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As aircraft systems become increasingly autonomous, the human-machine role allocation changes
and opportunities for new failure modes arise. This necessitates an approach to identify the safety
requirements for the increasingly autonomous system (IAS) as well as a framework and techniques
to verify and validate that an IAS meets its safety requirements. We use Crew Resource Management
techniques to identify requirements and behaviors for safe human-machine teaming behaviors. We
provide a methodology to verify that an IAS meets its requirements. We apply the methodology to a
case study in Urban Air Mobility, which includes two contingency scenarios: unreliable sensor and
aborted landing. For this case study, we implement an IAS agent in the Soar language that acts as
a copilot for the selected contingency scenarios and performs takeoff and landing preparation, while
the pilot maintains final decision authority. We develop a formal human-machine team architecture
model in the Architectural Analysis and Design Language (AADL), with operator and IAS require-
ments formalized in the Assume Guarantee REasoning Environment (AGREE) Annex to AADL. We
formally verify safety requirements for the human-machine team given the requirements on the IAS
and operator. We develop an automated translator from Soar to the nuXmv model checking language
and formally verify that the IAS agent satisfies its requirements using nuXmv. We share the design
and requirements errors found in the process as well as our lessons learned.

1 Introduction

Increasingly, autonomous systems are evaluated to operate with humans for safety, security and mission-
critical operations. This is evident from research in multiple domains such as medical, aerospace, and
defense. One of the major advantages of using an autonomous agent is the ability to process much more
data in real-time than a human can handle. In civil aviation, the level of autonomy of systems is expected
to increase gradually over time, hence such systems are referred to as Increasingly Autonomous Systems
(IAS) [13]]. This term is used in the singular form to indicate a system that incorporates more autonomous
functions than are in use today. As the level of autonomy increases, the human-machine role allocation
changes and there is the opportunity for new failure modes to arise. Therefore, the objective of this
work is to develop a framework and techniques for the verification and validation of IAS in novel role
allocations. We present the framework and apply it to a case study we developed in Urban Air Mobility.

The vision for Urban Air Mobility (UAM) [20, [8] is to provide flexible, short-distance air travel for
the masses. For this to be truly achievable we have to develop increasingly autonomous systems that
can handle complex flight operations, including contingency management. Furthermore, to ensure safety
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of flight, these systems need to be verifiable. Thus, our research effort focuses on the creation of an
assurance framework that integrates human-machine interactions with formal-methods-based rigorous
analysis, along with simulation.

With the increasing complexity and autonomy in systems, traditional verification approaches such
as testing face scalability challenges. Our verification and validation approach includes the following
tenets:

Use Crew Resource Management to identify requirements and procedures for safe human-machine
teaming behaviors

Include the human in the model so that human-machine interactions can be analyzed

Use formal methods where possible and practical to prove safety requirements are satisfied by (the
model of) the system or component

Where possible and practical, use automated translation and build tools so that the deployed system
is equivalent to the one we analyzed

Simulate contingency management scenarios with the target air vehicle to explore potential team-
ing behaviors and to test the human-autonomy team in conjunction with a high-fidelity model of
the vehicle

The contributions of this work are the following:

1.

4.

Methodology for the verification and validation of increasingly autonomous systems in human-
machine teams

. Development of a case study in Urban Air Mobility, including:

(a) Realistic UAM example scenarios (unreliable sensor and aborted landing)

(b) AnIAS agent implemented in Soar that acts as a copilot with increasing role assignment for
the selected scenarios as well as takeoff and landing preparation

. Application of the methodology to the case study, including:

(a) Scenario simulations in X-Plane with a realistic UAM aircraft, the AgustaWestland AW609

(b) A formal human-machine team (operator-IAS) architecture model in AADL that supports the
two example scenarios. The operator and IAS requirements are formalized in the AGREE
Annex to AADL.

(c) Formal verification of properties (using AGREE) for the human-machine team given the
requirements on the IAS and operator

(d) Formal verification of properties (using nuXmv) for the IAS agent

A Soar-to-nuXmv translato

Our methodology is discussed in Section [2] Background information on languages, tools, and tech-
niques is provided in Section [3] We describe our UAM case study, including the application of our
methodology, results, and lessons learned, in Section d] Our Soar-to-nuXmv translation algorithm is
provided in Section[4.7] Finally, conclusions and future work are discussed in Section [3]

Uhttps://assistresearchlab.fit.edu/
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2 Methodology

One of the fundamental challenges in developing human-level agents is defining the primitive computa-
tional structures that store, retrieve, and process knowledge. Equally important is defining the organiza-
tion of those computational structures. A cognitive architecture provides fixed computational structures
that form the architecture of the human mind. It is not a single algorithm or method for solving a problem;
it is the task-independent infrastructure that brings an agent’s knowledge to solve a problem. Cognitive
architecture based production systems are a popular method in Artificial Intelligence for producing intel-
ligent behavior that is understandable to the program operator. Common rule-based reasoning systems
include the General Problem Solver (GPS) [14], the MYCIN knowledge based inference system [3], the
Adaptive Control of Thought-Rational Theory (ACT-R) [1]] and the Soar cognitive architecture [9].

