
EPTCS 329

Proceedings of the
Second Workshop on

Formal Methods for Autonomous Systems
Virtual, 7th of December 2020

Edited by: Matt Luckcuck and Marie Farrell

Published: 3rd December 2020
DOI: 10.4204/EPTCS.329
ISSN: 2075-2180
Open Publishing Association

i

Table of Contents

Table of Contents . i

Preface . ii
Matt Luckcuck, Marie Farrell and Michael Fisher

Invited Talk: Verifying Machine Ethics . iv
Louise Dennis

Invited Talk: Runtime Verification with Copilot 3. v
Ivan Perez

How to Formally Model Human in Collaborative Robotics . 1
Mehrnoosh Askarpour

Towards Compositional Verification for Modular Robotic Systems . 15
Rafael C. Cardoso, Louise A. Dennis, Marie Farrell, Michael Fisher and Matt Luckcuck

From Requirements to Autonomous Flight: An Overview of the Monitoring ICAROUS Project 23
Aaron Dutle, Cesar Munoz, Esther Conrad, Alwyn Goodloe, Laura Titolo, Ivan Perez,
Swee Balachandran, Dimitra Giannakopoulou, Anastasia Mavridou and Thomas Pressburger

YAP: Tool Support for Deriving Safety Controllers from Hazard Analysis and Risk Assessments . . . 31
Mario Gleirscher

A Formal Model for Quality-Driven Decision Making in Self-Adaptive Systems 48
Fatma Kachi, Chafia Bouanaka and Souheir Merkouche

ii

Preface

Autonomous systems are highly complex and present unique challenges for the application of formal
methods. Autonomous systems act without human intervention, and are often embedded in a robotic
system, so that they can interact with the real world. As such, they exhibit the properties of safety-
critical, cyber-physical, hybrid, and real-time systems.

This EPTCS volume contains the proceedings for the second workshop on Formal Methods for Au-
tonomous Systems (FMAS 2020), which was held virtually on the 7th of December 2020. FMAS 2020
was an online, stand-alone workshop, as an adaptation to the ongoing COVID-19 restrictions. Despite
the challenges this brought, we aimed to build on the success of the first FMAS workshop, held in 2019.

The goal of FMAS is to bring together leading researchers who are tackling the unique challenges
of autonomous systems using formal methods, to present recent and ongoing work. We are interested
in the use of formal methods to specify, model, or verify autonomous or robotic systems; in whole or in
part. We are also interested in successful industrial applications and potential future directions for this
emerging application of formal methods.

FMAS 2020 encouraged the submission of both long and short papers. In total, we received five long
papers and one short paper, by authors in Algeria, Canada, India, the United Kingdom, and the United
States of America. Each paper received four reviews, and we accepted five papers in total: four long
papers and one short paper.

FMAS 2020 hosted two invited speakers. Louise A. Dennis, from the University of Manchester, was
invited to talk about verifying machine ethics. This talk focused on the foundations of ethics and how
autonomous systems can be made to be explicitly and verifiably ethical. Ivan Perez, from the National
Institute of Aerospace and the NASA Formal Methods Group, was invited to talk about Copilot 3, which
is a runtime verification framework for real-time embedded systems. This talk described how Copliot
synthesises monitor code from a variety of temporal logic specifications.

Despite the disruption caused by the COVID-19 pandemic, our programme committee provided de-
tailed, high quality reviews, which offered useful and constructive feedback to the authors. We thank
them for their time and the effort that they have put into their reviews this year, especially given the cur-
rent, stressful global situation. We would like to thank our invited speakers, Louise A. Dennis and Ivan
Perez; the authors who submitted papers; our EPTCS editor, Martin Wirsing; and all of the attendees of
FMAS 2020.

Matt Luckcuck Marie Farrell Michael Fisher

Department of Computer Science, University of Manchester, Manchester, UK

iii

Program Committee

• Christopher Bischopink, University of Oldenburg (Germany)

• Rafael C. Cardoso, University of Manchester (UK)

• Angelo Ferrando, University of Manchester (UK)

• Mallory S. Graydon, NASA (USA)

• Jérémie Guiochet, University of Toulouse (France)

• Rob Hierons, University of Sheffield (UK)

• Taylor T. Johnson, Vanderbilt University (USA)

• Bruno Lacerda, Oxford University (UK)

• Raluca Lefticaru, University of Bradford (UK)

• Sven Linker, Lancaster University Leipzig (Germany)

• Anastasia Mavridou, SGT Inc./NASA Ames Research Center (USA)

• Claudio Menghi, University of Luxembourg (Luxembourg)

• Dominique Méry, Université de Lorraine, LORIA (France)

• Alice Miller, University of Glasgow (UK)

• Alvaro Miyazawa, University of York (UK)

• Rosemary Monahan, Maynooth University (Ireland)

• Ivan Perez, NIA/NASA Langley Research Center (USA)

• Maike Schwammberger, University of Oldenburg (Germany)

• Silvia Lizeth Tapia Tarifa, University of Oslo (Norway)

• Laura Titolo, National Institute of Aerospace (USA)

• Hao Wu, Maynooth University (Ireland)

M. Luckcuck, M. Farrell (Eds.): Second Workshop
on Formal Methods for Autonomous Systems (FMAS2020)
EPTCS 329, 2020, pp. iv–iv, doi:10.4204/EPTCS.329.0.1

Invited Talk: Verifying Machine Ethics

Louise Dennis
University of Manchester, Manchester, UK

Machine ethics is concerned with the challenge of constructing ethical and ethically behaving artifi-
cial agents and systems. One important theme within machine ethics concerns explicitly ethical agents
those which are not ethical simply because they are constrained by their programming or deployment to
be so but which use a concept of ethics in some way as part of their operation. Normally this requires the
provision of rules, utilities or priorities by a programmer, knowledge engineer or user. In this talk I will
address the question of how such explicitly ethical programs can be verified. What kind of properties
can we consider and what kind of errors might we find?

M. Luckcuck, M. Farrell (Eds.): Second Workshop
on Formal Methods for Autonomous Systems (FMAS2020)
EPTCS 329, 2020, pp. v–vi, doi:10.4204/EPTCS.329.0.2

Invited Talk: Runtime Verification with Copilot 3

Ivan Perez
National Institute of Aerospace

Hampton, Virginia, USA
ivan.perez@nianet.org

Ultra-critical systems require high-level assurance, which cannot always be guaranteed in compile
time. The use of runtime verification (RV) [2, 1] enables monitoring these systems in runtime, to detect
property violations early and limit their potential consequences. However, the introduction of monitors
in ultra-critical systems poses a challenge, as failures and delays in the RV subsystem could affect other
subsystems and threaten the mission as a whole.

In this talk we present Copilot 3 [5], a runtime verification framework for real-time embedded sys-
tems. Copilot monitors are written in a compositional, stream-based language with support for a variety
of temporal logics (e.g., Linear Temporal Logic [7], Past-time Linear Temporal Logic [4], Metric Tem-
poral Logic [3]). Copilot also includes multitude of libraries with functions like, for example, majority
vote, used to implement fault-tolerant monitors [6]. All of this which results in robust, high-level specifi-
cations that are easier to understand than low-level imperative implementations. The Copilot framework
then translates monitor specifications into C99 code with static memory requirements, which can be
compiled to run on embedded hardware.

We also discuss how Copilot has been used in experimental research by NIA, NASA and other
organizations, its place in relation to other RV frameworks, and possible future directions for RV in
autonomous systems.

Acknowledgements This talk is based upon joint work with Alwyn Goodloe and Frank Dedden.

References

[1] Alwyn Goodloe & Lee Pike (2010): Monitoring Distributed Real-Time Systems: A Survey and Future Direc-
tions. Technical Report NASA/CR-2010-216724, NASA Langley Research Center.

[2] Klaus Havelund & Allen Goldberg (2008): Verify Your Runs, pp. 374–383. Springer Berlin Heidelberg, Berlin,
Heidelberg, doi:10.1007/978-3-540-69149-5 40.

[3] Ron Koymans (1990): Specifying Real-time Properties with Metric Temporal Logic. Real-Time Syst. 2(4), pp.
255–299, doi:10.1007/BF01995674.

[4] F. Laroussinie, N. Markey & P. Schnoebelen (2002): Temporal Logic with Forgettable Past. In:
LICS’02: Proceeding of Logic in Computer Science 2002, IEEE Computer Society Press, pp. 383–392,
doi:10.1109/LICS.2002.1029846.

[5] Ivan Perez, Frank Dedden & Alwyn Goodloe (2020): Copilot 3. Technical Memorandum NASA/TM-2020-
220587, National Aeronautics and Space Administration, Langley Research Center, Hampton VA 23681-2199,
USA.

[6] L. Pike, N. Wegmann, S. Niller & A. Goodloe (2013): Copilot: monitoring embedded systems. Innovations in
Systems and Software Engineering 9(4), pp. 235–255, doi:10.1007/s11334-013-0223-x.

vi Runtime Verification with Copilot 3

[7] Amir Pnueli (1977): The Temporal Logic of Programs. In: Proceedings of the 18th Annual Symposium on
Foundations of Computer Science, SFCS ’77, IEEE Computer Society, Washington, DC, USA, pp. 46–57,
doi:10.1109/SFCS.1977.32.

M. Luckcuck, M. Farrell (Eds.): Second Workshop
on Formal Methods for Autonomous Systems (FMAS2020)
EPTCS 329, 2020, pp. 1–14, doi:10.4204/EPTCS.329.1

© M. Askarpour
This work is licensed under the
Creative Commons Attribution License.

How to Formally Model Human in Collaborative Robotics

Mehrnoosh Askarpour
McMaster University

Canada
askarpom@mcmaster.ca

Human-robot collaboration (HRC) is an emerging trend of robotics that promotes the co-presence and
cooperation of humans and robots in common workspaces. Physical vicinity and interaction between
humans and robots, combined with the uncertainty of human behaviour, could lead to undesired
situations where humans are injured. Thus, safety is a priority for HRC applications.

Safety analysis via formal modelling and verification techniques could considerably avoid dan-
gerous consequences, but only if the models of HRC systems are comprehensive and realistic, which
requires reasonably realistic models of human behaviour. This paper explores state-of-the-art solu-
tions for modelling human and discusses which ones are suitable for HRC scenarios.

1 Introduction

A new uprising section of robotics is Human-Robot Collaboration (HRC), where human operators are
not dealing with robots only through interfaces, but they are physically present in the vicinity of robots,
performing hybrid tasks (i.e., partially done by the human and partially by the robot). These applications
introduce promising improvements in the industrial manufacturing area by combining human flexibility
and machine productivity [52], but they must assure the safety of human operators before being fully
deployed to certify that interactions with robots will not cause any harm or injury to humans.

Formal methods have been widely used in robotics for decades in a variety of applications in-
cluding mission planning [6, 20, 46, 53, 63], formal verification of properties [3, 48, 49, 55], and con-
trollers [8, 24, 66]. They could be an effective means for the safety analysis of traditional and collabo-
rative robotics due to their comprehension and exhaustiveness [32, 77, 78]. However, a formal model of
an HRC system should also reflect the human factors that impact the state of the model without dealing
with the additional details of human mental and emotional processes. It necessitates building a formal
model of human behaviour that replicates their physical presence and the observable manifestation of
their behaviour which includes both executing the required job following the expected instructions, and
deviations from the expected behaviour (i.e., mistakes, errors, malicious use). Thus, the model of the
human for each HRC scenario might be intertwined with the model of the executing job.
A 100% realistic formal model of human might not be a reasonable goal and, just like any other phe-
nomena, any human model is subject to some level of abstraction and simplification. Moreover, unlike
robots that perform only a limited set of activities, all possible activities of the human are not foresee-
able. Besides, humans are non-deterministic, and a realistic algorithm for their behaviour is not easy to
envision.

To tackle these issues, researchers have explored well-established cognitive investigations, task-
analytic models, and probabilistic approaches [12]. These three tracks are not mutually exclusive; for
example, there are instances of cognitive probabilistic models in the literature that will be discussed later
in the paper. The rest of this paper, reports on the state-of-the-art on each of these possibilities and exam-
ines their compatibility for HRC scenarios, following a snowballing literature review. Moreover, for each

2 How to Formally Model Human in Collaborative Robotics

track there are several instances that adhered to the normative human behaviour, while other instances
considered erroneous behaviour too; hence, a separate section is dedicated to examples that also model
errors.

In addition to the three highlighted possibilities, Bolton et al. [11] considered human-device interface
models, which are out of the scope of this paper. They do not consider the physical co-presence of
humans and robots and focus only on their remote communication; thus, human physical safety has
never been an issue in these studies [10].

The rest of this paper is structured as follows: Section 2 explores the cognitive approaches; Section 3
reviews task analytic approaches; Section 4 discusses the probabilistic techniques; Section 5 specifically
discusses the difficulties of modelling human errors; finally Section 6 draws a few conclusions on the
best-suited solution for HRC scenarios.

2 Cognitive Models

Cognitive models specify the rationale and knowledge behind human behaviour while working on a set
of pre-defined tasks. They are often incorporated in the system models and contain a set of variables that
describe the human cognitive state, whose values depend on the state of task execution and the operation
environment [12]. Famous examples of well-established cognitive models follow.

SOAR [42] is an extensive cognitive architecture, relying on artificial intelligence principles, that
reproduce human reasoning and short and long term memories. However, it only permits one operation
at a time which seems not to be realistic in HRC scenarios (e.g., human sends a signal while moving
towards the robot).

ACT-R [2] is a detailed and modular architecture that depicts the learning and perception processes
of humans. It contains modules that simulate declarative (i.e., known facts like 2+2 = 4) and procedural
(i.e., knowledge of how to sum two numbers) aspects of human memory. An internal pattern matcher
searches for the procedural statement relevant to the task that the human needs to perform (i.e., an entry
in declarative memory) at any given time. SAL [38, 45] is an extended version of ACT-R, enriched with
a neural architecture called Leabra.

SOAR and ACT-R highlight the cognition behind erroneous behaviours of the human [21] that could
impact safety, such as over-trusting or a lack of trust in the system. It could be used to generate realistic
models that also reflect a human deviation from the correct instructions. On the other hand, they both
lack a formal definition and cannot be directly inputted to automated verification tools. Hence, they must
be transformed into a formal model, which is a cumbersome and time-consuming process and requires
extensive training for modellers [69]. Moreover, they are detailed and heavy models and, therefore,
must be abstracted before formalization to avoid a state-space explosion. There are examples of formal
transformation of ACT-R in [15, 30, 43] and of SOAR in [36]. However, they remain dependent on
their case-studies or use arbitrary simplifications, and therefore, cannot be re-used as a general approach.
Thus, providing a trade-off between abstraction and generality of these two cognitive models is not an
easy task.

Programmable User Models (PUM) define a set of goals and actions for humans. The model mirrors
both human mental actions (i.e., deciding to pick an object) and physical actions (i.e., pick an object).
These models have a notion of a human mental model [31, 67] and separate the machine model from
the user’s perception of it [16], that avoids mode confusions which happen when the observed system
behaviour is not the same as the user’s expectation [17]. Additionally, Moher et al. [56] assign a certainty
level to mental models whose different adjustments reveal various human reactions in execution situa-

M. Askarpour 3

tions. Curzon et al. [23] introduce two customized versions of mental models as naive or experienced.
Since PUM has been around for so long, simplified formal versions of it are defined for a variety

of applications such as domestic service robots [72] Formalised with [71], interactive shared applica-
tions [18] Formalised with logic formulae, and Air Management System [79] Formalised with Petri-nets.
PUM models have a general and accurate semantics and could be well-suited inputs for automated for-
mal verification tools upon simplification. On the other hand, they are very detailed and large and risk
the state-space exploration phenomena. As mentioned above, there are simplified versions of PUM mod-
els which again are not generic enough to be used for different scenarios including HRC applications.
Hence, the effort and time required for customization and simplification remain as high as for SOAR and
ACT-R.

3 Task-Analytic Models

Task-analytic models, as their name suggests, analyze human behaviour throughout the execution of the
task. Therefore, they study the task as a hierarchy of atomic actions. By definition, these models reflect
the expected behaviour of the human, which leads to correct execution of the task, and do not focus
on reflecting erroneous behaviour [11]. Recently, however, Bolton et al. [13] put together a task-based
taxonomy of erroneous human behaviour that allows errors to be modelled as divergences from task
models; Li et al. [47] uses an analytic hierarchy process to identify hazards and increase the efficiency of
the executing task.

Examples of task-analytic models follow. Paterno et al. [60] extend ConcurTaskTrees (CTT) [1] to
better express the collaboration between multiple human operators in air traffic control; Mitchell and
Miller [54] use function models to represent human activities in a simple control system (e.g., sys-
tem shows information about the current state and operator makes relative control actions); Hartson
et al. [33] introduces User Action Notation, a task and user-oriented notation to represent behavioural
asynchronous, direct manipulation interface designs; Bolton et al. [14] establishes an Enhanced Op-
erator Function Model, a generic XML-based notation, to gradually decompose tasks into activities,
sub-activities and actions.

Task-analytic models depict human-robot co-existence and highlight the active role of humans in the
execution of the task. However, they do not always reduce the overall size of the state spaces of the
model [10], especially when multiple human operators are involved in the execution. Moreover, they do
not offer re-usability (i.e., dependent on the case-study scenario and not generalizable) and generation of
erroneous human behaviour.

4 Probabilistic Human Modelling

Another approach to reproduce human non-determinism and uncertainty more vividly are probabilis-
tic models. Unlike deterministic models that produce a single output, stochastic/probabilistic models
produce a probability distribution. In theory, a probabilistic human model could be very beneficial for
model-based safety assessment in terms of a trade-off between cost and safety. For example, given that
human manifests activity A with probability P << 0.001%, and that A causes hazard H which is very
expensive to mitigate, system engineers can save some money by not installing expensive mitigation
for H that might practically never happen and settle for a more cost-effective mitigation. But we must
analyse the challenges of probabilistic models too, so let us discuss a few examples.

4 How to Formally Model Human in Collaborative Robotics

Tang et al. [74] propose a bayesian probabilistic human motion model and argue that human mobility
behaviour is uncertain but not random, and depends on internal (e.g., individual preferences) and external
(e.g., environment) factors. They introduced an algorithm to learn human motion patterns from collected
data about human daily activities from GPS and mobile phone data, and extract a probabilistic relation
between current human place and past places in an indoor environment. The first issue about this work,
and probabilistic models in general, is collecting a big enough dataset for extracting the correct parame-
ters for a probabilistic distribution. The second issue is that the dataset gathered by GPS and cameras is
very coarse-grained for modelling delicate HRC situations; they might capture human moving from one
corner of a small workspace to another, but do not capture a situation such as human handing an object
to the robot gripper or changing the tool-kit installed on the robot arm.

Hawkins et al. [34] present an HRC-oriented approach, based on a probabilistic model of humans
and the environment, where the robot infers the current state of the task and performs the appropriate
action. This model is very interesting but is more suited for simulation experiments, thus needs adaptive
changes to be compatible with formal verification tools. The model also assumes that human performs
everything correctly which is not quite realistic.

Tenorth et al. [75] uses Bayesian Logic Networks [37] to create a human model and evaluated their
approach with TUM kitchen [58] and the CMU MMAC [76] data sets, both focusing only on full-body
movements that exclude many HRC-related activities (e.g., assembling, screw-driving, pick and place,
etc).

The Cognitive Reliability and Error Analysis Method (CREAM) [35] is a probabilistic cognitive
model that is used for human reliability analysis [26], therefore, focuses on correct and incorrect be-
haviour both; it defines a set of modes to replicate different types of human behaviour which have differ-
ent likelihoods to carry out certain errors. Similarly, Systematic Human Error Reduction and Prediction
Analysis (SHERPA) [27] is a qualitative probabilistic human error analysis with a task-analytic direc-
tion which contains several failure modes: action errors, control errors, recovery errors, communication
errors, choice errors. De Felice et al. [28] propose a combination of CREAM and SHERPA that uses
empirical data to assign probabilities to each mode; therefore, the results are strongly dependent on the
case study domain and the reliability and amount of data.

In recent years, machine-learning algorithms have been used quite extensively to create probabilistic
human models [25, 39, 50], however having a reliable and large-enough dataset to learn probabilities
from remains an issue. The communities (i.e., providers, users) shall develop such datasets for different
domains by storing log histories and integrating them into a unique dataset (e.g., a dataset for industrial
assembly tasks, a dataset for service robot tasks, etc.). The larger these datasets become, the more reliable
they get, the better the human models extracted from them will be.

5 Human Erroneous Behavior

Human operators are prone to errors—an activity that does not achieve its goal [64], and one significant
source of hazards in HRC applications is human errors. Reason [65] metaphorically states that the
weaknesses of safety procedures in a system allow for the occurrence of human errors. Hence, a realistic
human model for safety analysis shall be able to replicate errors, too.
The previous sections explained different possibilities to model human behaviour. They all could be
used to model human errors, too, but are not always used as such; some of the papers discussed above,
consider errors and others entirely skip them. This challenge is discussed in a separate section, but all of
the papers discussed below could be listed in at least one of the previous three sections.

M. Askarpour 5

Actions in wrong place

Actions at wrong time

Actions of wrong type

Actions not in plan

Repetition

Reversal

Omission

Delay

Premature Action

Replacement

Insertion

Intrusion

Restart

Jumping

Undershoot

Side-tracking

Capture

Branching

Overshoot

Error Mode Simple Phenotype Complex Phenotype

Figure (1) A taxonomy of erroneous actions phenotypes, taken from [29]. Wrong place refers to the
action’s temporal position in the execution sequence, not to a location in the layout; undershooting,
which occurs when the action stops too early; sidetracking occurs when a segment of unrelated action is
carried out, then the correct sequence is resumed; capturing occurs where an unrelated action sequence
is carried out instead of the expected one; branching is where the wrong sequence of actions is chosen;
overshooting happens where the action carries on past its correct endpoint by not recognizing its post-
conditions.

One must first recognize errors and settle for a precise definition for them to model them. Although
there is no widely used classification of human errors, some notable references follow.

Reason [64] classifies errors as behavioral (i.e., task-related factors), contextual (i.e., environmental
factors) and conceptual (i.e., human cognition). Shin et al. [70] divide errors into two main groups;
location errors happen when humans shall find a specific location for the task, and orientation errors
happen due to humans’ various timing or modality to perform a task. Hollnagel [35] classifies human
errors in eight simple phenotypes: repeating, reversing the order, omission, late or early execution,
replacement, intrusion of actions and inserting an additional action from elsewhere in the task; the paper
then combines them to get complex phenotypes, as shown in Figure 1, and manually introduces them in
the formal model of the model which produces too many false negatives. This issue might be resolved
by introducing a probability distribution on phenotypes.

Kirwan has conducted an extensive review on human error identification techniques in [41] and
suggested the following as the most frequent version:

• Slips and lapses regarding the quality of performance.

• Cognitive, diagnostic and decision-making errors due to misunderstanding the instructions.

• Maintenance errors and latent failures during maintenance activities.

• Errors of commission when the human does an incorrect or irrelevant activity.

• Idiosyncratic errors regarding social variables and human emotional state.

• Software programming errors leading to malfunctioning controllers that put the human in danger.

6 How to Formally Model Human in Collaborative Robotics

Cerone et al. [19] uses temporal logic to model human errors that are defined as: fail to observe
potential conflict, ineffective or no response to observed conflict, fail to detect the criticality of the
conflict.

As explained above, the error definition is context-dependent and might vary from one domain to
another. It seems that the taxonomy presented in [29] is comprehensive enough for possibilities in HRC
scenarios. Nevertheless, the discussion above was a general description of the violation of Norms; we
must explore also papers that model the above definitions.

Many of the works on modelling human errors are inspired by one of the two main steps of human
reliability analysis [26] that are error identification and error probability quantification [57]. For example,
Martinie et al. [51] proposes a deterministic task-analytic approach to identify errors, while CREAM,
HEART [80], THERP [73] and THEA [62] are probabilistic methods for modelling human. However, the
models generated by these methods need formalization and serious customization because they strongly
depend on their case study. Examples of other works with the same issues follow.

[9,59] study the impacts of miscommunication between multiple human operators while interacting
with critical systems; [7, 61] explore human deviation from correct instructions using ConcurTaskTrees;
[68] upgrades the SAL cognitive model with systematic errors taken from empirical data.

On the other hand, several works developed formal human models. For example, Curzon and Bland-
ford [22] propose a cognitive formal model in higher-order logic that separates user-centred and machine-
centred concerns. It uses the HOL proof system [44] to prove that following the proper design rules, the
machine-centred model does not allow for errors in the user-centred model. They experimented with
including strong enough design rules in the model, so to exclude cognitively plausible errors by de-
sign [21]. This method clearly ignores realistic scenarios in which human actually performs an error. In
another example, Kim et al. [40] map human non-determinism to a finite state automaton. However, their
model is limited to the context of prospective control. Askarpour et al. [4,5] formalize simple phenotypes
introduced by Fields [29] with temporal logic, and integrate the result in the overall system model which
is verified against a physical safety property.

