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Delta-oriented programming (DOP) is a flexible transformational approach to implement software
product lines. In delta-oriented product lines, variants are generated by applying operations contained
in delta modules to a (possibly empty) base program. These operations can add, remove or modify
named elements in a program (e.g., classes, methods and fields in a Java program). This paper
presents algorithms for refactoring a delta-oriented product line into monotonic form, i.e., either
to contain add and modify operations only (monotonic increasing) or to contain remove and modify
operations only (monotonic decreasing). Because of their simpler structure, monotonic delta-oriented
product lines are easier to analyze. The algorithms are formalized by means of a core calculus for
DOP of product lines of Java programs and their correctness and complexity are given.

1 Introduction

A Software Product Line(SPL) is a set of similar programs, calledvariants, that have a well documented
variability and are generated from a common code base [4].Delta-Oriented Programming(DOP) [14, 3]
is a flexible and modular transformational approach to implement SPLs. A DOP product line comprises
a Feature Model(FM), a Configuration Knowledge(CK), and anArtifact Base(AB). The FM provides
an abstract description of variants in terms offeatures(each representing an abstract description of func-
tionality): each variant is described by a set of features, called aproduct. The AB provides the (language
dependent) code artifacts used to build the variants, namely: a (possibly empty) base program from
which variants are obtained by applying program transformations, described bydelta modules, that can
add, remove or modify code. The CK provides a mapping from products to variants by describing the
connection between the code artifacts in the AB and the features in the FM: it associates to each delta
module anactivation conditionover the features and specifies anapplication orderingbetween delta
modules. DOP supports automated product derivation, i.e.,once the features of a product are selected,
the corresponding variant is generated by applying the activated delta modules to the base program ac-
cording to the application ordering.

Delta modules are constructed fromdelta operationsthat canadd, modify and removecontent to
and from the base program (e.g., for Java programs, a delta module can add, remove or modify classes
interfaces, fields and methods). As pointed out in [15], suchflexibility allows DOP to supportproactive
(i.e., planning all products in advance),reactive(i.e., developing an initial SPL comprising a limited set
of products and evolving it as soon as new products are neededor new requirements arise), andextractive
(i.e., gradually tranforming a set of existing programs into an SPL) SPL development [10]. DOP allows
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for quick SPL evolution and extension, as modifying or adding products/variants can straightforwardly
be achieved by adding to the SPL new delta modules that modify, remove and add code on top of the
original implementation of the SPL. However, a number of such SPL evolution and extension phases
lead, almost ineluctably, to a multiplication of opposite add and remove operations, making the resulting
SPL complex, difficult to understand and to analyze [16].

Refactoring [6] is an established technique to reduce complexity and to prevent the process of soft-
ware aging, and consists of program transformations that change the internal structure of a program
without altering its external (visible) behavior. Refactoring for DOP product lines, i.e. changing the
internal structure of an SPL without changing its products/variants, has been investigated in [16]. There,
a catalogue of refactoring algorithms and code smells is presented. Most of these refactorings are based
on object-oriented refactorings [6]. In particular, the refactorings that refer to delta modules focus on a
single delta module or a pair of delta modules.

In this paper, we propose two new refactoring algorithms to automatically eliminate opposite add and
remove operations across the whole SPL, consequently reducing the overall complexity of the refactored
SPL and making it easier to analyze. These algorithms are constructed around the notion ofmonotonicity
where increasing monotonicSPL corresponds to only adding new content to the base program, while
decreasing monotonicSPL corresponds to only removing content from the base program. These two
notions of monotonicity are discussed in Section 5, where wepropose several definitions with different
versions of these concepts. The refactoring algorithms do not introduce code duplication in the AB of
the refactored SPL and have at most quadratic complexity in space and time. We formalize the notions of
monotonicity and the refactoring algorithms by means of IMPERATIVE FEATHERWEIGHT DELTA JAVA

(IF∆J) [3], a core calculus for DOP product lines where variants are written in an imperative version
of FEATHERWEIGHT JAVA (FJ) [8]. A prototypical implementation of the refactoringalgorithms is
available at [11].

Section 2 introduces our running example. Section 3 recallsIF∆J. Section 4 introduces some aux-
iliary notations. Section 5 illustrates the notions of monotonicity, the refactoring algorithms, and their
properties. Section 6 briefly discusses the related work andSection 7 concludes the paper.