Formal verification of cognitive architecture is a more recent research area, where Langenfeld et al.
[1O] have developed a manual approach to the translation from ACT-R to Uppaal. Previously, Bhat-
tacharyya et al. have developed a framework to automate the translation of Soar to Uppaal [2]. While
this was a successfully implemented approach, it lacked the integration of requirements from human-
machine interaction research, as well as architectural design and verification, which are both included in
this framework. There are four main steps to formal verification and validation of the human-machine
team in our approach. They are identified in Fig. [I]

1. Requirements phase: Develop scenarios to identify and capture human-machine roles and interac-
tions, and then derive the requirements for the IAS.

2. Design and analysis phase with formal verification: Create a formal architectural model for the
system with human-IAS interactions captured as requirements allocated to the human and IAS
components. Perform formal analysis on the architectural model to show that human-IAS team
safety properties are satisfied given that the component requirements are satisfied.

3. Implementation phase: Construct the IAS agent with human-IAS interactions based on the verified
architectural model. Also, configure the simulation environment.

4. Testing and Formal Verification phase: Execute the simulation scenarios generated in the require-
ments phase to test the satisfaction of requirements by the implementation. Translate the IAS agent
behavior to a formal verification environment (nuXmv) to formally verify the behavior. The input
parameters generated from the simulation environment are modeled as an input template within
the formal verification environment (nuXmv).

3 Preliminaries

3.1 Crew Resource Management

In current two-pilot commercial operations, collaboration skills are taught as Crew Resource Manage-
ment (CRM) [6]. The result of this training has been increased safety for the aviation industry. Various
researchers have noted the applicability of CRM to Human-Autonomy Teaming [[11}116}/18]. One survey
of pilots found the majority agreed that automation should adhere to CRM rules [19]]. For this project, we
implement basic CRM skills in the IAS to provide coordinated crew behavior. In the area of communica-
tion, we implement the CRM skill of waiting for acknowledgement to ensure that the other crew member
has knowledge of the information that was told to them. In the area of management, we implement the
CRM role of Pilot In Command who listens to input from other crew members but has the final authority
in any decision that is made.
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Figure 1: AHMIIAS framework

3.2 Soar

Soar is a general cognitive architecture that provides a computational infrastructure that resembles the
cognitive capabilities exhibited by a human. Soar implements knowledge-intensive reasoning that en-
ables execution of rules based on the context. It also has the capability to integrate learning into the
intelligent agent using chunking or reinforcement learning. Several rule-based reasoning systems were
surveyed as candidates for modeling human-automation interactions [[14} (3, |9, [1]. Soar was selected
because it encompasses multiple memory constructs (e.g., semantic, episodic, etc.) and learning mecha-
nisms (e.g., reinforcement, chunking etc.). Soar production rules are expressed in first-order logic, which
makes them amenable to verification. Finally, Soar is a programmable architecture with an embedded
theory. This enables executing Soar models on embedded system platforms and studying the design
problem through rapid prototyping and simulation.

3.3 AADL

The Architecture Analysis and Design Language (AADL) [3]] is a standardized language designed for
embedded, real-time systems. It supports design, analysis, virtual integration, and code generation. It can
be used to predict and validate runtime characteristics including security, timeliness, and availability. It
comes with an error model annex to support fault modeling and hazard analysis. The Open Source AADL
Tool Environment (OSATE) tool developed by SEI provides the modeling environment for developing
in AADL.

3.4 AGREE

One of the barriers to formal verification of large systems is the scalability of the analysis methods and
tools. The Assume Guarantee REasoning Environment (AGREE) [21] was developed as a plugin for
the OSATE environment to overcome this barrier. AGREE performs compositional analysis, allowing
verification of system requirements based on composition of the component assume-guarantee contracts.
By abstracting the implementation of subsystems and software components as formal contracts, large
systems can be built up and verified hierarchically in the AADL model without the need to perform a
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monolithic analysis of the entire system at once. AGREE translates the model to the Lustre language and
then performs verification using a model checker (e.g., JKind [7]) and an SMT Solver (e.g., Z3 [12]).