6 Conclusions

This paper reviews the state-of-the-art on modelling human in HRC applications for safety analysis. The
paper explored several papers, excluding those on interface applications, and grouped them into three
main groups which are not mutually exclusive: cognitive, task-analytic, and probabilistic models. Then
it reviewed state-of-the-art on modelling human errors and mistakes which is absolutely necessary to be
considered for safety. Human error models expand over the three main groups but have been discussed
separately for more clarity. Table 1 summarizes the observations from which the following conclusions
are drawn:

• Cognitive models are very detailed and extensive. They often originate from different research
areas (e.g., psychology), therefore have been developed with a different mentality from that of
formal methods practitioners. So, they must be Formalised; but their formalization requires a lot
of effort for abstraction and HRC-oriented customization. They also require specialist training for
modellers to understand the models and be able to modify them.

• Among cognitive models, PUM seems to be the one with more available formal instances. It
also could be tailored to different scenarios with much less time, effort and training, compared to
ACT-R and SOAR.

M. Askarpour 7

Table (1) A summary of the discussed papers, extracted by a snowballing literature review. × means
that the feature is not included, Xmeans that the feature is included, ? means that the feature has not
been explored by the papers of the row but potentially could be addressed by their proposed approach
(regardless of the required effort and the resulting efficiency), “semi” means that the model has partially
formal semantics but is not in a form to be fed to an automated verification tool. When a reproducible
model or approach has been used, the name of the approach is mentioned instead of a X. The acronyms
used here are explained in Table 2.

modelling
Approach

Cognitive Task-
Analytic

Probabilistic Modelling
Errors

Formalised HRC Com-
patible

[42] SOAR × × ? × ×
[2] ACT-R × × ? × ×
[15, 30] ACT-R × × ? X ×
[36] SOAR × × ? X ×
[31, 67, 72] PUM × × ? X ?
[18, 79] PUM × × ? X ×
[13] × EOFM × X × X
[47] × Graphs × × × ×
[60] × CCT × ? semi ×
[54] × FSA × X X ×
[33] × UAN × × semi ×
[14] × EOFM × × × ×
[74] × × Bayesian X × ×
[34] × × DBN × × X
[75] × × BLN ? × ×
[28] × × CREAM

and
SHERPA

× × ?

[25, 39, 50] × × ML ? × ?
[29] X X × X × ?
[19] × OCM × X X ?
[51] × X × X X ×
[80] × X CREAM

and
HEART

X X ?

[73] × X THERP X X ?
[62] × X THEA X X ?
[59] X EOFMC × X LTL ×
[9] SAL EOFM × X × ×
[7] × CCT × X semi ?
[61] × CCT × X × ?
[68] SAL × × X × ×
[22] PUM X × X Higher-

Order
Logic

×

[21] PUM X × X Temporal
Logic

?

[40] [26] × × X FSA ×
[5] × X × X Temporal

Logic
X

8 How to Formally Model Human in Collaborative Robotics

Table (2) Acronyms Explained.

PUM Programmable User Model
OCM Operator Choice Model
EOFM Enhanced Operator Function Model
EOFMC Enhanced Operator Function Model with Communications
UAN User Action Notation
CCT ConcurTaskTrees
FSA Finite State Automaton
CREAM The Cognitive Reliability and Error Analysis Method
SHERPA Systematic Human Error Reduction and Prediction Analysis
LTL Linear Temporal Logic
DBN Dynamic Bayes Network
BLN Bayesian Logic Networks
ML Machine Learning
THERP Technique for Human Error-rate Prediction
THEA Technique for Human Error Assessment Early in Design
HEART Human error assessment and reduction technique
SHERPA Systematic Human Error Reduction and Prediction Analysis

• Task-analytic models offer little reusability; they are so intertwined with the task definition that
a slight change in the task might cause significant changes to the model. They also must be first
defined with a hierarchical notation for the easy and clear decomposition of the task and then be
translated to an understandable format for a verification tool.

• Probabilistic models seem to be an optimal solution; they combine either task-analytic or cognitive
models with probability distributions. However, the biggest issue here is to have reliable and large-
enough data sets to extract the parameters of probability distributions from. It requires the robotics
community to produce huge training datasets from their system history logs (e.g., how frequently
human moves in the workspace, the average value of human velocity while performing a specific
task, the number of human interruptions during the execution, the number of emergency stops, the
number of reported errors in an hour of execution, ...).

• None of the three approaches above is enough if they exclude human errors. There are several
works on outlining and classifying human errors. The best way to have a unified terminology
would be for standards organizations in each domain to introduce a list of the most frequent human
errors in that domain. It would be possible only if the datasets mentioned above are available.
Modelling all of the possible human errors might not be feasible, but modelling those that occur
more often is feasible and considerably improves the quality of the final human model.

• Error models might introduce a huge amount of false positive cases (i.e., incorrectly reporting a
hazard when it is safe) during safety analysis. Thus, probabilistic error models might be the best
combination to resolve it.

• In the safety analysis of HRC systems, the observable behaviour of humans and its consequences
(i.e., how it impacts the state of the system) are very important. However, the cognitive elements
behind it are not really valuable to the analysis. One could use them as a black-box that derives
the observable behaviour with a certain probability but the details of what happens inside the box

M. Askarpour 9

do not really matter. Therefore, the cognitive model seems to contain a huge amount of detail that
does not necessarily add value to the safety analysis but makes the model heavy and the verification
long.

• Table 1 suggests that a combination of probabilistic and task-analytic approaches that model erro-
neous human behaviour is the best answer for a formal verification method for safety analysis of
HRC systems.

References

[1] (2012): Concur Task Trees (CTT). available from w3.org. Accessed: 2017-07-06.

[2] John R Anderson (1996): ACT: A simple theory of complex cognition. American Psychologist 51,
doi:10.1037/0003-066X.51.4.355.

[3] Mehrnoosh Askarpour (2016): Risk Assessment in Collaborative Robotics. In: Formal Methods Doctoral
Symposium, FM-DS, CEUR-WS 1744.

[4] Mehrnoosh Askarpour, Dino Mandrioli, Matteo Rossi & Federico Vicentini (2017): Modeling Operator
Behavior in the Safety Analysis of Collaborative Robotic Applications. In Stefano Tonetta, Erwin Schoitsch
& Friedemann Bitsch, editors: Computer Safety, Reliability, and Security - 36th International Conference,
SAFECOMP 2017, Trento, Italy, September 13-15, 2017, Proceedings, Lecture Notes in Computer Science
10488, Springer, pp. 89–104, doi:10.1007/978-3-319-66266-4 6.

[5] Mehrnoosh Askarpour, Dino Mandrioli, Matteo Rossi & Federico Vicentini (2019): Formal model of hu-
man erroneous behavior for safety analysis in collaborative robotics. Robotics and Computer-Integrated
Manufacturing 57, pp. 465 – 476, doi:10.1016/j.rcim.2019.01.001.

[6] Mehrnoosh Askarpour, Claudio Menghi, Gabriele Belli, Marcello M. Bersani & Patrizio Pelliccione (2020):
Mind the gap: Robotic Mission Planning Meets Software Engineering. In: FormaliSE@ICSE 2020: 8th
International Conference on Formal Methods in Software Engineering, Seoul, Republic of Korea, July 13,
2020, pp. 55–65, doi:10.1145/3372020.3391561.

[7] Sandra Basnyat & Philippe Palanque (2005): A task pattern approach to incorporate user deviation in task
models. In: Proc. 1st ADVISES Young Researchers Workshop. Liege, Belgium.

[8] Marcello M. Bersani, Matteo Soldo, Claudio Menghi, Patrizio Pelliccione & Matteo Rossi (2020): PuRSUE
-from specification of robotic environments to synthesis of controllers. Formal Aspects Comput. 32(2), pp.
187–227, doi:10.1109/TAC.2011.2176409.

[9] Matthew L. Bolton (2015): Model Checking Human-Human Communication Protocols Using
Task Models and Miscommunication Generation. J. Aerospace Inf. Sys. 12(7), pp. 476–489,
doi:10.1177/1555343413490944.

[10] Matthew L. Bolton & Ellen J. Bass (2010): Formally verifying human–automation interaction as part of a
system model: limitations and tradeoffs. Innovations in Systems and Software Engineering 6(3), pp. 219–231,
doi:10.1007/s11334-010-0129-9.

[11] Matthew L. Bolton, Ellen J. Bass & Radu I. Siminiceanu (2012): Generating Phenotypical Erroneous Human
Behavior to Evaluate Human-automation Interaction Using Model Checking. Int. J. Hum.-Comput. Stud.
70(11), pp. 888–906, doi:10.1016/j.ijhcs.2012.05.010.

[12] Matthew L. Bolton, Ellen J. Bass & Radu I. Siminiceanu (2013): Using Formal Verification to Evaluate
Human-Automation Interaction: A Review. IEEE Trans. Systems, Man, and Cybernetics: Systems 43(3), pp.
488–503, doi:10.1109/TSMCA.2012.2210406.

[13] Matthew L. Bolton, Kylie Molinaro & Adam Houser (2019): A formal method for assessing the impact of
task-based erroneous human behavior on system safety. Reliab. Eng. Syst. Saf. 188, pp. 168–180. Available
at https://doi.org/10.1016/j.ress.2019.03.010.

10 How to Formally Model Human in Collaborative Robotics

[14] Matthew L. Bolton, Radu I. Siminiceanu & Ellen J. Bass (2011): A Systematic Approach to Model Checking
Human-Automation Interaction Using Task Analytic Models. IEEE Trans. Systems, Man, and Cybernetics,
Part A 41(5), pp. 961–976, doi:10.1109/TSMCA.2011.2109709.

[15] Fiemke Both & Annerieke Heuvelink (2007): From a formal cognitive task model to an implemented ACT-R
model. In: Proceedings of the 8th International Conference on Cognitive Modeling (ICCM), pp. 199–204.

[16] Jan Bredereke & Axel Lankenau (2002): A Rigorous View of Mode Confusion. In: Proceedings of the 21st
International Conference on Computer Safety, Reliability and Security, SAFECOMP ’02, Springer-Verlag,
London, UK, UK, pp. 19–31, doi:10.1016/0167-6423(95)96871-J.

[17] Jan Bredereke & Axel Lankenau (2005): Safety-relevant mode confusions modelling and reducing them.
Reliability Engineering & System Safety 88(3), pp. 229 – 245, doi:10.1016/j.ress.2004.07.020.

[18] Richard Butterworth, Ann Blandford & David Duke (2000): Demonstrating the Cognitive Plau-
sibility of Interactive System Specifications. Formal Aspects of Computing 12(4), pp. 237–259,
doi:10.1007/s001650070021.

[19] Antonio Cerone, Peter A. Lindsay & Simon Connelly (2005): Formal Analysis of Human-computer In-
teraction using Model-checking. In Bernhard K. Aichernig & Bernhard Beckert, editors: Third IEEE
International Conference on Software Engineering and Formal Methods (SEFM 2005), 7-9 September
2005, Koblenz, Germany, IEEE Computer Society, pp. 352–362, doi:10.1109/SEFM.2005.19. Available
at https://ieeexplore.ieee.org/xpl/conhome/10529/proceeding.

[20] Matthew Crosby, Ronald P. A. Petrick, Francesco Rovida & Volker Krüger (2017): Integrating Mission
and Task Planning in an Industrial Robotics Framework. In Laura Barbulescu, Jeremy Frank, Mausam
& Stephen F. Smith, editors: Proceedings of the Twenty-Seventh International Conference on Automated
Planning and Scheduling, ICAPS 2017, Pittsburgh, Pennsylvania, USA, June 18-23, 2017, AAAI Press, pp.
471–479. Available at https://aaai.org/ocs/index.php/ICAPS/ICAPS17/paper/view/15715.

[21] Paul Curzon & Ann Blandford (2002): From a Formal User Model to Design Rules. In: Interactive Systems.
Design, Specification, and Verification, 9th International Workshop, DSV-IS 2002, Rostock Germany, June
12-14, 2002, pp. 1–15, doi:10.1007/3-540-36235-5 1.

[22] Paul Curzon & Ann Blandford (2004): Formally justifying user-centred design rules: a case study on post-
completion errors. In: International Conference on Integrated Formal Methods, Springer, pp. 461–480,
doi:10.1007/3-540-47884-1 12.

[23] Paul Curzon, Rimvydas Rukšėnas & Ann Blandford (2007): An approach to formal verification of human–
computer interaction. Formal Aspects of Computing 19(4), pp. 513–550, doi:10.1007/s00165-007-0035-6.

[24] Lavindra de Silva, Paolo Felli, David Sanderson, Jack C. Chaplin, Brian Logan & Svetan Ratchev (2019):
Synthesising process controllers from formal models of transformable assembly systems. Robotics and
Computer-Integrated Manufacturing 58, pp. 130 – 144, doi:10.1016/j.rcim.2019.01.014.

[25] R. Dillmann, O. Rogalla, M. Ehrenmann, R. Zöliner & M. Bordegoni (2000): Learning Robot Behaviour
and Skills Based on Human Demonstration and Advice: The Machine Learning Paradigm. In John M.
Hollerbach & Daniel E. Koditschek, editors: Robotics Research, Springer London, London, pp. 229–238,
doi:10.1007/978-1-4471-1555-7.

[26] E.M. Dougherty & J.R. Fragola (1988): Human reliability analysis. New York, NY; John Wiley and Sons
Inc.

[27] DE Embrey (1986): SHERPA: A systematic human error reduction and prediction approach. In: Proceedings
of the international topical meeting on advances in human factors in nuclear power systems.

[28] F. De Felice, A. Petrillo & F. Zomparelli (2016): A Hybrid Model for Human Error Probability Analysis.
IFAC-PapersOnLine 49(12), pp. 1673 – 1678, doi:10.1016/j.ifacol.2016.07.821. 8th IFAC Conference on
Manufacturing Modelling, Management and Control MIM 2016.

[29] Robert E. Fields (2001): Analysis of erroneous actions in the design of critical systems. Ph.D. thesis, Uni-
versity of York.

M. Askarpour 11

[30] Daniel Gall & Thom W. Frühwirth (2014): A Formal Semantics for the Cognitive Architecture ACT-R. In:
Logic-Based Program Synthesis and Transformation - 24th International Symposium, LOPSTR 2014, Can-
terbury, UK, September 9-11, 2014. Revised Selected Papers, pp. 74–91, doi:10.1007/978-3-319-17822-6 5.

[31] Wayne D. Gray (2000): The Nature and Processing of Errors in Interactive Behavior. Cognitive Science
24(2), pp. 205–248, doi:10.1207/s15516709cog2402 2.

[32] Jrmie Guiochet, Mathilde Machin & Hlne Waeselynck (2017): Safety-critical advanced robots: A survey.
Robotics and Autonomous Systems 94, pp. 43 – 52, doi:10.1016/j.robot.2017.04.004.

[33] H. Rex Hartson, Antonio C. Siochi & D. Hix (1990): The UAN: A User-oriented Representation for Direct
Manipulation Interface Designs. ACM Trans. Inf. Syst. 8(3), pp. 181–203, doi:10.1145/964967.801131.

[34] K. P. Hawkins, Nam Vo, S. Bansal & A. F. Bobick (2013): Probabilistic human action prediction and wait-
sensitive planning for responsive human-robot collaboration. In: 2013 13th IEEE-RAS International Con-
ference on Humanoid Robots (Humanoids), pp. 499–506, doi:10.1109/HUMANOIDS.2013.7030020.

[35] Erik Hollnagel (1998): Cognitive reliability and error analysis method (CREAM). Elsevier.

[36] Andrew Howes & Richard M. Young (1997): The Role of Cognitive Architecture in Modeling the User:
Soar’s Learning Mechanism. Human-Computer Interaction 12(4), pp. 311–343, doi:10.1007/BF01099424.

[37] Dominik Jain, Stefan Waldherr & Michael Beetz (2011): Bayesian Logic Networks.

[38] David J. Jilk, Christian Lebiere, Randall C. O’Reilly & John R. Anderson (2008): SAL: an explicitly plural-
istic cognitive architecture. J. Exp. Theor. Artif. Intell. 20(3), pp. 197–218, doi:10.1007/10719871.

[39] Been Kim (2015): Interactive and interpretable machine learning models for human machine collaboration.
Ph.D. thesis, Massachusetts Institute of Technology.

[40] Namhun Kim, Ling Rothrock, Jaekoo Joo & Richard A. Wysk (2010): An affordance-based formalism for
modeling human-involvement in complex systems for prospective control. In: Proceedings of the 2010 Win-
ter Simulation Conference, WSC 2010, Baltimore, Maryland, USA, 5-8 December 2010, IEEE, pp. 811–
823, doi:10.1109/WSC.2010.5679107. Available at https://ieeexplore.ieee.org/xpl/conhome/

5672636/proceeding.

[41] Barry Kirwan (1998): Human error identification techniques for risk assessment of high risk systems-Part
1: review and evaluation of techniques. Applied Ergonomics 29(3), pp. 157 – 177, doi:10.1016/S0003-
6870(98)00010-6.

[42] John E Laird (2012): The Soar cognitive architecture. MIT Press, doi:10.7551/mitpress/7688.001.0001.

[43] Vincent Langenfeld, Bernd Westphal & Andreas Podelski (2019): On Formal Verification of ACT-R Ar-
chitectures and Models. In Ashok K. Goel, Colleen M. Seifert & Christian Freksa, editors: Proceedings
of the 41th Annual Meeting of the Cognitive Science Society, CogSci 2019: Creativity + Cognition +
Computation, Montreal, Canada, July 24-27, 2019, cognitivesciencesociety.org, pp. 618–624. Available
at https://mindmodeling.org/cogsci2019/papers/0124/index.html.

[44] Kung-Kiu Lau & Mario Ornaghi (1995): Towards an Object-Oriented Methodology for Deductive Synthesis
of Logic Programs. In: Logic Programming Synthesis and Transformation, 5th International Workshop,
LOPSTR’95, Utrecht, The Netherlands, September 20-22, 1995, Proceedings, pp. 152–169, doi:10.1007/3-
540-60939-3 11.

[45] Christian Lebiere, Randall C. O’Reilly, David J. Jilk, Niels Taatgen & John R. Anderson (2008): The
SAL Integrated Cognitive Architecture. In: Biologically Inspired Cognitive Architectures, Papers from
the 2008 AAAI Fall Symposium, Arlington, Virginia, USA, November 7-9, 2008, AAAI Technical Report
FS-08-04, AAAI, pp. 98–104. Available at http://www.aaai.org/Library/Symposia/Fall/2008/
fs08-04-027.php.

[46] B. Li, B. R. Page, B. Moridian & N. Mahmoudian (2020): Collaborative Mission Planning for Long-Term
Operation Considering Energy Limitations. IEEE Robotics and Automation Letters 5(3), pp. 4751–4758,
doi:10.1109/LRA.2020.3003881.

12 How to Formally Model Human in Collaborative Robotics

[47] Meng kun Li, Yong kuo Liu, Min jun Peng, Chun li Xie & Li qun Yang (2016): The decision making method
of task arrangement based on analytic hierarchy process for nuclear safety in radiation field. Progress in
Nuclear Energy 93, pp. 318 – 326.

[48] Matt Luckcuck, Marie Farrell, Louise A. Dennis, Clare Dixon & Michael Fisher (2019): Formal Specification
and Verification of Autonomous Robotic Systems: A Survey. ACM Comput. Surv. 52(5), pp. 100:1–100:41,
doi:10.1007/s10458-010-9146-1.

[49] Matt Luckcuck, Marie Farrell, Louise A. Dennis, Clare Dixon & Michael Fisher (2019): A Summary of
Formal Specification and Verification of Autonomous Robotic Systems. In Wolfgang Ahrendt & Silvia
Lizeth Tapia Tarifa, editors: Integrated Formal Methods - 15th International Conference, IFM, Lecture Notes
in Computer Science 11918, Springer, pp. 538–541, doi:10.1145/1592434.1592436.

[50] Andrea Mannini & Angelo Maria Sabatini (2010): Machine Learning Methods for Classifying Human Phys-
ical Activity from On-Body Accelerometers. Sensors 10(2), pp. 1154–1175, doi:10.3390/s100201154.

[51] Célia Martinie, Philippe A. Palanque, Racim Fahssi, Jean-Paul Blanquart, Camille Fayollas & Christel Seguin
(2016): Task Model-Based Systematic Analysis of Both System Failures and Human Errors. IEEE Trans.
Human-Machine Systems 46(2), pp. 243–254, doi:10.1109/THMS.2014.2365956.

[52] Björn Matthias (2015): Risk Assessment for Human-Robot Collaborative Applications. In: Workshop IROS
- Physical Human-Robot Collaboration: Safety, Control, Learning and Applications.

[53] Claudio Menghi, Sergio Garcia, Patrizio Pelliccione & Jana Tumova (2018): Multi-robot LTL Planning
Under Uncertainty. In Klaus Havelund, Jan Peleska, Bill Roscoe & Erik de Vink, editors: Formal Methods,
Springer International Publishing, Cham, pp. 399–417, doi:10.1177/0278364915595278.

[54] Christine M. Mitchell & R. A. Miller (1986): A Discrete Control Model of Operator Function: A Method-
ology for Information Display Design. IEEE Trans. Systems, Man, and Cybernetics 16(3), pp. 343–357,
doi:10.1109/TSMC.1986.4308966.

[55] Alvaro Miyazawa, Pedro Ribeiro, Wei Li, Ana Cavalcanti, Jon Timmis & Jim Woodcock (2019): RoboChart:
modelling and verification of the functional behaviour of robotic applications. Software and Systems Mod-
eling 18(5), pp. 3097–3149, doi:10.1145/197320.197322.

[56] Victor Moher, Thomas G.and Dirda (1995): Revising mental models to accommodate expectation failures in
human-computer dialogues, pp. 76–92. Springer Vienna, Vienna.

[57] A. Mosleh & Y.H. Chang (2004): Model-based human reliability analysis: prospects and requirements.
Reliability Engineering & System Safety 83(2), pp. 241 – 253, doi:10.1016/j.ress.2003.09.014. Human
Reliability Analysis: Data Issues and Errors of Commission.

[58] tum technische universitat munchen (2012): The TUM Kitchen Data Set. Available at https://ias.in.
tum.de/dokuwiki/software/kitchen-activity-data.

[59] Dan Pan & Matthew L. Bolton (2016): Properties for formally assessing the performance level of human-
human collaborative procedures with miscommunications and erroneous human behavior. International
Journal of Industrial Ergonomics, pp. –.

[60] Fabio Paternò, Cristiano Mancini & Silvia Meniconi (1997): ConcurTaskTrees: A Diagrammatic Notation for
Specifying Task Models. In Steve Howard, Judy Hammond & Gitte Lindgaard, editors: Human-Computer
Interaction, INTERACT ’97, IFIP TC13 Interantional Conference on Human-Computer Interaction, 14th-
18th July 1997, Sydney, Australia, IFIP Conference Proceedings 96, Chapman & Hall, pp. 362–369.

[61] Fabio Paternò & Carmen Santoro (2002): Preventing user errors by systematic analysis of deviations
from the system task model. International Journal of Human-Computer Studies 56(2), pp. 225–245,
doi:10.1006/ijhc.2001.0523.

[62] Steven Pocock, Michael D. Harrison, Peter C. Wright & Paul Johnson (2001): THEA: A Technique for Human
Error Assessment Early in Design. In Michitaka Hirose, editor: Human-Computer Interaction INTERACT
’01: IFIP TC13 International Conference on Human-Computer Interaction, Tokyo, Japan, July 9-13, 2001,
IOS Press, pp. 247–254.

M. Askarpour 13

[63] Gayathri R. & V. Uma (2018): Ontology based knowledge representation technique, domain model-
ing languages and planners for robotic path planning: A survey. ICT Express 4(2), pp. 69 – 74,
doi:10.1016/j.icte.2018.04.008. SI on Artificial Intelligence and Machine Learning.

[64] James Reason (1990): Human error. Cambridge university press, doi:10.1017/CBO9781139062367.
[65] James Reason (2000): Human error: models and management. BMJ: British Medical Journal 320(7237), p.

768, doi:10.1136/bmj.320.7237.768.
[66] Pedro Ribeiro, Alvaro Miyazawa, Wei Li, Ana Cavalcanti & Jon Timmis (2017): Modelling and Verification

of Timed Robotic Controllers. In Nadia Polikarpova & Steve Schneider, editors: Integrated Formal Methods,
Springer International Publishing, Cham, pp. 18–33, doi:10.1007/BFb0020949.

