to obtain the maximal solutifm g] to an equatiofl,r] @ [p,q] Cspec [I’,1'], whether
p andq must restrain the interval in the intersection, or can be dcanrespectively, depends on the
position of [I,r] relative to[l’,r'], cf. Figure[3. It can be shown that the operatoris quantitatively
well-behaved.

We can lift our quotient from the semantic ITMTS level to ME@Sfollows: A clock constraint in
®(Z) is equivalent to a mapping — I, whereJ = {[x,y] | x€ N,y € NU{o},x <y} C I denotes the
set of closed extended non-negative integer intervalstrardwe can defing © g =Aa.(¢'(a) © p(a))
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Figure 3: Quotienfl’,r'] ©[I,r] of intervals, six cases. Top balt,r]; middle bar:[lI’,r']; bottom bar:
guotient. Note that for the two cases on the right, quotienindefined.

with © defined on intervals as above. Our quotient of MECS is themeeéfas in[[7], but with their
guard operation replaced by o@r(hence our quotient is different from theirs, which is to kpected
as the notions of refinement are different).

Theorem 2. Let A, B, X be MECS for which BA exists, ther{B\\ A) = (B) \\ (A). If A is strongly
deterministic, then d(X,B\\ A) < dn(A||X,B), and X<y, B\\ Aiif and only if A|X <m, B.

Proof. (B\\ A) = (B) \\ (A) is clear from the definitions. For the second pat<, B\\ A if and only
if AIX <m B by [4, Thm. 3], and by the same theorehy(X,B\ A) C hn(A||X,B), so asg: L —
R>oU {0}, the claim follows. O

Theconjunctionoperator on labels of ITMTS is defined using intersectiomtérivals like for struc-
tural composition, hence we lep ¢ =k ¢ for k, ¢ € Spec. The intuition is that transition intervals give
constraints on timings; hence a synchronized transitiagnttiaatisfy both interval constraints. It can be
shown thatp is not bounded, but relaxed bounded®y ,(a,a’) = max(a,a’) &g, max,y).

Our notion of conjunction is consistent with the one for ME@g7], and to make use of relaxed
boundedness, we need to lift the notion of quantitative wiitg from the semantic ITMTS level to
MECS. This is done by defining, for a clock constragnt~ — J andn € N, the n-extended constraint
@.n=Aa.@(a)+ [—n,n| (this is similar to a construction in|[8]), and then sayingtth MECSB is ann-
widening of an MECS)\if there is a relatiorR C Qa x Qg for which (¢, o) € R, and for all(ga,gg) € R,

da -alg->A gy if and only if gg 29y gg with (0s,0g) € Rand similarly formusttransitions.

Theorem 3. Let A, B be MECS. With the notion of greatest lower bound from [TAA B) = (A) A (B).

If A or B is strongly deterministic and there is a MECS C for ethil,(C,A) # c and dy(C,B) # o,
then there are an n-widening' &f A and an m-widening 'Bf B for which AA B’ is defined, and such
that dn(C,A' AB') < max(dm(C,A),dn(C,B)) +max(n,m) for all MECS C for which g(C,A) # « and
dm(C,B) # oo.

Proof. (AAB)) = (A) A (B) by definition, and the second claim follows froim [4, Thm. 5fiahe homo-
morphism property 0§ : L — R>qU {co}. O
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