2 Example

In order to illustrate the monotonicity concept and our refactoring algorithms, we use a variant of the
expression product line(EPL) benchmark (see, e.g., [13, 3]). We consider the following grammar:

Exp ::= Lit | Add | Neg Lit ::= <integers> Add ::= Exp ”+” Exp Neg ::= ”−” Exp

Two different operations can be performed on the expressions described by this grammar: printing, which
returns the expression as a string, and evaluating, which returns the value of the expression, either as an
int or as a literal expression.

2.1 The Feature Model

The functionalities in the EPL can be described by two sets offeatures: the ones concerned with the
data areLit (for literals),Add (for the addition) andNeg (for the negation); the ones concerned with the
operations arePrint (for the classictoStringmethod),Eval1 (for theeval method returning an int) and
Eval2 (for theevalmethod returing a literal expression). The featuresLit andPrint are mandatory, while
Add, Neg, Eval1 andEval2 are optional. Moreover, asEval1 andEval2 define the same method, they are
mutually exclusive. Figure 1 shows the feature model of the EPL represented as a feature diagram.
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Figure 1: Expression Product Line: Feature Model

class Exp extends Object { // only used as a type
String toString() { return null; }

}
class Lit extends Exp {
int value;
Lit setLit(int n) { value = n; return this; }
String toString() { return value + ””; }

}

class Add extends Exp {
Exp expr1;
Exp expr2;
Add setAdd(Exp a, Exp b) { expr1 = a; expr2 = b; return this; }
String toString() { return expr1.toString() +

” + ” + expr2.toString(); }
}

Figure 2: Base Program

2.2 The Artifact Base

Base Program. In our example, the EPL is constructed from the base program shown in Figure 2,
which is the variant implementing featuresLit, Add andPrint. This program comprises the classExp, the
classLit for literal expressions and the classAdd for addition expressions. All these classes implement
thetoString method. Moreover,Lit andAdd also have a setter method.

Implementing Feature Neg. Figure 3 presents the three delta modules (introduced by thekeyword
delta) that add the featureNeg to the base program. Namely:DNeg adds the classNeg with a sim-
ple setter;DNegPrint adds to classNeg the toString method (relevant for thePrint feature); and
DOptionalPrint adds glue code to ensure that the two optional featuresAdd andNeg cooperate prop-
erly: it modifiesthe implementation of thetoString method of the classAdd by putting parentheses
around the textual representation of a sum expression, thusavoiding ambiguity in printing. E.g., without
applyingDOptionalPrint both the following expressions

(new Add()).setAdd( new (Neg()).setNeg((new Lit()).setLit(3)), new (Lit()).setLit(5) ) // (−3) + 5
(new Neg()).setNeg( new (Add()).setAdd((new Lit()).setLit(3), new (Lit()).setLit(5)) ) // −(3+5)

would be printed as “-3+5”; while after applyingDOptionalPrint the former is printed as “(-3+5)”
and the latter is printed as “-(3+5)”. Delta moduleDOptionalPrint illustrates the usage of the special

delta DNeg {
adds class Neg extends Exp {

Exp expr;
Neg setNeg(Exp a) { expr = a; return this; }

}
}
delta DNegPrint {

modifies Neg {
adds String toString() {
return ”−” + expr.toString(); }

}
}

delta DOptionalPrint {
modifies Add {

modifies String toString() {
return ”(” + original() + ”)”; }

}
}

Figure 3: Delta Modules for theNeg Feature
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delta DLitEval1 {
modifies Exp {

adds int eval() { return 0; }
}
modifies Lit {

adds int eval() { return value; }
}

}
delta DAddEval1 {

modifies Add {
adds int eval() {
return expr1.eval() + expr2.eval();

}
}

}
delta DNegEval1{

modifies Neg {
adds int eval() { return (−1) ∗ expr.eval(); }

}
}

delta DLitEval2 {
modifies Exp {

adds Lit eval() { return null; }
}
modifies Lit {

adds Lit eval() { return this; }
}

}
delta DAddEval2 {

modifies Add {
adds Lit eval() {
Lit res = exp1.eval();
return res.setLit(res.value + exp2.eval()); }

}
}
delta DNegEval2{

modifies Neg {
adds Lit eval() { Lit res = exp.eval();
return res.setLit((−1) ∗ res.value); }

}
}

Figure 4: Delta Modules for FeaturesEval1 (left) andEval2 (right)

delta DremAdd { removes Add }

Figure 5: Delta Module for Removing theAdd Feature

methodoriginal which allows here to call the original implementation of themethodtoString, and
surround the resulting string with parenthesis.