[67] FRANK E. RITTER & RICHARD M. YOUNG (2001): Embodied models as simulated users: introduction
to this special issue on using cognitive models to improve interface design. International Journal of Human-
Computer Studies 55(1), pp. 1 – 14, doi:10.1006/ijhc.2001.0471.

[68] Rimvydas Ruksenas, Jonathan Back, Paul Curzon & Ann Blandford (2009): Verification-guided modelling
of salience and cognitive load. Formal Asp. Comput. 21(6), pp. 541–569, doi:10.1007/s00165-008-0102-7.

[69] Dario D. Salvucci & Frank J. Lee (2003): Simple cognitive modeling in a complex cognitive architecture.
In Gilbert Cockton & Panu Korhonen, editors: Proceedings of the 2003 Conference on Human Factors
in Computing Systems, CHI 2003, Ft. Lauderdale, Florida, USA, April 5-10, 2003, ACM, pp. 265–272,
doi:10.1145/642611.642658.

[70] Dongmin Shin, Richard A. Wysk & Ling Rothrock (2006): Formal model of human material-handling tasks
for control of manufacturing systems. IEEE Trans. Systems, Man, and Cybernetics, Part A 36(4), pp. 685–
696, doi:10.1109/TSMCA.2005.853490.

[71] Maarten Sierhuis et al. (2001): Modeling and simulating work practice: BRAHMS: a multiagent modeling
and simulation language for work system analysis and design.

[72] Richard Stocker, Louise Dennis, Clare Dixon & Michael Fisher (2012): Verifying Brahms Human-
Robot Teamwork Models. In: Logics in Artificial Intelligence: 13th European Conference, JELIA,
doi:10.1023/A:1022920129859.

[73] Alan D Swain & Henry E Guttmann (1983): Handbook of human-reliability analysis with emphasis on
nuclear power plant applications. Final report. Technical Report, Sandia National Labs., Albuquerque, NM
(USA).

[74] Bo Tang, Chao Jiang, Haibo He & Yi Guo (2016): Probabilistic human mobility model in indoor environment,
pp. 1601–1608. doi:10.1109/IJCNN.2016.7727389. Available at https://ieeexplore.ieee.org/xpl/
conhome/7593175/proceeding.

[75] Moritz Tenorth, Fernando De la Torre & Michael Beetz (2013): Learning probability distributions over
partially-ordered human everyday activities. In: 2013 IEEE International Conference on Robotics and Au-
tomation, Karlsruhe, Germany, May 6-10, 2013, IEEE, pp. 4539–4544, doi:10.1109/ICRA.2013.6631222.
Available at https://ieeexplore.ieee.org/xpl/conhome/6615630/proceeding.

[76] Fernando de la Torre, Jessica K. Hodgins, Javier Montano & Sergio Valcarcel (2009): Detailed Human
Data Acquisition of Kitchen Activities: the CMU-Multimodal Activity Database (CMU-MMAC). In: CHI
2009 Workshop. Developing Shared Home Behavior Datasets to Advance HCI and Ubiquitous Computing
Research.

[77] Federico Vicentini, Mehrnoosh Askarpour, Matteo Rossi & Dino Mandrioli (2020): Safety Assessment of
Collaborative Robotics Through Automated Formal Verification. IEEE Trans. Robotics 36(1), pp. 42–61,
doi:10.1109/TRO.2019.2937471.

[78] M.L. Visinsky, J.R. Cavallaro & I.D. Walker (1994): Robotic fault detection and fault tolerance: A survey.
Reliability Engineering & System Safety 46(2), pp. 139 – 158, doi:10.1016/0951-8320(94)90132-5.

[79] Bernd Werther & Eckehard Schnieder (2005): Formal Cognitive Resource Model: Modeling of human be-
havior in complex work environments. In: 2005 International Conference on Computational Intelligence
for Modelling Control and Automation (CIMCA 2005), International Conference on Intelligent Agents,

14 How to Formally Model Human in Collaborative Robotics

Web Technologies and Internet Commerce (IAWTIC 2005), 28-30 November 2005, Vienna, Austria, IEEE
Computer Society, pp. 606–611, doi:10.1109/CIMCA.2005.1631535. Available at https://ieeexplore.
ieee.org/xpl/conhome/10869/proceeding.

[80] J. C. Williams (1988): A data-based method for assessing and reducing human error to improve operational
performance. In: Conference Record for 1988 IEEE Fourth Conference on Human Factors and Power Plants,,
pp. 436–450, doi:10.1109/HFPP.1988.27540.

M. Luckcuck, M. Farrell (Eds.): Second Workshop
on Formal Methods for Autonomous Systems (FMAS2020)
EPTCS 329, 2020, pp. 15–22, doi:10.4204/EPTCS.329.2

© R.C. Cardoso et al.
This work is licensed under the
Creative Commons Attribution License.

Towards Compositional Verification
for Modular Robotic Systems *

Rafael C. Cardoso Louise A. Dennis Marie Farrell Michael Fisher Matt Luckcuck
Department of Computer Science

The University of Manchester
Manchester, United Kingdom

{rafael.cardoso, louise.dennis, marie.farrell, michael.fisher, matthew.luckcuck}@manchester.ac.uk

Software engineering of modular robotic systems is a challenging task, however, verifying that the de-
veloped components all behave as they should individually and as a whole presents its own unique set
of challenges. In particular, distinct components in a modular robotic system often require different
verification techniques to ensure that they behave as expected. Ensuring whole system consistency
when individual components are verified using a variety of techniques and formalisms is difficult.
This paper discusses how to use compositional verification to integrate the various verification tech-
niques that are applied to modular robotic software, using a First-Order Logic (FOL) contract that
captures each component’s assumptions and guarantees. These contracts can then be used to guide
the verification of the individual components, be it by testing or the use of a formal method. We
provide an illustrative example of an autonomous robot used in remote inspection. We also discuss a
way of defining confidence for the verification associated with each component.

1 Introduction

Autonomous robotic systems are being used more frequently in safety-critical scenarios. Examples in-
clude monitoring offshore structures [16], nuclear inspection and decommissioning [4], and space ex-
ploration [31]. Ensuring that the software which controls the robot behaves as it should is crucial, par-
ticularly as modern robotic systems become more modular, and are deployed alongside humans in both
safety- and mission-critical scenarios.

Robotic software is often developed using a middleware to facilitate interoperability, such as ROS1 or
GenoM2. They share some abstract concepts [26], namely that systems are composed of communicating
components. The approach that we describe in this paper is not restricted to any particular robotic
middleware, instead it can be applied to a range of modular systems.

Distinct components in a modular system often require different verification techniques, ranging from
software testing to formal methods. In fact, integrating (formal and non-formal) verification techniques
is crucial particularly for robotic applications [14]. It is essential for the verification to be carried out
using the most suitable technique or formalism for each component. However, performing compositional
verification via linking heterogeneous verification results of individual components is difficult and the
current state-of-the-art for robotic software development does not provide an easy way of achieving this.

Our approach is to construct a high-level First-Order Logic (FOL) contract specification of the sys-
tem. The FOL contract describes the expected input, required output, and Assume-Guarantee [19] con-
ditions for each component. This abstract specification can be seen as a logical prototype for individual

*Work supported by UK Research and Innovation, and EPSRC Hubs for Robotics and AI in Hazardous Environments:
EP/R026092 (FAIR-SPACE), EP/R026173 (ORCA), and EP/R026084 (RAIN).

1http://www.ros.org/
2https://www.openrobots.org/wiki/genom

16 Towards Compositional Verification for Modular Systems

components and, via our calculus for chaining individual specifications, the entire modular system. Once
the FOL contracts have been checked for consistency, they can be used to guide the verification of each
component. This involves ensuring that the verification encodes the assumptions and guarantees as, for
example, test cases, assertions, or formal properties.

Our approach can be used in a Top-Down manner, to guide the system’s development from abstract
specification to concrete implementation, via verification; or in a Bottom-Up fashion, to check the con-
sistency of existing verification techniques. In this paper we present a Top-Down example. Our approach
enables developers to choose the most suitable verification technique for each component, but also to link
the conditions being verified across the whole system.

The next section presents background and related work. Section 3 describes our contribution for
specifying modular systems using contracts written in FOL; then, we illustrate our approach via a simple
remote inspection example. In Section 4 we discuss how the use of distinct forms of verification (e.g.,
testing, simulation, formal methods, etc.) affects our confidence in the verification results for the whole
system. Finally, Section 5 concludes and outlines future directions.

2 Background and Related Work

Modular robotic systems that are used in safety- or mission-critical scenarios require robust verification
techniques to ensure and certify that they behave as intended. These techniques encompass a range of
software engineering tools and methodologies: from practical testing and simulation, through to formal
verification [20, 14]. For example, to show that a property always holds: model-checkers [9] exhaustively
explore the search space, and theorem provers [3] use mathematical proof. These techniques offer a
means for proving that the software system is correct, which can be used as evidence to improve public
trust or to gain certification, as needed. Formal verification can be applied to the implemented system;
or to an abstract specification, which can then be further refined to program code.

Many formal methods exist, and most follow a simple paradigm: if the program is executed in a state
satisfying a given property (the pre-condition), then it will terminate in a state that satisfies another prop-
erty (the post-condition) [13]. It is up to the software engineer to specify these properties (sometimes
referred to as assumptions and guarantees, respectively). The Assume-Guarantee (or Rely-Guarantee)
approach [19] enables components to be assessed (verified) individually and then the separate assess-
ments to be combined, potentially under some assumption about the underlying concurrency. To com-
bine assessments, specifications of a component’s pre- and post-conditions are needed; this is similar to
the notion of Hoare logic that underlies these techniques [17]. In this work, we refer to this combination
of assumption/pre-condition and guarantee/post-condition as a contract that must be preserved.

Our work takes inspiration from Broy’s logical approach to systems engineering [5, 6] in which he
distinguishes three kinds of artefacts: (1) system-level requirements, (2) functional system specifica-
tion, and (3) logical subsystem architecture. Each of these artefacts is represented as a logical pred-
icate in the form of assertions, with relationships defined between them which he then extends to as-
sume/commitment contracts. His treatment of these contracts is purely logical [6], and, in this paper, we
present a similar technique that is specialised to the software engineering of modular robotic systems.

In [21], a workflow is proposed for systematically verifying the design of models of a cyber-physical
system using a combination of formal refinement and model-checking. Our work also deals with several
different levels of abstraction, but we tackle the use of compositional verification in modular systems.

Recent work has analysed a portion of the literature and identified common patterns that appear in
robotic missions (e.g. patrolling and obstacle avoidance) [22]. They provide verified LTL/CTL specifica-

R.C. Cardoso et al. 17

Component 1:
Black-Box

Implementation

A1(i1) G1(o1)

Component 2:
Logical/Algebraic

Specification

A2(i2) G2(o2)

Component 3:
Model-based
Specification

A3(i3) G3(o3)

Component 4:
White-Box

Implementation

A4(i4) G4(o4)

Software Testing
Program Model

Checking
Theorem Proving

Simulation-Based
Testing

Figure 1: We specify the contract for each component. Here we denote the assumption/pre-condition by A (i)
and the guarantee/post-condition by G (o). These contracts are used to guide the verification approach applied to
each component, denoted by dashed lines, such as software testing for a black-box implementation (Component
1). The solid arrows represent data flow. Note that we use the bar notation (i,o) to indicate a vector of variables.

tions for these commonly found missions which can then be reused in future developments. Further, it is
not clear how their support for compositional verification can be extended to support heterogeneous com-
ponents such as those in our example. Related work includes the identification of Event-B specification
clones in cyber physical system specifications [15].

Other compositional approaches include OCRA [8], AGREE [10], CoCoSpec [7], SIMPAL [29],
DRONA [12], and a methodology to decompose a system into assume-guarantee contracts that are then
validated through simulation [27], however, none explicitly incorporates heterogeneous techniques.

3 A First-Order Logic Framework

No single verification approach suits every component in a modular robotic system [14]. Components
such as hardware interfaces or planners may be amenable to formal verification, whereas, sensors may
require software testing or simulation-based testing.

As illustrated in Fig. 1, we could use logical specifications (e.g. temporal logic), model-based speci-
fications (e.g. Event-B [1] or Z [28]), or algebraic specifications (e.g. CSP [18] or CASL[24]) amongst
others to specify the components in the system. Each of these formalisms offers its own range of benefits,
and each tends to suit the verification of particular types of behaviour. Also, we may only have access to
the black-box or white-box implementation of a component.

Our approach facilitates the use of compositional verification techniques for the components in mod-
ular robotic systems. We achieve this by specifying high-level contracts in FOL and we employ temporal
logic for reasoning about the combination of these contracts. In this way, we attach the assumptions over
the input (A (i)) and guarantees over the output (G (o)) to individual components (see Fig. 1).

3.1 A Calculus for Chaining Component Specifications

Specifically, we use typed FOL, potentially with the addition of algebraic operators, to specify assump-
tions and guarantees. For each component, C, we specify AC(iC) and GC(oC) where iC is a variable
representing the input to the component, oC is a variable representing the output from the component,
and AC(iC) and GC(oC) are FOL formulae describing the assumptions and guarantees, respectively.

Each individual component, C, obeys the following implication:
∀ iC,oC ·AC(iC)[C]⇒ ♦GC(oC)

where iC and oC are the inputs and outputs, respectively, of C; AC(iC)[C] represents the execution of C
with the assumption AC(iC); and ‘♦’ is Linear-time Temporal Logic (LTL)’s [25] “eventually” operator.

18 Towards Compositional Verification for Modular Systems

So, this implication means that if the assumptions, AC(iC), hold in the specification or program code of
C, then upon execution of the component eventually the guarantee, GC(oC), will hold. Note that our use
of temporal operators here is motivated by the real-time nature of robotic systems and could be of use in
later extensions of this calculus for larger, more complex systems.

Components in a modular robotic architecture are ‘chained’ together so long as their types/requirements
match. Similarly, we can compose the contracts of individual components in a number of ways, the sim-
plest being a sequential composition. The basic way to describe such structures is to first have the
specification capture all of the input and output streams and then to describe how these are combined in
the appropriate inference rules. The proof rule, PR1, for such linkage is as expected:

∀ i1,o1. A1(i1) ⇒ ♦G1(o1)
∀ i2,o2. A2(i2) ⇒ ♦G2(o2)
o1 = i2
⊢ ∀ i2,o1. G1(o1) ⇒ A2(i2)
∀ i1,o2. A1(i1) ⇒ ♦G2(o2)

(PR1)

Intuitively, this states that if two components are sequentially composed with the output of the first equal
to the input of the second and the guarantee of the first implies the assumption of the second then, we
can deduce that the assumption of the first component implies that the guarantee of the second will
“eventually” hold.

The illustrative example that we present in the next section contains a neat, linear chain of compo-
nents and so it is easy to see how this proof rule works. But a realistic robotic system could be much
more complex than this. For example, a component might have multiple, branching output streams that
are each used as input to other distinct components. Thus, we propose PR2 to account for branching:

∀ i1,o1. A1(i1) ⇒ ♦G1(o1)
∀ i2,o2. A2(i2) ⇒ ♦G2(o2)
i2 ⊆ o1
⊢ ∀ i2,o1. G1(o1) ⇒ A2(i2)
∀ i1,o2. A1(i1) ⇒ ♦G2(o2)

(PR2)

Here, the input to the second component, i2, is a subset of the output, o1, of the first. We have also
devised other proof rules which are omitted here for brevity.

3.2 Remote Inspection Case Study

The various middleware often used to develop robotic systems enable the combination of subsystems,
potentially developed independently of one another. For example, an autonomous rover might have a
navigation subsystem that is responsible for traversing a planet’s surface, and a subsystem for sampling
and analysing rock and soil samples.

In this paper, we use the illustrative example of a simplified navigation subsystem for an autonomous
rover, whose goal is to perform remote inspection of particular targets, while avoiding any obstacles, on a
2D grid map that has been previously generated. This navigation subsystem is composed of components
for Detection, a Planner and a cognitive Agent. Fig. 2 illustrates this subsystem and outlines the abstract
FOL contract of each component to be verified.

Given the camera input and the size of the square grid to be explored, n, the specification of the
Detection component guarantees that it detects an obstacle at a particular coordinate if an obstacle actu-
ally exists (in the physical or simulated environment) at that point. Note that we assume the existence

R.C. Cardoso et al. 19

Detection

iD: camera input, size of square grid to be explored (n)
oD : Grid = {(x,y)},Obstacles = {(x,y)},s0 = (x,y)
AD(iD) : n ∈ N
GD(oD) : ∀x,y · (x,y) ∈ Obstacles ⇒ obstacle(x,y)

∧ Grid ⊆N×N ∧ Obstacles ⊆ Grid ∧ s0 ∈ Grid
∧ s0 /∈ Obstacles ∧ ∀x,y · (x,y) ∈ Grid ⇒ x < n ∧ y < n

Planner

iP: oD
oP: PlanSet = {{(x,y)}}
AP(iP) : GD(oD)
GP(oP) : ∀p ·p ∈ PlanSet ⇒ p ⊆ Grid \Obstacles ∧ s0 ∈ p

∧ ∃p0 ·p0 ∈ p ∧ adjacent(s0 ,p0)
∀p1 ·p1 ∈ p ∧ p1 6= s0 ⇒
(∃r,s · r ∈ p ∧ s ∈ p ∧ adjacent(r,p1) ∧ adjacent(p1 ,s))

Agent

iA: oP
oA: plan = {(x,y)}
AA(iA) : GP(oP)
GA(oA) : plan ∈ PlanSet ∧ ∀q ·q ∈ PlanSet ⇒| plan |≤| q |

oD

oP

1 Event Planner =̂ordinary
2 any p
3 where

4 grd1: goal 6= s0 ∧ goal ∈ p
5 grd2: p ⊆ Grid \Obstacles ∧ s0 ∈ p
6 grd4: ∃p0 ·p0 ∈ p ∧ adjacent(s0 7→ p0)
7 grd6: ∀p1 ·p1 ∈ p ∧ p1 6= s0 ∧ p1 6= goal

⇒ (∃r,s · r ∈ p ∧ s ∈ p ∧ adjacent(r 7→ p1) ∧
adjacent(p1 7→ s))

8 grd5: ∃p2 ·p2 ∈ p ∧ adjacent(p2 7→ goal)
9 then

10 act1: PlanSet := PlanSet ∪ {p}

Figure 2: An overview of the robotic system to be verified. On the far left, each rectangle represents a component,
and each arrow represents data flow between components. To the right of each individual component, we sum-
marise the is, os, and their respective FOL contract. On the far right, we provide an Event-B event specification
corresponding to the Planner. Here, ‘ 7→’ denotes tuples.

of the obstacle(x,y) function to represent this physical or simulated observation. Further, the Detection
component outputs the rover’s current location, denoted by s0, and guarantees that s0 is in the grid and
does not coincide with an obstacle.

The Planner component produces a PlanSet whose elements are sets of coordinates capturing obstacle-
free plans under the assumption that the Detection component has produced a set of Obstacles that refers
to points that exist and contain an obstacle. The guarantee also ensures that each of these plans (sets
of coordinates) in PlanSet can be transformed into a sequence of coordinates where each is adjacent to
the previous. Note that we use sets here rather than sequences because sequences may contain duplicate
entries whereas sets cannot, and so our specification rules out the case where a plan loops.

The specification of the cognitive Agent component states that, under the assumption that all potential
plans in the PlanSet are obstacle-free, then it chooses a plan from the PlanSet and that this plan is, in
fact, the shortest one available. Note that we use | plan | to denote the length of plan.

The far right of Fig. 2 contains an Event-B event specification [1] of the Planner component. Notice
that the high-level FOL contract that we have written is captured in the Event-B specification as guards
on lines 5–7. The FOL contract has been refined and the Event-B specification has a notion of a goal that
it must plan paths towards. This has resulted in the extra guards on lines 1 and 8. This is an excerpt from
a larger Planner specification that we have verified via theorem proving in the Rodin Platform [2].

In this illustrative example, we formally verified the Planner contracts using Event-B and the Agent
contracts using the Gwendolen agent programming language [11]. The Detection component would
be verified via standard software testing practices and simulation-based testing since it may contain a
learning component which cannot be formally verified.

In §3.1, we presented rules about how we chain contracts together. In this example, two applications
of PR1 would allow us to derive the following property:

∀ iD,oA ·AC(iD)⇒ ♦GA(oA)
meaning that if the Detection component receives valid input then the Agent will eventually return the
shortest path from the start to the goal position in the grid.

We have shown how FOL can be used as a unifying language for the high-level Assume-Guarantee

20 Towards Compositional Verification for Modular Systems

specification of components in a modular robotic system. A top-down approach to software engineering
of such a robotic system would begin with these FOL contracts. Then, each contract would be further re-
fined [23], ideally to a more detailed formal specification and, eventually to its concrete implementation.

4 Confidence in Verification

When linking the results from multiple verification techniques a key question becomes how using these
different techniques affects our confidence in the verification of the whole system. One might think that
a formal proof of correctness corresponds to a higher level of confidence than simple testing methods
(especially over unbounded environments). However, formal verification is usually only feasible on an
abstraction of the system whereas testing can be carried out on the implemented code. Therefore, it is
our view that we achieve higher levels of confidence in verification when multiple verification methods
have been employed for each component in the system [30].

Component Testing Simulation-Based Testing Formal Methods
Detection X ✗ ✗

Planner X X X
Cognitive Agent X X X

Table 1: Verification techniques applied to each component.

We have broadly partitioned current verification techniques into three categories: testing, simulation-
based testing and formal methods. We have determined which of these techniques might be employed
for each component in our example as shown in Table 1. Examining how this metric can be calculated
for more complex systems with loops is a future direction for this work.

5 Conclusions and Future Work

We have presented an initial description of a framework for compositional verification of modular sys-
tems using FOL as a unifying language. FOL contracts are used to guide the verification techniques
applied to each component. We have briefly illustrated this by verifying and refining the FOL contract
for the Planner component using Event-B in our example of a remote inspection rover. Furthermore, we
introduce the notion of confidence in verification techniques and provide a broad categorisation.

Future work includes assessing how well our approach scales to industrial-sized robotic systems de-
velopment. Also, ensuring that our approach is usable by developers and understandable by certification
organisations is crucial to its use and success. This needs tool support for writing and reasoning about
the FOL contracts, with similar functionality to an IDE, integrated robotic development other tools. We
will also demonstrate the approach with a wider variety of verification techniques. Our illustrative ex-
ample employs an event-based style of communication, however, we intend to explore how to extend our
approach to stream-based communications as future work.

Finally, our proposed method could be used to generate runtime monitors to check that each compo-
nent’s contract holds during execution. If a contract is violated, the monitor could flag this to the robot’s
operator (if one exists) or trigger a mitigating action (if the robot is autonomous). This could augment
the verification of components that can only be verified at a low level of confidence, or aid in fault finding
when diagnosing failures.

R.C. Cardoso et al. 21

References
[1] Jean-Raymond Abrial (2010): Modeling in Event-B. Cambridge University Press, doi:10.1017/

CBO9781139195881.
[2] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang, Farhad Mehta & Laurent Voisin

(2010): Rodin: an open toolset for modelling and reasoning in Event-B. International Journal on Software
Tools for Technology Transfer 12(6), pp. 447–466, doi:10.1007/s10009-010-0145-y.

[3] Yves Bertot & Pierre Castéran (2013): Interactive theorem proving and program development: CoqArt: the
calculus of inductive constructions. Springer, doi:10.1007/978-3-662-07964-5.

[4] Robert Bogue (2011): Robots in the nuclear industry: a review of technologies and applications. Industrial
Robot: An International Journal 38(2), pp. 113–118, doi:10.1108/01439911111106327.

[5] Manfred Broy (2018): A logical approach to systems engineering artifacts: semantic relationships and de-
pendencies beyond traceability – from requirements to functional and architectural views. Software and
System Modeling 17(2), pp. 365–393, doi:10.1007/s10270-017-0619-4.

[6] Manfred Broy (2018): Theory and methodology of assumption/commitment based system interface speci-
fication and architectural contracts. Formal Methods in System Design 52(1), pp. 33–87, doi:10.1007/
s10703-017-0304-9.

[7] Adrien Champion, Arie Gurfinkel, Temesghen Kahsai & Cesare Tinelli (2016): CoCoSpec: A mode-aware
contract language for reactive systems. In: International Conference on Software Engineering and Formal
Methods, LNCS 9763, Springer, pp. 347–366, doi:10.1007/978-3-319-41591-8_24.

[8] Alessandro Cimatti, Michele Dorigatti & Stefano Tonetta (2013): OCRA: A tool for checking the refinement
of temporal contracts. In: International Conference on Automated Software Engineering (ASE), IEEE, pp.
702–705, doi:10.1109/ASE.2013.6693137.

