
E. Pimentel, V. Valero (Eds.): Workshop on Formal Languages
and Analysis of Contract-Oriented Software 2011 (FLACOS’11)
EPTCS 68, 2011, pp. 39–53, doi:10.4204/EPTCS.68.5

Handling Conflicts in Depth-First Search for LTL Tableau to
Debug Compliance Based Languages ∗

Francois Hantry Mohand-Said Hacid
Université Claude Bernard Lyon 1

LIRIS CNRS UMR 5205
Lyon, France

francois.hantry@liris.cnrs.fr mohand-said.hacid@liris.cnrs.fr

Providing adequate tools to tackle the problem of inconsistent compliance rules is a critical research
topic. This problem is of paramount importance to achieve automatic support for early declarative
design and to support evolution of rules in contract-based or service-based systems. In this paper we
investigate the problem of extracting temporal unsatisfiable cores in order to detect the inconsistent
part of a specification. We extend conflict-driven SAT-solver to provide a new conflict-driven depth-
first-search solver for temporal logic. We use this solver to compute LTL unsatisfiable cores without
re-exploring the history of the solver.

1 Introduction

Providing adequate tools to tackle the problem of inconsistent compliance rules is a critical research
topic. However, few tools fully analyze conflicts over underpinning logics of a natural language (eg.
temporal logic, deontic logic...). Such early and declarative specifications can be critical for specifying
policies and requirements in agile and distributed environments. Thus, formal languages for compliance
requirements and their analysis have become critical in many computer science domains (eg business
process management, service oriented computing, e-commerce). An ongoing research topic is the anal-
ysis of a conflicting set of temporal logic compliance rules. For instance, Table 1.a gives a toy set of
compliance rules. It will be used as a running example in the paper. All those rules except the last one
originate from an ongoing supply contract. Let us assume that the last one (r3.c) originates from another
internal requirement from a supplier. It comes out that this new requirement entails a conflict with rules
(r3.a) and rules (r3.b) shown on Table 1.b. This example shows the importance of automatic detection
of conflicting subsets of compliance rules. This problem is critical for debugging declarative specifica-
tions [16, 21], handling conflicting contracts [10], or tackling unrealizable service compositions [20].
There exist several formalisms to deal with time such as LTL, MSO [9], TLTL , MTL [1]. These logics
underpine many of modern compliance languages and their associated theories and tools are used to ad-
dress problems related to verification [15, 26, 7], service composition [20], graphical design of property
patterns [21, 16].
We investigate the problem of efficiently extracting temporal logic unsatisfiable cores for debugging
compliance rules. Intuitively, an unsatisfiable core is a conflicting subset of rules. We restrict ourselves
to LTL for which many results and efficient model checking methods exist. However, the problem of
efficiently detecting a small LTL unsatisfiable core is still open [23] [6]. Conflict driven methods exist
for SAT-solver algorithms. They provide quite efficient extraction of conflicting rules written in proposi-
tional logic [28]. SAT-solvers have been extended (e.g.,Unbounded Model Checking (UMC) SAT-solvers

∗The research leading to these results has received funding from the European Community’sSeventh Framework Programme
FP7/2007-2013 under grant agreement 215483 (S-Cube).

http://dx.doi.org/10.4204/EPTCS.68.5

40 Handling Conflicts in DFS for LTL tableau

[2]) to deal with the more expressive LTL. For the case of satisfiability1, it consists in searching a lasso-
shaped model of length k≤ 2O(| f |) and in reducing to boolean SAT problems for increasing k∈ [0,2O(| f |)].
One of critical (and basic) points of current boolean SAT-solvers is their ability of pruning ‘bad’ search
space. It is based on a smart use of boolean propagation. Analyzing the propagation enables to han-
dle conflict while backtracking and enables to avoid revisiting immediately the same conflict. Learning
conflict using conflict clause also avoids revisiting the conflict later. This conflict-driven approach leads
easily to the extraction of a core. [6] proposes to extract unsatisfiable cores from the UMC method of
[17]. The authors propose also a ‘Sat Modulo Theory’ like framework applied with symbolic global
model checking [5], but the conflict handling is not introduced inside the symbolic global model check-
ing. [23] analyzes a very expanded2 tableau of [14] to define unsatisfiable core but again no analysis of
conflict is performed. Thus, on the contrary to boolean SAT-solver and extended UMC, neither global
model checking, nor On-The-Fly techniques handle conflict. Moreover, in the nineties, resolution [12]
for temporal logic has been proposed to tackle unfair SCC as minimal ‘temporal conflict’ but to the best
of our knowledge current boolean SAT-Solvers(e.g.,[17],[13], [24],[18]) have not investigated this idea
yet, mainly because they are Breadth-First-Search. But, a drawback of resolution is that any conflict is
recorded using resolvent, this entails a too large use of memory space in contrast to On-The-Fly tableau,
symbolic model checking and UMC. In this paper, we propose a new conflict-driven depth-first-search
solver inspired by SAT-based ones, DFS for tableau and resolution for temporal logic. Furthermore, we
show how it is possible to extract a small unsatisfiable core.

Overview of the paper Section 2 introduces Background. Section 3 describes sound technical details
of section 4. Section 4 shows the Solver. Section 5 is devoted to the correctness, completeness,extraction
of unsatisfiable cores. We conclude in Section 6.

2 Background

Definition 1 (Syntax of LTL)
Let P be a non empty finite set of propositional variables, and p ∈ P. A and B two LTL formulas. A
temporal logic formula is inductively built by means of the following rules:

TRUE |FALSE |p |A∧B |A∨B |¬A|X(A)
AUB |AWB

Furthermore, G(A) = (A)W (FALSE) and F(A) = (T RUE)U(A).
Definition 2 (Semantic [9]) A linear time structure is an element M in (2P)N . ∀i ∈ N,∀M ∈ (2P)N:

– (M , i) � p with p ∈ P iff p ∈M (i)

– if A is a propositional combination of LTL formulas (M , i) � A is defined as usual.

– (M , i) � X(A) iff (M , i+1) � A

– (M , i) � AUB iff ∃ j ≥ i,(M , j) � B and ∀k, i≤ k < j,(M ,k) � A

– (M , i) � AWB iff ∀ j ≥ i,(M , j) � A or (∃ j ≥ i,(M , j) � B and ∀k, i≤ k < j,(M ,k) � A)

1No model to check against a LTL formula
2The expansion disregards boolean conflict

F. Hantry,M-S. Hacid 41

Rules LTL
r1.a F(o)
r1.b G(¬c)
r2.a G(o⇒ (F(p)∧F(g)))
r2.b (¬g)W p
r3.a F(i)
r3.b (¬i)W p
r3.c G(p⇒ G(¬i))

(a) compliance rules.