3.5 nuXmv

nuXmyv is a symbolic model checker. It builds on and extends NuSMV. It implements verification for fi-
nite and infinite state synchronous transition systems. For finite-state systems, it complements NuSMV’s
basic verification techniques with a family of new state-of-the-art verification algorithms. For infinite-
state systems, it extends the NuSMV language with new data types, namely integers and reals, and
it provides advanced SMT-based model checking techniques. nuXmv implements SMT-based model
checking techniques [4].

4 UAM Case Study

Several research studies have focused on developing a formal definition for a case study [15]. Runeson
in his research introduces case studies as a methodology and provides guidelines for the elements of a
case study. Our research methodology utilizes a case study as a way to model and represent scenarios
envisioned in the future for UAM. Our case study is a "Conceptual Case Study”. The design of our
case study is guided by the objective of contingency management for UAM to be performed by an
autonomous agent. The data collection process involved requirements gathering by evaluating scenarios
as described in research articles on UAM and by interacting with a human-autonomy teaming expert.
Once requirements were collected, the scenarios were modeled in our framework and evidence was
collected in the form of models, simulation results, and formal verification results. The collected data,
the designed models, and the final results were analyzed to identify the satisfaction of results and lessons
learned. Finally, reports were generated that included the models, outcomes, and the lessons learned.

In our case study application of the AHMIIAS framework (Fig. [I)), we gather the requirements for
human-machine interaction during the requirements phase. We use AADL with the AGREE Annex (see
Sections [3.3|and [3.4) during the design and analysis phase to capture a formal system architecture model
with requirements allocated to components. We also use the AGREE tool to perform formal verification
of the architecture, showing that the system requirements are satisfied given the component requirements.
The IAS agent is implemented in the cognitive architecture Soar during the implementation phase, and
the IAS agent is integrated with the X-Plane environment so that we can run simulations to test the im-
plemented behavior together with a UAM air vehicle model. Finally, to prove that the IAS requirements
are satisfied by the Soar implementation, we translate the agent from Soar to the nuXmv model checker
and perform formal verification over the resulting formal model in the testing and verification phase.
The architecture models, IAS agent, translator code, and verified models can all be found on our project

repositor

4.1 Example IAS Scenarios

Scenarios were developed to determine the roles and responsibilities of a human pilot working together
with an IAS to enable UAM operations. In the Unreliable Sensor Scenario, an urban canyon reduces
the reliability of GPS for determining the location, leaving Lidar and IMU reliable. The IAS notices the
difference between the GPS position value and the Lidar and IMU values, which indicates an unreliable

Zhttps://github.com/loonwerks/ AHMIIAS
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GPS sensor. The IAS determines the correct position using Lidar and IMU without GPS and notifies
the pilot about the unreliable GPS sensor and correct position. The pilot either a) acknowledges the
unreliable GPS sensor, or b) rejects the IAS interpretation that the GPS sensor is unreliable.

In the Aborted Landing Scenario, a damaged vehicle on a landing pad prevents a safe landing. The
pilot prepares for landing and notices the landing area is not suitable. The pilot calls for an aborted
landing which brings up a rerouting checklist. In the rerouting checklist, the IAS reminds the pilot of
the unreliable GPS and correct position. The IAS calculates routes for new landing options, presents the
best option and detailed reasoning to the pilot. The pilot acknowledges the correct position and either a)
accepts the new landing option and route, or b) requests alternates, sees options with IAS reasoning, and
chooses an alternate landing area.

These scenarios were chosen to allow the IAS to first detect an off-nominal situation in the Unreliable
Sensor Scenario, and to allow the pilot to first detect the unsuitability of the landing pad in the Aborted
Landing Scenario. In both, the pilot is the Pilot In Command and the final decision-maker. The pilot
can override the IAS determination of unreliable sensor, calls plays to inform the IAS of goals, and
determines the safety of the landing area. The IAS monitors and assists in decision making, informs the
pilot of a change in sensor reliability, and provides routes to alternate landing sites.

4.2 TAS Implementation

We implemented the IAS agent in Soar, a cognitive architecture. The cognitive model for the IAS
agent consists of rules. The rules for the agent can be broken into seven categories: Initialization, Error
detection, Unreliable sensor, Landing, Abort landing, Final touchdown and Idling, as shown in Figure[2]
The rules within these categories execute actions to support the designated sequence of operations for
the unreliable sensor and aborted landing scenarios, as well as takeoff and landing operations.