[9] Edmund M Clarke, Orna Grumberg & Doron Peled (1999): Model checking. MIT press.
[10] Darren Cofer, Andrew Gacek, Steven Miller, Michael W Whalen, Brian LaValley & Lui Sha (2012): Compo-

sitional verification of architectural models. In: NASA Formal Methods Symposium, LNCS 7226, Springer,
pp. 126–140, doi:10.1007/978-3-642-13464-7_5.

[11] Louise A. Dennis, Michael Fisher, Matthew P. Webster & Rafael H. Bordini (2012): Model check-
ing agent programming languages. Automated Software Engineering 19(1), pp. 5–63, doi:10.1007/
s10515-011-0088-x.

[12] Ankush Desai, Shaz Qadeer & Sanjit A. Seshia (2018): Programming Safe Robotics Systems: Challenges and
Advances. In Tiziana Margaria & Bernhard Steffen, editors: Leveraging Applications of Formal Methods,
Verification and Validation. Verification, Springer International Publishing, Cham, pp. 103–119, doi:10.
1007/978-3-030-03421-4_8.

[13] Edsger W Dijkstra (1975): Guarded commands, nondeterminacy and formal derivation of programs. Com-
munications of the ACM 18(8), pp. 453–457, doi:10.1145/360933.360975.

[14] Marie Farrell, Matt Luckcuck & Michael Fisher (2018): Robotics and Integrated Formal Methods: Necessity
meets Opportunity. In: Integrated Formal Methods, LNCS 11023, Springer, pp. 161–171, doi:10.1007/
978-3-319-98938-9_10.

[15] Marie Farrell, Rosemary Monahan & James F Power (2017): Specification Clones: An Empirical Study of
the Structure of Event-B Specifications. In: International Conference on Software Engineering and Formal
Methods, LNCS 10469, Springer, pp. 152–167, doi:10.1007/978-3-319-66197-1_10.

[16] Helen F. Hastie, Katrin Solveig Lohan, Mike J. Chantler, David A. Robb, Subramanian Ramamoorthy,
Ronald P. A. Petrick, Sethu Vijayakumar & David Lane (2018): The ORCA Hub: Explainable Offshore
Robotics through Intelligent Interfaces. CoRR abs/1803.02100. Available at http://arxiv.org/abs/
1803.02100.

[17] C. A. R. Hoare (1969): An axiomatic basis for computer programming. Communications of the ACM 12(10),
pp. 576–580, doi:10.1145/363235.363259.

22 Towards Compositional Verification for Modular Systems

[18] C. A. R. Hoare (1978): Communicating sequential processes. Communications of the ACM 21(8), pp. 666–
677, doi:10.1145/359576.359585.

[19] Cliff B. Jones (1983): Tentative Steps Toward a Development Method for Interfering Programs. ACM Trans-
actions on Programming Languages and Systems 5(4), pp. 596–619, doi:10.1145/69575.69577.

[20] Matt Luckcuck, Marie Farrell, Louise A. Dennis, Clare Dixon & Michael Fisher (2019): Formal Specification
and Verification of Autonomous Robotic Systems: A Survey. ACM Comput. Surv. 52(5), pp. 1–41, doi:10.
1145/3342355.

[21] Christoph Luckeneder & Hermann Kaindl (2018): Systematic top-down design of cyber-physical models
with integrated validation and formal verification. In: International Conference on Software Engineering,
pp. 274–275, doi:10.1145/3183440.3194967.

[22] Claudio Menghi, Christos Tsigkanos, Patrizio Pelliccione, Carlo Ghezzi & Thorsten Berger (2019): Specifi-
cation patterns for robotic missions. IEEE Transactions on Software Engineering, doi:10.1109/TSE.2019.
2945329.

[23] Carroll Morgan, Ken Robinson & Paul Gardiner (1988): On the Refinement Calculus. Springer, doi:10.
1007/978-1-4471-3273-8.

[24] Peter D Mosses (2004): CASL reference manual: The complete documentation of the common algebraic
specification language. Springer, doi:10.1007/b96103.

[25] A. Pnueli (1977): The Temporal Logic of Programs. In: 18th Symposium on the Foundations of Computer
Science, IEEE, pp. 46–57, doi:10.1109/SFCS.1977.32.

[26] Azamat Shakhimardanov, Nico Hochgeschwender & Gerhard Kraetzschmar (2010): Component models in
robotics software. In: Workshop on Performance Metrics for Intelligent Systems, ACM, pp. 82–87, doi:10.
1145/2377576.2377592.

[27] Stefano Spellini, Michele Lora, Franco Fummi & Sudipta Chattopadhyay (2019): Compositional Design of
Multi-Robot Systems Control Software on ROS. ACM Trans. Embed. Comput. Syst. 18(5s), doi:10.1145/
3358197.

[28] J Michael Spivey (1988): Understanding Z: a specification language and its formal semantics. Cambridge
University Press.

[29] Lucas Wagner, David Greve & Andrew Gacek (2017): SIMPAL: A Compositional Reasoning Framework for
Imperative Programs. In: Proceedings of the 24th ACM SIGSOFT International SPIN Symposium on Model
Checking of Software, SPIN 2017, Association for Computing Machinery, New York, NY, USA, p. 9093,
doi:10.1145/3092282.3092290.

[30] Matt Webster, David Western, Dejanira Araiza-Illan, Clare Dixon, Kerstin Eder, Michael Fisher & Anthony G
Pipe (2020): A corroborative approach to verification and validation of humanrobot teams. The International
Journal of Robotics Research 39(1), pp. 73–99, doi:10.1177/0278364919883338.

[31] Brian H. Wilcox (1992): Robotic vehicles for planetary exploration. Applied Intelligence 2(2), pp. 181–193,
doi:10.1007/BF00058762.

M. Luckcuck, M. Farrell (Eds.): Second Workshop
on Formal Methods for Autonomous Systems (FMAS2020)
EPTCS 329, 2020, pp. 23–30, doi:10.4204/EPTCS.329.3

From Requirements to Autonomous Flight:
An Overview of the Monitoring ICAROUS Project

Aaron Dutle1 Laura Titolo2 Dimitra Giannakopoulou3

César Muñoz1 Ivan Perez2 Anastasia Mavridou4

Esther Conrad1 Swee Balachandran2 Thomas Pressburger3

Alwyn Goodloe1

1NASA Langley Research Center, Hampton, Virginia
2National Institute of Aerospace, Hampton, Virginia

3NASA Ames Research Center, Moffett Field, California
4KBR Inc. / NASA Ames Research Center, Moffett Field, California

{aaron.m.dutle, cesar.a.munoz, esther.d.conrad, a.goodloe, laura.titolo, ivan.perezdominguez,
sweewarman.balachandran, dimitra.giannakopoulou, anastasia.mavridou, tom.pressburger}@nasa.gov

The Independent Configurable Architecture for Reliable Operations of Unmanned Systems
(ICAROUS) is a software architecture incorporating a set of algorithms to enable autonomous oper-
ations of unmanned aircraft applications. This paper provides an overview of Monitoring ICAROUS,
a project whose objective is to provide a formal approach to generating runtime monitors for au-
tonomous systems from requirements written in a structured natural language. This approach inte-
grates FRET, a formal requirement elicitation and authoring tool, and Copilot, a runtime verification
framework. FRET is used to specify formal requirements in structured natural language. These re-
quirements are translated into temporal logic formulae. Copilot is then used to generate executable
runtime monitors from these temporal logic specifications. The generated monitors are directly inte-
grated into ICAROUS to perform runtime verification during flight.

1 Introduction

The Independent Configurable Architecture for Reliable Operations of Unmanned Systems
(ICAROUS) [5] is a software architecture for enabling safe autonomous operation of unmanned air-
craft systems (UAS) in the airspace. The primary goal of ICAROUS is to provide autonomy to enable
beyond visual line of sight (BVLOS) missions for UAS without the need for constant human supervi-
sion/intervention. ICAROUS provides highly-assured functions to avoid stationary obstacles, maintain a
safe distance from other users of the airspace, and compute resolution and recovery maneuvers.

Hardware and software verification via formal methods offers the highest assurance of safety avail-
able for such cyber-physical systems. While there have been considerable advances in creating industrial-
scale formal methods (e.g., [6, 12, 23]), it is not yet practical to apply them to an entire complex system
such as ICAROUS. Formal verification is generally carried out on a model of a system rather than the
software itself, and so the properties verified may not hold if the model is inaccurate or if other faults
make the system behave unpredictably. Moreover, while there has been much progress made in verifi-
cation of neural networks in particular ([11, 13], increasingly autonomous systems employing machine
learning and similar methods are challenging for formal verification.

Runtime verification (RV) [10] is a verification technique that has the potential to enable the safe
operation of safety-critical systems that are too complex to formally verify or fully test. In RV, the
system is monitored during execution, and property violations can be detected and acted upon during the

24 Monitoring ICAROUS

mission. RV detects when properties are violated at runtime, so it cannot enforce the correct operation
of a system, but is an improvement over testing alone, and can enhance testing by finding real cases of
requirement violation. Copilot [17] is a runtime verification framework developed by NASA researchers
and others.

While RV can be used to monitor and detect property violations, the actual properties to be monitored
must be determined and specified externally. Such safety requirements are generally written by hand in
natural language, which can lead to ambiguity as to their meaning or applicability. Additionally, when
runtime verification is used as a key safety component of an autonomous system, having clearly specified
requirements that are properly translated into executable monitors is critical. FRETISH [9] is a struc-
tured natural language developed by NASA to write unambiguous requirements. The associated tool,
FRET (Formal Requirements Elicitation Tool), provides a framework to write, formalize and analyze
requirements and automatically generate temporal logic formulae from them.

The Monitoring ICAROUS project, a work-in-progress joint effort at NASA, will demonstrate the
integration of robust requirements-based runtime verification applied to an autonomous flight system
for unmanned aircraft using FRET, Copilot, and ICAROUS. This project brings together work that the
NASA formal methods team has been doing for many years on requirements elicitation and specification,
runtime verification, and assured autonomous aircraft software.

Figure 1: The current interface for setting parameters in ICAROUS.

The concept of operation for the integrated system is simple. Prior to the start of an autonomous
flight with ICAROUS, an operator can set a collection of different mission and safety parameters (see
Figure 1). For example, the detect-and-avoid module can be specified to avoid other aircraft by at least
250 ft horizontally and 50 ft vertically. With integrated monitoring, the related implicit requirements
will become explicit ones, expressed in the structured natural language of FRETISH, and available to
be viewed and edited by the user. In addition, a method for specifying custom requirements similar to
the FRET interface will be available. These requirements expressed in FRETISH will be translated into
Copilot’s monitoring language, which will generate C code for the RV monitors. These monitors will be
integrated into ICAROUS, which will use them to determine requirements violations. A violation of a
monitor will alert the operator, who can use the information to return the aircraft to a safe state.

As a motivating example, the remainder of the paper will use the detect and avoid requirement “Re-
quirement 1: While flying, remain separated from an intruder aircraft by at least 250 ft horizontally or
50 ft vertically.” This safety property will be followed through the chain of tools employed, and illustrate

A. Dutle et al. 25

Figure 2: FRET editor, with the example requirement entered, and the Semantics pane visible.

the work to be done in the integration.

2 Tool Descriptions

FRET1 is an open-source tool developed at NASA for writing, understanding, formalizing, and analyzing
requirements. In practice, requirements are typically written in natural language, which is ambiguous
and, consequently, not amenable to formal analysis. Since formal, mathematical notations are unintuitive,
requirements in FRET are entered in a restricted natural language named FRETISH. FRET helps users
write FRETISH requirements, both by providing grammar information and examples during editing, but
also through textual and diagrammatic explanations to clarify subtle semantic issues.

Figure 2 illustrates FRET’s requirements elicitation interface, with the example Requirement 1 en-
tered. The “Rationale and Comments” field holds the original text requirement; the “Requirement De-
scription” field is where the FRETISH requirement is composed. Once a requirement is entered, the
“Semantics” pane shows a text description of the FRETISH requirement, displays a “semantic diagram”
showing a visual explanation of the requirement applicability over time, and provides translations from
FRETISH to Metric Future- and Past-time linear temporal logic (LTL) [14].

A FRETISH requirement description is automatically parsed into six sequential fields; scope, condi-
tion, component, shall, timing, and response, with the FRET editor dynamically coloring the text corre-
sponding to each field (Fig. 2). The mandatory component field specifies the component that the require-
ment applies to (aircraft). The shall keyword states that the component behavior must conform to the
requirement. The response field currently is of the form satisfy R, where R is a non-temporal Boolean-
valued expression (horizontal intruder distance>250 | vertical intruder distance>50). The (op-
tional) scope field states that the requirement is only assessed during particular modes, for the example,
in flight mode. The (optional) Boolean expression field condition states that, within the specified mode,

1https://github.com/NASA-SW-VnV/fret

26 Monitoring ICAROUS

the requirement becomes relevant only from the point where the condition becomes true. The (optional)
timing field specifies at which points the response must occur, in the example “always”, meaning at all
points in flight mode.

FRET automatically produces formulas in several formal languages, including Metric Future-time
LTL and Past-time LTL. FRET also offers an interactive visualizer, showing temporal traces of each of
the signals (variables) involved as well as the valuation of the requirement for each point in time.

Copilot2 is an open-source runtime verification framework for real-time embedded systems. Copi-
lot monitors are written in a compositional, stream-based language. The framework translates monitor
specifications into C99 code with no dynamic memory allocation and executes with predictable memory
and time, crucial in resource-constrained environments, embedded systems, and safety-critical systems.

The Copilot language has been designed to be high-level, easy to understand, and robust. To prevent
errors in the RV system that could affect systems during a mission, the language uses advanced pro-
gramming features to provide additional compile-time and runtime guarantees. For example, all arrays
in Copilot have fixed length, which makes it possible for the system to detect, before the mission, some
array accesses that would be out of bounds.

Copilot supports a number of logical formalisms for writing specifications including a bounded ver-
sion of Future-time Linear Temporal Logic [20], Past-time Linear Temporal Logic (PTLTL) [15], and
Metric Temporal Logic (MTL) [14]. Copilot also includes support libraries with functions such as ma-
jority vote, used to implement fault-tolerant monitors [19]. Requirement 1 expressed as a PTLTL Copilot
specification is as follows:

alwaysBeen (flightMode ==> (horizontalIntruderDistance > 250

|| verticalIntruderDistance > 50))

ICAROUS3 is an open-source software architecture developed at NASA to enable safety-centric
autonomous aircraft missions. It is a service-oriented architecture, where service applications provide
various capabilities such as path planning, sense and avoid, geofence containment, task planning, and
more, through a publish-subscribe middleware. Applications are logically organized into conflict detec-
tors, conflict resolvers, mission managers, and decision makers.

Conflict detectors are algorithms that check for imminent violation of constraints such as geofences,
conflicts due to other vehicles in the airspace, deviations from mission flight plan, etc. These conflict
detecting applications can also provide tactical resolutions, which provide a simple maneuver which will
prevent the corresponding conflict. Conflict resolvers compute resolutions to prevent imminent viola-
tion of specified constraints. Resolvers may handle multiple conflicts simultaneously, and can provide
strategic resolutions that are computed to prevent one or more constraint violations. A decision making
application receives conflict information from monitors and triggers resolvers to compute resolutions for
one or more conflicts. When resolving imminent constraint violation, outputs from mission applications
are ignored. The mission is resumed once all conflicts are resolved.

These services are connected through the NASA core Flight System (cFS) middleware,4 a platform-
independent reusable software framework and a set of reusable software applications. The three key
aspects to the cFS architecture are a dynamic run-time environment, layered software, and a component-
based design. These key aspects make cFS suitable for reuse on any number of embedded software
systems. The cFS middleware simplifies the flight software development process by providing the un-

2https://copilot-language.github.io/
3https://github.com/nasa/icarous
4https://cfs.gsfc.nasa.gov/

A. Dutle et al. 27

derlying infrastructure and hosting a runtime environment for development of project/mission specific
applications.

3 Integration

The integration of the three systems described in Section 2 requires several steps in order to create a
complete framework. The three major steps in the integration are as follows. The first step is developing
a method for ICAROUS-specific requirements and safety properties to be specified in FRET. Next, the
requirements expressed in FRETISH must be translated into Copilot. Finally, the monitors generated by
Copilot must be integrated into ICAROUS in a usable way. Each of these integration steps are discussed
in turn below, and the toolchain is depicted in Figure 3.

ICAROUS
requirements FRET

MTL
specification Copilot C monitor ICAROUS

Figure 3: Toolchain to automatically generate monitors for ICAROUS.

3.1 ICAROUS interface to FRET

In order to facilitate the use of FRET for ICAROUS-specific requirements, several things need to be
done. The first of these is a thorough accounting of all of the modes, systems, and signals available
within ICAROUS for a monitor to access.

In FRET, the specification of safety properties is completely independent of the system that is being
considered. This makes FRET very general and powerful in its ability to craft requirements, but makes
it somewhat cumbersome to use in the specific setting of ICAROUS. The variables that FRET uses to
refer to modes, systems, and signals in requirements are completely arbitrary, while being able to use
such a requirement as a monitor means that each of these variables must correspond to an actual system
or signal in ICAROUS. After each of these possible variables in ICAROUS is identified, along with
its datatype information, FRET can be restricted to using only information that can be obtained by the
system in specifying properties.

Another task to be completed is the generation of ICAROUS-specific templates for FRET. Many
of the safety requirements that an autonomous flight system will be expected to follow exhibit similar
patterns from flight to flight. For example, an autonomous operation may be required to stay below a
certain altitude ceiling. More specific requirements such as Requirement 1 are parametric requirements
that a detect-and-avoid (DAA) system is expected to obey based on settings in the DAA system. For
such requirements, a template can be given allowing the user to input particular values based on the
mission, and the associated requirement added to those to be monitored. Additionally, many of the
existing settings in an ICAROUS configuration carry with them implicit safety requirements. Setting the
max altitude parameter in the DAA system of ICAROUS can be interpreted as a requirement that the
aircraft never goes above the value set. Parsing these files can allow for the automatic generation of a
requirement from the associated template and the variable setting.

28 Monitoring ICAROUS

3.2 FRET to Copilot translation

The main integration step between FRET and Copilot is to take a requirement expressed in FRETISH,
and translate it into a Copilot monitor. A prototype tool named Ogma is being developed to create
Copilot monitors from languages such as FRETISH, SPEAR [7], and AGREE [4]. The tool can translate
the Past-time LTL formulas FRET generates, so it can process any requirements specified in FRETISH.
The resulting Copilot monitor can then be automatically translated into C99 code that checks that a
corresponding property holds during runtime. This conversion should occur transparently: users specify
FRETISH requirements, and automatically obtain C code compatible with ICAROUS.

3.3 Copilot Monitors in ICAROUS

The integration of Copilot-generated monitors into ICAROUS should be fairly straight-forward. Since
ICAROUS is already a service-oriented publish/subscribe architecture, the main issue is subscribing and
routing the appropriate signals to the monitors, and returning a signal to the user that indicates which
properties have been violated. To facilitate this integration, the Ogma tool automatically generates a cFS
application, responsible for subscribing to the appropriate ICAROUS applications, making data available
to Copilot, and handle runtime violations reported by Copilot.

A technical difficulty in this approach (mentioned in Section 3.1) is that the RV monitors are gen-
erated after requirements are specified, and then this C code is integrated into ICAROUS. Currently,
ICAROUS is installed on the aircraft once, and, generally, only settings are changed between flights.
With new monitors generated for each flight, ICAROUS must be configured, new monitors generated,
and then the system installed on the aircraft before flight. A partial solution would be to include para-
metric versions of common monitors, and have the parameters instantiated prior to flight. Alternatively,
a utility for including monitoring code could be added, since the RV service would not change.

4 Conclusion

The work described here is still in-progress. Additional work is being conducted tangential to this inte-
gration. The FRETISH language and semantics are being specified in the Prototype Verification System
(PVS) [16], to prove that the evaluation of a FRETISH statement is the same as the evaluation of the
LTL statement produced by FRET for all possible finite and infinite traces. Currently, the verification of
the translation is done through a systematic, rigorous testing framework for finite traces up to a certain
length. An embedding of FRETISH in PVS would also allow for formal reasoning about models of a
system such as ICAROUS with respect to specified requirements.

Related work on requirements specification, RV, and autonomous flight systems is omitted here. The
interested reader is directed to the corresponding sections of [8, 9] for requirements, [2, 10, 17, 18] for
runtime verification, and [1, 5] for autonomous flight systems. Work that has a similar flavor to the
integration of these tools includes [3], where the R2U2 [22] engine is used to monitor an automated
and intelligent UAS Traffic Management System for adherence to safety requirements during operation.
The specifications are written in the Mission-time Linear Temporal Logic (MLTL) [21], an extension of
MTL, in contrast with the present approach where the specifications are given using structured natural
language.

The Monitoring ICAROUS project will allow a user to obtain relevant requirements automatically or
defined using the structured natural language FRETISH, translate these requirements into runtime moni-
tors using Copilot, and seamlessly integrate these monitors into the autonomous flight system ICAROUS.

A. Dutle et al. 29

The framework supports simple requirements specification and analysis, with robust runtime verification,
while the translation and integration steps are performed in the background. Requirements-based runtime
monitoring demonstrates a real-world application of formal methods to increase the safety assurance of
complex automated systems.

References

[1] S. Balachandran, C. Muñoz, M. Consiglio, M. Feliú & A. Patel (2018): Independent Configurable Architec-
ture for Reliable Operation of Unmanned Systems with Distributed On-Board Services. In: Proceedings of
the 37th Digital Avionics Systems Conference (DASC 2018), pp. 1–6, doi:10.1109/DASC.2018.8569752.

[2] E. Bartocci, Y. Falcone, A. Francalanza & G. Reger (2018): Introduction to Runtime Verification. In: Lectures
on Runtime Verification - Introductory and Advanced Topics, Lecture Notes in Computer Science 10457,
Springer, pp. 1–33, doi:10.1007/978-3-319-75632-5 1.

[3] M. Cauwels, A. Hammer, B. Hertz, P. Jones & K. Y. Rozier (2020): Integrating Runtime Verification into
an Automated UAS Traffic Management System. In: International workshop on moDeling, vErification and
Testing of dEpendable CriTical systems, DETECT 2020, pp. 340–357, doi:10.1007/978-3-030-59155-7 26.

[4] D. D. Cofer, Gacek. A., S. P. Miller, M. W. Whalen, B. LaValley & L. Sha (2012): Compositional Verification
of Architectural Models. In: Proceedings of the 4th International NASA Formal Methods Symposium (NFM
2012), Lecture Notes in Computer Science 7226, Springer, pp. 126–140, doi:10.1007/978-3-642-28891-3 13.

[5] M. Consiglio, C. Muñoz, G. Hagen, A. Narkawicz & S. Balachandran (2016): ICAROUS: Integrated Con-
figurable Algorithms for Reliable Operations of Unmanned Systems. In: Proceedings of the 35th Digital
Avionics Systems Conference (DASC 2016), pp. 1–5, doi:10.1109/DASC.2016.7778033.

[6] Byron Cook (2018): Formal Reasoning About the Security of Amazon Web Services. In Hana Chockler &
Georg Weissenbacher, editors: Computer Aided Verification, Springer International Publishing, Cham, pp.
38–47, doi:10.1007/978-3-319-96145-3 3.

[7] A. W. Fifarek, L. G. Wagner, J. A. Hoffman, B. D. Rodes, M. A. Aiello & J. A. Davis (2017): SpeAR v2.0:
Formalized Past LTL Specification and Analysis of Requirements. In: Proceedings of the 9th International
NASA Formal Methods Symposium (NFM 2017), Lecture Notes in Computer Science 10227, pp. 420–426,
doi:10.1007/978-3-319-57288-8 30.

[8] D. Giannakopoulou, T. Pressburger, A. Mavridou, J. Rhein, J. Schumann & N. Shi (2020): Formal Require-
ments Elicitation with FRET. In: Joint Proceedings of REFSQ-2020 Workshops, Doctoral Symposium, Live
Studies Track, and Poster Track co-located with the 26th International Conference on Requirements Engi-
neering: Foundation for Software Quality (REFSQ 2020).

[9] D. Giannakopoulou, T. Pressburger, A. Mavridou & J. Schumann (2020): Generation of Formal Requirements
from Structured Natural Language. In: 26th International Working Conference on Requirements Engineer-
ing: Foundation for Software Quality, REFSQ 2020, Lecture Notes in Computer Science 12045, Springer,
pp. 19–35, doi:10.1007/978-3-030-44429-7 2.

[10] K. Havelund & A. Goldberg (2008): Verify Your Runs, pp. 374–383. Lecture Notes in Computer Science
4171, Springer, doi:10.1007/978-3-540-69149-5 40.