Conflicting Rules LTL core
T RUE
T RUE
T RUE
T RUE

r3.a F(i)
r3.b (¬i)W p
r3.c G(p⇒ G(¬i))

(b) unsatisfiable core.

Table 1: LTL-translations of the running example

Intuitively, the formula X(A) stands for ‘at the next time A will hold’, AUB stands for ‘B will hold in
the future and from current time until B holds, A must hold’, AWB stands for ‘if B holds in the future then
from current time until B holds, A must hold, and if B will never hold, then A must hold forever(weak
until)’. G(A) stands for ‘at any time A holds’ and F(A) stands for ‘A will hold in the future’. For instance
¬iW p means that i cannot occur as long as p has not occurred.
In the rest of the paper we will assume w.l.g that any LTL formula solely may contain ¬ symbol applied
to propositional variable(s). We call such formula Negative Normal Form (NNF).
Definition 3 (LTL SAT problem) A LTL formula φ is satisfiable iff there exists a linear model M such
that (M,0) � φ . Conversely, a LTL formula φ is unsatisfiable iff there is no linear model M such that
(M,0) � φ .
Definition 4 (unsatisfiable core) An unsatisfiable core of an unsatisfiable formula φ is a formula φ ′

such that (1) φ ′ is the result of some substitution(s) in φ of some positive subformula(s) by TRUE, (2) φ ′

has no subformula of the form AU/W (T RUE), (T RUE)WB, A∨ (T RUE), ∧iTrue or X(T RUE) and (3)
φ ′ still remains unsatisfiable. Table 1.b shows a small unsatisfiable core of our toy example formula. It
is critical to find a small (or ideally a minimal3 (MU)) unsatisfiable core in order to detect the cause of a
conflict.
Theorem 1 (LTL minimal unsatisfiable core decision problem)
Deciding if a LTL formula is a minimal unsatisfiable core is in P-SPACE
(sketch of the proof): For each positive subformula of f , substitute by T RUE and check unsatisfiability.
f is a MU iff any substitution leads to a satisfiable formula. There is a linear number of subformulas,
and each checking is in P−SPACE.
We furthermore conjecture that the above problem is P-SPACE complete.
[23] discusses the notion of granularity of core. A coarse unsatisfiable core of a formula f : f1∧ f2...∧ fn

only substitutes T RUE at the f j and not in a deeper subformula. Structure preserving translations of
the LTL formula f into definitional conjunctive normal form provide an equi-satisfiable formula f ′ :
f ′1 ∧ f ′2...∧ f ′m. The minimal coarse unsatisfiable cores of f ′ correspond to the minimal unsatisfiable
cores of f (see [23] for details). For instance if f : G(a∧¬b)∧F(b), an equi-satisfiable formula may
be f ′ : G(xa∧¬b)∧G(xa∧¬b ⇒ a)∧G(xa∧¬b ⇒ ¬b)∧F(b). A coarse MU of f ′ is G(xa∧¬b)∧T RUE ∧
G(xa∧¬b⇒¬b)∧F(b). It provides a f -MU : G(T RUE ∧¬b)∧F(b). W.l.g [23], the solver will focus

3An unsatisfiable core φ is minimal iff φ is its only one unsatisfiable core

42 Handling Conflicts in DFS for LTL tableau

on finding small coarse unsatisfiable core.
Definition 5 (Closure) Let f a LTL formula. We note the set of closure variables of f -Cl(f)- as the
smallest set Set such that :

– f ∈ Set

– If ψ = ψ1∧ ..∧ψs ∈ Set and ψ j is not a conjunction, ∀ j ψ j ∈ Set

– If ψ = ψ1∨ ..∨ψr ∈ Set and ψ j is not a disjunction, ∀ j ψ j ∈ Set

– If ψ = F/G(ψ ′) ∈ Set, ψ ′ ∈ Set and XF/G(ψ ′) ∈ Set

– If ψ = ψ ′U/Wψ ′′ ∈ Set , ψ ′′ and ψ ′∧X(ψ) are in Set

– If ψ = X(ψ ′) ∈ Set then ψ ′ ∈ Set

Furthermore the number of closure variables of Cl(f) is linear in the size of f [11].
A traditional mathematical tool to analyze satisfiability is tableau. It is a particular automata of

states, whose any state is a subset of Cl(f). Intuitively, a state is built from a prestate. A prestate is either
the starting state containing only the starting formula f either a state containing only closure formulas
derived from a precedent state. The derivation of a formula Xh at a state is h at the next prestate. The
prestates are intermediary results to build the tableau and do not occur in the tableau except the first one.
On Figure 1, the rounded rectangle is a prestate, the others are states. A state is computed by unwinding
the formulas and making a choice for the disjunctive ones. For instance, the occurrence of G(¬i) implies
the occurrence of ¬i and XG(¬i). In Figure 1, at the goal state of transition 1, the p is chosen from the
disjunction p∨ (¬i∧X(¬iW p)) unwound4 from ¬iW p.
Definition 6 (state, prestate, f -tableau) The f -tableau is a special finite state automata (St,s0,R) with
St the set of states, s0 the initial state and R⊂ ST 2 the set of transitions. The f -tableau is the ’minimal’
automata A such that:

– Any state of A is a subset of Cl(f).

– s0 is a prestate with s0 = ∪i{ fi} where f = ∧i fi.

– Let a set S derived from a prestate PS st. PS ⊂ S ⊂ Cl(f) and ∃ρ a total choice function from
S∩ (dis junction∪Future∪Until ∪WUntil) to S. Furthermore, if S is the smallest set Set such
that

– PS⊆ Set

– If ψ = ψ1∧ ..∧ψs and ψ j is not a conjunction, ∀ j ψ j ∈ Set

– If ψ = ψ1∨ ..∨ψr and ψ j is not a disjunction, ρ(ψ) = ψ j ∈ Set for some j

– If ψ = F(ψ ′), ρ(ψ) ∈ {ψ ′;XF(ψ ′)}∩Set

– If ψ = G(ψ ′), ψ ′ ∈ Set and XG(ψ ′) ∈ Set

– If ψ = ψ ′U/Wψ ′′ , ρ(ψ) ∈ {ψ ′′;ψ ′∧X(ψ)}∩Set,

then S is a state of A.

– Let a set PS containing only all formulas derived from a precedent state S such that PS= {φ ,st.Xφ ∈
S}. Then, PS is a prestate of A.

– Transitions R of a f -tableau stand for the collapsing of S1→ PS→ S2 derivation sequences, i.e.,
collapsed transitions of the form S1→ S2.