Implementing Features Eval1 and Eval2. Figure 4 presents the delta modules that add the fea-
turesEval1 andEval2 (on the left and on the right, respectively). The delta module DLitEval1 (resp.
DLitEval2) modifies the classesExp andLit by adding to them theeval method corresponding to the
Eval1 (resp.Eval2) feature:eval takes no parameter and returns an int (resp. aLit object). The delta
moduleDAddEval1 (resp.DAddEval2) does the same operation on theAdd class; and the delta module
DNegval1 (resp.DANegEval2) does the same operation on theNeg class.

Removing the Add Feature. If the featureAdd is not selected, the generated variant must not contain
the classAdd. This is ensured by the delta moduleDremAdd in Figure 5 which removes the classAdd
from the program.

2.3 The Configuration Knowledge

The configuration knowledge specifies how variants are generated by i) specifying for which product
(i.e., set of selected features) each delta module is activated, and ii) specifying a partial application
order on the delta modules. Figure 6 presents the activationconditions and the partial order of the delta
modules. The activation conditions and the partial order reflect the explanations about the delta modules
of the EPL given in Section 2.2. For instance, the delta module DNeg is activated whenever the feature
Neg is activated, the delta moduleDremAdd is activated whenever the featureAdd is not selected, and the
delta moduleDOptionalPrint is activated whenever both featuresAdd andNeg are activated (recall
that featurePrint is mandatory).
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Activations:

Delta Module Activation
DNeg Neg
DNegPrint Neg ∧ Print
DOptionalPrint Neg ∧ Add

Delta Module Activation
DLitEval1 Eval1
DAddEval1 Eval1 ∧ Add
DNegEval1 Neg ∧ Eval1

Delta Module Activation
DLitEval2 Eval2
DAddEval2 Eval2 ∧ Add
DNegEval2 Neg ∧ Eval2
DremAdd ¬Add

Order:
DNeg <L { DNegPrint, DOptionalPrint }

<L { DLitEval1, DAddEval1, DNegEval1 }<L { DLitEval2, DAddEval2, DNegEval2 }<L DremAdd

Figure 6: Expression Product Line: Configuration Knowledge

P ::= CD Program
CD ::= class C extends C { AD } Class
AD ::= FD | MD Attribute (Field or Method)
FD ::= C f Field
MD ::= C m(C x) {return e;} Method
e ::= x | e.f | e.m(e) | new C() | (C)e | e.f= e | null Expression

L ::= P ∆ FM CK Product Line
∆ ::= delta d { CO} Delta Module
CO ::= adds CD | removes C | modifies C [extends C′] { AO} Class Operation
AO ::= adds AD | modifies MD | removes a Attribute Operation

Figure 7: Synax of IFJ (top) and IF∆J (bottom)

Following [3], the partial order is specified as a total orderon a partition of the set of delta mod-
ules. The partial order must ensure that the variants of the EPL can be generated. Therefore, it states
that the delta modulesDNeg (that adds the classNeg) must be applied beforeDNegPrint, DNegEval1
andDNegEval2 (that modify classNeg). The partial order also ensures that, independently from the
activation conditions, the delta modules occurring in the same partition perform disjoint delta opera-
tions (thus guranteeing that applying any subset of them in any possible order always produces the
same transformation)—this guarantees that the product line is unambiguous (i.e., applying the activated
delta modules in any possible total order that respects the application order produces the same variant).
Therefore, the delta modules for featureEval1 and the delta modules for featureEval2 are put in two
different parts; and the delta moduleDremAdd (that removes the classAdd) is applied afterDAddEval1,
DAddEval2 andDOptionalPrint (that modify classAdd).

