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Verified controller synthesis uses world models that comprise all potential behaviours of humans,
robots, further equipment, and the controller to be synthesised. A world model enables quantitative
risk assessment, for example, by stochastic model checking. Such a model describes a range of con-
troller behaviours some of which—when implemented correctly—guarantee that the overall risk in
the actual world is acceptable, provided that the stochastic assumptions have been made to the safe
side. Synthesis then selects an acceptable-risk controller behaviour. However, because of crossing
abstraction, formalism, and tool boundaries, verified synthesis for robots and autonomous systems
has to be accompanied by rigorous testing. In general, standards and regulations for safety-critical
systems require testing as a key element to obtain certification credit before entry into service. This
work-in-progress paper presents an approach to the complete testing of synthesised supervisory con-
trollers that enforce safety properties in domains such as human-robot collaboration and autonomous
driving. Controller code is generated from the selected controller behaviour. The code generator,
however, is hard, if not infeasible, to verify in a formal and comprehensive way. Instead, utilising
testing, an abstract test reference is generated, a symbolic finite state machine with simpler semantics
than code semantics. From this reference, a complete test suite is derived and applied to demonstrate
the observational equivalence between the synthesised abstract test reference and the generated con-
crete controller code running on a control system platform.

1 Introduction

In verified controller synthesis, world models are used that comprise all potential behaviours of humans,
robots, further equipment, and the controller to be synthesised. A world model enables quantitative risk
assessment, for example, by stochastic model checking. Such a model describes a range of controller
behaviours some of which—when implemented correctly—guarantee that the overall risk in the actual
world is acceptable, provided that the stochastic assumptions have been made to the safe side. The ob-
jective of the synthesis step is to select a controller behaviour from this range that meets requirements
given as constraints, for example, to stay within an acceptable risk bound. Within such constraints, the
synthesis can optimise further objectives, for example, maximal performance or minimal cost and risk.
Because of crossing the boundaries between different abstractions, formalisms, and tools, verified con-
troller synthesis for safety-critical systems naturally has to be accompanied by rigorous testing. Indeed,
standards and regulations for safety-critical systems (e.g. [17, 16, 30, 31]) require testing as a key el-
ement to obtain certification credit before entry into service. Hence, a key methodological aim is to
bridge the gap between verified controller synthesis and the generation of executable code that is being
deployed on a control system platform and integrated into the wider system to be put into service.
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Figure 1: Workflow and artefacts of the proposed tool-supported approach to complete testing

Approach. Following this aim, we propose an integrated formal approach to the complete testing
of synthesised supervisory discrete-event controllers that enforce safety properties in domains such as
human-robot collaboration and autonomous driving. Our tool-supported approach works as follows.

1. Controller Synthesis. The verified synthesis step is based on policy synthesis for Markov decision
processes [19, 18]. A conceptual world model W is constructed that defines all the behaviours of all the
relevant actors (e.g. humans, robots, other equipment) and the controller under consideration. The
range of controller behaviours are denoted as the controller design space C . Then, the relevant temporal
logic properties are formally verified of C and an appropriate (optimal) controller behaviour C ∈ C is
selected (synthesised) from C . For this step, we adopt the approach described in [11, 10].

2. Abstraction. Then, the selected (verified) controller behaviour C is abstracted into a test reference
model R. This model is described as a symbolic finite state machine (SFSM) [22], where the control
states are called risk states. Symbols correspond to subsets of W ’s state space. The input alphabet
corresponds to the events monitored (observed) by the controller, the output alphabet to the signals that
the controller can issue to W as the controlled process. An event is triggered by a guard condition, whose
input valuation changes from false to true, so that a transition labelled with (or fulfilling) this guard
can be taken. Transitions of R are labelled with such input/output (I/O) pairs and derived from C.

3. Code Generation. C is also translated into a software component C executable on the control
system platform of a robotic or autonomous system. Following an embedded systems tradition, we use
C/C++ as the target language for C, making the reasonable assumption that the used type of FSMs has a
simpler semantics than the executable code. Abstraction and code generation are explained in Sect. 3.

4. Test Suite Derivation. Using the H-Method [6], in this step, a complete test suite TS for I/O
conformance testing is derived for a finite state machine (FSM) abstraction of R. This abstraction
maps the SFSM guard conditions to atomic input labels; otherwise it adopts the SFSM structure without
changes. It has been shown in [14, 15] that complete FSM test suites can be mapped to likewise complete
suites on SFSMs, when the FSM input events e are considered as input equivalence classes of the SFSM,
and each e is refined to a concrete SFSM input data tuple solving the equivalence class constraint (this is
just a refined guard condition).