F. Hantry,M-S. Hacid 43

F(i), ¬iW p
G(¬c),¬c,X(G(¬c))
G(p⇒ G(¬i))

F(i), X(F(i))
G(¬c),¬c,X(G(¬c)) , ¬iW p , p
G(p⇒ G(¬i)), ¬p∨G(¬i)
G(¬i), ¬i, XG(¬i)
XG(p⇒ G(¬i))

F(i), X(F(i))
G(¬c),¬c,X(G(¬c))
G(¬i),¬i , XG(¬i),
G(p⇒ G(i)), ¬p∨G(¬i),
XG(p⇒ G(¬i))

F(i), X(F(i))
G(¬c),¬c,X(G(¬c))
G(¬i),¬i , XG(¬i),
G(p⇒ G(i)), ¬p∨G(¬i),
¬p , XG(p⇒ G(¬i))

F(i), X(F(i))
G(¬c),¬c,X(G(¬c)), ¬iW p,
¬i∧X(¬iW p)), X(¬iW p)
G(p⇒ G(¬i)), ¬p∨G(¬i)
G(¬i), ¬i, XG(¬i) ,XG(p⇒ G(¬i))

F(i), X(F(i))
G(¬c),¬c,X(G(¬c)), ¬iW p,
¬i∧X(¬iW p)), X(¬iW p)
G(p⇒ G(¬i)), ¬p∨G(¬i), ¬p
XG(p⇒ G(¬i))

F(i), X(F(i))
G(¬c),¬c,X(G(¬c)), ¬iW p,
¬i∧X(¬iW p)), X(¬iW p)
G(p⇒ G(¬i)), ¬p∨G(¬i),¬p
G(¬i), ¬i, XG(¬i) ,XG(p⇒ G(¬i))

1

2

14 15

7

5

10

16

12

6

11

4

3

9

13

17

18 8

Figure 1: Depth-first-search

Theorem 2 ([19],[14]) A LTL formula f is satisfied iff there exists a path of states in the f -tableau
(finite with no successor at the last state or infinite) starting from the starting prestate and such that any
occurrence of Future and Until modal operator in a state of the path fulfills its corresponding promise
operand later (in the future) in the path. We call the path : fair path.

In Figure 1, f is a simpler version of our toy example, and there is only unsatisfiable paths (infinite
in this case) since each possible path contains a Future F(i) but does not realize the promise operand i.
An argument is that any infinite path will reach in the future a Strongly Connected Component (SCC)
where the path will remain in forever. Then f is unsatisfiable. On-the-fly techniques for satisfiability of
temporal logic (eg. [14], [19]) use nested deep-first-search of fair loop or simple deep first search of fair
SCC.

Theorem 3 ([25],[19]) There exists a depth-first-search algorithm for computing SCCs of a f -tableau,
and for deciding their fairness.

In Figure 1, the exploration steps of simple depth-first-search follow the numbered labels on the
transitions. An example of a SCC is the set of states as a support for the set of transitions {3;4;5;6}.

4disjunctive unwinding are not shown in the tableau since this is an intermediary result

44 Handling Conflicts in DFS for LTL tableau

F(i), ¬iW p
G(¬(c)), G(p⇒ G(¬i))

F(i), X(F(i))
G(¬(c)), ¬c ,XG(¬(c))
¬iW p, p
G(p⇒ G(¬i)), ¬p∨G(¬i)
G(¬i), ¬i, XG(¬i)
XG(p⇒ G(¬i))

F(i), X(F(i))
G(¬(c)), ¬c ,XG(¬(c))
G(¬i),¬i , XG(¬i),
G(p⇒ G(i)), ¬p∨G(¬i),
XG(p⇒ G(¬i))

F(i), X(F(i))
G(¬(c)), ¬c ,XG(¬(c)), ¬iW p,
¬i∧X(¬iW p)), X(¬iW p)
G(p⇒ G(¬i)), ¬p∨G(¬i), ¬p
XG(p⇒ G(¬i))

12

3 5

4

Figure 2: Depth-first-search with conflict handling and prime implicant

3 Technical Preliminaries

We will show how it is possible, by handling conflicts, to enhance above depth-first search method and
to drastically shrink the search space. Our solver shown in Section 4 is based on the following intuitions.
First, the idea is to record which occurrences of elements of the closure at a given state entail another one
by using unit rule propagation technique from SAT-Solvers. It enables to extract cause of conflict and
non-chronologically backtrack at the last involved choice and eventually to learn information from the
conflict, in order to not revisit the same conflict. Furthermore, our solver uses fair prime implicant search
to also shrink good but redundant search space. These optimizations enable to only explore the tableau
of Figure 2 to decide unsatisfiability of the running example f − tableau of figure 1. In the following we
explain how unwinding from prestate to state is simulated by a boolean SAT-problem.

3.1 From prestate to state: a propositional SAT problem

To tackle the particular choice function handling at Definition 5 (one literal per occurring disjunction) we
need a ’three-values’ logic which enables partial instantiation. It is also convenient for prime implicant
handling.
Definition 7 (‘three-value’ logic, closure variables, literals, clause) Let S be a set of LTL formulas. We
call state closure of S -StCl(S)- any formula met in Set of the closure algorithm with the initial condition
on Set = S instead of Set = { f} and without the last rules (Xg derives g). For any element g in the closure
we note xg a fresh boolean variable, that we call closure variable . This means presence of g in the state.
We will use the word ‘literal’ for xg or ¬xg. Finally, we call a clause a disjunction of such literals (also
represented by a set of literals). Let S′ ⊂Cl(f). We say that S′ is conflicting if there exists h and ¬h in S′.
Let V be a set of closure variables, L the literals of V . Then if g and h are ‘three-values’ logic formulas
then xh′ ∈V , g∧h, and ¬g are ‘three-values’ formulas. Furthermore assuming S′ is non-conflicting :

– S′ � xh′ iff h′ ∈ S′

– S′ � g∧h iff S′ � g and S′ � h

– S′ � ¬g iff S′ 2 g

We say that a three-values formula g is valid iff for any non-conflicting set of S′, S′ � g. We say that g is
fair-valid if for any S′ which is a state from any fair path S′ � g.
Definition 8 (Unwinding clauses from a prestate) Let PS a prestate and Presence(PS) = {xh|h ∈ PS}.
The corresponding Unwound Clause Set UCS(PS) is a set containing the unwound clauses and AUX(PS)

F. Hantry,M-S. Hacid 45

the three values conditions. Set, AUX(PS) and UCS(PS) are the smallest sets following the rules :

– Presence(PS)⊆ Set ∩UCS(PS)

– If xψ = xψ1∧..∧ψs ∈ Set and any xψ j is not a conjunction,
∀ j the formulas xψ ⇒ xψ j ∈UCS and ∀ j xψ j ∈ Set