[11] K. Julian & M. Kochenderfer (2019): Guaranteeing Safety for Neural Network-Based Aircraft Collision
Avoidance Systems. 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC), pp. 1–10,
doi:10.1109/DASC43569.2019.9081748.

[12] R. Kaivola, R. Ghughal, N. Narasimhan, A. Telfer, J. Whittemore, S. Pandav, A. Slobodová, C. Taylor,
V. Frolov, E. Reeber et al. (2009): Replacing Testing with Formal Verification in Intel R©CoreTM i7 Processor
Execution Engine Validation. In: Computer Aided Verification, Springer, pp. 414–429, doi:10.1007/978-3-
642-02658-4 32.

30 Monitoring ICAROUS

[13] G. Katz, D. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah, S. Thakoor, H. Wu, A. Zeljić, D. Dill,
M. Kochenderfer & C. Barrett (2019): The Marabou Framework for Verification and Analysis of Deep Neural
Networks. In I. Dillig & S. Tasiran, editors: Computer Aided Verification, Springer International Publishing,
Cham, pp. 443–452, doi:10.1007/978-3-030-25540-4 26.

[14] R. Koymans (1990): Specifying Real-time Properties with Metric Temporal Logic. Real-Time Syst. 2(4), pp.
255–299, doi:10.1007/BF01995674.

[15] F. Laroussinie, N. Markey & P. Schnoebelen (2002): Temporal Logic with Forgettable Past. In:
LICS02: Proceeding of Logic in Computer Science 2002, IEEE Computer Society Press, pp. 383–392,
doi:10.1109/LICS.2002.1029846.

[16] S. Owre, J. Rushby & N. Shankar (1992): PVS: A Prototype Verification System. In: Proceeding of the 11th
International Conference on Automated Deduction (CADE), Lecture Notes in Artificial Intelligence 607,
Springer, pp. 748–752, doi:10.1007/3-540-55602-8 217.

[17] I. Perez, F. Dedden & A. Goodloe (2020): Copilot 3. Technical Report NASA/TM2020220587, NASA
Langley Research Center, doi:10.13140/RG.2.2.35163.80163.

[18] L. Pike, A. Goodloe, R. Morisset & S. Niller (2010): Copilot: A Hard Real-Time Runtime Monitor. In: Pro-
ceedings of the First International Conference on Runtime Verification (RV 2010), Lecture Notes in Computer
Science 6418, Springer, pp. 345–359, doi:10.1007/978-3-642-16612-9 26.

[19] L. Pike, N. Wegmann, S. Niller & A. Goodloe (2013): Copilot: monitoring embedded systems. Innovations
in Systems and Software Engineering 9(4), pp. 235–255, doi:10.1007/s11334-013-0223-x.

[20] A. Pnueli (1977): The Temporal Logic of Programs. In: Proceedings of the 18th Annual Symposium on
Foundations of Computer Science, SFCS ’77, IEEE Computer Society, Washington, DC, USA, pp. 46–57,
doi:10.1109/SFCS.1977.32.

[21] T. Reinbacher, K. Y. Rozier & J. Schumann (2014): Temporal-Logic Based Runtime Observer Pairs for
System Health Management of Real-Time Systems. In: Proceedings of the 20th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2014), Lecture Notes in
Computer Science 8413, Springer, pp. 357–372, doi:10.1007/978-3-642-54862-8 24.

[22] J. Schumann, P. Moosbrugger & K. Y. Rozier (2015): R2U2: Monitoring and Diagnosis of Security Threats
for Unmanned Aerial Systems. In: Proceedings of the 6th International Conference on Runtime Verification
(RV 2015), Lecture Notes in Computer Science 9333, Springer, pp. 233–249, doi:10.1007/978-3-319-23820-
3 15.

[23] J. Souyris, V. Wiels, D. Delmas & H. Delseny (2009): Formal Verification of Avionics Software Products. In:
Proceedings of the 2nd World Congress on Formal Methods, FM ’09, Springer-Verlag, Berlin, Heidelberg, p.
532546, doi:10.1007/978-3-642-05089-3 34.

M. Luckcuck, M. Farrell (Eds.): Second Workshop
on Formal Methods for Autonomous Systems (FMAS2020)
EPTCS 329, 2020, pp. 31–47, doi:10.4204/EPTCS.329.4

c© M. Gleirscher
This work is licensed under the
Creative Commons Attribution License.

YAP: Tool Support for Deriving Safety Controllers
from Hazard Analysis and Risk Assessments

Mario Gleirscher∗

Dept. of Computer Science, University of York, York, U.K.

mario.gleirscher@york.ac.uk

Safety controllers are system or software components responsible for handling risk in many machine
applications. This tool paper describes a use case and a workflow for YAP, a research tool for risk
modelling and discrete-event safety controller design. The goal of this use case is to derive a safety
controller from hazard analysis and risk assessment, to define a design space for this controller, and
to select a verified optimal controller instance from this design space. We represent this design space
as a stochastic model and use YAP for risk modelling and generation of parts of this stochastic model.
For the controller verification and selection step, we use a stochastic model checker. The approach is
illustrated by an example of a collaborative robot operated in a manufacturing work cell.

1 Introduction

To ensure their safe operation, machines, such as mobile robots or delivery drones, incorporate con-
trollers responsible for the handling of critical events (CEs) while performing their tasks. We will refer
to such controllers as safety controllers. CEs can be failures, human errors, or other hazards, any causes
thereof and any consequences, such as incidents or accidents. CE handling can involve the anticipation
and mitigation of hazards and the prevention and alleviation of accidents, for example, by switching a
machine into a mode with lower risk, that is, a safety mode, by performing a safety function (e.g. a
warning signal), or by changing the machine’s activity. Therefore, safety controllers have to be carefully
specified, designed, and verified in order to be deployed according to state-of-the-art regulations [11, 9].

This tool paper supplements our approach to the verified synthesis of safety controllers [6] with a
hands-on guide to the research tool YAP Against Perils [5]. One objective of YAP is to support the steps
required to transform results from hazard analysis into verifiable models of safety controllers. YAP seeks
to bridge the gap between the identification of hazards, the formulation of safety goals, and the imple-
mentation of safety controllers. Although YAP might be more widely used, adaptive and autonomous
cyber-physical systems with their highly automated and complex safety mechanisms [2] are in its focus.

Sect. 2 briefly revisits the example discussed in more detail in [6]. Sect. 3 describes preliminaries of
YAP. Sect. 4 proposes a workflow to derive a safety controller. Sects. 5.1 to 5.5 detail this workflow in
the format of a hands-on guide. Sects. 6 and 7 discuss directions for future work and conclude.

2 Running Example: A Collaborative Manufacturing Robot

We illustrate the proposed workflow by example of a human-robot collaboration (HRC) in a manufac-
turing work cell with a collaborative robot arm [6]. This work cell has a safeguarded workbench, which
is manually supplied with work pieces to be processed by a robot arm and a welder within a safeguarded

∗This research was funded by the Lloyd’s Register Foundation under the AAIP grant CSI:Cobot.

32 Safety Controllers with YAP

area next to the workbench. The robot moves to the workbench, grabs the work piece, and moves to
the welder. The robot and the welder together perform a specific welding task on the work piece. After
finishing this task, the robot arm returns the work piece to the workbench where the operator picks it
up and supplies the robot with another work piece to repeat this cycle. The work cell is equipped with
several safety modes (e.g. safety-rated monitored stop) and safety functions (e.g. a warning display)
operated by a safety controller on occurrence of a CE (e.g. operator close to weld spot while welder and
robot are working). This way, the safety controller works on top of this cyclic manufacturing process.

3 Overview of YAP: Modelling Concepts and Tool Features

YAP is a research tool for risk modelling, analysis, and design of safety controllers.1 YAP’s input lan-
guage is a domain-specific language (DSL) providing a corresponding set of modelling primitives.

Activities provide a finite abstraction of the physical process of interest and can be useful for mod-
elling the task structure of an application as well as for structuring a risk analysis accordingly. For exam-
ple, the task of the robot arm exchanging a work piece can be separated from a welding task performed
by the welder and the robot arm.

Risk factors (factors for short) describe the life-cycle and constituents of CEs potentially being ob-
served when performing the activities, for example, the robot arm and the operator being on the work-
bench simultaneously. The hazard list can be modelled as a list of factors. Factor dependencies specify
temporal or causal relations between risk factors (e.g. requires, prevents). For example, the fact that
the robot arm touches the operator requires the operator to be in one of the safeguarded areas.

A factor is modelled by four life-cycle phases (i.e., inactive 0f , active f , mitigated f , and mishap f)
and five events (i.e., endangerment, mitigation, resumption, mishap, alleviation). Four of these events
can be refined into modes and attributed with (quantitative) parameters. For example, the endangerment
from an operator entering the workbench while the robot is handling a work piece there is detected by a
light barrier and the robot position. This event can be mitigated by a safety-rated monitored stop (srmst)
and signalling the operator to leave the workbench. After the operator has followed this advice, the robot
can resume its work piece handling. In case of a detected mishap, a potential consequence could be
alleviated by a complete shutdown of the work cell and an emergency call. Modes can be embodied by
physical and logical items, particularly, actors (synonymously, agents), constituting the application. For
example, the logic for the safety-rated monitored stop could be embodied by the robot arm.

These modelling primitives will be explained and used in Sect. 5. A more detailed description of
YAP’s DSL is, however, provided in [5]. Overall, YAP models can inform controller design by injection
of a model of a safety controller into a process model of the application. However, apart from this
use case, with YAP’s DSL one can describe operational risk as an abstract state machine, explore its
symbolic state space, that is, the risk space, shape its transition relation, and perform a light-weight
symbolic simulation of CE occurrence and handling. Furthermore, one can calculate risk spaces and
properties thereof (e.g. mitigation orders [7]), and generate minimal cut sequences [6, 5].

4 Overview of the Workflow

Figure 1 indicates the methodological context in which YAP can be used. There, the specification and
synthesis of a safety controller consists of several work steps (1 to 12) in five stages.

1 YAP, its manual, and the running example can be obtained from http://www.gleirscher.de/yap/ or from the author.

M. Gleirscher 33

Optimal
Controller
Synthesis

Process Modelling Risk Modelling

Stochastic
Modelling

Mitigation Modelling

Process
Model P1

Hazard
List

actors, actions
state space

Risk
Model R1

Activity
Model

Mitigation
Model M1

Mitigation
Model M2

Risk
Model R3

Risk
Model R2

Process
Model P2

Process
Model P3

Process
Model P4

Verified Abstract
Controller

Concrete
Controller

YAP
Artefact

Informal
Or out of scope

e.g. in PRISM
pGCL

e.g. robotic
work cell

.yap file per
activity e.g. HazOpactivities

critical events,
risk factors

e.g. HazOp, PRA

e.g. MDP
handled by
PRISM

factors for
each activity

 Safety
Requirements

comparison of
application modes,
safety modes

associate utility
with actions

safety functions,
activity/mode switches

gradient matrices
for activity/mode
switching

costs for risk

costs/rewards for
performance optimisation

design space of controller
encoded in pGCL/MDP

optimal MDP policy meeting
additional (e.g. safety) constraints

Other
Artefact

mitigation alternatives

Application Process
Modelling

Controller
Implementation

Activity
Extraction

Hazard
Identification

Activity-based
Risk Modelling

Situational Risk
Modelling

Verification & Optimal
Controller Synthesis

Hazard Analysis &
Risk Assessment

Factor-based
Mitigation Modelling

Adding Mitigation
Alternatives

Action-based
Performance Modelling

Design Space
Generation

Controller
Verification

YAP
Work Step

Other
Work Step

e.g. PRISM

Abstract
Controller

Legend:

Deploy Controller
in Application

Application Safe
wrt. Hazard List

Stochastic
Modelling

e.g. probabilities
of human error,
failures, etc.

Action-based
Risk Modelling

associating risk
with actions

1 2 3

456

7 8

11 10 9

12

application-specific

requires insertion of
placeholders

Figure 1: Intended workflow to be used with YAP and the stochastic model checker

Process Modelling. 1 One begins with constructing a behavioural model (P1) of the physical process
of interest, focusing on actors, actions, and the state space these actions can modify (Sect. 5.1). For this
use case of YAP, we encode this model in the probabilistic guarded command language (pGCL) of the
PRISM stochastic model checker [15] for the analysis of Markov decision processes (MDPs). An MDP
is a stochastic model, particularly well-suited for reasoning about processes with non-deterministic de-
cisions over actions and probabilistic outcomes of these actions. pGCL offers a concise way of encoding
MDPs. PRISM conveniently implements pGCL with parallel composition [8, 21].

Risk Modelling. 2 To structure the risk analysis, we decompose the process into activities (Sect. 5.2).
3 For each activity, we identify risk factors and incidents using an appropriate technique (e.g. the hazard

identification stage of hazard operability studies (HazOp) [10]) and capture the results, that is, the hazard
list, in a risk model (R1, Sect. 5.2). The practical reasoning and the domain expertise to apply when using
a typical system hazard analysis and risk assessment (HARA) technique, are very well-documented in
a rich corpus of literature (e.g. [18, 13, 3]). Hence, we touch HARA specifics only selectively. 4 We
extend this risk model (R2) by associating to every action a number that encodes the risk of any of the
captured incidents from the performance of this particular action (Sect. 5.2). 5 Furthermore, the risk
model (R3) is extended by assigning to every transition between two activities or safety modes a number
that encodes the increase or decrease in risk of any incident when taking this transition (Sect. 5.2). The
result are two gradient matrices, one for activity changes and one for safety mode changes.

Stochastic Modelling. 6 We return to the process model and introduce probabilistic phenomena
such as human error and sensor failure (Sect. 5.3). As a result, we get a process model (P2) amenable to
HARA, for example, further steps of HazOp and, particularly, probabilistic risk assessment (PRA).

34 Safety Controllers with YAP

Mitigation Modelling. 7 Based on the process and risk models, we design mitigations for each of
the identified risk factors (Sect. 5.4). An individual mitigation can perform a safety function, an activity
change, and safety mode change, and will after removal of the corresponding risk factor return the process
to a state where normal operation can continue. Within YAP, the mitigation model (M1) refines the risk
model by an abstract state machine. This state machine is translated into the language used for the process
model. 8 YAP allows the definition of alternatives for the mitigation of a single risk factor (Sect. 5.4).
The result is a mitigation model (M2) with these alternatives creating a controller design space.

Verified Controller Synthesis. 9 Similar to the assignment of risk to process actions, we now asso-
ciate other costs and rewards (e.g. nuisance of the operator, energy consumption, utility of a performed
robot action) with these actions (Sect. 5.5). From this step, we obtain a reward-enhanced MDP model
of the application (P3). 10 Next, we use YAP’s pGCL generator to translate the risk and mitigation
models into a set of pGCL fragments. These fragments fill placeholders easily inserted into the process
model beforehand. The resulting process model (P4) is amenable to property verification and acts as a
design space for controller synthesis (Sect. 5.5). This design space includes the set of choice resolutions
of the MDP as well as further degrees of freedom stemming from other unfixed model parameters (e.g.
probabilities 6 , rewards 9). We can now verify properties of this design space. 11 Importantly,
we use PRISM not only for property verification but also for the selection of a policy (also called ad-
versary or strategy), that is, a particular choice resolution representing the controller, from this design
space. Optimal MDP policies are artefacts of quantitative verification and can be represented as discrete-
time Markov chains (DTMCs). Depending on the safety requirements, the chosen policy will have to
meet certain safety constraints and be Pareto-optimal with respect to the considered performance crite-
ria (Sect. 5.5). 12 We finally verify further safety properties of the policy (Sect. 5.5). Theoretically,

11 and 12 could be collapsed into one verification step carried out on the design space. However, the
tooling for this use case requires us to separate Pareto optimisation and constraint verification.

5 Workflow for Controller Design

The following sub-sections provide a hands-on guide detailing the workflow outlined in Figure 1.

5.1 1 Process Modelling: The Physical World

We create a stochastic model (an MDP) of the manufacturing process, as described in Sect. 2, and
employ the PRISM model checker for its analysis. We model actors (e.g. a robot arm, an operator),
activities (e.g. exchWrkp for exchanging a work piece, welding a work piece), and (atomic) actions (e.g.
the robot grabs the work piece, the operator enters the work cell). In PRISM, actors can be implemented
as modules and actions as guarded commands of the form [EVENT] GUARD → UPDATE.

Listing 1 exemplifies the actor robotArm, participating in the two activities exchWrkp and welding
with several actions. For example, the involvement of robotArm in exchWrkp is implemented by the
three actions r moveToTable, r grabLeftWorkpiece, and r placeWorkpieceRight. The structure of many
of the modelled actions follows a specific pattern:

[ACTOR ACTION] !CYCLEEND & SM & ACTIVITY & CUSTOM → UPDATE .

Action names carry prefixes to indicate the actor(s) performing these actions, that is, r for a robot action,
rw for a compound action of the robot and the welder, h for a physical human action, hi for an internal

M. Gleirscher 35

Listing 1: Process model fragment for the robot arm in PRISM
1 module robotArm

2 reffocc: bool init false; // is the grabber occupied?
3 wpfin: bool init false; // is the work piece finished ?
4 rloc: [atTable..atWeldSpot] init inCell; // robot arm location
5 // <%
6 ...

7 // exchWrkp: exchange a work piece between workbench and welder
8 [r_moveToTable] !CYCLEEND & (safmod=normal|safmod=ssmon|safmod=pflim) & ract=exchWrkp & !rloc

=sharedTbl & ((wps!=right&reffocc)|wps=left&!reffocc) -> (rloc’=sharedTbl);

9 [r_grabLeftWorkpiece] ...;

10 [r_placeWorkpieceRight] ...; ...

11 // welding : carry out welding task together with welder
12 [r_moveToWelder] !CYCLEEND & (safmod=normal|safmod=ssmon|safmod=pflim) & ract=exchWrkp &

reffocc & !wpfin -> (ract’=welding)&(rloc’=atWeldSpot);

13 [rw_weldStep] ...;

14 [rw_leaveWelder] ...; ...

15 endmodule

human decision, s for a synchronous action of the safety controller and other actors, si for an independent
controller action. CYCLEEND is a predicate that, when true, terminates model execution. Each action
has to be guarded by the activities (ACTIVITY) and safety modes (SM) it is allowed to be performed in.
Action-specific guards (CUSTOM) and updates (UPDATE) are conjoined and specified. The robotArm does
not contain stochastic phenomena whereas humanOp and other parts of the process model do. The use
of probabilistic updates for human errors and other phenomena will be further discussed in Sect. 5.3.

5.2 Risk Modelling with YAP

1 Activity {

2 include moving;

3 successor welding;

4 successor off;

5 successor idle;

6 }

2 Activity Modelling. We create a YAP file for each activity (e.g.
generic task or sub-task) of the manufacturing process. For example, for
the activity exchWrkp, the listing on the right specifies relationships to other
activities. Particularly, exchWrkp inherits (includes) attributes (i.e., haz-
ard, activity successors, etc.) from the generic activity moving and can be
followed (successor) by either of the basic activities off, welding, or idle. With the following command,
YAP identifies all activities reachable from the activity off in form of a labelled transition system (LTS).
For inspection, this LTS is visualised as a graph in Figure 2.

yapp --global-logging -m off.yap \

-o output/off-act.dot --showmodel activities .

3 Activity-based Risk Modelling. We create a hazard list for each activity, for example, by perform-
ing a HazOp [10]. Then, we derive factor specifications from these lists. For instance, for the activity
welding, we specify five factors, such as the factor “Human arm and Robot on shared Workbench” (HRW,
Figure 3). Then, we specify factor dependencies, for example, HRW requires the factor “Human arm
on Workbench” (HW), prevents the activation of factor “Human Close to weldspot” (HC), and HRW’s
mitigation prevents the mitigation (mitPreventsMit) of HC and “Human in Safeguarded area” (HS).

The inclined reader will recognise that HRW is not only a critical event in the process, it also contains
the hazard “Robot on shared Workbench”. As a whole, HRW can be seen as a latent cause of the incident

36 Safety Controllers with YAP

off
exchWrkp

succeeded by

weldingsucceeded by

idle

succeeded by

moving

included by

included by

succeeded by
succeeded by

succeeded by

base included by

included by

included by

succeeded by

succeeded by

succeeded by
succeeded by

succeeded by

succeeded by

Figure 2: Activity graph showing all activities reachable from the activity off

1 HRW desc "(H)uman arm and (R)obot on

2 shared (W)orkbench"

3 requires (HW)

4 prevents (HC)

5 mitPreventsMit (HS,HC) ...

6 RT desc "(R)obot arm (T)ouches

7 the operator"

8 requiresNOf (1|HRW,HS,HC)

9 mitPreventsMit (RC)

10 ...

Figure 3: Specifications of the two risk factors HRW and RT

“Robot arm Touches the operator” (RT). Accordingly, the specification for RT in Figure 3 uses the
constraint requiresNOf (1|HRW,HS,HC) to refer to its potential causes: at least one of HRW,HS, and HC.

4 Action-based Risk Modelling. In YAP, actions of both the controlled process and the safety con-
troller can be characterised using multiple weights that order the choice alternatives when numerical
solvers search the MDP policy space. YAP converts these weights into action reward structures used for
quantitative verification in tools such as PRISM.

Like for the actions of the safety controller, one can specify such characteristics for the actions of
any actor in the process. This is done in YAP by providing a weight structure (Listing 2). For action-
based risk modelling, parameters prefixed with risk_, say risk_f for a factor f, are used to accumulate
risk in reward calculations for the underlying MDP. The corresponding action rewards are guarded by f ,
requiring that f is active. For example, if weights provides a risk_f entry for the process action a then
a is rewarded only if it is taken in a state where f holds [15].

Connecting the YAP and PRISM Models. Crafting the YAP model and generating a controller model
to be integrated into a process model require the engineer to have substantial knowledge of the process
model. For example, in order for YAP to inject valid synchronisation commands into existing PRISM

Listing 2: Structure for specifying risk values on a
per-action basis

1 Weights rewards { guard risk_HC;

2 // robotArm
3 r_moveToTable: "" "5";

4 ...

5 // welder
6 rw_weldStep: "" "10";

7 rw_leaveWelder: "" "5";

8 // humanOp
9 ...

10 h_approachWeldSpot: "" "7";

11 h_exitCell: "notif=leaveArea" "0"; }

M. Gleirscher 37

Listing 3: Connecting YAP and PRISM models via
YAP agents and PRISM modules

1 robotArm type AGENT

2 validActs="exchWrkp|welding|off";

3 welder type AGENT

4 validActs="welding|idle|off";

5 safetyCtr type CONTROLLER

6 notif="[ok..resetCtr] init ok"

7 notif_leaveWrkb="bool init false";

Listing 4: Two risk gradient matrices

1 Distances act {

2 off: 0;

3 idle: 1 0;

4 exchWrkp: 3 2 0;

5 welding: 5 4 2 0; }

6 Distances safmod {

7 normal: 0;

8 hguid: -2 0;

9 ssmon: -1 1 0;

10 pflim: -2 0 -1 0;

11 srmst: -3 -1 -2 -1 0;

12 stopped: -4 -2 -3 -2 -1 0; }

modules, one has to specify the activities the respective actors are involved in.2 This is done by providing
a validActs parameter taking values of the form act1|act2|...|actn. For example, in Listing 3, the
robotArm is involved in the three activities exchWrkp, welding, and off, the welder in welding, idle, and
off. If validActs is not provided then YAP assumes that the actor can be involved in any of the specified
activities. Furthermore, additional module-specific (i.e., local) variables used by the safety controller can
also be declared as part of an item specification.

5 Situational Risk Modelling. In YAP, we can not only model risk in terms of factors but also
in terms of the behavioural modes the application or controlled process can be in. Examples of such
modes are activities and safety modes (Sect. 5.4) as used and standardised in application domains such
as HRC [11]. Of course, we allow behavioural modes to change during operation. Moreover, we often do
not exactly know about the absolute risk level of a certain mode in a certain situation. Thus, YAP offers
the possibility to define risk gradient matrices that only capture expected changes in the risk level when
changing from one mode into another. We only consider symmetric changes and, thus, use skew-diagonal
matrices reduced3 to their lower left triangles. Examples of these matrices are shown in Listing 4.

To use such matrices for maximisation in YAP’s pGCL generator,4 we associate a positive gradient
with an improvement of the risk level and, vice versa, a negative gradient with a worsening of the risk
level.5 For example, the act matrix tells us that a transition from the activity welding to the activity
exchWrkp improves the risk level by 2. As a further example, the safmod matrix states that a transition
from the safety mode srmst (i.e., safety-rated monitored stop) to the safety mode ssmon (i.e., speed and
separation monitoring) worsens the risk level by −2.