2
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Figure 2: Soar Agent Overview
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4.3 Scenario Simulations

The simulation architecture in Figure [3| shows the information flow between the following interacting
components: the X-Plane simulation environment, the Soar IAS Agent, the Communication Context
Awareness Tool (CCAT), the Graphical User Interface (GUI), and the error generation module. The X-
Plane simulation environment was utilized to simulate contingency scenarios with the AW609 aircraft.
Additionally, we created a GUI to interact with the aircraft. This GUI enables input from the human pilot
and permits the creation of emerging situations. The Soar IAS agent implements rules that are derived
from human-machine interaction research. For example, the IAS agent provides a warning to the pilot
that there is a potential sensor error. The pilot provides information as to whether to abort a landing.

Communication

Context
Awareness Tool

X-Plane

y . SOAR Error
Simulation GUI )
Environment IAS Agent Generation

/ GUI that interacts with JAVA Program

Display
Human La(t;i':usde Display Display
Interaction LIDAR IMmu
and
Longitude

Figure 3: Simulation Architecture

The GUI displays the values received from the GPS, Lidar, and IMU sensors (Figure E]) The error
generation module (Figure d]) within the Testing User Interface (UI) induces error in the value displayed
from GPS. CCAT is a combination of XPC (X-Plane Connect) developed by NASA to capture informa-
tion from X-Plane environment and computations performed for the unreliable sensor and abort landing
scenarios. CCAT has been developed in Java programming language. The IAS agent performs actions
that a human would conduct, whereas CCAT is automated technology that performs all the computations.
Presently, the CCAT performs the calculations related to error among the sensors, identifying routes that
traverse less populated areas, and identifying nearby airports during emerging damaged landing areas.

4.4 Identification of Safety Requirements

This project uses CRM to develop roles and responsibilities of an IAS assisting a human pilot acting as
Pilot In Command in an UAM aircraft, and also uses CRM to generate requirements and procedures for
the IAS. These requirements and procedures are used to develop the interface between the pilot and IAS.
The interface is used in the simulation, formal models, and the IAS implementation.

Here we briefly describe an example of how CRM guides interface development. Since the IAS has
the ability to detect an unreliable sensor, CRM requires the IAS to present information about that sensor
to the pilot and to receive the pilot’s decision on whether or not to use the sensor. The interface must
allow these actions, and these actions are used to develop the formal model of the IAS.

One example of a safety requirement is “If the operator disagrees that the active sensor is unreliable,
then the active sensor should not change.” This is formalized in AGREE, and we prove using AGREE’s
assume-guarantee analysis that our human-machine team architectural model satisfies this requirement.
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4.5 Human-IAS Team Models

There are multiple benefits to architectural modeling and analysis:

1. An architectural model helps the team agree on a common architecture and express expected in-
terfaces unambiguously.

2. Using formal methods, system-level requirements (such as safety requirements) can be expressed
and proven, using specified component-level requirements.

3. A formal analysis called realizability analysis can be used to check for conflicts amongst the set of
requirements for a given component.

4. A formal model of the architecture is amenable to future automated translation to downstream
component design and verification tools, helping to ensure that component requirements are prop-
erly passed down to component development teams.

4.5.1 Human-Machine Team Architecture Model

A key aspect of our approach is to include the human in the model. Therefore, our top-level model
includes components for both the IAS and the human operator. We also include air vehicle components
required for our selected scenarios. These include three position sensors as well as a Weight on Wheels
(WoW) sensor/subsystem, which is used to determine when the vehicle has completed the landing phase
(and an abort landing command is no longer viable). The graphical representation of the AADL model,
showing the components and connections, is provided in Fig. [5] The three position sensors are labeled
Sensor 1, Sensor 2, and Sensor 3 in the AADL model and represent GPS, Lidar, and IMU, respectively.
The full details of the information shared between components and the current requirements on each
component are captured in the textual modelsﬂ In addition to capturing the components and connections
in AADL, we capture requirements for the Human, IAS, and Human-IAS Team as guarantees in the
AGREE language. While we cannot place requirements on a human per se, we can use these formalized

3https://github.com/loonwerks/ AHMIIAS/tree/v1.0/architecture/ A ADL_main_project/ahmiias-architecture
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guarantees as a means to capture expected human behavior and as a foundation for reasoning about the
human-IAS team. These guarantees can be validated in a simulation environment with a human operator,
and some may be enforced by the human machine interface. For example, to enforce a “requirement” that
the human operator only commands abort landing in the landing phase, a display system for the human-
machine interface might gray out an abort landing option when the vehicle is not in the landing phase.
Selected requirements/guarantees for the human operator and the IAS are shown in the subsections that
follow.
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Output
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> -
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Sensor1* Output A
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Figure 5: Human-IAS Team Model