– If xψ = xψ1∨..∨ψr ∈ Set and any xψ j is not a disjunction,
xψ ⇒ (xψ1 ∨ ...∨ xψr) ∈UCS and ∀ j xψ j ∈ Set

– If xψ = xψ ′U/Wxψ ′′ ,
xψ ⇒ (xψ ′′ ∨ (xψ ′∧X(ψ))) ∈UCS and xψ ′′ and xψ ′∧X(ψ) ∈ Set

– xh,x¬h ∈ Set then ¬xh∨¬x¬h ∈ AUX

Furthermore, AUX(f) (resp. UCS(f), Presence(f))is the union of AUX(PS) for any PS in the f -
tableau (resp UCS(PS), Presence(PS)). The unwound formulas UCS(PS)\Presence(PS) are fair valid
formulas (see proof section 5) and of the form xφ ⇒ dis jxφ

where dis jxφ
is the classical disjunctive

unwinding of closure formulas [14], [19].
The formula f of Figure 3 provides the clause UCS(f) :

xF(i)⇒ xi∨ xXF(i) xG¬c)⇒ xXG¬c

xG¬c⇒ x¬c x(¬i)W p⇒ xp∨ x¬i∧X((¬i)W p)
x¬i∧X((¬i)W p)⇒ x¬i x¬i∧X((¬i)W p)⇒ xX((¬i)W p)
xG(p⇒G(¬i)))⇒ xXG(p⇒G(¬i)) xG(p⇒G(¬i)))⇒ xp⇒G(¬i)
xp⇒G(¬i)⇒ x¬p∨ xG(¬i) xG(¬i)⇒ xXG(¬i)
xG(¬i)⇒ x¬i ∀v ∈CLST f ¬xv∨¬x¬v

Proposition 1 An instance IS of the boolean SAT problem UCS(PS)∪AUX(PS) provides a state S
from PS and reciprocally.

Since many instances correspond to a state in the tableau, and since several states may be redundant
regarding LTL satisfiability problem, we introduce Fair Prime Implicant.
Definition 9 (Fair Prime Implicant) Let IS as above, a Fair Prime Implicant IS.FPI of IS is a maxi-
mal5 switching from some assigned xh at IS to ¬xh such that h is not a promise operand and IS.FPI �
UCS(PS)∪AUX(PS). At a given IS.FPI it corresponds only one state FPI in the f -tableau.
Theorem 4 (Fair prime implicant version of Depth-First-Search) A formula f in LTL is satisfiable iff
there exists a fair path solely with FPIs as states.(proof is omitted).

For instance, the FPI technique enables in our depth first search to ignore the goal state of the transition
number 4 at Figure 1.

To solve the boolean SAT-problem current solvers use unit rule propagation [8].
Definition 10 (Unit rule propagation)

– Each instantiated literal must be propagated6 over any non yet satisfied clause containing the op-
posite one. This opposite literal is then temporally erased from the clause.

– If a clause becomes unit literal l because of unit rule propagation(s), then l is assigned

This propagation is critical for conflict analysis. In the following we show how to handle unit rule
propagations to support conflict analyses.

5Intuitively the switching simulates the removal of closure element in corresponding state
6a Weakest version and optimized one of current solvers requires only propagation along watched literals [22]

46 Handling Conflicts in DFS for LTL tableau

xF(i) x(¬i)W p xp1 xp⇒G(¬i) xG(p⇒G(¬i))) xG(¬c)

xXF(i) ¬xi xXG(¬i) xG(¬i) xXG(p⇒G(¬i)) xXG(¬c) x¬c

xF(i) xG(¬i) ¬x¬p2,3,4

f lip = 1

xG(p⇒G(¬i)) xG(¬c)

xXF(i) ¬xi xXG(¬i) xp⇒G(¬i) xXG(p⇒G(¬i)) xXG(¬c) x¬c

xF(i) ¬xi xG(¬i) x¬p 3,4

f lip = 2

xG(p⇒G(¬i)) xG(¬c)

xXF(i) xXG(¬i) xp⇒G(¬i) xXG(p⇒G(¬i)) xXG(¬c) x¬c

Figure 3: Implication graph and conflict analyses

3.2 Implication Graph to support Conflict analyses

The Implication Graph is an extension of propositional SAT-solvers’ one to LTL-tableau. The intuition
is to record the occurrences of elements of the closure at a given state that entail another one. An
Implication Graph is a bicolor graph (Nodes,Tred ,Tblack) where Tred and Tblack are subsets of Nodes2.
Figure 3 shows a part of the Implication Graph adapted from the f -tableau of Figure 1. Intuitively, the
Implication Graph is a concatenation of several ISs implication graphs denoted IS.IG. The red part Tred
is used for conflict analysis of the depth-first-search stack S and it is a DAG, and the black part Tblack
records some past red edges and corresponds to the conflict analysis of the SCC-search using stack S′

and allows loop for inductive reasoning .
Nodes’ feature Intuitively, a Node N stands for an assigned literal at a given state. On Figure 3, the
rounded corners rectangles are Nodes. Each node is inside a big rectangle standing for state. More
precisely, a Node corresponds to the ongoing prestate, to an ongoing IS while it is found and to a chosen
extracted IS.FPI in this case. On Figure 3, the three states7 are the one which support the transitions
{2;3;4} on Figure 1. Furthermore a Node can be either choosen or required. On Figure 3, a chosen node
is doubly surrounded. The level of a chosen Node N is its chronological order of choice in the whole
f -tableau. On figure 3 numbers are levels of chosen nodes. The level of any node N is the maximum8

level of the choosen nodes which involve N i.e which are ancestors of N in Tred . The level of a set of
nodes is the maximum level its nodes. A required node is either without antecedent but with level 0
either gets an antecedent in Tred .
Transitions’ feature If a Node Nl which corresponding literal l comes from a clause C = ∨ jl j∨ l which
has become unit, then the red edges (N∼l j ,Nl) are in Tred just after this unit propagation. Let’s focus on
the above state. For instance, (xp,xG(¬i)) and (xp⇒G(¬i),xG(¬i)) are red edges because of the unit rule
from the clause xp⇒G(¬i)⇒ (x¬p∨ xG(¬i). Furthermore, the derivation from a state to a next state is also
recorded using red edges such that the occurrence of xXg ∈ IS.FPI entails the occurrence of xg at the next
prestate. For instance on Figure 3, the above FPI derives to the middle one, thus there exists a red edge
in the graph from xXF(i) at above state to xF(i) at the next one.