YAP uses these matrices to calculate act- and safmod-updates of the set of guarded commands gener-
ated for the safety controller from the given factor specifications [6]. In YAP, risk can be evaluated both
based on transitions through the risk space (i.e., from one risk state to another) and on a wider situational
basis (i.e., based on transitions from one activity or safety mode to another). Note that while in step 4 ,
actions are associated with an absolute risk value, in step 5 , mode and activity changes are associated
with a risk gradient, a relative measure stemming from a pair-wise comparison of modes and activities.
Whereas for individual actions, the YAP user needs to agree on a single global scale for risk assessment,

2 That could also be achieved by parsing the process model (here, the PRISM file) but is beyond YAP’s current functionality.
3 For readability, one can provide the symmetric upper right triangle as well. However, YAP internally mirrors the values from
the lower left to the upper right to ensure skew-diagonality. 4 A description of YAP’s algorithms is out of scope of this tool
paper. 5 This choice should not be too counter-intuitive as one can associate negative numbers with something undesirable.

38 Safety Controllers with YAP

the higher complexity of risk assessment for modes and activities is taken account of by gradients.

5.3 6 Stochastic Modelling

Probabilistic choice in the process model set up in Sect. 5.1 (e.g. an MDP modelled in PRISM’s pGCL)
can capture a variety of adverse and critical stochastic events, such as human errors, sensor failures,
actuator perturbation and failures, and mishaps.

Human Errors. We consider, for example, intrusion of humanOp, whether intentional or erroneous,
into the work cell when not allowed:

1 [hi_mayEnterCell] !dntFlg_enterCell & !mntDone & !CYCLEEND

2 // deontic flag and end−of−cycle check
3 & wps!=empty & hact=idle & (hloc!=inCell & hloc!=atWeldSpot) & !wpfin

4 // action physically possible / feasible / reasonable
5 -> ((prm_enterCell&req_enterCell)?.9:.2):(dntFlg_enterCell’=true)

6 // action enabled if (90) / ifnot (10) allowed / required
7 +((prm_enterCell&req_enterCell)?.1:.8):true;

8 // action notenabled if (10) / ifnot (90) allowed / required

This listing shows a two-staged6 guarded command modelling the operator’s internal decision, not
their physical action. The flag dntFlg_enterCell is deontic in the sense that it enables but not triggers
the action h enterCell of the operator actually entering the work cell. The activation of this flag is handled
by a conditional probabilistic choice: the condition prm_enterCell distinguishes between probabilistic
intrusion in states where the human operator is permitted to enter the work cell and probabilistic intrusion
where the operator is not allowed to enter. In case of permission, dntFlg_enterCell is set to true

with a 90% chance and, in case of denial, only with a 20% chance. This is a way of saying that the
operator commits a human error in 20% of the times when they should not enter the work cell. The
predicate req_enterCell is not used in this particular model. It just indicates another potentially useful
state selection mechanism. The condition and the deontic flag can be omitted if the probabilities are
universal and we do not need to separate a physical action (e.g. movement of the operator) from a logical
action (e.g. change of the operator’s mind). In this model, we treat operating errors and malicious misuse
in the same way, however, a distinction can be necessary in other contexts.

Sensor Failures. The separation of physical and logical human actions allows us to synchronise sensor
actions with physical actions, for example, to model a range detector with a 5% chance of failure:

[h_enterCell] true -> .95:(rngDet’=near)+.05:true;

h enterCell is an event with two synchronous actions, the physical action of humanOp entering the
work cell and the logical action of the range finder in sensorUnit. Synchronisation establishes real-
time behaviour despite the deontic nature of pGCL. This sensor failure is modelled by the range finder
signalling near to safetyCtr only in 95% of the cases where humanOp actually enters the cell.

Actuator Perturbation and Failures. We have not modelled any perturbations in the HRC case study.
However, an obvious entry point for such phenomena would be the actions of robotArm. For example,

6 Such commands do not increase the expressiveness of pGCL as they can be expressed by a set of ordinary commands.
However, they increase convenience by allowing what can be called conditional probabilistic choice.

M. Gleirscher 39

the action r grabLeftWorkpiece could be extended by a probabilistic update modelling the fact that grab-
bing a work piece fails in a certain fraction of trials with a work piece not in the grabber and/or still in
the work piece support, or whatever outcome seems realistic.

Mishaps after Critical Events. Based on conditional probabilistic choice, similar to human error mod-
elling, we use probabilities to capture the fact that from activated critical events and certain actions, a
transition into a mishap state is possible. Consider the example:

1 HC desc "(H)uman (C)lose to active welder and robot working"

2 ...

3 mis="h_exitCell" // mishap possibly initiated by the action h exitCell
4 prob=0.05 // probability of mishap is 5 percent if unrecognised OR active and not mitigated
5 sev=5; // severity of the mishap is of class 5

The parameter prop=0.05 defines the probability of a mishap from the action h exitCell in case of an
activated HC to be 5%. The parameter sev=5 associates the impact from such a mishap to the exemplary
impact class 5, which can, for example, mean “high”. In other words, if humanOp wants to perform
the action h exitCell if the factor HC is active (i.e., HC) then, with a 5% chance, the outcome will be the
mishap HC, a specimen of the MISHAP state. The resulting pGCL fragment generated by YAP:

1 [h_exitCell] true ->

2 ((!HCp=mis & (CE_HC | RCE_HC))?0.05:0):(HCp’=mis)

3 +((!HCp=mis & (CE_HC | RCE_HC))?0.95:1):true;

4 [h_placeWorkpieceLeft] true ->

5 ((!HRWp=mis & (CE_HRW | RCE_HRW))?0.01:0):(HRWp’=mis)

6 +((!HRWp=mis & (CE_HRW | RCE_HRW))?0.99:1):true;

HC can, for instance, be a welding spark injuring the operator, or the robotArm hitting them, both
encoded in a corresponding risk/severity reward generated by YAP:

[h_exitCell] (!HCp=mis & (CE_HC | RCE_HC)) : 5.0;

One downside of this way of reward modelling in PRISM is that the reward is paid independent of
the outcome of h exitCell. A solution not chosen here would be to introduce an intermediate state with
the disadvantage of doubling the state space each time such a construction is chosen.

5.4 Mitigation Modelling with YAP

7 Factor-based Mitigation Modelling. The basic factor model allows mitigation in one (direct) or
two stages (indirect). For controller synthesis, we focus on the two-staged approach, which suggests the
specification of modes for detection, mitigation, and resumption.7 For example, the modes for the factor
HRW are referred to from its specification:

1 HRW desc "(H)uman arm and (R)obot on shared (W)orkbench" ...

2 guard "hACT_WORKING & rloc=sharedTbl & hloc=sharedTbl"

3 detectedBy (SHARE.HRWdet)

4 mitigatedBy (PREVENT.HRWmit)

5 resumedBy (.HRWres) ...

and detailed in the Application fragment:
1 mode HRWdet

2 guard "hACT_WORKING & rloc=sharedTbl & lgtBar=true"

3 embodiedBy cellObSys;

7 We omit alleviation modes for the sake of simplicity of this guide.

40 Safety Controllers with YAP

4 mode HRWmit desc "safety-rated monitored stop"

5 update "(notif_leaveWrkb’=true)" // safety function on
6 target (safmod=srmst) // safety mode on
7 embodiedBy robotArm

8 disruption=5 nuisance=1 effort=0.5;

9 mode HRWres

10 guard "hloc!=sharedTbl" // checking for hazard removal
11 update "(notif_leaveWrkb’=false)" // safety function off
12 target (safmod=normal); // safety mode off

Detection, mitigation, and resumption modes make use of the process model. For example, HRWdet uses
the formula hACT_WORKING (explained below) and the module variables rloc and hloc (the locations
of the robot arm and the operator) in an embedded guard expression. update in HRWmit specifies
the assignment of true to the module variable notif_leaveWrkb to notify the operator to leave the
workbench. Being a generic form of update, target specifies mode switching preferences that, when
unsafe, will be overridden by YAP using the gradient matrices (Listing 4).

For example, HRWmit switches to the mode “safety-rated monitored stop” (smrst) and HRWres
back to the normal mode. However, safetyCtr would only switch to the normal mode if this is accept-
able in the risk state to be reached. Hence, each of these modes will be enhanced by information about
activities and risk states and translated into one or more guarded commands for being integrated into the
process model. Note that there are also embodiment references to the items robotArm and cellObSys,
the latter being the overall sensor system of the work cell.

Connecting the YAP and PRISM Models. It is convenient to reuse formulas in several places. For
this purpose, YAP allows their definition in the Application sections of the YAP model:

1 Application cobot {

2 hACT_WORKING = "(ract=exchWrkp | ract=welding | wact=welding) & safmod=normal";

3 ...

4 hST_HOinSGA = "hloc=inCell | hloc=atWeldSpot";

5 hFINAL_CUSTOM = "wpfin & wps=empty & !reffocc & mntDone"; ... }

For example, the predicate hACT_WORKING includes activities where actors are effectively working.
hST_HOinSGA is a shortcut specifying states where the operator is in the safeguarded area. hFINAL_-

CUSTOM refines CYCLEEND (Sect. 5.1), the termination of a process cycle, in our example, the end of a
manufacturing cycle in the work cell. This predicate is used in the reduction of cyclic end components
in order for optimal MDP policy search algorithms to work correctly [15].

8 Adding Mitigation Alternatives. Factor specifications allow one to provide several mitigation
and resumption options and characterise their properties using risk and performance parameters. For
example, the factor HS (Human in Safeguarded area while robot working or welding) refers to three
mitigation options in its mitigatedBy directive:

1 HS desc "(H)uman in (S)afeguarded area while robot working or welding"

2 guard "hACT_WORKING & (hloc=inCell | hloc=atWeldSpot)"

3 detectedBy (SHARE.HSdet)

4 mitigatedBy (.ssmon,.srmst,.stopped)

5 resumedBy (.HSres)

We model the options ssmon, srmst, and stopped in more detail in Listing 5.

M. Gleirscher 41

Listing 5: All modes including for the factor HS
three mitigation options

1 mode HSdet desc "range detector"

2 guard "hACT_WORKING & (rngDet=near |

rngDet=close)";

3 mode ssmon

4 desc "speed/separation monitoring"

5 target (safmod=ssmon)

6 disruption=9 nuisance=9 effort=8;

7 mode srmst

8 desc "safety/rated monitored stop"

9 target (safmod=srmst)

10 disruption=5 nuisance=9 effort=5;

11 mode stopped

12 desc "protective emergency stop"

13 target (safmod=stopped)

14 disruption=2 nuisance=6 effort=3;

15 mode HSres

16 guard "!hST_HOinSGA" // check hazard removal
17 target (safmod=normal);

Table 1: Placeholders recognised by YAP and to be inserted into the process model for substitution
Placeholder Description

<%YAP#TYPES> Inject global type declarations
<%YAP#PREDICATES> Inject global definitions
<%YAP#CONTROLLER> Inject controller module
<%YAP#REWARDS> Inject reward structures
<%YAP#MODULEHOOK(m)> Add data and command definitions to application module m

5.5 Verified Controller Synthesis

9 Action-based Performance Modelling. Along with the three mitigation options specified in List-
ing 5, we provide estimates for their disruption of the manufacturing process, for their nuisance of
operators, and for the effort required for their execution. In addition, for each action in the process
model (Sect. 5.1), one can provide a guard and several columns of optimisation parameters (e.g. prod,
eff_process_time, risk_HC). Each such column is converted into an action reward structure.

1 Weights rewards {

2 guard prod eff_process_time;

3 // robotArm
4 r_moveToWelder: "" "h" "2*macro";

5 ...

6 // welder
7 rw_weldStep: "" "h" "3*macro";

8 rw_leaveWelder: "" "h" "macro";

9 // humanOp
10 h_start: "" "l" "macro";

11 ...

12 h_enterCell: "" "none" "none";

13 h_exitCell: "notif=leaveArea""none""none";

14 }

Moreover, as shown in these two examples, one can also use parameters defined elsewhere (e.g. macro,
h, none) instead of using literal numbers in place. One may provide several weights structures across
the activity model. However, they will all be merged into one central “database” containing all columns
found in the given structures.

10 Design Space Generation. The process model has to be instrumented with placeholders to be
substituted with model fragments generated by YAP. Such placeholders take the form <%YAP#X> where
X is the placeholder name.8 Table 1 lists placeholders currently supported by YAP.

The output of YAP, for this use case, is an MDP, with its non-deterministic choice representing the
decision space of all actors in the work cell. We call the decision space of the safety controller—as one

8 The placeholders will need to be commented in order to not interfere with the semantics of the process modelling language (cf.
Javadoc in Java). In PRISM, we therefore use //<%YAP#X>.

42 Safety Controllers with YAP

of these actors—the design space. This design space and the decision space of the other actors are used
for optimal controller synthesis.

With the model constructed according to the steps 1 to 9 in Figure 1, we use YAP to generate and
inject the controller into the process model (Sect. 5.1):

yapp -m model.yap -t target-template.xyz -o output/model.xyz \

-f prism -d multi-event-concurrent --synthesise controller

With the output format switch -f prism, YAP creates three artefacts in this step:

1. An MDP in PRISM’s pGCL used as the design space for PRISM’s search for an optimal policy—
a DTMC—representing the abstract controller (file model.prism).

2. A list of probabilistic computation tree logic (PCTL) properties to be verified of the design space
by PRISM in step 11 (Sect. 5.5, file model.props).

3. A list of PCTL properties to be verified in step 12 (Sect. 5.5) of any policy found by PRISM (file
model_pol.props).

The following pGCL fragment, generated by YAP, shows the design space for switching into a safety
mode triggered if a particular hazard (e.g. HC, HRW, HS) has been detected:

1 [si_HCSrmstIdleVissafmod] !CYCLEEND & safmod=normal & HCp=act -> (safmod’=srmst);

2 [si_HCStOffAudsafmod] !CYCLEEND & safmod=normal & HCp=act -> (safmod’=stopped);

3 [si_HCStOffVissafmod] !CYCLEEND & safmod=normal & HCp=act -> (safmod’=stopped);

4 [si_HRWmitsafmod] !CYCLEEND & safmod=normal & HRWp=act -> (safmod’=srmst);

5 [si_srmstsafmod] !CYCLEEND & safmod=normal & HSp=act -> (safmod’=srmst);

The following pGCL fragment, generated by YAP, highlights the part of the controller design space
allowing the controller to switch off mode-specific safety functions (lines 1-2) and resume to a less re-
strictive safety mode (lines 3-4):

1 [si_HCres2fun] !CYCLEEND & HCp=mit & !CE_HC & notif=leaveArea & !hST_HOinSGA -> (notif’=ok);

2 [si_HCresfun] !CYCLEEND & HCp=mit & !CE_HC & notif=leaveArea & !hST_HOinSGA -> (notif’=ok);

3 [si_HRWressafmod] !CYCLEEND & safmod=normal & HCp=inact & HSp=act & WSp=inact & HWp=inact &

RCp=inact & (RTp=mit | RTp=sfd) & HRWp=mit & hloc!=sharedTbl & (notif_leaveWrkb=false)

4 -> (safmod’=ssmon)&(HRWp’=sfd);

11 Design Space Verification and Optimal Controller Synthesis. In this example, we use PRISM
for the verification of the MDP and the synthesis of an MDP policy. The use of PRISM and the process-
ing of its output is out of scope of this paper and, therefore, not explained here. Particularly, the formulas
presented below contain PCTL operators [14] and other PRISM query language [21] primitives that are
assumed to be familiar to the YAP user interested in PRISM-based controller synthesis with YAP.

Synthesising Optimal Policies from an MDP. For optimal policy synthesis (here, the synthesis of
DTMCs), we use the command

prism output/model.prism -pctl ’<query>’ -s \

-exportadvmdp poloutdir/model-adv.tra \

-exportstates poloutdir/model-adv.sta \

-exportprodstates poloutdir/model-adv.pst \

-exportlabels poloutdir/model-adv.lab .

M. Gleirscher 43

Table 2: Formulas generated by YAP for custom property specification
Formula Description

E “detector” predicate for the critical event E
RCE_E “ground truth or reality” predicate for the critical event E
ANYOCC (OCE) universal detector predicate, true if any critical event is true
ANYREC (RCE) universal ground truth counterpart of ANYOCC
ANY (CE) true if any CE has occurred whether or not detected
ACCIDENT true if any factor f is in its mishap phase f
MISHAP true if ACCIDENT or if any final factor (e.g. an incident) is activated (i.e., in phase f)
SAFE true of any state that is neither a CE nor a mishap
FINAL (CYCLEEND) true if hFINAL_CUSTOM (Sect. 5.4) is reached

PRISM will generate one or more policy files (with names and suffixes according to model-adv[1-n].

pst,sta,tra,lab) from the file output/model.prism and compliant with the optimisation query
<query>, for example,

multi(R{"effort"}max=? [C], R{"nuisance"}max=? [C]) ,

and places these files in poloutdir/. This query searches for all policies that Pareto-maximise effort
and nuisance (Rmax[C]) as explained in Sect. 5.5. PRISM enumerates such policies as a list of value
pairs holding the results of the cost function defined by this query. Within PRISM’s GUI, one can
visualise these pairs as a Pareto front. We calculated a Pareto front for the present example in [6].

To include the verification of safety properties at this stage in the procedure, we can use a combination
of a single optimisation query and several constraints, for example,

multi(R{"prod"}max=? [C], R{"risk_sev"}<=s [C]) and

multi(R{"risk_sev"}<=s [C<=t], P<=p [F "ANY"]) .

The first property maximises the productivity of the work cell (Rmax[C]) as long as the accumula-
tive bound on action rewards (R<=s[C]) for risk_sev stays below a user-defined level s. The second
property combines a time-bounded version (C<=t) of the latter constraint with the probability-bounded
reachability (P<=p[F]) of ANY of the modelled factors, for user-defined bounds t and p. Beyond ANY,
YAP generates further shortcut formulas (into the file model.prism) that can be used in PCTL properties
as shown above. These state formulas are listed in Table 2.

12 Controller Verification: Checking the Generated Policies (DTMCs). As already mentioned in

Sect. 4, the separation into the two verification steps 11 and 12 and the corresponding property lists
is due to restrictions in the combinations of properties that can be checked by PRISM in one go. The
policies are given in the form of DTMCs and can, thus, be further checked with the command

prism -importstates poloutdir/model-adv.sta \

-importlabels poloutdir/model-adv.lab \

-importtrans poloutdir/model-adv1.tra -dtmc \

-pctl "<prop>" -gs >poloutdir/model-adv-checks.txt .

For example, for <prop> we applied

filter(avg, P=? [!"ACCIDENT" W "SAFE"], "ANYREC" & !"MISHAP")

44 Safety Controllers with YAP

to determine the average probability (filter(avg, P=? [...], ...)) of accident freedom un-
til reaching a safe state (!"ACCIDENT" W "SAFE") when starting from any reachable hazardous state
("ANYREC" \& !"MISHAP"). As already mentioned in Sect. 5.5, with the file model.props, YAP sug-
gests a range of properties to be checked of a policy. See [6, Tab. III] for a selection of properties.

Further Processing of the MDP and DTMC. The abstract controller consists of the list of states of
the MDP respectively the DTMC, for example,
State:(... HRWp, notif_leaveWrkb, ...)

510: (... 1, false, ...)

511: (... 1, true, ...)

and all transitions describing the decisions (accordingly, with probabilistic outcomes), for example,

510 511 1 si_HRWmitfun

This transition, going from state 510 to 511 and labelled with the action si_HRWmitfun, notifies the
operator, with probability 1,9 to leave the workbench in case of an activated factor HRW.

For visualisation and model debugging, the MDP can be converted into a dot file with

prism output/model.prism -exporttransdotstates rel.dot .

This file can be used with GraphViz tools such as dot.10 Based on GraphViz, YAP provides rudimentary
facilities for the visualisation of the generated policy. Such a visualisation can be useful in the direct
debugging of DTMCs with a state space of up to a size of around 1000 states.

6 Discussion and Outlook

From Abstract to Concrete Policies. The safety controller in its abstract form is represented by the
calculated policy, a DTMC with state space Σ and action set A. Σ and A are results of combining the risk
state space, generated by YAP from the factor set F , and the mitigation actions, filed in the YAP model,
with the process model. Each state-based memory-less deterministic policy π can then be represented
by a map π : Σ→ A. As shown before, the transition relation of the policy is provided by PRISM as a
list of (state,action,probability,state)-tuples (cf. Sect. 5.5). The safety controller, part of such a policy,
is a list of transitions that, at the concrete level, would again be guarded commands of the form:

[controller action]︸ ︷︷ ︸
event

process & risk state︸ ︷︷ ︸
guard

→mode & activity switch, safety function︸ ︷︷ ︸
update

PRISM’s output can be used to translate this abstract policy representing the discrete-event controller
into a concrete policy. This translation involves two essential steps:

• The translation of the abstract states into concrete guard conditions, and

• the translation of the updates into low-level procedures generating control inputs to the process.

Part of ongoing research is the corresponding refinement of this transition relation into an automaton that
can run on, for example, an autonomous machine platform or the robot operating system11 (ROS). We
will investigate how environments such as Isabelle/UTP [4] and ROBOTOOL [20] can be used to verify
and deploy safety controllers derived with the help of YAP. Isabelle/UTP provides a generic framework
for model verification and ROBOTOOL an environment for rigorous robotic software development.
9 The controller in this example is fully deterministic but, conceptually, we can also design randomised controllers with our
approach. 10 See https://graphviz.org. 11 See https://www.ros.org.

M. Gleirscher 45

Safety Properties and Safety Controller. A safety property states that “something will not happen”
and, thus, is a property whose violation can be observed in finite time [16]. In many applications, “some-
thing” refers to a CE that cannot be avoided by a careful redesign of the process and, therefore, violations
have to be accepted to a certain extent. A safety controller typically includes a safety monitor responsible
for detecting such violations at run-time [17] and an active component influencing the monitored process
in a way that the safety property is established again. In other words, the “violation counter” is restored.
In such applications, we therefore substitute the verification of the original safety property by

• a response property [19] (formalising successful mitigation and resumption as a finite response
to the detection of an endangerment) to be verified of the process integrated with the controller
design space (cf. 11), and

• another safety property (cf. 12 , formalising the absence of undesired consequences of the afore-
mentioned violations) whose probability of being violated must not exceed a certain bound, by
virtue of the safety controller when working correctly.

Re-Interpretation of Activity Graphs for Synthesis. We may want to allow several actors to concur-
rently carry out actions in any of the activities of the process. Therefore, it seems useful to associate
a coloured Petri net (CPN) [12] semantics to activity graphs (e.g. Figure 2). CPNs offer a more flex-
ible way of modelling concurrency compared to the parallel composition [8] used in PRISM’s pGCL.
Specifically, in a CPN, the places could represent activities and the movable labels the actors. Then, a
placement of these labels, that is, a marking, indicates the activities actors are performing at a point in
time. A transition in a CPN can move any number of labels between the activities, meaning the actors
involved in that transition concurrently finish their current activities and start new activities. However,
a pGCL guarded command in PRISM can either move one label or as many labels as there are actors
participating in a synchronous event. As a part of our future work, we will investigate how the explicit
approach to concurrency in CPNs improves the usefulness and flexibility of the activity model.

7 Conclusions

This paper provides a hands-on and tool-focused guide to a novel approach to the design, verification, and
synthesis of safety controllers from hazard analysis and risk assessment as previously published in [6].
We also discuss a range of modelling decisions (e.g. identifying parameters, decomposing behaviour,
integrating probabilistic choice) to be made when devising such controllers. The proposed step-wise and
tool-supported workflow aims at supporting verification engineers in transforming data from hazard anal-
ysis and risk assessment into a verifiable controller model and, thus, contributes to recent and practically
relevant challenges (e.g. [1, Challenges OC1, OC2, and OC4]).

Among the next steps of technical research are the improvement of the synthesis facilities, the evalu-
ation of alternatives to PRISM, and the development of an integration with robotic platforms (e.g. ROS,
digital twin environments12) and tools (e.g. ROBOCHART[20]) to automate controller deployment.

Acknowledgements. This research was funded by the Lloyd’s Register Foundation under the Assuring
Autonomy International Programme grant CSI:Cobot. I am greatly indebted to Radu Calinescu for many
inspiring discussions and for encouraging me to implement some of the described YAP enhancements.

12 See, e.g. https://github.com/douthwja01/CSI-cobotics.

46 Safety Controllers with YAP

References

[1] Radu Calinescu, Javier Camara & Colin Paterson (2019): Socio-Cyber-Physical Systems: Models, Opportu-
nities, Open Challenges. In: 5th ICSE Workshop on Software Engineering for Smart Cyber-Physical Systems
(SEsCPS), IEEE/ACM, pp. 1–6, doi:10.1109/sescps.2019.00008.