4.5.2 Human/Operator “Requirements”

A key requirement/expectation on the human operator is that he or she responds to unreliable sensor
messages from the IAS. The guarantee corresponding to Sensor 1 is shown in Figure[6] Similar guaran-
tees are in the model for Sensor 2 and Sensor 3. The situation where the operator fails to respond to an
unreliable sensor message or is late in responding will be explored in future work (see Section [5).

guarantee "Respond to message that Sensorl is unreliable":
prev(not InputFromIAS.Sensorl_Reliable, false) <=>
((Output.Sensorl_Unreliable_Response = enum(Response, Agree))
or (Output.Sensorl_Unreliable_Response = enum(Response, Disagree)));

Figure 6: Example Human/Operator “Requirement”
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4.5.3 IAS Requirements

The reliability of each sensor is computed by checking whether its position output is within a horizontal
and vertical threshold of at least one of the other sensor’s positions. The horizontal and vertical thresholds
depend on Above Ground Level (AGL). The IAS shares its reliability assessment of each sensor with the
operator.

The IAS shares both the active sensor ID and the recommended sensor ID with the operator. The
active sensor stays the same unless the operator agrees that it is unreliable and there is another reliable
sensor available. This is captured in the the guarantee in Figure

guarantee "The active sensor should stay the same unless the operator agrees that it is
unreliable and there is another reliable sensor available.":
Output.Active_Sensor =
if (previous_recommended_sensor = NIL)
then previous_active_sensor
else if ((previous_active_sensor = 1 and
InputFromHuman.Sensorl_Unreliable_Response = enum(Response, Agree))
or (previous_active_sensor = 2 and
InputFromHuman.Sensor2_Unreliable_Response = enum(Response, Agree))
or (previous_active_sensor = 3 and
InputFromHuman.Sensor3_Unreliable_Response = enum(Response, Agree)))
then previous_recommended_sensor
else previous_active_sensor;

Figure 7: IAS Active Sensor Determination

4.6 Formal Verification of Human-IAS Team Requirements

We can express several desired properties of the human-machine team such as:
1. “The operator responds to unreliable sensor alerts from the IAS.”
2. “We can’t have just Sensor 1 reliable.”
3. “We can’t have just Sensor 2 reliable.”
4. “We can’t have just Sensor 3 reliable.”
5

. “Unless the active sensor becomes unreliable, the sensor recommended by the IAS is the current
active sensor.”

6. “If the operator agrees with the IAS that the active sensor is unreliable, and if the IAS recom-
mended another sensor for use, then the new active sensor shall be the recommended sensor.”

7. “If the operator disagrees with the IAS that the active sensor is unreliable, then the active sensor
should not change.”

8. “If an unreliable sensor is the active sensor, it must be the case that either the pilot disagreed with
the IAS assessment or the sensor just became unreliable on this timestep or there was no reliable
sensor available on the previous timestep.”

9. “The active sensor is one of the available sensors on board.”

We then formalize and prove that our human-machine architectural model satisfies these properties
using AGREE’s assume-guarantee reasoning. For example, the formalized statement of Property 8 in the
preceding list is shown in Fig. [§]



[o N B e R R S

160 Assuring Increasingly Autonomous Systems in Human-Machine Teams: A UAM Case Study

lemma "If Sensor 1 is both the active sensor and unreliable, it must be the case that
either the pilot disagreed with the IAS assessment
or the sensor just became unreliable on this timestep
or there was no reliable sensor available on the previous timestep":
((IAS.Output.Active_Sensor = 1) and not IAS.Output.Sensorl_Reliable)
=> ((Human.Output.Sensorl_Unreliable_Response = enum(Response, Disagree))

or prev(IAS.Output.Sensorl_Reliable, true)
or not prev(reliable_sensor_available, true));

Figure 8: Human-IAS Team Property

4.7 Soar-to-nuXmv Translator

The formal analysis described in the previous section shows that IF the IAS implementation satisfies
its requirements and IF the human operator satisfies his or her “requirements,” then the human-machine
team will have the desired properties. One still needs to show that an IAS implementation satisfies the
IAS requirements. To formally prove this, we first need to translate our IAS agent which is implemented
in Soar (see Section [3.2)) to a formal language such as nuXmv (see Section [3.3). We developed a Soar-
to-nuXmv translator for this task. The following boxes show the IAS Agent Soar Takeoff Rule and its

corresponding representation in nuXmv.
nuXmv Model for the Takeoff Rule

VAR soarAgent : soar-
Rules(state_superstate, state_operator_name,
state_name, state_flight-mode,

IAS Agent Soar Takeoff Rule state_io_throttle, state_io_altitude,

state_io_airspeed,  state_sensor-unreliable,
sp {propose*takeoff

tat A e state_io_sensor-error, state_io_initiate-
o <A1;'>htnam§ . e?‘ f)l landing, state_landing, state_io_distance-
o o npt ik et to-target, state_io_abort-landing,