7for understanding but w.l.g, the below state is not a FPI
80 if no ancestor nodes are choosen

F. Hantry,M-S. Hacid 47

Furthermore, while a FPI is revisited, then the current IS implication graph IS.IG has to be con-
nected to the first one IGold which visited the same FPI. The algorithm creates black transitions from
any nodes N(¬xoppro) (resp. xXh ∈ IS.FPI) at IS.IG to the same literal one of IGold . This connection
is called ‘bind’ function. For instance, for corresponding derivation on Figure 1 for IS.IG at the goal
state of transitions {3;5;6} the IS.IG and IGold are the same. For simplicity and w.l.g9 they have been
superimposed at Figure 3. In this case, the transitions of ‘bind’have been omitted w.l.g, and solely the
bottom-up edges from source state to the goal state of transitions {3;5;6} are shown (e.g.,xXF(i) at the
below state to xF(i) at the same state for transition 3). Finally, given a Tred and a choosen Node N still red,
f lip(Nodes,Tred ,Tblack,N) = (Nodes∪{∼N(red)},Tred \{(N1,N2)∈ Tred |level(N2)≥ level(N)},Tblack)
is the flipped Implication Graph regarding N with ∼ N(red) a fresh node.

4 Solver

Our depth-first search temporal conflict driven solver is a combination of depth first search of fair SCC
in tableau [19] and of boolean SAT-solver. Thus, our solver uses unit rule propagation method, boolean
conflict handling [22]. It also uses a new temporal conflict driven method inspired by resolution for
temporal logic[12].
Basic Solver10 Algorithm 1 shows the main method of the algorithm called Solver. At each new prestate,
the solver populates by clauses by unwinding the prestate according to Definition 8. Otherwise, unit
rules and boolean conflict detection11 are launched. A Backtrack (Algorithm 2) is triggered in case of a
conflict, otherwise if it is possible, a choice of literal following a heuristic is done. Once an IS is found
and a FPI extracted, then a SCC-search-forward (Algorithm 3) function is called. Otherwise the Solver
is recursively called.

Algorithm 1: Solver

if not unwound then
Unwind;

Unit-rule ; bool-conflict-detection ;
if conflict then

Backtrack;

if IS found then
SCC-search-forward;

else
make a choice of literal;
Solver ;

Propositional Conflict Handling while backtracking A Propositional Conflict Handling is trig-
gered when a clause is falsified (or equivalently when a literal and its opposite occurs). Similarly to
SAT-solvers’one, the Propositional Conflict Handling starts from a set of conflicting nodes NodesC and
corresponding literals C which falsifies the clause ¬C and analyzes which nodes have involved those con-
flicting literals using (Nodes(red),Tred). Let A (C) be the subDAG of (Nodes(red),Tred) which stands
for ancestors of NodesC. Let A (C)(con f lict− level) be the subDAG of A (C) with nodes of ‘conflicting’
level of NodesC ie. con f lict− level and N(con f lict− level) the choosen node of level con f lict− level
. Let Limit(C) = {N(con f lict− level)}∪ (ParentTred [A (C)(con f lict− level)\{N(con f lict− level)}]∩
Level(con f lict− level−1,A (C))) where Level(m,A (C)) means the subDAG of A (C) with node level

9The particular computation of fixpoint remains the same while superimposing in this simple case
10The main components of the algorithm are shown in a recursive form for convenience
11 a boolean conflict detection occurs while a clause is falsified by current partial assignment

48 Handling Conflicts in DFS for LTL tableau

at most m. We call limit conflict clause ¬Limit(C). The last conflicting choosen node N(con f lict− level)
is then switched if the corresponding flipped partial assignment has not been visited yet (node.flip=1).
In this first case, similarly to boolean SAT-solvers, the function ‘Conflict-require’ adds red edges to
(Nodes(red),Tred) : the red transitions with a source node in Limit(C) \ {N(con f lict − level)} to the
goal node ∼ N(con f lict− choice) . However, differently from boolean SAT-solver, since the algorithm
records informations in black part (Nodes(black),Tblack) in the second case (flip=2), the same transitions
but in color black are added. Furthermore,∼N(con f lict− level) is now required and not choosen. Those
red or black edges are to ensure we can compute the reason of the requirement of ∼ N(con f lict− level).
Finally, if the conflict level is 0 then the algorithm terminates by unsatisfiable.

Algorithm 2: Backtrack

Compute Conflict-level;
if Conflict-level=0 then

print (‘unsat’) , break;
State-Conflict-Clause-learning;
Tableau.IG.erase(Conflict-level);

stack-s.erase(C-level);
stack-s’.erase(C-level);
Conflict-require;
SCC-search-backward;

On Figure 3, the backtrack is done from the conflicting (see. TC-Analysis) nodes xG(¬i) and xF(i) at
the middle state. Following the red part, the last involved and chosen node is xp at above state. While
backtracking bad states and corresponding nodes are erased (above state at Figure 3). On the contrary
to propositional SAT-solver, the algorithm has to record the cause of these states to be bad (to avoid
revisiting them) using a conflict clause per state12.These learned clauses must not be forgotten. On figure
3, the yellow literals are conflicting literals at middle state but the clause ¬xG(¬i)∨¬xF(i) has already been
learned. At above state, the pink literals provide the learned clause ¬xp∨¬xp→G(¬i)∨¬x f (i). Finally, a
SCC-search backward is launched. Algorithm 2 summarizes the above ideas. We refer to [27] for more
details about backtracking in boolean SAT-solvers.

Algorithm 3: SCC-search-forward

if FPI is new then
Nb(FPI):=i:=i+1;
Lp(FPI):=Lv(FPI:=Nb(FPI);
stack-s.push(FPI);
stack-s’.push(FPI);
parent=FPI; prestate=FPI.next();
Solver;

else
case state ∈ stack−S

Lp(Parent):= min(Lp(Parent),Nb(FPI));
case FPI /∈ stack−S ∧
Nb(parent)> Nb(FPI)

Lv(Parent) :=min(Lv(parent),Nb(FPI));
parent.unr-prom= parent.unr-prom ∩
FPIold .unr-prom;
bind(IS.IG, IGold);
SCC-search-backward ;

SCC-Search-Forward The SCC-search-forward shown Algorithm 3 is similar to the ‘forward’ part
of the computation of strongly connected components and uses depth first search numbers (Lp,Nb,Lv). If
the FPI is new, then new numbers are computed and if it is possible, the next prestate (and corresponding

12We ask that the conflicting clause forbids corresponding red FPI of state

F. Hantry,M-S. Hacid 49

prestate Nodes and transitions from derivations) are created from the (red) nodes from literals xXh ∈
IS.FPI, otherwise the problem is satisfiable. Moreover, if the already visited FPIold is still in Stack−S′

or in Stack− S, a computation on Tarjan’s numbers13 is also launched. The unrealizable promises are
also computed. Furthermore, in any revisiting case, a rollback is launched while calling SCC-search-
backward (see Algorithm 4).