[2] Radu Calinescu, Danny Weyns, Simos Gerasimou, Muhammad Usman Iftikhar, Ibrahim Habli & Tim Kelly
(2018): Engineering Trustworthy Self-Adaptive Software with Dynamic Assurance Cases. IEEE Transactions
on Software Engineering 44(11), pp. 1039–1069, doi:10.1109/tse.2017.2738640.

[3] Clifton A. Ericson (2015): Hazard Analysis Techniques for System Safety, 2 edition. Wiley.

[4] Simon Foster, Frank Zeyda & Jim Woodcock (2015): Isabelle/UTP: A Mechanised Theory Engineering
Framework. In: UTP, Springer, pp. 21–41, doi:10.1007/978-3-319-14806-9 2.

[5] Mario Gleirscher (2020): YAP Against Perils: Application Guide and User’s Manual. University of York
and Technical University of Munich. Available at http://gleirscher.de/yap/.

[6] Mario Gleirscher & Radu Calinescu (2020): Safety Controller Synthesis for Collaborative Robots. In: En-
gineering of Complex Computer Systems, 25th International Conference (ICECCS), 28 - 31 October 2020,
Singapore, pp. 1–12. Available at https://arxiv.org/abs/2007.03340. In press.

[7] Mario Gleirscher, Radu Calinescu & Jim Woodcock (2020): Risk Structures: A Design Algebra for Risk-
Aware Machines. Working paper, Department of Computer Science, University of York, York, UK. Available
at https://arxiv.org/abs/1904.10386.

[8] Charles A. R. Hoare (1985): Communicating Sequential Processes. Int. Series in Comp. Sci., Prentice-Hall.
Available at http://www.usingcsp.com.

[9] IEC 61508 (2011): Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related Sys-
tems. Standard, The 61508 Association. Available at http://www.61508.org/.

[10] IEC 61882 (2016): Hazard and operability studies – Application guide. Standard 61882, IEC. Available at
https://webstore.iec.ch/publication/24321.

[11] ISO/TS 15066 (2016): Robots and robotic devices – Collaborative robots. Standard, Robotic Industries
Association (RIA). Available at https://www.iso.org/standard/62996.html.

[12] Kurt Jensen & Lars M. Kristensen (2009): Coloured Petri Nets. Springer, Berlin Heidelberg,
doi:10.1007/b95112.

[13] John Knight (2012): Fundamentals of Dependable Computing for Software Engineers. Chapman and Hal-
l/CRC, doi:10.1201/b11667.

[14] Marta Kwiatkowska, Gethin Norman & David Parker (2007): Stochastic Model Checking. In M. Bernardo
& J. Hillston, editors: Formal Methods for the Design of Computer, Communication and Software Systems:
Performance Evaluation (SFM), LNCS 4486, Springer, pp. 220–70, doi:10.1007/978-3-540-72522-0 6.

[15] Marta Kwiatkowska, Gethin Norman & David Parker (2011): PRISM 4.0: Verification of Probabilistic Real-
time Systems. In G. Gopalakrishnan & S. Qadeer, editors: 23rd International Conference on Computer Aided
Verification (CAV), LNCS 6806, Springer, pp. 585–591, doi:10.1007/978-3-642-22110-1 47.

[16] Leslie Lamport (1977): Proving the Correctness of Multiprocess Programs. IEEE Trans. Software Eng. 3(2),
pp. 125–43, doi:10.1109/TSE.1977.229904.

[17] Martin Leucker & Christian Schallhart (2009): A brief account of runtime verification. Journal of Logic and
Algebraic Programming 78(5), pp. 293–303, doi:10.1016/j.jlap.2008.08.004.

[18] Nancy G. Leveson (2012): Engineering a Safer World: Systems Thinking Applied to Safety. Engineering
Systems, MIT Press, Cambridge, Mass., doi:10.7551/mitpress/8179.001.0001.

[19] Zohar Manna & Amir Pnueli (1995): Temporal Verification of Reactive Systems: Safety. Springer,
doi:10.1007/978-1-4612-4222-2.

M. Gleirscher 47

[20] Alvaro Miyazawa, Pedro Ribeiro, Wei Li, Ana Cavalcanti, Jon Timmis & Jim Woodcock (2019): RoboChart:
modelling and verification of the functional behaviour of robotic applications. Software & Systems Model-
ing, doi:10.1007/s10270-018-00710-z.

[21] Dave Parker, Gethin Norman & Marta Kwiatkowska (2019): PRISM Model Checker. Available at http:
//www.prismmodelchecker.org/manual/.

M. Luckcuck, M. Farrell (Eds.): Second Workshop
on Formal Methods for Autonomous Systems (FMAS2020)
EPTCS 329, 2020, pp. 48–64, doi:10.4204/EPTCS.329.5

c© F. Kachi, C. Bouanaka & S. Merkouche
This work is licensed under the
Creative Commons Attribution License.

A Formal Model for Quality-Driven Decision Making in
Self-Adaptive Systems

Fatma Kachi Chafia Bouanaka Souheir Merkouche
LIRE Laboratory

University of Constantine2-Abdelhamid Mehri
Constantine, Algeria

(fatma.kachi, chafia.bouanaka, souheir.merkouche)@univ-constantine2.dz

Maintaining an acceptable level of quality of service in modern complex systems is chal-
lenging, particularly in the presence of various forms of uncertainty caused by changing
execution context, unpredicted events, etc. Although self-adaptability is a well-established
approach for modelling such systems, and thus enabling them to achieve functional and/or
quality of service objectives by autonomously modifying their behavior at runtime, guar-
anteeing a continuous satisfaction of quality objectives is still challenging and needs a rig-
orous definition and analysis of system behavioral properties. Formal methods constitute a
promising and effective solution in this direction in order to rigorously specify mathemati-
cal models of a software system and to analyze its behavior. They are also largely adopted
to analyze and provide guarantees on the required functional/non-functional properties
of self-adaptive systems. Therefore, we introduce a formal model for quality-driven self-
adaptive systems under uncertainty. We combine high-level Petri nets and plausible Petri
nets in order to model complex data structures enabling system quality attributes quantifi-
cation and to improve the decision-making process through selecting the most plausible
plans with regard to the system’s actual context.
Keywords: Formal methods, Petri nets, Self-adaptive systems, Quality-driven systems, un-
certainty models.

1 Introduction
Modern advanced software systems are required to perceive important structural and dynamic
changes to their operational environment as well as to their internal status, and to adapt to
these continuous changes autonomously [18]. They aim to achieve better quality of service
and ensure the required functionality. However, such systems are expected to deal seamlessly
with different types of uncertainty during operation. These uncertainties are often difficult to
predict at design time, requiring software to be deployed with incomplete knowledge and han-
dle changing conditions during operation [28]. Consequently, software engineers are investi-
gating new techniques to handle uncertainty at runtime without incurring penalties, which
is commonly referred to as self-adaptation [18, 12]. Many software systems actually need to
comply with strict requirements, providing guarantees for system properties such as ensuring
a certain level of performance and reliability.

Self-adaptability [16] is a well-established approach for modelling such systems, and allow-
ing them to be able to achieve functional and/or quality of service objectives by autonomously
modifying their behavior at runtime. The MAPE-K [10, 1] (Monitor-Analyze-Plan-Execute
over a shared Knowledge) loop is one popular approach that has proven its efficiency in mod-
elling self-adaptability since it covers the necessary activities to be performed in a control

F. Kachi, C. Bouanaka & S. Merkouche 49

loop. However, uncertainty is a fundamental challenge of SASs (Self-Adaptive Systems). It
involves not only system requirements but also its execution context and affects the system
quality of service. Therefore, self-adaptation mechanisms driven by quality modify system be-
havior dynamically. Albeit there has been extensive research to address uncertainty in SASs
[24, 19, 21], there is no focus on proposing solutions to identify uncertainty at different levels
of the decision-making process and considering it when modelling the SASs. Besides, the main
focus has been on achieving adaptations without determining their side effects on the overall
system qualities. Moreover, existing approaches do not allow choosing the most appropriate
adaptation plan in terms of the best side effects.

The engineering of quality-driven self-adaptive systems, evolving under uncertainty, needs
to consider the above issues. Besides, designing this type of systems requires a verification and
validation phase using formal methods and tools so that the model can be analyzed with regard
to quality. Formal methods constitute a promising and effective solution to rigorously specify
mathematical models of a software system and analyze its behavior. They are also largely
adopted to analyze and provide guarantees on the required properties of self-adaptive systems.
In this field, Petri nets [27] have shown their ability as a powerful tool for modelling and
verifying complex systems, a number of variants have also been introduced to help modelling
uncertainties, such as fuzzy Petri nets [20, 29], possibilistic Petri nets [17], etc.

In this paper, we introduce a formal model for self-adaptive systems evolving in dynamic
environments and execution contexts. We mainly leverage a MAPE-K loop-based model, com-
bining high-level Petri nets (HLPNs) and plausible Petri nets (PPNs), for the design of quality
driven systems under uncertainty. Although PPNs allow managing uncertainty and guiding
the decision-making process, they do not support the complex data structures that are nec-
essary to enable the quantification of system quality properties. To this end, we exploit the
expressive power of HLPNs. We mainly extend the model proposed in [5] to capture uncer-
tainty by combining PPNs with the already used HLPNs. The basic approach does not consider
the uncertainty concerns in the decision-making process. It does not also allow representing
complex information and characteristics of a dynamic system owing to the use of ordinary Petri
nets. In addition, the separation of concerns between system qualities may lead to negative side
effects. Therefore, we use HLPNs to represent complex systems and data structures; and PPNs
to assist the decision-making phase in selecting the best plans in the presence of uncertainty.

The remainder of this paper is structured as follows. Section 2 recalls basic concepts on
Petri net types involved in our model. Section 3 discusses related work on modelling SASs and
tackling the problem of uncertainty. Section 4 formally describes the proposed model and its
components, the latter is illustrated and validated through the problem of the aircraft planning
in Section 5. Finally, Section 6 concludes the paper.

2 Background
Petri nets have been initially proposed to model the behavior of a dynamic system with discrete
events [6]; they have then undergone several evolutions and variants [15, 9, 2, 26] to cover
more concerns in system modelling and analysis. In what follows, we present two types of
Petri nets to be used in this work, high-level Petri (HLPNs) nets and plausible Petri nets (PPNs).
To facilitate the understanding of our approach and the usefulness of Petri nets types to be
adopted, we give only an informal description of what they are and their purpose; we refer the
readers to [15, 8] for formal definitions and more details.

50 A Formal Model for Quality-Driven Decision Making in Self-Adaptive Systems

2.1 High-Level Petri Nets (HLPNs)

HLPNs are a well-defined semi-graphical technique for the specification, design and analysis
of systems. HLPNs are applicable to a wide variety of concurrent discrete event systems and in
particular distributed ones. Generic fields of HLPN application domains include: requirements
analysis; development of specifications; modelling business and software processes; simulation
of systems to increase confidence; formal analysis of the behavior of critical systems; develop-
ment of Petri net support tools, etc. [15].

An HLPN is made up on a set of nodes (i.e. places and transitions) and a set of arcs con-
necting places to transitions and vice versa as in an ordinary Petri net but is extended in the
following way: each place is associated with a place type and can contain a collection of tokens
corresponding to that place type. Transitions are dotted with boolean expressions (for example,
x < y) called guards. Additionally, arcs are inscribed with expressions called arc annotations;
expressions may contain constants, variables, and function images. An expression is evaluated
by assigning values to each of its variables. Whenever an expression evaluates to true, a multi-
set of tokens is produced in the output places of the corresponding transition according to arcs
weights and types.

2.2 Plausible Petri Nets (PPNs)

The combination of the principles of Petri nets with the foundations of information theory
resulted in a new model for Petri nets, called plausible Petri nets (PPNs) [7, 8]; which are a
hybrid variant of Petri nets composed of two types of places and transitions, namely, symbolic
and numerical, in order to describe both discrete and continuous behaviors of a system. In the
symbolic subnet, the discrete behavior is described using regular tokens, while in the numerical
subnet, continuous or numerical behavior is described with tokens that carry information about
the states of variables. A state of information about a given variable is the probability density
function (PDF) of x over χ [22], where χ is the state space of a stochastic variable x. For
a numerical transition, it can fire when the conjunction between all its input places states of
information and the transitions states of information is possible. For a mixed transition, both
conditions of symbolic and numerical transitions must be satisfied. Firing transitions effect for
the numerical places is a state of information consisting of a disjunction of the previous state
of information, and the information produced after firing the transition (conjunction of state of
information within the transition and its input places). For more details on PPNs, the reader is
referred to [9].

The main feature of PPNs resides in their efficiency to jointly consider the evolution of a
discrete event system together with uncertain information about the system state using states
of information [8]. They provide a mapping between the possible numerical values of a state
variable and their relative plausibility, hence giving greater versatility for representing uncer-
tain knowledge using a more principled approach [9].

3 Related work
Over the past years, researchers have developed a large body of work to formally model self-
adaptive software systems and many approaches have shown remarkable progress in provid-
ing solutions to mitigating uncertainties in these systems using various formal approaches.

F. Kachi, C. Bouanaka & S. Merkouche 51

In [5], the authors proposed a formal framework, based on HLPNs, to model a distributed
self-adaptive system. In particular, the framework shows how the most significant concepts
related to self-adaptation can be formally specified in terms of HLPN, and how structural
changes implemented by multiple control loops can be described in a natural way. A two-
layered architecture is adopted; it ensures a clear separation between the managed and the
managing systems. The HLPN emulator is capable of representing the system dynamics; for
this purpose, the basic Petri net is encoded in the emulator marking. The managing system
is defined by a collection of MAPE-K control loops, specified using HLPNs. To implement
sensors and actuators, the read and write API primitives are used. The approach is consistent
and based on well-established formal methods. As such, it takes advantage of consolidated
analytical techniques. However, a major drawback of this approach is that it does not consider
uncertainties to be faced in the decision-making phase. This leads to poor system performance.
Hence when choosing an adaptation plan, the system lacks global knowledge changes to be
performed and therefore is unable to determine the negative effect of each plan in order to
choose the best one. Besides, it does not allow modelling complex systems due to the use of
ordinary Petri nets for modelling the managed systems.

In [24], an approach called Simplex Control Adaptation (SimCA*) is presented, it allows
building self-adaptive software systems that satisfy multiple STO-reqs a combination of S-
reqs (stakeholder requirements), T-reqs (threshold requirements), and O-reqs (optimization re-
quirements) in the presence of different types of uncertainty. SimCA* has dedicated specific
components to monitor changes in the underlying system or its environment and adjust the
adaptation logic accordingly to deal with different types of uncertainty. The main contribution
of SimCA* is in applying formal techniques to adapt the behavior of software systems, which
is one key approach for providing correctness guarantees. Formal analysis in SimCA* is based
on an equation-based model of the software system and leverages on guarantees provided by
basic SimCA [23]. This analysis is complemented by an empirical evaluation that demon-
strates that SimCA* achieves the required quality goals. Although this approach deals with
uncertainty and offers correctness guarantees, it does not support systems and uncertainties
modelling.

In [9], the authors provide a framework for modelling self-adaptive expert systems (SAeSs)
using Petri nets. The Petri nets used here are called plausible Petri nets combined with Bayesian
learning principles. PPNs model uncertainty through information states, which provide a map
between the possible numerical values of a state variable and their relative plausibility. This
methodology is primarily used in SASs that deal with uncertainty, for monitoring system in-
frastructure assets. This model allows systems to handle uncertainties and to adapt to their
occurrence; applying Bayesian learning particularly allows generating new adaptation deci-
sions, which is a suitable solution for the adaptation problem. However, since it uses symbolic
subnet which accounts for the discrete behavior of the system using regular tokens, as for or-
dinary Petri nets, it does not allow representing complex structured data and thus complex
systems.

In [14], a new type of Petri net based on neural networks to model adaptive software sys-
tems was presented. It is an extension of hybrid Petri nets by embedding a neural network
algorithm into them on particular transitions; system adaptation is realized through the learn-
ing ability of neural networks. The proposed model considers the runtime environments and
ensures that components collaborate to make the suitable adaption decisions while the comput-
ing happens locally. We highlight that the model is more efficient than traditional optimization

52 A Formal Model for Quality-Driven Decision Making in Self-Adaptive Systems

solutions since it is able to not only process runtime data and make decisions, but also model
the behavior of software systems. A major drawback of the proposed model is that it does not
allow new decisions to be made, i.e. adaptation actions have to be defined statically, in addition
to the conditions for their selection, which is a difficult and costly task in the case of complex
systems.

Although some of the models presented in this section inspired us to define our model, none
of them allow both modelling self-adaptation and managing uncertainty at the same time. So,
we can conclude that:

• Models dedicated to self-adaptive systems modelling do not generally allow the gener-
ation of new decisions, but rather the decisions are encoded beforehand and the system
deduces which one to apply according to the actual context changes. Thus, when new
events occur, the system does not know what to do. Moreover, the system’s external
environment is generally discarded, since in most cases only system resources are con-
sidered as its execution context.

• Models dedicated to managing uncertainty are in most cases hybrid Petri nets that sup-
port the modelling of discrete and continuous events affecting the system, they are usu-
ally specific to a particular type of systems, giving rise to difficulties in their reuse and do
not support the modelling of more complex systems.

4 Proposed model
With the emergence of complex systems, ensuring their effectiveness and efficiency is very dif-
ficult due to variations in their execution contexts and evolution in their requirements. Through
self-adaptation, a system is able to cope with these contextual and environmental changes, and
hence adapting to the new conditions in which it evolves. However, in the case of a quality-
driven self-adaptive system, the major difficulty lies in selecting the most appropriate adap-
tation plans, adaptation actions and side effects that ensure and maintain the required system
global qualities. Consequently, one major challenge is to deal with and to be able to exploit
such uncertainty to dynamically adapt the modelled system. In this paper, we aim to com-
bine HLPNs and PPNs to model quality-driven systems under uncertainty while considering
the necessary artifacts to quantify system qualities and guide the decision-making to select the
best plans with regard to quality attributes.

4.1 Overall architecture
In [5], HLPNs were adopted to formally model distributed self-adaptive systems. Although
the two-layered architecture defined in [5] ensures a clear separation between the managed and
the managing systems, its major drawback is that it does not consider the uncertainty concerns
in the decision-making process. It also does not allow representing complex information and
characteristics of a dynamic system owing to the use of ordinary Petri nets, which manipulate
a single type of tokens and thus lack the necessary expressive power to model the managed
system and its execution context. In addition, the managing system is defined by a collection
of MAPE-K control loops, specified by means of HLPNs, in order to define a loop for each
adaptation concern or quality. Such separation of concerns between system qualities may lead
to negative side effects i.e. when the system tries to improve one quality, it may negatively alter
other ones.

F. Kachi, C. Bouanaka & S. Merkouche 53

Figure 1: Approach Overview.

In our approach, we adapt and extend the model proposed in [5] to formally model quality-
driven systems under uncertainty and to maintain several qualities. Our objectives through this
extension are:

• to mitigate uncertainties in order to ensure the continuous satisfaction of system qualities
as effectiveness, efficiency, reliability...

• to assist the decision-making process while selecting the proper adaptation plans in order
to maintain the desired quality of service.

• to improve the model expressiveness and allow representing more complex information
of a dynamic system; the managed system and its environment for instance.

To achieve these objectives and be able to model a quality-driven SAS, we need to firstly iden-
tify the overall qualities of the system, and then determine the system characteristics that al-
low their quantification as well as the contextual uncertainties that affect the system behavior.
System qualities may include safety, which informally require that something bad will never
happen, and efficiency, which means that the system will select the most efficient adaptation
plans. We will explain these qualities in more detail in section 5. To this end, we combine
HLPNs and PPNs; where HLPNs intervene in the definition of data flows through expressions
and annotations; this feature will be exploited to quantify the observed qualities among the
different elements of the model. On the other hand, PPNs are used to assist and improve the
decision-making process and hence determine the most appropriate plans; we mainly exploit
the plausibility concept of PPNs to select the most appropriate plan for an adaptation condi-
tion. We point out that, contrary to the approach adopted in [5], we model the managing
system through a single control loop in order to predict and treat negative side effects of the
adaptation plans on the system global qualities. Figure 1 depicts an overview of the proposed
model which is an extension of the basic structure of the architecture proposed in [5] in the
following directions: (1) the monitored layer is modelled by a HLPN rather than an ordinary
Petri net and (2) for the control layer, the emulator is extended to support HLPNs that are also
used to represent the MAPE-K elements except the planner (P) which is represented by a PPN.

54 A Formal Model for Quality-Driven Decision Making in Self-Adaptive Systems

This model provides a rigorous means to specify systems, ensure the continuous satisfaction of
their quality and perform adaptations using the most appropriate plans.

4.2 Monitored layer

It encloses the definition of the managed system and its operating environment. We adopt
HLPNs to model the monitored layer, it describes the global behavior where places model the
managed system states or the context elements; transitions model actions to be performed by
the system; tokens hold information about the element being modelled in that place and accept
any data structure, which is the major benefit of HLPN in addition to the concept of expressions
that allows quantifying system qualities.

4.3 Control layer

The control layer is generic and parameterized by the monitored layer, the quality objectives
and adaptation actions. It contains (see Figure 2) the emulator, the managing system which
is a combination of HLPN and PPN and the API consisting of a set of read/write primitives
represented by HLPN transitions. These components provide specific roles to achieve a clear
separation of concerns. To take charge of and be able to manipulate the HLPNs concepts, we
have also extended and updated the API and the emulator elements; we give in what follows
a brief description of the use of the emulator and the API elements (for the full description see
[5]).

The emulator is used to encode the monitored layer in a specific structure modelled by an
HLPN to be manipulated by firing transitions connected to places. In the emulator, each place
gathers a set of elements of the managed system which are: places of the managed system
together with their markings, its transitions with their guards, the input arcs with their expres-
sions, and the output arcs with their expressions; so it has 4 places. This representation allows
and facilitates the use of the API; executing the API primitives invokes the firing of the mon-
itored layer transitions and/or adaptation of its structure. In the emulator model, the single
transition move, whenever it fires, triggers the firing of a transition in the monitored layer be-
ing emulated. The emulator is connected to the managing system by means of an output arc
from the transition move to the place initM of zone M in Figure 2.

The API is a set of primitives that allow reading as well as modifying the Petri nets of
the monitored layer. The primitives are used inside the MAPE-K control loop to simulate the
sensing and actuating actions upon the monitored layer. Each primitive is formalized by a
HLPN transition (connected to specific places of the emulator) which reads or modifies the
encoded Petri nets associated with the managed system in a consistent and atomic manner.

The managing system is a MAPE-K control loop specified in terms of a combination of
HLPNs and PPNs sharing the same knowledge where the quantification of the observed quali-
ties is carried out using the data flow defined by the HLPNs and the decision-making phase or
the planner element is extended to assist it in selecting the best plans in the presence of uncer-
tainty using PPNs. An overview of the managing system detailed structure is given in Figure
2 where blue places and transitions are plausible and the black transitions are the cross-zone
transitions; it will be detailed in the following sub-sections.

F. Kachi, C. Bouanaka & S. Merkouche 55

Figure 2: Detailed View of MAPE-K loop.

4.3.1 Knowledge

Since the managed system is subject to and impacted by changes in the internal/external con-
texts, it is inevitable to monitor them to maintain the required quality. Therefore, these contexts
are represented as data hold in places of zone K (see Figure 2). Places SysPro1, SysPro2 define
system properties, places EnvPro1, EnvPro2 define the current environmental properties; this
data is collected and updated by the monitor element. Updates in a contextual element may
provoke violation of some system quality. The contextual element is thus considered to be an
influential element and will be used to determine the adaptation actions to be performed. The
Plans place contains all possible adaptation actions that are necessary to maintain the system
qualities. These actions are rules of the form condition/action.

4.3.2 Monitor

It is responsible for collecting the monitored data from the internal and external contexts of the
managed system by executing transitions getSysPro1 (getSysPro2, ...) for the system internal
context and getEnvPro1 (getEnvPro2, ...) for the system external context; these transitions refer
to the read primitive of the API. Then, it quantifies system quality based on the characteristics
of the underlying system represented by the HLPN concepts, arcs weights and place markings;
the result which is a multi-set of tokens, each one representing a system property together with
its actual value, is saved in the quality place.

4.3.3 Analyzer

The Analyzer element is in charge of analyzing system qualities, it represents zone A of Figure
2 and is triggered by the firing of the cross-zone transition that removes tokens from the source
zone and puts them into the target zone, the startA cross-zone transition removes tokens of
the quality place from zone M and puts them into zone A in the quality place. The transition
called verification has as input the actual quality value and the required quality (the quality

56 A Formal Model for Quality-Driven Decision Making in Self-Adaptive Systems

threshold). Depending on the comparison of the two values, its firing determines whether an
adaptation is required or not. Whenever an adaptation is required, a step for determining the
influential element is done by firing the determineInfluentialElem transition; since the system
quality is affected by contextual elements and quality requirements. The result of this step is
used as an input to select the adaptation plans that may restore the system quality. Concretely,
the selectCandPlans transition allows selecting the candidate plans to carry out an adaptation
according to the actually identified influential element, which might appear in the transition
guard. At the end of the analysis phase, the analyzer triggers the planner and transmits the
candidate plans to the planner using the cross-zone transition startP.