(< s > "o.input-link.flightdata < fd >)
(< fd > "throttle < th > < 0.9)
—_ >

state_io_target-altitude, state_io_autoflaps,
state_io_air-brake, state_io_target-speed);

. 1 Throl A TRANS
(write (Sr f) —t rottle — < th >) next (state_operator_name) =
(< s> " operator < o > +) case

(< 0 > " name takeoff) }

(state = run & state_name=takeoff &
state_flight-mode=vertical &
state_io_throttle<0.9): takeoff;
TRUE : state_operator_name;

esac;

In the translation process, the first step involves identifying all the variables (operators, input/output
data) and expanding the shorthand notations that Soar uses. For example, < s > is a representation of the
present state, which is expanded to state; and < o > is the shorthand for an operator, which is replaced
with operator during the translation process. The left-hand side of the — consists of the condition that
needs to be true for the right-hand side to be executed. In the Soar rule for Takeoff, the left-hand side
indicates the state name should be Takeoff, the flight mode should be vertical, and input flight data
representing throttle should be less than 0.9 to execute the right-hand side of the rule, which changes the
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state operator name to takeoff. In nuXmv the IAS agent has two states: Start and Run. In the Start state,
the conditions for execution of all the operators are evaluated to check which one to select for execution,
which is similar to how Soar operates. In the Run state, the selected rule is applied. The conditions of a
Soar rule are translated into conditions of a case statement within a transition statement in nuXmv. The
updated values in nuXmv are based on value changes made in the actions of the Soar rule.

The algorithm for the translator is shown in Algorithm 1. We define a Soar production rule as a
function of a finite set of variables v; € V, where i =1, 2, 3, ... n, whose valuation val(V) = v; represent the
state of the system along with a finite set of well-formed formulae (WFF) ¢ = {¢;, ¢,, ...9,, }, representing
the left-hand side of the Soar production rule (e.g., the preconditions), and a finite set of WFF y =
{y1,ya,...y,}, representing the actions embodied by the right-hand side of the Soar production rule.
The input includes the rules from the Soar model represented as a tuple, rname(V, (pre{ @i, d2,...0n },
post{y1,¥,...¥,})) These Soar rules are translated into Infinite State Machines ISM = (S, Sy, Vars, G,
Act,Tr), where S is the set of states, Sy is the initial state, Vars represent the variables, and G represents
the guard conditions. It is assumed that the preconditions and postconditions within the Soar rules are
well-formed formulas.

Steps 1-14 involve identifying, declaring, and, for symbolic constants, listing the values for all the
variables that exist within the Soar rules. Steps 15-18 involve initializing the ISM with its states, vari-
ables, guard conditions, transitions, and actions. Steps 19-24 include generating the MODULE that
controls the cycle of selecting one of the proposed rules and then applying the rule, as is done in Soar.
During the selection process, the ISM transitions from the start state to the run state based on the satis-
faction of a precondition pre(¢;). Then the selected rule is applied, when at the run state, based on the
satisfaction of the postconditions post(y;), which are represented as guards.

Steps 25-33 involve the generation of the state operator that needs to be executed. While generating
the state operator name, the satisfaction of the precondition is checked along with any priorities associ-
ated with the value of the state operator. If the state operator has an associated priority, it is generated at
the top of the list; otherwise, it is generated at the bottom. Presently, the algorithm only performs binary
priorities, i.e., with or without priority. The change in the values of all the other variables is performed
within Steps 34-39 based on the evaluation of the postcondition.

4.8 Formal Verification of IAS Requirements

The high-level requirements for the IAS captured in AGREE must be verified on the IAS implementation.
This is an important part of a complete assurance argument for the human-IAS team. For example, we
map the requirement for IAS Active Sensor Determination (Fig. [/) to the following nuXmv property:

LTLSPEC (state_io_sensor-to-use = nil U (state_io_pilot_decision = agree
& (state_operator_name = gps-sensor-error-over-limit

| state_operator_name = lidar-sensor-error-over-limit

| state_operator_name = imu-sensor-error-over-limit)))

The nuXmv property checks that the IAS does not change the sensor to use until a sensor is faulty and
the pilot agrees. It has been verified with nuXmv over our translated Soar agent. This property captures
the high-level intent of the corresponding AGREE requirement but is not a perfect semantic match. We
discuss this further in lessons learned.