SCC-Search-Backward First the algorithm adds black copies of red edges in IS.IG. Then, starting
with the current choosen node N of current level, the Algorithm 4 simply finds the last non-flipped chosen
node. If it is in IS then, it calls f lip(IG,N) and Solver. Otherwise change color red to black at the ‘next’
edges from parent.IG to IG. Then a SCC test over Tarjan numbers is launched from the parent state,
and if a SCC is found a SCC-handling is called, otherwise, update of unrealizable promise is done. If a
promise is unrealizable then SCC-handling calls a Temporal Conflict Analysis (TC-Analysis), otherwise
the problem is satisfiable.

Algorithm 4: SCC-search-backward

N=node(level)
IS.IG.edges.black-copies
if N.flip=2 ∧N ∈ IS then

level=level-1; SCC-Search-Backward
if N. f lip = 1∧N ∈ IS then

flip(IG,N)
Solver;

if N /∈ IS then
red-to-black-parent.IG-IS.IG-derivation
FPI=parent; pop stack-s
parent= head stack-s
if Lp(FPI)=Nb(FPI)=Lv(FPI) then

SCC−handling∗

else
Lp(parent)=min(Lp(parent),Lp(FPI))
Lv(parent)=min(Lv(parent),Lv(FPI))
parent.unr-prom= parent.unr-prom ∩
FPI.unr-prom
SCC-search-backward

SCC−handling∗ ::
if unrealizablepromise = /0 then

print ‘satisfiable’; break;
else

TC-Analysis;

TC-Analysis of unfair SCC In the SCC, the algorithm 5 chooses an unfair promise and computes
a backward fixpoint from some nodes N(¬xop(Promise)) for any SCC states along the recorded black
implication graph. Precisely, except the root state of the SCC, any state of the SCC gets a corresponding
black ‘IG’ from stack−S which is the IS.IG.edges.black−copies one while SCC-backward-search. For
the root state SCC, only the nodes N(xXh) and N(¬xop(Promise)) get some black transitions.

The fixpoint computation starts from those nodes at IS.IG.edges.black−copies or particular nodes at
the root. Once the inflationary backward fixpoint using Tblack is terminated, then at each state in SCC, the
algorithm picks up a corresponding14 IG. For any state, the ‘prestate(s)’ Nodes Nodesprestate in the IG
which are also in the fixpoint are declared conflicting with the unfair promise and the algorithm learns
and must not forget the conflict clause. Then, the method erases all the states of this SCC. It finally
triggers a classical Backtracking at the nodes of the Root from the conflicting prestate(s)Nodes of the

13Please see for more details about Tarjan’s numbers [25]
14Since the root has been revisited, it gets at least one black IG

50 Handling Conflicts in DFS for LTL tableau

Algorithm 5: Temporal Conflict Analysis

INI: Vector= ¬ops(Promise) ∩SCC;
while ∃e ∈Vector∧ e not marked do

mark e ; v = e.black− parents ;
for l ∈ v∧ l not marked do Vector.push(l)

end

∀state ∈ SCC pick up a State.IG;
do learn(Vector∩ state.IG.prestate, promise);
erase SCC;
Backtrack;

root. At Figure 3, the unfair promise is F(i), and the fixpoint computation is shown by double arrow. In
this SCC, the yellow and green Nodes are involved in the temporal conflict, and the yellow are the causes
of this conflict, ie., xF(i) and xG(¬i) are conflicting. Thus, ¬xG(¬i)∨¬xF(i) is learned forever.

5 Correctness, Completeness, and Extraction of a small unsatisfiable core

Lemma 1 Any clause from AUX(f) or UCS(f)\Presence(f) are fair valid.
proof: Any fair state is non conflicting then AUX is fair valid. By construction, any fair state satisfies
any clause from UCS(PS)\Presence(PS).
Lemma 2 Let f be a LTL formula. Assume the Algorithm has computed a conflict analysis from the
conflicting literals C. Let ICl(f ,C) = AUX(f)∪UCS(f)∪Learn(f ,C) with Learn(f ,C) containing any
learned clause occurring in the algorithm strictly before C and any limit conflict clause15 occurring at
any conflict handling strictly before C. Assume that Learn(f ,C) are fair valid clauses. Let C f be the
conjunction of conflicting literals used to learn a resulting clause of the conflict analysis ¬C f . Then ¬C f
is fair valid.
sketch of the proof: Thanks to lemma 1, ICl(f ,C)\Presence(f) are fair valid clauses. Let any state S
from any fair path p of any tableau of a temporal logic formula. Assume now that S �C f . We have two
cases:

1. Either the conflict C is boolean. Let A ′(C) = Level(A (C),con f lict − level) and Limit(C) as
above. Then each node in A ′(C)\{n(con f lict− level)} is required and it originates either from
state to prestate derivation, either from a clause Cl ∈ ICl(f ,C) \Presence(f) which has become
unit at a given state. Since ICl(f ,C)\Presence(f) are assumed fair valid then S′ � Cl for such a
clause Cl and for any state S′ in pS

16. Then the proof from A ′(C) by unit rule of the conflict C
of our algorithm implies that there exists a state S′con f lict in pS such that S′con f lict contains �. This
implies a contradiction since p is assumed fair and then no state of p should be conflicting.

2. Either the conflict C is temporal. Assume S′ any state of the unfair SCC. For any state of the SCC,
let Pre(S′) be the set of ‘black’ prestates from a chosen IS.IG. from S′. Let k∈N. Imagine virtually
the exploration of any non conflicting prefix path p′ of length k in the induced tableau T (Pre) by
also considering ICl(f ,C) \Presence(f). It consists of the building of a boolean SAT-problem
based on the following observations:

– Since any bad old SCC is not reachable by not forgetting any conflict clause of bad state/bad
SCC, then there exists a k-depth-first navigation over the Prime Implicants from T (Pre) but

15 the limit conflict clause is ¬Limit(C); we consider it even if the limit conflict clause is not learned by the solver
16suffixes of p from S

F. Hantry,M-S. Hacid 51

remaining in the unfair SCC and following the Prime implicant depth-first-search of the f -
tableau.

– if (si0 = Pre,si1 ,,sik) is a Prime Implicant path in T (Pre) from the precedent k-depth-
first navigation, then from the algorithm, at any transition (si j ,si j+1), it corresponds (several)
state(s) Implication graphs IGi j for si j , and IGi j+1 for si j+1 corresponding at any (re)visit of
the states.

– There exists a k-depth-first navigation of full T (Pre) following the Prime implicant depth-
first-search of the f -tableau, such that if (s′i0 = Pre,s′i1 ,,s

′
ik) is a path of states in T (Pre),

then a corresponding Prime implicant path (si0 = Pre,si1 ,,sik) is one from k-depth-first
navigation of the Prime implicant f -tableau.