3 The IF∆J Calculus

In this section we briefly recall the IF∆J [3] core calculus for DOP. We present the calculus in two steps:
(i) we introduce the IFJ calculus, which is an imperative version of FJ [8]; and (ii) we introduce the
constructs for variability on top of it. The full descriprion of IF∆J is given in [3], where a type-cheching
technique for ensuring type soundness of all variants is presented. The version of IF∆J presented in
this paper is indeed a slight extension of the one presented in [3]: the AB contains also an IFJ program
outside of any delta module. This makes the IF∆J syntax a direct extension of the IFJ syntax.

The abstract syntax of IFJ is presented in Figure 7 (top). Following [8], we use the overline notation
for (possibly empty) sequences of elements: for instanceestands for a sequence of expressions. Variables
x include the special variablethis (implicitly bound in any method declarationMD), which may not be
used as the name of a formal parameter of a method. A programP is a sequence of class declarations
CD. A class declarationclass C extends C′ { AD } comprises the nameC of the class, the nameC′ of
the superclass (which must always be specified, even if it is the built-in classObject), and a list of field
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and method declarationsAD. All fields and methods are public, there is no field shadowing, there is no
method overloading, and each class is assumed to have an implicit constructor that initializes all fields to
null. The subtyping relation<: on classes, which is the reflexive and transitive closure ofthe immediate
subclass relation (given by theextends clauses in class declarations), is supposed to be acyclic.

The abstract syntax of the language IF∆J is given in Figure 7 (bottom). An IF∆J SPLL comprises:
a possibly empty or incomplete IFJ programP; a set of delta modules∆ that, together with the base
programP, represents the artifact base; a feature modelFM specifying the features and the products of
the SPL; and a configuration knowledgeCK (i.e., the ordering between delta modules and their activation
conditions).

To simplify the presentation, we do not give a syntactic description of FM nor ofCK and we rely on
getter functions as follows:L.features is the set of features;L.products specifies the products (i.e.,
a subset of the power set 2L.features); L.activation maps each delta module named to its activation
condition; andL.order (or<L, for short) is the application ordering between the delta modules.

A delta module declaration∆ comprises the named of the delta module and class operationsCO
representing the transformations performed when the deltamodule is applied to an IFJ program. A class
operation can add, remove, or modify a class. A class can be modified by (possibly) changing its super
class and performing attribute operationsAO on its body. Anattribute namea is either a field name
f or a method namem. An attribute operation can add or remove fields and methods,and modify the
implementation of a method by replacing its body. The new body may call the special methodoriginal,
which is implicitly bound to the previous implementation ofthe method and may not be used as the name
of a method.

Theprojectionof a product line on a subset of its products is obtained by restricting L.products to
describe only the products in the subset and by dropping delta modules that are never activated.

Example 1. For instance, the AB of the projection of the EPL on the products without featureNeg is
obtained by dropping the delta modulesDNeg, DNegPrint and DOptionalPrint; and the AB of the
projection of the EPL on the products without featureEval2 is obtained by dropping the delta modules
DLitEval2, DAddEval2 andDNegEval2.

4 Auxiliary Notations

In this section we introduce some auxiliary notations that will be used in Section 5. Our first notation
relates themodifies operators on methods to the concept of monotonicity. Indeed, in generalmodifies

on methods is not monotonic: the body of the method is replaced by some code that can be entirely
different. However, we can distinguish two cases in whichmodifies can be considered monotonic:
when it callsoriginal, the generated variant contains the original body of the method, and somodifies

can be consideredincreasing monotonic; when the body of the method isvoided(i.e., it is replaced by
return null) modifies can be considereddecreasing monotonic.

Notation 1 (wraps andvoids). Letwraps denote amodifies operation on method that callsoriginal,
andvoids denote amodifies operation that removes the content of a method:voids m corresponds to
modifies C m(· · · ) {return null}.

The goal of the two following notations is to unify delta operations on classes and on attributes in a
single model, in order to manage uniformly these two kind of operations in our refactoring algorithms.
Using these notations simplifies the description of our refactoring algorithms.



8 Refactoring Delta-Oriented Product Lines to Achieve Monotonicity

Notation 2. A reference, written ρ , is either a class nameC or a qualified attribute nameC.a and we
write ρ ≤ ρ ′ if ρ = ρ ′ or if ρ is a prefix ofρ ′. By abuse of notation, we also consider theextends clause
as an attribute of its class, and considerC.extends as a valid reference.