4.3.4 Planner

Its task is to select the proper adaptation plan from a set of candidate plans with regard to qual-
ity requirements. The Planner element is defined via a PPN which models the decision-making
process and facilitates the selection of the most plausible plan to be performed in order to both
restore the violated quality attribute and maintain the rest of system qualities, i.e., avoid nega-
tive side effects. The plausibility of each candidate plan is calculated, via the calculatePlansPlau-
sibility transition of Figure 2, on the basis of the managed system data and the considered plan
side effects on the other properties and the overall quality of the system. The most plausible
plan is finally selected and transmitted via the plausiblePlan place to the executor element.

4.3.5 Executor

It executes the selected adaptation plan through the execute transition of Figure 2, representing
the write primitive of the API. In fact, the managed system structure (places and transitions of
the HLPN associated to the managed system) could not be changed but are rather the system
characteristics, i.e., information contained in the tokens and the weight of the arcs.

The managing system cycle iterates periodically to ensure the continuous satisfaction of
the system overall qualities. The various concepts introduced by the proposed model will be
illustrated via the aircraft planning case study in the next section.

5 Case Study: Aircraft Arrival Planning
In order to clarify the proposed model and examine its effectiveness and efficiency, we consider
the problem of aircraft planning, we first describe the problem and, identify and quantify its
qualities. Then, we detail its modelling.

5.1 Problem Description
Planning and managing air operations is becoming increasingly complicated because of their
congestion, but it is essential to optimize airport capacity. In order to ensure continuous traffic
on the runways and to maximize the use of the airport infrastructure, a minimum level of queu-
ing and optimal planning is required. However, the dynamics of delays and their propagation
are essential elements when assessing the performance of airports [11].

Planning consists of assigning each aircraft a runway, a gateway, a pair of a terminal and a
gate; consisting of the parking zone of an aircraft, to complete its departure/landing procedure.
This task is usually performed as desired on the day of landing, taking into consideration two

F. Kachi, C. Bouanaka & S. Merkouche 57

main characteristics: capacity optimization and arrival/departure safety within the airport.
However, a significant number of unexpected events can occur and alter this planning and
thus require its update, we can cite:

• An aircraft can arrive either later or earlier than planned. As a result, the resources al-
located to it may be unavailable. The problem in this case is: should it wait until the
resource is released, or should it be assigned to another resource? In this case, another
question arises: which is the most efficient solution? And what are consequences on the
rest of the planning, i.e., the other aircraft?

• Change of wind direction also impacts the assigned runways since an aircraft has to land
with the wind direction. If the wind direction suddenly changes, would there be enough
time to redo the landing plan for a set of aircraft without causing delays?

• Other events can also occur suddenly affecting the planning, such as a resource break
down, or an aircraft occupying a resource longer than was estimated, adverse weather
conditions, etc.

These events lead the planning system to behave in an uncertain manner; our objective through-
out this paper is to manage these uncertainties by defining a model that is capable of adapting
and updating the aircraft planning in the presence of a changing environment or context, but
still maintaining safety and efficiency constraints. For the air operations, safety concerns main-
taining a minimum separation between two consecutive aircraft, i.e., It is necessary to ensure
that a certain distance always separates two consecutive aircraft according to their types. The
efficiency of the air operations is achieved by minimizing delays. Efficiency consists of choos-
ing an available resource that reduces or prevent the delays. Although these constraints are
statically checked during the initial planning, they need to be verified again due to alterations
and updates of the effective planning.

In this case study, we are interested in the aircraft arrival management system and its sub-
sequent problems. The problem of arrival sequencing and scheduling at a given destination
airport has been studied for several decades [13, 3, 4]. The aircraft is indeed moving in a
constrained and potentially congested space. The arrival procedure consists of five phases: ap-
proach is the starting point of the procedure, i.e. the aircraft enters the airport zone; sequence
consists of assigning a sequence number to the aircraft, as soon as it gets confirmation that the
runway is clear, the aircraft flies to that runway; landing means that the aircraft has arrived at
the runway and is landing; taxiing consists of rolling the aircraft to the terminal on its assigned
track; and parking is the final phase; the aircraft has arrived at the gate where it is programmed
to park.

5.2 A self-adaptive structure for the Aircraft planning system
Our proposed model is general and can be applied in several areas and on different cases.
However, in order to be able to apply it to a given case study, we first project it on that case
study and identify the necessary parameters of the control layer.

5.2.1 Modelling the aircraft arrival procedure

Figure 3 represents the monitored layer model of aircrafts arrival procedure. The places Ap-
proached, Sequenced, Landed, Taxied and Parked represent the different phases of the procedure,

58 A Formal Model for Quality-Driven Decision Making in Self-Adaptive Systems

Figure 3: Formal modelling of the aircraft arrival procedure.

the presence of a token in a given place means that the aircraft has successfully finished the
corresponding phase. Aircraft being at the approach phase are passed by a step of checking
that they are among those planned, this is illustrated by the checkAircraft transition; the plan-
ning system retrieves the aircraft information and puts it in the approached place and assigns it
a sequence number in the sequenceNbr place. Places Sequenced, Landed and Taxied constitute the
inputs of the MAPE-K loop to check runways, gateways and gate availability and constraints,
respectively. Places planedRw, planedGw and planedG represent outputs of the MAPE-K loop;
tokens in these places allow the aircraft to realize its activity. Transitions represent the aircraft
movement from one phase to another. In this case study, we consider the following data: an air-
craft is identified by a tuple (id, c,r, g, (k,d), ts, t, tr, tg, tp, tk, t f) where id is the aircraft identifier;
c represents the aircraft category (Large (H), Medium (M), Light (L)); r, g, and (k,d) represent
a runway, a gateway, and a pair of terminal and gate, respectively; ts is the time of the aircraft
occurrence at the sequence point; t is the estimated aviation time to the landing point; tr is the
planned landing time of the aircraft, i.e., the entrance to the planned runway; tg is the planned
time to enter the planned gateway; tp is the estimated taxiing time to arrive at the parking
point; tk is the arrival time planned to reach the gate; t f is the planned exit time of the gate. A
runway is identified by (r,rs, er) where r is the runway identifier; rs is the runway state (free,
occupied, or inoperative); er is the identifier of the emergency runway of the actual runway.
Generally, when a runway is used, the opposite runway (in direction) is free because of wind
constraint. Each gateway is characterized by (g, gs) where g is a gateway identifier; gs is the
gateway state (free, occupied, or inoperative).

5.2.2 Identifying air operations qualities and constraints

The main objective of adapting the aircraft planning is to ensure both safety and efficiency
requirements. Safety concerns maintaining a minimum separation distance between two con-
secutive aircraft and mainly avoiding collisions problems. The efficiency constraint refers to
reducing delays while assigning resources to aircraft. Therefore, the aircraft arrival planning
system aims to define landing plans that ensure the safety of passengers while avoiding delays
through selecting the most effective ones.

F. Kachi, C. Bouanaka & S. Merkouche 59

Table 1: Aircraft arrival separation constraints.
Phase Separation constraints Description
Landing S(ai, ai + 1) > tr(ai + 1)tr(ai) S(ai, ai + 1) is the separation between an aircraft

ai and its successor ai+1, and tr is the aircrafts
planned landing time.

Taxing S(ai, ai + 1) > tg(ai + 1)tg(ai) tg is the planned time for the entrance of the
gateway for ai.

Parking tk(ai + 1) > t f (ai) tk is the aircraft arriving time to a gate, and t f is
its exit time.

a) Securing the arrival procedure (safety)
Safety concerns maintaining a minimum separation distance between two successive aircraft
at various points in the arrival procedure according to their categories [25]. In our work, it has
been set at one-minute separation for cases not listed in [25]; the system administrator may
still update these parameters. The separation constraint is represented by the place Separation.
The analyzer is responsible for checking the arrival procedure safety at various points and then
sends the results to the planner; separation constraints are resumed in Table 1 below.
b) Planning effectiveness
The effectiveness constraint is generally met by allocating new resources to the delayed/af-
fected aircraft, but still maintaining the safety constraint and reducing the delay time. When-
ever an aircraft is late, it is obvious that it will complete its procedure after the estimated time
causing alterations to the successor aircraft planning and resource occupancy. In this case, it
will be necessary to try to find other resources for the successor aircraft to complete its pro-
cedure on time. An aircraft may also arrive early, and hence the resources may be not yet
available. In this case, new resources have to be found to avoid and reduce its waiting time.
A simple measure of the planning effectiveness will depend on the safety and serviceability of
the aircraft.

The wind direction metric is also considered; whenever the wind direction changes, aircraft
must be reassigned to other runways. Since the opposite runway of a planned one is always
unoccupied, the solution consists of switching the landings to the opposite runways while
maintaining their order.

5.2.3 Maintaining aircraft planning qualities

With the aim of maintaining safety and efficiency constraints while adapting and updating the
aircraft planning in the presence of a changing context, we define the model presented in Figure
4, where blue places and transitions are plausible and the black transitions (T1-T12) are the
cross-zone transitions. Since the planning system is affected by several events its monitoring
is required. Thus data to be monitored is: the wind direction, the airport resources states and
the aircraft arrival time that allow determining the separation and the estimated overall time
of the arrival the procedure.

In the knowledge zone, several places are shared and used by both the managed and man-
aging sub-systems such as: Aircraft place, which contains the planned aircraft, lastInRw, last-
InGw and lastInG places; this data is used to calculate the separation distance between two
consecutive aircraft in order to ensure the arrival procedure safety and the planning effective-

60 A Formal Model for Quality-Driven Decision Making in Self-Adaptive Systems

Figure 4: Maintaining safety and efficiency qualities of the Aircraft arrival procedure.

ness. For the weather conditions, we considered only wind. The actual available resources
of the airport (runways, gateways and gates) are represented by the places Runways, Gateways
and Gates respectively.

At the arrival procedure, the system uses the API read primitive getTokens to obtain the ac-
tual parameters and observe context changes. This primitive is represented by the transitions
getRw, getGw and getG. Then, it checks the resource availability, if the aircraft is preparing for
the landing phase, a step for checking wind direction is mandatory before landing. The ana-
lyzer firstly compares (tr(ai) + S (ai, ai+1)) with (ts(ai+1) +t(ai+1)) where ai is the last aircraft
planned on the runway before the actual aircraft ai+1 and tr, S (ai, ai+1), ts and t represent the
planned landing time, the required separation between the two aircraft, the time of the aircraft
occurrence at the sequence point and the estimated aviation time to the landing point, respec-
tively. The verification results are transferred to the planner where the PPN intervenes and the
process of choosing a new resource is carried out. So, it calculates the possible release time of
each runway by function f represented by the transition F0 of Figure 4 where: f = tr + s; with s
is the separation between two consecutive aircraft obtained from the place Separation and tr is

F. Kachi, C. Bouanaka & S. Merkouche 61

Figure 5: Simulation results of the self-adaptive aircraft arrival planning model.

retrieved from the lastInRw place, which consists of a vector containing data on the last landing
for each runway. After calculating the release time of all runways, they are reduced to those
checking the condition: ts + t > f . Only one runway will be then selected; the runway with the
smallest value of f; this allows selecting the best runways and thus ensures the efficiency con-
straint. The selection is achieved using the transition F1 and its output arc expression, which
selects the runway corresponding to the smallest f. The new runway identifier is assigned to
the aircraft, and a new token is added to place planedRw; the setTokens write primitive of the
API, represented by transition setRw, is used and executed by the executor to achieve this adap-
tation.
Similar operations are performed for tokens of the Landed place by firing transitions F2 and F3
to allocate a new gateway. For gate checking, tokens in the Taxied place are recovered and used
by the plausible transitions F4 and F5 to allocate a new gate to the aircraft in case of the safety
constraint violation.

5.3 Aircraft planning validation

The proposed model is simulated and validated using the PNemu1 framework. To achieve such
validation, we have realized some extensions and updates on the PNemu, which are missing
in the original version of the source code. More precisely, we defined a new class ”HLPN” to
model the managed system and its environment by an HLPN; we have modified the emulator
class to be able to emulate models specified as HLPN; then we have redefined some primitives
of the API to capture the HLPN concepts, such as getTokens and setTokens primitives.

For brevity, we show only one scenario corresponding to the runway re-planning; we also
avoid defining all models in PNemu. We assume an initial configuration of the managed sys-
tem presented in Figure 3. The planned aircraft are presented in Table 2. Place lastInRw con-
tains aircraft 1, 4, 7 and 9; places lastInGw and lastInG contain aircraft 9 and 7 respectively. It is
assumed that aircraft 5 is planned to arrive at 9:16h, but it is arriving at 10:16h. It finished the
sequencing phase and it prepares for landing, so the runway verification process is started, at
this time the planned runway is occupied by aircraft 1; runway re-planning is required.

The simulation results are as follows: the actual planning of aircraft 5 violates the safety
constraints due to a delay in its arrival time, i.e. the separation distance is not maintained. To

1PNemu has been released as open source software, available at https://github.com/SELab-unimi/pnemu.

62 A Formal Model for Quality-Driven Decision Making in Self-Adaptive Systems

Table 2: The actual arrival planning of the airport.
Aircraft c r g (k, d) ts t tr tg tp tk tf

Aircraft 1 L 1 7 (3, 2) 10:15 2 10:18 10:21 2 10:25 10:45
Aircraft 2 M 3 5 (1, 7) 10:33 3 10:37 10:40 4 10:45 10:58
Aircraft 3 H 2 9 (6, 8) 14:15 4 14:18 14:21 1 14:25 14:45
Aircraft 4 L 7 5 (1, 7) 6:00 2 6:03 6:07 2 6:10 6:40
Aircraft 5 M 1 7 (3, 2) 9:16 3 9:19 9:22 3 9:26 9:50
Aircraft 6 H 2 9 (6, 8) 16:05 4 16:10 16:13 2 16:16 16:40
Aircraft 7 L 3 5 (3, 2) 9:40 3 9:44 9:48 1 9:50 10:20
Aircraft 8 M 7 7 (6, 8) 14:21 2 14:24 14:27 2 14:30 14:45
Aircraft 9 H 2 9 (1, 7) 3:20 2 3:23 3:27 3 3:31 4:00

restore the separation constraint, the Planner element affects a new runway to aircraft 5, run-
way 2 for instance. A new token is deposited in the planedRw place containing information (5,
2); the updated information for the aircraft is (5, ’M’, 2, 7, (3, 2), 10.16, 0.3, 10.19, 10.22, 0.3, 10.26,
10.50). The adaptation details and the most plausible runway selection process are illustrated
in Figure 5. If another aircraft is scheduled to land on that runway and arrives before the end
of the landing operation of aircraft 5, it will be also re-planned.
Since the model is a Petri net object, it is possible to compile it and use the compiled model
along with the SPOT2 library to verify the correctness of the overall self-adaptive system with
respect to design-time requirements expressed using LTL properties or another model checker.

6 Conclusion
This paper shows how to combine HLPNs and PPNs to model and analyze quality-driven
self-adaptive systems evolving under uncertainty but still maintaining and guaranteeing the
continuous satisfaction of an acceptable quality of service. HLPNs intervene in the definition
of data flows through expression and annotation concepts, which are exploited to quantify the
observed qualities among the different elements of the model. They are used for modelling the
managed system and its execution context to improve the model expressiveness by represent-
ing more complex data structures of a dynamic system. PPNs are used to assist and improve
the decision-making process in presence of uncertainty and hence determining the most ap-
propriate adaptation plans through the concept of decision plausibility. An extension of the
PNemu framework is also realized to take charge of HLPNs and PPNs introduced concepts as
expressions and annotations. We evaluated the proposed model through the aircraft planning
problem using the extended version of the PNemu framework.

As future work, we intend to explore quantitative analysis techniques to predict the impact
of an adaptation plan on the overall system quality to improve the decision-making process
to deal with uncertainty in the selection of both the adaptation actions and side effects and
the impact of the adaptation plan on system overall qualities. We also intend to combine ma-
chine learning techniques with Petri nets to better improve the decision-making and proactivity
through model training and learning.

2[SPOT] https://spot.lrde.epita.fr

F. Kachi, C. Bouanaka & S. Merkouche 63

References
[1] P. Arcaini, E. Riccobene & P. Scandurra (2015): Modeling and Analyzing MAPE-K Feedback Loops

for Self-Adaptation. In Paola Inverardi & Bradley R. Schmerl, editors: Proceedings - 10th Inter-
national Symposium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS
2015, IEEE, pp. 13–23, doi:10.1109/SEAMS.2015.10.

[2] C. J. Baez & J. Master (2020): Open Petri nets. Mathematical Structures in Computer Science 30(3),
pp. 314–341, Cambridge University Press, doi:10.1017/S0960129520000043.

[3] J. A. Bennell, M. Mesgarpour & C. N. Potts (2011): Airport runway scheduling. 4OR 9(2), pp. 115–138,
Springer, doi:10.1007/s10288-011-0172-x.

[4] J. A. Bennell, M. Mesgarpour & C. N. Potts (2013): Airport runway scheduling. Annals of Operations
Research 204(1), pp. 249–270, Springer, doi:10.1007/s10479-012-1268-1.

[5] M. Camilli, C. Bellettini & L. Capra (2018): A high-level petri net-based formal model of Distributed
Self-adaptive Systems. In: ACM International Conference Proceeding Series, ACM, pp. 40:1–40:7,
doi:10.1145/3241403.3241445.

[6] A. Carl (1962): Petri. kommunikation mit automaten. PhD, University of Bonn, West Germany, Tech-
nical Report RADC-TR-65–377.

[7] M. Chiachio, J. Chiachio, D. Prescott & J. Andrews (2017): An information theoretic approach for knowl-
edge representation using Petri nets. In: FTC 2016 - Proceedings of Future Technologies Conference,
IEEE, pp. 165–172, doi:10.1109/FTC.2016.7821606.

[8] M. Chiachio, J. Chiachio, D. Prescott & J. Andrews (2018): A new paradigm for uncertain knowl-
edge representation by Plausible Petri nets. Information Sciences 453, pp. 323–345, Elsevier,
doi:10.1016/j.ins.2018.04.029.

[9] M. Chiachio, J. Chiachio, D. Prescott & J. Andrews (2019): Plausible Petri nets as self-adaptive expert
systems: A tool for infrastructure asset monitoring. Computer-Aided Civil and Infrastructure Engi-
neering 34(4), pp. 281–298, Wiley Online Library, doi:10.1111/mice.12427.

[10] A. Computing (2006): An architectural blueprint for autonomic computing. IBM White Paper 31(2006),
pp. 1–6, IBM Corporation Hawthorne, NY, doi:10.1021/am900608j.

[11] A. Cook, G. Tanner, S. Cristóbal & M. Zanin (2015): Delay propagation-new metrics, New Insights. In:
Proceedings of the 11th USA/Europe Air Traffic Management Research and Development Seminar,
ATM 2015, EUROCONTROL/FAA , pp. 1–10, doi:10.2777/50266.

[12] D. Weyns (2017): Software Engineering of Self-Adaptive Systems: An Organised Tour and Future Chal-
lenges. Handbook of Software Engineering, pp. 399–443, Springer, doi:10.1007/978-3-030-00262-6 -
11.

[13] R. G. Dear (1978): The dynamic scheduling of aircraft in the near terminal area. Transportation Research,
pp. 216–217, Elsevier, doi:10.1016/0041-1647(78)90133-8.

[14] Z. Ding, Y. Zhou & M. Zhou (2016): Modeling Self-Adaptive Software Systems with Learning Petri
Nets. In: IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46, IEEE, pp. 483–498,
doi:10.1109/TSMC.2015.2433892.

[15] International Standard ISO/IEC 15909 (2002): High-level Petri Nets - Concepts, Definitions and
Graphical Notation. Final Draft International Standard ISO/IEC 15909(4), pp. 1–43, ISO/IEC,
doi:10.1007/BF02679450.

[16] R. Laddaga & P. Robertson (2004): Self Adaptive Software: A Position Paper. In: Proc. of the 2004
International Workshop on Self-* Properties in Complex Information Systems, 31, Citeseer, pp.
149–158, doi:10.1007/3-540-36554-0.

[17] J. Lee, K. F. R. Liu & W. Chiang (2003): Modeling uncertainty reasoning with possibilistic Petri nets.
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 33(2), pp. 214–224, IEEE,
doi:10.1109/TSMCB.2003.810446.

64 A Formal Model for Quality-Driven Decision Making in Self-Adaptive Systems

[18] R. De Lemos, D. Garlan, C. Ghezzi, H. Giese, J. Andersson, M. Litoiu, B. Schmerl, D. Weyns,
L. Baresi & N. Bencomo (2013): Software engineering for self-adaptive systems: A second research
roadmap. In: Software Engineering for Self-Adaptive Systems II - International Seminar, Dagstuhl
Castle, Germany, Springer, pp. 1–32, doi:10.1007/978-3-642-35813-5 1.

[19] R. De Lemos, D. Garlan, C. Ghezzi, H. Giese, J. Andersson, M. Litoiu, B. Schmerl, D. Weyns,
L. Baresi & N. Bencomo (2017): Software engineering for self-adaptive systems: research challenges in the
provision of assurances. In: Software Engineering for Self-Adaptive Systems III. Assurances - Inter-
national Seminar, Dagstuhl Castle, Germany, Springer, pp. 3–30, doi:10.1007/978-3-319-74183-3 1.

[20] C. G. Looney (1988): Fuzzy Petri Nets for Rule-Based Decisionmaking. IEEE Transactions on Systems,
Man and Cybernetics 18(1), pp. 178–183, IEEE, doi:10.1109/21.87067.

[21] S. Mahdavi-Hezavehi, P. Avgeriou & D. Weyns (2017): A Classification Framework of Uncertainty
in Architecture-Based Self-Adaptive Systems With Multiple Quality Requirements. In: Managing
Trade-Offs in Adaptable Software Architectures, Elsevier, pp. 45–78, doi:10.1016/b978-0-12-802855-
1.00003-4.

[22] G. Rus, J. Chiachio & M. Chiachio (2016): Logical inference for inverse problems. Inverse Problems in
Science and Engineering 24(3), pp. 448–464, Taylor & Francis, doi:10.1080/17415977.2015.1047361.

[23] S. Shevtsov, D Weyns & M Maggio (2017): Handling New and Changing Requirements with Guarantees
in Self-Adaptive Systems Using SimCA. In: Proceedings - 2017 IEEE/ACM 12th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2017, IEEE, pp.
12–23, doi:10.1109/SEAMS.2017.3.

[24] S. Shevtsov, D. Weyns & M. Maggio (2019): SimCA: A control-theoretic approach to handle uncertainty
in self-adaptive systems with guarantees. ACM Transactions on Autonomous and Adaptive Systems
13(4), pp. 17:1–17:34, ACM New York, NY, USA, doi:10.1145/3328730.

[25] J. Skorupski & A. Florowski (2016): Method for evaluating the landing aircraft sequence under disturbed
conditions with the use of Petri nets. Aeronautical Journal 120(1227), pp. 819–844, Cambridge Univer-
sity Press, doi:10.1017/aer.2016.32.

[26] M. Taleb-Berrouane, F. Khan & P. Amyotte (2020): Bayesian Stochastic Petri Nets (BSPN) - A new
modelling tool for dynamic safety and reliability analysis. Reliability Engineering and System Safety
193, p. 106587, Elsevier, doi:10.1016/j.ress.2019.106587.

[27] J. Wang (2007): Petri Nets for Dynamic Event-Driven System Modeling. In: Handbook
of Dynamic System Modeling, 1, Citeseer / Chapman and Hall/CRC, pp. 24:1–24:17,
doi:10.1201/9781420010855.ch24.

[28] D. Weyns, N. Bencomo, R. Calinescu, J. Camara, C. Ghezzi, V. Grassi, L. Grunske, P. Inverardi, J. M.
Jezequel, S. Malek, R. Mirandolaand M. Mori & G. Tamburrelli (2017): Perpetual assurances for self-
adaptive systems. In: Software Engineering for Self-Adaptive Systems III. Assurances - International
Seminar, Dagstuhl Castle, Germany, Springer, pp. 31–63, doi:10.1007/978-3-319-74183-3 2.

[29] Y. Zhou Z. Ding & M. Zhou (2018): Modeling Self-Adaptive Software Systems by Fuzzy
Rules and Petri Nets. IEEE Transactions on Fuzzy Systems 26(2), pp. 967–984, IEEE,
doi:10.1109/TFUZZ.2017.2700286.