– Let Cl0(Pre), UCk(f) \Presencek(f) , AUXk(f),Learnk(f ,C) be the timestamped variables
and corresponding clauses. Let Nextk = {x j(X(f))⇒ x j+1(f)|0 ≤ j < k } be the clauses
encoding the state to next prestate derivations. Then there exists a DLL-exploration E of the
propositional problem Cl0(Pre)∪UCk(f)\Presencek(f)∪AUXk(f)∪ Learnk(f ,C)∪Nextk
following the k-depth-first navigation of the full T (Pre) but disregarding conflicts which do
not occur in the DFS of the SCC in the f -tableau.

– Let E ′ be the modified exploration of E but by pruning any part of the exploration which
contradict any timestamped limit conflict clause.

– Let EPromise be the modified exploration of E ′ for the boolean SAT problem Cl0(Pre), UCk(f)
\Presencek(f) , AUXk(f),Learnk(f ,C),Nextk,xk(Promise) without learning. Furthermore it
non chronologically backtracks. It also considers only conflicts of the form {xk(op(Promise))
;¬xk(op(Promise))}. Then clearly EPromise does not find any solution because the promise is
not fulfilled and particularly at step k, ie. the boolean problem is unsatisfiable.

It is now feasible to show that :

(a) The last conflict Clast of EPromise is at level 0. This means that ancestor literals in Ak(Clast)
with no parent gets a level 0, ie. they correspond to clauses Corek of length one in Cl0(Pre),
UCk(f) \ Presencek(f) , AUXk(f),Learnk(f ,C),Nextk,xk(op(Promise)) since there is no
learning in EPromise. Furthermore xk((op(Promise)) ∈ Corek. Finally, Corek, UCk(f) \
Presencek(f) , AUXk(f),Learnk(f ,C),Nextk,xk(op(Promise)) is an unsatisfiable core.

(b) Let C f ′k = Corek \ ({xk(op(Promise))} ∪ learnk(f ,C)), then C f ′k ⊂ Cl0(Pre). Let C fk be
the non timestamped literals. Then if S � C fk and since S is a state of a fair path, then
if pS,k is the suffix path from S but truncated of length k, pS,k � Corek \ xk(op(Promise)),
UCk(f)\Presencek(f) , AUXk(f),Learnk(f ,C),Nextk � ¬xk(op(Promise))

(c) C fk = {e ∈ Pre|N(e0 = e)→ N(e1)→ ...→ N(ek = ¬xop(Promise)), with N(ei)→ N(ei+1) ∈
Tblack and N(¬xop(Promise)) ∈ SCC}

It is then straightforward that if S � xPromise ∧k∈N C fk then there is a contradiction since pS will
never realize the operand promise xop(Promise). Furthermore, ∧k∈NC fk is computed as the set of
Pre contained in the backward fixpoint over TBlack computing ancestors of any ¬xop(Promise) for all
states of the SCC.

Theorem 5 The learned clauses and Limit conflict clauses17 are fair valid.
sketch of the proof: By chronological induction on the learned clause and limit conflict clause per
conflict. First, assume that conflict C is the first, thus the Learn(f ,C) = /0 at lemma 2. Thus ¬C f and

17in case of propositional conflict

52 Handling Conflicts in DFS for LTL tableau

¬LimitC is fair valid. Assume now that Learn(f ,C) are valid. Thanks to lemma 2, it follows that ¬C f
and ¬Limit(C) are fair valid.
Theorem 6 The algorithm terminates, is correct and complete
(sketch of the proof): As long as a state is not known to be bad or in a Bad SCC, then it is recorded18

to avoid infinite loop. As soon as it is sure that it is a bad state or in a bad SCC, then a clause which will
never be forgotten and standing for the bad state is learned. Thus, our algorithm is similar to a depth-
first-search of SCC in a LTL tableau [19]. However, as soon as there is a conflict, the algorithm prunes
part of the tableau which is sure to lead to a failing state/SCC by, sound learning and backtracking using
implication dependencies of conflict.
Theorem 7 (Extraction of coarse small unsatisfiable core)
If f = ∧i fi then ∧i{ fi|x fi ∈A (Clast)} is a coarse small unsatisfiable core.
(sketch of the proof): If the algorithm terminates with ‘unsat’, the last conflict Clast is at level 0. This
means that ancestor nodes in A (Clast) with no parent gets a level 0, ie. they correspond to some clause
in presence(f) : x fi where f = ∧i fi or eventually to some learned clause of the form ¬xh. But since
ICl(f ,Clast)\Presence(f) are fair valid, then ∧i{ fi|x fi ∈A (Clast)} is a coarse small unsatisfiable core.

6 Conclusion

In order to detect which compliance rules are conflicting, we have provided a conflict-driven Tableau
depth-first-search for LTL. We have shown how it can be used to extract a small unsatisfiable core. Our
method is theoretically EXPT IME and EXPSPACE, but although deciding a MU is in P−SPACE no P−
SPACE method have been proposed to extract cores yet. Our method does not suffer from cumbersome
timestamped variables, handling of incrementation, searching upper bound for UMC. Implementation is
ongoing work. Three enhancements of the method would be to study a QBF-encoding of our method and
analyzes if the learning we propose is easy for QBF solvers to learn. Other ways could be to use symbolic
DFS [3] or alternating Büchi automata. Detecting conflicts in rules is critical for human interactive
contract management systems. Moreover, our method pinpoints temporal issues in any automatic tool
which is sensitive to the consistency of many evolving heterogeneous policies such as regulatory laws,
internal business rules, security or privacy. The extension of our method to deontic modality [4, 10] used
in contracts appears straightforward, and we are also focusing on this issue.

References

[1] Rajeev Alur & Thomas A. Henzinger (1991): Logics and Models of Real Time: A Survey. In: REX Workshop,
pp. 74–106, doi:10.1007/BFb0031988.

[2] Armin Biere, Alessandro Cimatti, Edmund M. Clarke & Yunshan Zhu (1999): Symbolic Model Checking
without BDDs. In: TACAS, pp. 193–207, doi:10.1007/3-540-49059-0 14.

[3] Armin Biere, Edmund M. Clarke & Yunshan Zhu: Multiple State and Single State Tableaux for Combining
Local and Global Model Checking. doi:10.1007/3-540-48092-7 8.

[4] Jan Broersen, Frank Dignum, Virginia Dignum & John-Jules Ch. Meyer (2004): Designing a Deontic Logic
of Deadlines. In: DEON, doi:10.1007/978-3-540-25927-5 5.