Notation 3. We abstract a delta module by a set ofAbstract Delta Operations(ADO) which are triplets
(dok,ρ ,D) where: i) dok is a delta operation keyword (adds, removes or modifies), ii) ρ is the
reference on whichdok is applied, iii) D is the data associated with this operations, and iv) ifdok =
modifies thenρ is not a class name. Given an ADOo, we denote its operator aso.dok, its reference as
o.ρ and its data aso.D.

These two notations are ilustrated by the following examples. In particular, the first example shows
that amodifies operation on a classC that contains onlyadds operations on attributes is represented
by the set of ADOs containing only theadds operations: themodifies C operation is only a syntactic
construction to introduce theseadds operations and is not included in our representation.

Example 2. The delta moduleDLitEval2 in Figure 4 that modifies classesExp andLit by adding a
methodeval to each of them, is modeled with only two ADOs:

(adds, Exp.eval, Lit eval() { return null; }) and (adds, Lit.eval, Lit eval() { return this; })

These ADOs model the addition of theeval methods, the modification of classesExp and Lit being
implicit asExp (resp.Lit) is a prefix ofExp.eval (resp.Lit.eval).

Example 3. The delta moduleDOptionalPrint in Figure 3 that modifies the classAdd by modifying
the methodtoString, is modeled with only one ADO:

(modifies, Add.toString, String toString() { return ‘‘(’’ + original() + ‘‘)’’; })

Example 4. Note that, according to Definition 3, the projection of the EPL on the products without
featureNeg does not containmodifies operations.

Our last notations are used to iterate over delta modules: first, we present the notations to get a set of
delta module names, then we present the notations to order such a set so to iterate over it in afor loop.

Notation 4. The set of delta module names declared in L is denoted asdm(L). When L is clear from the
context, we writebefore(d) the set of delta module names that are befored for L.order.

Notation 5. Given a set of delta names S= {di | i ∈ I}, we denote↑S (resp.↓S) a sequence(di1, . . . ,din) of
all the names in S that respects the partial order (resp. the partial order opposite from the one) specified
by L.order.

5 Monotonicity and Refactoring Algorithms

In the introduction, we pointed out that the flexibility provided by delta operations, being very useful for
easily constructing SPLs, can lead to unnecessary complexity with many adding and removing operations
cancelling each other. Monotonicity is a natural approach to lower such complexity as it forbids opposite
adding and removing operations: informally,increasing monotonicityis constructing a variant only by
adding new content to the base program and is in principle similar to Feature-Oriented Programming
(FOP) [2];1 on the other hand,decreasing monotonicityis constructing it only by removing content from
the base program and share similarities with annotative approaches (see, e.g., [5, 9]).

1As pointed out in [15], DOP is a generalization of FOP: the AB of a FOP product line consists of a set offeature modules
which are delta modules that correspond one-to-one to features and do not contain remove operations.
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Section 5.1 focuses on increasing monotonicity: it formalizes and motivates different levels of purity
for it, then presents a refactoring algorithm transformingan SPL into an increasing monotonic equiva-
lent and illustrates it on the EPL example. Section 5.2 formalizes decreasing monotonicity, presents a
refactoring algorithm and its application to the EPL. Section 5.3 gives correctness and complexity of the
refactoring algorithms.

5.1 Increasing Monotonicity

Before presenting the first refactoring algorithm, we gradually introduce three notions of increasing
monotonicity, from the most intuitive one, calledstrictly-increasing, to the most flexible one, called
pseudo-increasing. Depending on the properties of the input SPL, the algorithmcan produce SPLs
corresponding to any of the three notions. A first intuitive notion of increasing monotonicity is only to
allow adds operations:

Definition 1 (Strictly-increasing monotonic). An SPL isstrictly-increasing monotoniciff it only contains
adds operations.

Note that this notion is quite restrictive, as it does not allow the extension of method implementation, or
the modification of theextends clause of a class, two operations possible in FOP. The following more
liberal notion allows to increase the body of existing methods by using themodifies operator by always
calling original. Still, it does not include the modification of theextends clause of a class present in
FOP.