The formal verification of the IAS agent in nuXmv used an input template that represents the dy-
namics of the AW609 as obtained from X-Plane. For example, we included the relationship between the
throttle and the altitude, as well as the threshold values that indicate error in sensors. The verification of
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Algorithm 1 Generate Infinite State Machine ISM = (S,80,Vars,G,Act,Tr) from
rname(V, (pre{ @1, 02, ...0n }, post{y1, v2,...y, }))

1

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34
35:

36

37:
38:
39:
40:
41:

42

:forallie {1,...,m},je{l1,...,r} do

for all Vars € pre{¢;}, post{y;} do
EXTRACTVars < {vary,vary,...,var;,...,var,}: wherevar; : type{integer, real,symbolic constant }
if {var; : type == symbolic constant } then
assign value var; < {v;};
if {var; == var;} then
assign value v; to list var; < {v;..v; };
remove varj;
end if
else if {var; == var;} then
remove varj;
end if
end for
end for
: for all Vars do
ASSIGN INITvary < vi,INITvary < v;, ... INITvar, < v,
: end for
: Initialize ISM; = (S < {Start,Run}, so < {Start}, Vars = {state superstate = nil} G = {}, Act={}, Tr=0)
VAR SoarModulelnstance{ Vars }
MODULE: VAR state: {start, run};
next (state) = Case
forallie {1,...,m}, pre{¢;}, post{¢;} do
Tr < (state = start & G; == pre(@;) : run);
Tr < (state = start & G; == post(Y;) : run);
end for
foralli e {1,...,m},state_operator_name € pre{¢;} do
if {state_operator_name count == 1} then
Print TRANS
end if
Tr < (next(state_operator_name) = {state == run & G; == pre(§;)} : vi)
if v; has priority then
Generate the next (state_operator_name) statement on top;
else
Generate the next(state_operator_name) statement on the bottom;
end if
end for
: forallie {1,...,r},Vars € post{¢;} do
if {var; count == 1} then
Print TRANS
end if
Tr < (next(var;) = state = run & G; = () : v;)
Act < Act N (next(var;) = v;)
: end for
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the IAS agent was also performed without the input template; this resulted in generation of counterexam-
ples such as 1) the altitude remained at zero even though the throttle reached its highest value and 2) the
sensors were in error but returned to normal before diagnosis. The categories of verification performed

were:

reachability, checking invariants, checking normal execution, and responding to off nominal sit-

uations. Examples are provided below. The total number of queries executed for the unreliable sensor
scenario is 24 and that for the abort landing scenario is 26. The maximum number of steps of execution
for a query for the unreliable sensor scenario is 67 and the minimum is 6. The maximum number of steps
of execution for a query for the abort landing scenario is 140 and the minimum is 44.

4.9

Reachability: LTLSPEC F q, in future q holds, where q can be (state_io _altitude > 10000) or
(state_operator_name = transition)

Invariants: INVARSPEC q, invariant q is satisfied, where q can be (state_io_throttle <= 1.0)

Handling off nominal situations: LTLSPEC F(X p— >q (next p leads to q)) or (p U q) (p until
q) or (p S q) (p since q), where p— >q can be of the form, counter_detect_transition_to_lidar <=
5 — > state_io_sensor-to-use = lidar)

Handling normal operations: LTLSPEC F(X p— >q) or (p U q) or (p S q) , where p— >q can
be of the form, state_operator_name = state_io_throttle < 1.00 — > state_flight-mode = horizontal)

Response to occurrence of event LTLSPEC G(p — >F q), Globally p leads to q in future, where
p is (state_operator_name = gps-sensor-error-over-limit) and q is (state_sensor-unreliable = yes)

Results and Lessons Learned

The iterative process of formal verification and simulation helped identify flaws in the design of the IAS
agent and the human-IAS interactions. Table[I| shows the findings.
The lessons learned from the application of our methodology to the UAM case study are:

1.

AGREE-to-nuXmv mapping of IAS requirements: Several of the IAS requirements as captured
in AGREE do not have a direct semantic mapping to nuXmv. This is due in part to the fact that
the initial IAS agent was designed in parallel with the human-IAS team model in AADL/AGREE.
Hence the interface and expected IAS agent behavior, as captured in AGREE, are not the same
as those of the IAS implementation in Soar. For example, the IAS does not have a notion of a
recommended sensor. Another challenge is that the formalisms of AGREE and nuXmv are not
the same. AGREE uses Past-time Linear Temporal Logic (PLTL) whereas nuXmv uses Linear
Temporal Logic (LTL) and Computational Tree Logic (CTL). While PLTL and LTL have the same
expressiveness, it is not straightforward to refer to the prior value of a variable in a nuXmv property.
Nonetheless, we can map the intent of each AGREE requirement to its closest analog in nuXmv
and check its validity.