[5] Jerry R. Burch & all. (1992): Symbolic Model Checking: 1020 States and Beyond. Inf. Comput. 98(2), pp.
142–170, doi:10.1016/0890-5401(92)90017-A.

18by a hash table for instance

http://dx.doi.org/10.1007/BFb0031988
http://dx.doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.1007/3-540-48092-7_8
http://dx.doi.org/10.1007/978-3-540-25927-5_5
http://dx.doi.org/10.1016/0890-5401(92)90017-A

F. Hantry,M-S. Hacid 53

[6] A. Cimatti, M. Roveri, V. Schuppan & S. Tonetta (2007): Boolean Abstraction for Temporal Logic Satisfia-
bility. In: CAV, pp. 532–546, doi:10.1007/978-3-540-73368-3 53.

[7] Elio Damaggio, Alin Deutsch & Victor Vianu (2011): Artifact systems with data dependencies and arith-
metic. In: ICDT, pp. 66–77, doi:10.1145/1938551.1938563.

[8] Martin Davis, George Logemann & Donald W. Loveland (1962): A machine program for theorem-proving.
Commun. ACM 5(7), pp. 394–397, doi:10.1145/368273.368557.

[9] E. Emerson (1990): Temporal and Modal Logic. HTCS, Volume B: Formal Models and Sematics (B) .

[10] Stephen Fenech, Gordon J. Pace & Gerardo Schneider (2009): Automatic Conflict Detection on Contracts.
In: ICTAC, pp. 200–214, doi:10.1007/978-3-642-03466-4 13.

[11] Michael J. Fischer & Richard E. Ladner (1979): Propositional Dynamic Logic of Regular Programs. J.
Comput. Syst. Sci. 18(2), pp. 194–211, doi:10.1016/0022-0000(79)90046-1.

[12] Michael Fisher (1991): A Resolution Method for Temporal Logic. In: IJCAI, pp. 99–104.

[13] Malay K. Ganai, Aarti Gupta & Pranav Ashar (2005): Beyond safety: customized SAT-based model checking.
In: DAC, pp. 738–743, doi:10.1145/1065579.1065773.

[14] Rob Gerth, Doron Peled, Moshe Y. Vardi & Pierre Wolper (1995): Simple on-the-fly automatic verification
of linear temporal logic. In: PSTV, pp. 3–18.

[15] Aditya Ghose & George Koliadis (2007): Auditing Business Process Compliance. In: ICSOC, pp. 169–180,
doi:10.1007/978-3-540-74974-5 14.

[16] C. Giblin, A. Liu, S. Müller & B. Pfitzmann (2005): Regulations Expressed As Logical Models (REALM).
In: JURIX, pp. 37–48.

[17] Keijo Heljanko, Tommi A. Junttila & Timo Latvala (2005): Incremental and Complete Bounded Model
Checking for Full PLTL. In: CAV, pp. 98–111, doi:10.1007/11513988 10.

[18] Toni Jussila & Armin Biere (2007): Compressing BMC Encodings with QBF. Electr. Notes Theor. Comput.
Sci. 174(3), pp. 45–56, doi:10.1016/j.entcs.2006.12.022.

[19] Y. Kesten, Z. Manna, H. McGuire & A. Pnueli (1993): A Decision Algorithm for Full Propositional Temporal
Logic. In: CAV, pp. 97–109, doi:10.1007/3-540-56922-7 9.

[20] Annapaola Marconi & Marco Pistore (2009): Synthesis and Composition of Web Services. In: SFM, pp.
89–157, doi:10.1007/978-3-642-01918-0 3.

[21] M. Montali, M. Pesic, W. v.d. Aalst, F. Chesani & P. Mello (2010): Declarative specification and verification
of service choreographies. TWEB 4(1), doi:10.1145/1658373.1658376.

[22] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang & S. Malik (2001): Chaff: Engineering an Efficient SAT
Solver. In: DAC, pp. 530–535. Available at http://www.citeulike.org/user/pwais/article/

3403622.

[23] Viktor Schuppan (2010): Towards a notion of unsatisfiable and unrealizable cores for LTL. Science of
Computer Programming doi:10.1016/j.scico.2010.11.004.

[24] Mary Sheeran, Satnam Singh & Gunnar Stålmarck (2000): Checking Safety Properties Using Induction and
a SAT-Solver. In: FMCAD, pp. 108–125, doi:10.1007/3-540-40922-X 8.

[25] Robert Endre Tarjan (1972): Depth-First Search and Linear Graph Algorithms. SIAM J. Comput. 1(2), pp.
146–160, doi:10.1137/0201010.

[26] K. Xu, Y. Liu & C. Wu (2008): BPSL Modeler - Visual Notation Language for Intuitive Business Property
Reasoning. ENTCS 211, doi:10.1016/j.entcs.2008.04.043.

[27] L. Zhang, C. Madigan, M. Moskewicz & S. Malik (2001): Efficient Conflict Driven Learning in Boolean
Satisfiability Solver. In: ICCAD, pp. 279–285. Available at http://citeseer.ist.psu.edu/viewdoc/
summary?doi=10.1.1.18.2715.

[28] L. Zhang & S. Malik (2003): Extracting small unsatisfiable cores from unsatisfiable Boolean formula. In: In
Prelim. Proc. Sixth Intl. Conf. on Theory and Applications of Satisfiability Testing (SAT’03).

http://dx.doi.org/10.1007/978-3-540-73368-3_53
http://dx.doi.org/10.1145/1938551.1938563
http://dx.doi.org/10.1145/368273.368557
http://dx.doi.org/10.1007/978-3-642-03466-4_13
http://dx.doi.org/10.1016/0022-0000(79)90046-1
http://dx.doi.org/10.1145/1065579.1065773
http://dx.doi.org/10.1007/978-3-540-74974-5_14
http://dx.doi.org/10.1007/11513988_10
http://dx.doi.org/10.1016/j.entcs.2006.12.022
http://dx.doi.org/10.1007/3-540-56922-7_9
http://dx.doi.org/10.1007/978-3-642-01918-0_3
http://dx.doi.org/10.1145/1658373.1658376
http://www.citeulike.org/user/pwais/article/3403622
http://www.citeulike.org/user/pwais/article/3403622
http://dx.doi.org/10.1016/j.scico.2010.11.004
http://dx.doi.org/10.1007/3-540-40922-X_8
http://dx.doi.org/10.1137/0201010
http://dx.doi.org/10.1016/j.entcs.2008.04.043
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.2715
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.2715

	1 Introduction
	2 Background
	3 Technical Preliminaries
	3.1 From prestate to state: a propositional SAT problem
	3.2 Implication Graph to support Conflict analyses

	4 Solver
	5 Correctness, Completeness, and Extraction of a small unsatisfiable core
	6 Conclusion