5. Conformance Test. Based on a generated test harness emulating the target platform, the test
suite TS is run against C to record outputs and obtain a complete set of verdicts V . A complete pass
shown by the verdicts demonstrates the observational equivalence between the test reference R and the
controller code C. Test suite derivation and conformance test execution are explained in Sect. 4. There,
it is also explained how potential errors in the reference model R, the test suite generator, or the test
harness can be uncovered. This is required according to standards for safety-critical control applications
(see, e.g. [30, 31]), because faulty tool chains might mask “real” errors in the software under test.
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Related Work. In the rich body of literature on verified controller synthesis, the approaches in [21, 3]
from collaborative robotics are perhaps closest to the one presented here as they include a platform
deployment stage. While these authors focus on the synthesis of complete robot controllers, our approach
focuses on safety supervisors but includes a testing step reassuring the correctness of platform code
generation. The authors of [29] propose a general integration of quantitative model checking (with
UPPAAL [1]) with model-based conformance testing and fault injection. Apart from using the switch
cover method for test suite generation, their approach is highly similar to our Mealy-type test reference
generation, conformance testing, and mutation approach for test suite evaluation. However, while their
focus is more on cross-validation of UPPAAL and FSM models, we concentrate on code robustness tests,
assuming that W has been validated and verified beforehand.

The investigation of complete testing methods is a very active research field [23]. The H-Method [6]
applied for testing in this paper has been selected because (1) it produces far less test cases than the
“classical” W-Method [5], but (2) it is still very intuitive with regard to the test case selection principles.
This facilitates the qualification of the test case generator, as discussed in Section 4. If the main objective
of a testing campaign was just to provide complete suites with a minimal number of test cases, then the
SPYH-Method [26] should be preferred to the H-Method.

Whereas hazard- or failure-oriented testing [8, 20] and requirements falsification based on negative
scenarios [28, 9, 27] are highly useful if no complete R is available or if R still needs to be validated
and revised, our approach is complete once R is successfully validated. That is, any deviation from R
detectable by these techniques is also uncovered by at least one test case generated by our approach.
Moreover, our approach is usable to test controller robustness without a realistic simulator for W .

Contribution. We propose a solution to the generation of well-defined test references used in tech-
niques such as the H-Method [6]. In particular, we connect test reference generation with the H-Method
to derive complete test suites and demonstrate that this form of robustness testing yields a correctness
proof of a controller under certain assumptions. We provide tool support for both these steps. Our proof
of concept indicates that complete test suites are a feasible and practically attractive means to verify
correctness of implementations of the considered class of discrete-event control modules. In Sect. 2, we
explain the safety supervisor concept by means of an example. In Sects. 3 and 4, we explain code and
test reference generation and test suite derivation. We add concluding remarks in Sect. 5.

2 The Safety Supervisor Concept with an Illustrative Example

To illustrate our approach, we reuse our example from the domain of human-robot collaboration in
industrial manufacturing as discussed in [10, 11]. In this example, a human operator collaborates with a
robot on a welding and assembly task in a work cell equipped with a spot welder. This setting involves
several actors performing potentially dangerous actions (e.g. robot arm movements, welding steps) and,
thus, implies the reaching of hazardous states (e.g. operator near the active spot welder, HC, or operator
and robot on the work bench, HRW ). Such states need to be either avoided or reacted to in order to
prevent accidents from happening or at least to reduce the likelihood of such undesired events.

This task of risk mitigation is, by design, put under the responsibility of a supervisory discrete-
event controller C. This controller is supposed to enforce probabilistic safety properties of the kind “the
probability of an accident a is less than pra” or “hazard h happens less likely than prh”. The underlying
conceptual controller behaviour C comprises (i) the detection of critical events, (ii) the performance of
corresponding mitigation actions to react to such events and reach a safe risk state, and (iii) , avoiding a
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paused task or degraded task performance, the execution of resumption actions to resolve the event and
to return to a safe but productive risk state. For the sake of brevity, we call C a safety supervisor.

3 Derivation of the Software Module and the Test Reference

We summarise [11] on how to obtain the world model W , the controller design space C , and the con-
troller behaviour C. Then, we describe in more detail the generation of the controller software component
C (for deployment) and the abstraction into the test reference R (for test suite derivation, see Sect. 4).