Definition 2 (Increasing Monotonic). An SPL isincreasing monotoniciff it only containsadds and
wraps operations.

The last notion, which is a generalization of FOP, is to allowmodifies also to modify theextends clause
of a class and to replace the implementation of a method, leaving onlyremoves as a forbidden operation:

Definition 3 (Pseudo-increasing monotonic). An SPL ispseudo-increasing monotoniciff it does not
containremoves operations.

We have qualified the above notion aspseudo-, since it allows delta modules to replace theextends

clause of a class and to remove or entirely replace content from the body of method definitions. Thus, it
does not reflect the informal definition of increasing monotonicity given at the beginning of Section 5.

5.1.1 Increasing Monotonicity Refactoring Algorithm

The refactoring algorithm, presented in Figure 8, transforms its input DOP product lineL by eliminating
all removes operations and without eliminating or introducing newmodifies operations. Therefore, the
refactored SPL is

• strictly-increasing, ifL does not containmodifies operations;

• increasing, if all themodifies operations inL arewraps operations; and

• pseudo-increasing, otherwise.

Note that the algorithm may turn an existing delta module into an empty delta module which can then
can be removed by a straightforward algorithm (see [16]).

To illustrate how the refactoring algorithm works, consider a delta moduled containing a removal
operation on an elementρ (either a class or an attribute). This operation would be applied only whend is
activated, and would remove all declarations (and modification) of ρ that are donebeforethe application



10 Refactoring Delta-Oriented Product Lines to Achieve Monotonicity

1 Delta Module Name: d1, d2;
2 Operation: o1, o2;
3 Set of Delta Module Name: S;
4
5 refactor(L) =
6 for d1 ∈↑dm(L) do
7 for o1 ∈ L(d1) do
8 if (o1.dok= removes)
9 L(d1)←L(d1)\o1

10 manageOperation()
11 fi
12 done
13 done;
14
15 manageOperation() =
16 S← /0
17 for d2 ∈↓before(d1) do
18 for o2 ∈ L(d2) do
19 if (o1.ρ ≤ o2.ρ) mergeOperations()fi
20 done
21 done
22 mergeToBase();

23 mergeOperations() =
24 S←S∪{d2}
25 L(d2)←L(d2)\o2
26 if (L(d2) = { }) L←L\d2 fi
27 L←L+d fresh with{
28 L(d)←{ o2 }
29 L.activation(d)←d2∧¬d1
30 L.order(d)←Lorder(d2)
31 }
32
33 mergeToBase() =
34 D←L.P(o1.ρ)
35 if (D 6=⊥)
36 L.P←apply(o1,L.P)
37 L←L+d fresh with{
38 L(d)←{ ( adds, o1.ρ, D ) }
39 L.activation(d)←¬d1
40 L.order(d)←before(S)
41 }
42 fi;

Figure 8: Refactoring Algorithm for Increasing Monotonic SPL

of d. Hence, to cancel this removal operation, we can simply transform the SPL so thatρ is never
declared befored and when it is activated.

The algorithm is structured in four functions with four global variables. The main function of our
algorithm isrefactor which takes the SPL to refactor as parameter. This function looks in order at
all the delta modules and when finding aremoves operationo1 inside a delta moduled1, it cancels it
from d1 and calls themanageOperation function. The goal of themanageOperation function is to
transform the SPL for theo1 operation as described before. It is structured in two parts. First, it looks in
order at all the delta operations applied befored1, and upon finding an operationo2 in a delta moduled2

that manipulateso1.ρ , it callsmergeOperation which extracts that operation fromd2 and changes the
application condition ofo2 (using a freshly created delta moduled) so it is executed only wheno1 would
not be executed. Second, it callsmergeToBase which looks if the element removed byo1 is declared
in the base program, and if so, extracts it from the base program into a fresh opposite delta moduled
that is activated only wheno1 would not be executed. The addition of this new delta module is done
in lines 37–41 where we state thatL is changed by adding a fresh delta moduled with the following
characteristics: its set of ADOL(d) is the singleton(adds,o1.ρ ,D) that addso1.ρ again to the base
program; its activation conditionL.activation(d) is the opposite ofd1; and its orderingL.order(d)
states that it must be applied before all the delta modules inS.