* Solution: Future work includes better aligning the architectural model and the implemen-
tation. An ideal workflow would build the IAS implementation using the interface and re-
quirements first specified in the architectural model, and these would be kept in sync as
refinements occur.

Interaction delay: There is a potential of having a delay between the communication that can
occur between the IAS agent, CCAT and the pilot. This should be considered while designing the
interactive system. For example, we identified that the IAS agent would repeat the execution of
operations due to a delay between Soar issuing a command to Java and the command taking effect.
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No. | Error Type Findings
1. IAS Design | Soar agent missed response to human agree - disagree rule,
Error as it was being handled at the CCAT interface.
2. IAS Design | state_operator_name throttle case condition missed the
Error equal logical operator(th < 0.9 & th > 0.9). As a result,
the throttle value was exceeding 1.0, which is an error.
3. IAS Design | SOAR agent missed the human selection response after
Error abort landing.
4. Translation Superstate, a state in Soar before Soar graph is generated
Error only indicates that the Soar graph exits or not, it does not
need to be translated, but was translated
5. IAS Design | Soar agent missed a case statement to set abort_landing to
Error “NO” after it has been addressed.
6. Translation Type of some of the variables were generated as integer,
Error but were used as real, it was detected through properties
that proved immediately
7. IAS Re- | Parentheses/order of operations error with regard to select-
quirements ing the recommended sensor
Error
8. Operator Selection of landing option was occurring too late, one
“Require- time step after the options were ready.
ments”
Error
9. IAS Design | IAS does not check that the sensor it is switching to is
Error reliable before recommending a switch to the pilot. This
is a divergence from the IAS requirements as specified in
AGREE.

Table 1: Findings after architecture and formal verification

* A solution: A copy of the output command was stored and used to prevent repeat operations
until the command took effect.

3. Variable type declaration: Variables are not typed in Soar. So, assignment of values to variables
need to be evaluated during a full pass through the Soar model to identify the type. For example:
An incorrect declaration of a variable (e.g., state_io-air-brake) caused all properties that should not
prove to prove.

 Solution: Found and rectified during property verification.

4. Separation of responsibilities: Proper allocation of tasks needs to be completed before implemen-
tation. Since the IAS agent is expected to perform tasks performed by the human, we need to
carefully identify all the computation related tasks and create automation to handle computation
separately. Otherwise, the heterogeneous mix of tasks leads to a challenging situation for verifi-
cation. For example, comparison of error differences among the sensors was earlier performed by
Java XPC, which was an inefficient design according to the principle of separation of responsibil-
ities. This was captured during property verification.
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* Solution: Rectified with proper allocation of tasks. SOAR agent performs the error check,
whereas the calculations are done in JAVA-XPC.

5. Mapping from architecture to implementation: One to one algorithmic mapping from AADL/A-
GREE to nuXmv needs to be developed as that will capture errors in design when transitioning
from architecture to agent implementation and formal verification. For example, before chang-
ing from an erroneous sensor in AADL/AGREE, reliability of the new sensor is checked, but this
second check is not performed in the IAS agent. This was captured when mapping from AADL/A-
GREE to nuXmv was performed.

* Solution: Algorithmic mapping from AADL/AGREE to IAS model.

5 Conclusions and Future Work

Our AHMIIAS assurance framework, which integrates human-machine interactions in a formal model,
helped identify and validate the responsibilities of the IAS and the human. The responsibilities for the
IAS mostly focused on maintaining situational awareness, taking actions in normal situations, and taking
actions under contingency if commanded by the pilot. The responsibilities for the IAS were identified
through iterative discussions with a human-autonomy teaming expert, which resulted in following the
philosophy that the human always has the final authority. We demonstrated how human-IAS interac-
tions can be modeled early in the design phase for architectural analysis. Then, the requirements were
validated through detailed implementation of algorithms in the simulation environment that integrated
X-Plane with the IAS agent implemented in Soar. Finally, our approach illustrated transitioning from
simulation to formal verification through automated translation of the IAS agent from a cognitive model
to a formal verification environment. We identified several errors by using this approach and we captured
several lessons learned.

Our future work will explore how our assurance framework can be extended to accommodate learning
mechanisms. We will identify the human machine interactions that need to be implemented for a learning
system and extend our translation algorithm and verification approach to accommodate an IAS agent that
learns. Another area of future work is to explore what happens when the human operator or IAS violates
one of its requirements/expected behaviors. For example, the IAS may have a subcomponent hardware
failure or the human may have a high workload and not respond to an alert from the IAS. We plan to
leverage the Architectural Modeling and Analysis for Safety Engineering (AMASE) tool [17] to reason
about the human-machine team properties in the presence of faults.
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