Controller
Design
Space
C

safmod
rloc:LOC

wact:ACT
ract:ACT

rngDet
lgtBar:B

notif
notifWrkb:B

safmod
ract:ACT
wact:ACT
notif
notifWrkb:B

I O

Figure 2: Interface between W and C

The world model W is a Markov decision process (MDP),
the result of a fixed-point application of actions given as proba-
bilistic guarded commands to an initial state of W [19]. MDPs
are models containing uncertainties about aspects not under
control (or agency) or not to be modelled explicitly. The world
state space is defined using a set V of finite-sorted variables.
The MDP is a labelled transition system where the transition
relation encodes non-deterministic and probabilistic choice in
a compound manner and states are labelled with atomic propo-
sitions holding of V ’s valuations defining the states. Non-
deterministic decisions encode freedom of choice of the actors
in W , in particular, the controller design space C . This free-
dom can be resolved by picking an appropriate policy, a choice resolution for each state, with the result
of obtaining a Markov chain (MC), a labelled transition system without indeterminacy in the controller
(and the other considered actors). Policy appropriateness can be thought of as sub-setting C and is de-
fined by constraints to be specified in probabilistic computation tree logic [19]. The resulting MC is
verified against these constraints and includes the selected behaviour C ∈ C .
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Figure 3: Phase transitions of factor f

Now, C has to be translated into the two forms C and R.
For this step, we define the variables I ⊆V to be monitored and
the variables O ⊆ V that can be controlled, resulting in what
we call the syntactic interface (alphabet) Σ ⊆ type I× typeO1

of C (see Figure 2) [4]. This interface defines the nature of the
changes in W that any C ∈ C can observe and perform.

The control states of both C and R are derived from the
notion of risk states [12], which is defined over a set F ⊂ V
of P-sorted variables modelling the critical events considered
in W as risk factors. We require (I ∪ O) ∩ F = /0. The
sort P= {0,a,m}models life-cycle stages for handling a factor
f ∈ F (Figure 3), for example, from inactive (0), active ( f a),
and mitigated ( f m) back to inactive [12]. In the example in
Sect. 2, we consider three factors, hence F = {HS,HC,HRW}.
Each C can then be associated with a control state space S⊆ P|F |.

We then translate the controller fragment C of the MC transition relation (resulting from policy
synthesis over W ) into C++ code. Basically, every transition of C is translated into a guarded action
[a]i∧ r : (o,r′)← STEP(i,r) with r,r′ ∈ S,(i,o) ∈ Σ and action name a derived from F , r, and r′. For
that, the source state of each transition is mapped into two parts: one corresponding to the input i (the

1typeS of a set S of sorted variables returns the set of tuples in the Cartesian product of the sorts of the variables in S.
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Figure 4: Visual representation of R. Nodes are risk states in S, edges transitions in T . Because valu-
ation expressions for (i,o) ∈ Σ are too long, edge labels are hashed and prefixed with action names for
readability, following the pattern a:h(i)/h(o) with action name a and an integer-valued hash function h.

observed event) and one corresponding to a risk state r. The control and state updates o and r′ to be
associated with this action are derived from the difference in the controlled variables O∩F between
source and target states. C implements Algorithm 1, intentionally simple (not using action names) and
wrapped into platform-specific code (not shown) for data processing and communication.

Algorithm 1 Safety supervisor
1: procedure CTR(in Event i, out Signal o)
2: r← INIT . init. control/risk state
3: while true do . should implement T
4: []i∈I,r∈S i∧ r : (o,r′)← STEP(i,r)

In order to obtain R, we then translate the C-fragment of
this transition relation into a deterministic Mealy-type FSM
R = (S,Σ,T,s) with the state space S, the transition relation
T ⊆ S×Σ×S, and the initial state s ∈ S being congruent with
the one in W . Figure 4 shows R for the example in Sect. 2
and is an operation refinement of the composition of the fac-
tors (Figure 3) of F . The translations into C and R including
the generation of the test harness are carried through with the YAP tool.2

Regarding the difference of C and R, the semantics of C can vary significantly. R is converted
into an input format suitable for test suite generation via libfsmtest [2]. Here, we consider a C++
component for a low-level real-time implementation, for example, an FPGA synthesised from VHDL or
Verilog HDL3 generated from C++. In [11], we consider a C# component used in a simulation of W in
a “Robot Operating System”-enabled digital twinning environment. While the semantics of the C++ and
C# implementations CC++ and CC# may dramatically differ, R can be shared between the two. The only
difference on the testing side is in the mappings used in the test harness (Sect. 4) to deliver the inputs to
C and record the outputs of C.

2The discussed features are available in YAP version 0.8+, see https://yap.gleirscher.at.
3Field-programmable gate array (FPGA); VHSIC or Verilog hardware description language (VHDL or Verilog HDL)

https://yap.gleirscher.at
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4 Complete Test Strategy

In this section, we briefly describe the characteristics of complete test suites, sketch their derivation,
outline the chosen recipe for test suite derivation (Sect. 4.1), and discuss typical error possibilities to be
taken into account during standards-oriented controller and tool certification (Sect. 4.2).