There are three subtleties in this algorithm. First, to dealwith the fact that removing a class also
removes all its attributes, the condition in line 19 is “o1.ρ ≤ o2.ρ” meaning that: ifo1 removes a classC,
then previous additions and modifications ofC and its attributes will be changed withmergeOperation.
Second, in line 26, empty delta modules are eliminated to avoid creating too much of them. Third, we
compute inSthe set of all delta modules manipulatingo1.ρ befored1 to set the order relation of the delta
module created in themergeToBase function.
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delta DNotDremAdd {
adds class Add extends Exp {
Exp expr1;
Exp expr2;
Add setAdd(Exp a, Exp b) {
expr1 = a; expr2 = b; return this; }

String toString() { return expr1.toString()
+ ” + ” + expr2.toString(); }

} }
delta DOptionalPrint DremAdd {

modifies Add {
modifies String toString() {
return ”(” + original() + ”)”; }

} }

delta DAddEval1 DremAdd {
modifies Add {

adds int eval() {
return expr1.eval() + expr2.eval();

}
} }
delta DAddEval2 DremAdd {

modifies Add {
adds Lit eval() {
Lit res = exp1.eval();
return res.setLit(res.value + exp2.eval()); }

} }

Figure 9: Delta Modules of the EPL Changed by the Increasing Refactoring Algorithm

5.1.2 Example: Refactoring the EPL into Increasing Monotonicity

We applied our implementation of this algorithm on the EPL given in Section 2. It contains only one
removes operation, in theDremAdd delta module, removing theAdd class. Thus, by construction of our
algorithm, only the delta modulesDAddEval1, DAddEval2, DOptionalPrint and the base program,
that modify and declare theAdd class (respectively), are changed by the refactoring process.

Let us illustrate the modification done on the delta modules by consideringDAddEval1: the function
mergeOperations extract the only operation inside this delta module (line 25), removesDAddEval1 as
it is now empty (line 26), and then basically recreates it (line 27), with the activation condition extended
with ¬DremAdd, corresponding toAdd. Hence, the delta modules are simply renamed by the algorithm.
However, the base program is changed by the functionmergeToBase which removes the classAdd from
it, and creates a new delta module reintroducing that class with the activation condition¬DremAdd which
corresponds toAdd.

The modified delta modules are shown in Figure 9. The modified base program, which is not shown,
is obtained from the original base program (see Figure 2) by dropping the declaration of classAdd. Note
that, since all themodifies operations of the original SPL werewraps operations, the refactored SPL
is increasing monotonic. On the other hand, since the projection of the original EPL on the products
without featureNeg does not containmodifies operations (see Example 4 in Section 4), its increasing
monotonic refactoring would produce a strict-increasing product line.

5.2 Decreasing Monotonicity

Like for increasing monotonicity, we introduce several levels of purity for decreasing monotonicity be-
fore presenting the refactoring algorithm. Straightforward adaptations of Definition 1, 2 and 3 lead to the
following definitions of strictly-decreasing, decreasingand pseudo-decreasing monotonicity.
Definition 4 (Strictly-decreasing monotonic). An SPL isstrictly-decreasing monotoniciff it only contains
removes operations.
Definition 5 (Decreasing Monotonic). An SPL isdecreasing monotoniciff it only containsremoves

operations andvoids operations.
Definition 6 (Pseudo-decreasing monotonic). An SPL ispseudo-decreasing monotoniciff it only contains
removes andmodifies operations.

Unfortunately, the three above notions suffer of a major drawback: not all product lines can be
expressed by following their prescriptions. For instance,in order to conform to any of Definition 4, 5
and 6, the base program of the EPL (cf. Section 2) must containthe class declaration
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class Exp extends Object {
String toString() { return null; }
Lit eval() { return null; }
int eval() { return 0; }

}

that contains two method declarations with same signatureeval() and therefore is not valid in Java. In
order to overcome this drawback, we introduce the followingnotation to express the notion of “readding”
(i.e., to remove and to immediately add) an attribute.

Notation 6 (readds). Let (readds,ρ ,D) denotes the sequence of removing the attributeρ , and then
performing(adds,ρ ,D).

We can now give the definitions of read-strictly-decreasing, readd-decreasing and read-pseudo-decreasing
monotonicity that does not suffer of the above drawback.