4.1 Strategy Application

A test suite is complete if—under certain hypotheses—it guarantees that non-conforming implementa-
tions will fail in at least one test case, while equivalent implementations will always pass the suite [15].
Here, these hypotheses are (a) the number of control states implemented in C, and (b) assumptions about
potential mutations of guards and output assignments. Since the verification of safety-critical systems
requires code to be open source for analyses, these hypotheses can be checked using static analysis. We
check that C has the same number of control states as R, and it is checked that the guard conditions in R
have been correctly translated to corresponding branching conditions in C (cf. Line 4 in Algorithm 1).

Since the reference R is modelled as an SFSM, we need a method to construct complete test suites
for SFSMs. We follow the recipe from [14, 15] which allows us to use test generation strategies for
the simpler class of FSMs and translate the resulting test suite to an SFSM suite as follows: (1) For the
SFSM, input equivalence classes are calculated. This is performed by creating all conjuncts of positive
and negated SFSM guard conditions which have at least one solution. (2) An FSM is created as an
abstraction of R. The input alphabet of this FSM consists of the identifiers for the input equivalence
classes calculated in (1). Control states, output events, and transition arrows are directly adopted from
the SFSM. (3) For this FSM, a complete test suite is created using the H-Method [6]. Its test cases consist
of input traces, where each input is an identifier of an SFSM input equivalence class. The expected results
are obtained by running this input trace against the FSM. (4) The FSM test suite is refined to an SFSM
test suite by calculating concrete input representatives from the constrains specifying the referenced input
classes. (5) The concrete SFSM test suite is executed in a test harness: this is an executable running the
test cases one by one against C and checking its responses against the FSM test oracle.

The theory elaborated in [14, 15] confirms that the concrete SFSM test suite is also complete, if this
holds for the abstract FSM test suite. Since we know that C has the same number of control states and
the same guards as R, passing the test suite is equivalent to proving observational equivalence between
C and R. For tool support, the libfsmtest library [2] is used which provides an implementation of the
H-Method and a template for the test harness.

4.2 Verification of Verification Results

For automated verification/testing of safety-critical system components, applicable standards require a
verification that the tool chain involved does not mask any errors inside C. This process is usually called
verification of the verification results. We consider the possible errors in the testing environment one by
one. (1) Error in the generation of R: The complete test suite created as described above characterises
R up to observational equivalence. By checking if the test suite is compatible with the computations of
W , it is shown that R is correct. (2) Error in the testing theory: It has been shown in [25] that meth-
ods of similar complexity as the H-Method can be mechanically verified using a proof assistant (e.g.
Isabelle/HOL). (3) H-Method implementation error: Here, we have two options: in [24] it has been
demonstrated that correct algorithms can be generated while proving a testing theory to be correct. Al-
ternatively, the generated test suite can be checked automatically for completeness: from the specification
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of the test cases required for the H-Method given in [13], a checking tool can be derived which verifies
that the generated suite really contains the test cases required according to the theory. This checking
algorithm would be orthogonal to the test generation algorithm. This means that it is highly unlikely that
test generator and completeness checker could contain complementary errors masking each other out.
(4) Test harness error: The test harness could execute the suite in a faulty way that masks an error in C.
To ensure that this is not the case, we apply mutation testing. Using the clang compiler functions for
static code analysis, a set MC of mutants of C is created in an automated way. Then it is checked for
each mutant in MC if it is uncovered by the test suite, or if it is semantically equivalent to the original
version of C.

5 Conclusions

We outlined an approach to the complete testing of synthesised discrete-event controllers that enforce
safety properties in applications such as human-robot collaboration and autonomous driving. Our aim
is to bridge the gap between verified controller synthesis and certified deployment of executable code.
We illustrate our approach with a human-robot collaboration example where a safety supervisor makes
autonomous decisions on when and how to mitigate hazards and resume normal operation. We check
the specificity of the test reference R and the strength of the corresponding test suite TS by mutation of
the generated code C, modulo semantic equivalence over MC. We contribute a preliminary synthesis-
based test strategy that allows one to show total correctness of C under certain implementation assump-
tions. The presented approach is automated in a tool chain: YAP and a stochastic model checker (e.g.
PRISM [19]) for MDP generation and verification, YAP for test reference and code generation, and
libfsmtest [2] for test suite derivation. For testing the integrated system (robot, welding machine,
safety supervisor and simulation of human interactions), the approach presented here is embedded into a
more general methodology for verification and validation of robots and autonomous systems, starting at
the module level considered here, and ending at the level of the integrated overall system [7].
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