Definition 7 (Readd-strictly-decreasing monotonic). An SPL isreadd-strictly-decreasing monotoniciff
it only containsreadds andremoves operations.

Definition 8 (Readd-decreasing monotonic). An SPL isreadd-decreasing monotoniciff it only contains
readds operations,removes operations andvoids operations.

Definition 9 (Readd-pseudo-decreasing monotonic). An SPL isreadd-pseudo-decreasing monotoniciff
it only containsreadds, removes andmodifies operations.

5.2.1 Decreasing Monotonicity Refactoring Algorithm

Our algorithm, presented in Figure 10, refactors a DOP product lineL by eliminating alladds operations
and without eliminating or introducing newmodifies operations. Therefore, the refactored SPL is
• readd-strictly-decreasing ifL does not containmodifies operations;
• readd-decreasing if all themodifies operations inL arevoids operations; and
• readd-pseudo-decreasing, otherwise.

The decreasing monotonic refactoring algorithm may introduce empty new delta modules. As pointed
out in the discussion at the beginning of Section 5.1.1, empty delta modules can be removed from the
refactored product line by a straightforward algorithm. Moreover, if each class/attribute is introduced
(i.e., either declared in the base program or added by a deltamodule) only once, then decreasing mono-
tonic refactoring does not introducereadds operations.

The structure of this refactoring algorithm is similar to the one to get increasing monotonicity: the
main functionrefactor takes as parameter the SPL to refactor, and iterates over allthe delta modules
to find anadds operator to remove. Upon finding an operationo1 with an adds operator in a delta
moduled1, the functionmanageOperation is called. This function, like for the increasing refactoring
algorithm, is structured in two parts. First, it looks in order at all the delta operations applied befored1,
and upon finding an operationo2 in a delta moduled2 that manipulateso1.ρ with a removes operator,
it calls mergeOperation which extracts that operation fromd2 and update the application condition of
o2 as done in the other algorithm. Second, it callsmergeToBase which integrates the operationso1 in
the base program as follows: first, it completes the base program with all the declarations introduced in
o1 that was missing from it; second, it creates a new delta moduled that readds (see Definition 6) all the
declarations originally done in the base program by the onesdone ino1; finally, it creates a new delta
moduled′ opposite too1 that removes all the declarations done ino1 if these operations would not be
executed. For the creation of these delta modules in lines 35–43, we use the following notations: dom(o)
is the set of references that are declared in that operations, ando(ρ) is the data D associated toρ in o.
For instance, witho being theadds operation in theDNeg delta module, we have
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1 Delta Module Named1, d2;
2 Operation o1, o2;
3
4 refactor(L) =
5 for module d1 ∈↑dm(L) do
6 for o1 ∈ L(d1) do
7 if (o1.dok= adds)
8 L(d1)←L(d1)\o1
9 manageOperation()

10 fi
11 done
12 done;
13
14 manageOperation() =
15 for module d2 ∈↓before(d1) do
16 for o2 ∈ L(d2) do
17 if ((o2.ρ ∈ dom(o1)) & (o2.dok= removes))
18 mergeOperations()
19 fi
20 done
21 done
22 mergeToBase();

23 mergeOperations() =
24 L(d2)←L(d2)\o2
25 if(L(d2) = /0) L←L\d2 fi
26 L←L+d fresh with{
27 L(d)←{ o2 }
28 L.activation(d)←d2∧¬d1
29 L.order(d)←L.order(d2)
30 };
31
32 mergeToBase() =
33 Set of reference: S←dom(L.P)
34 L.P←L.P∪{ρ D | (adds,ρ,D) ∈ o1∧ρ 6∈ S};
35 L←L+d fresh with{
36 L(d)←{ (readds,C.a,o1(ρ)) | C.a ∈ dom(o1)∩S}
37 L.activation(d)←d1
38 L.order(d)←L.order(d1)
39 } + d′ fresh with{
40 L(d′)←{ (removes,ρ, /0) | ρ ∈ dom(o1)\S}
41 L.activation(d′)←¬d1
42 L.order(d′)←L.order(d1)
43 };

Figure 10: Refactoring Algorithm for Decreasing MonotonicSPL

dom(o) = {Neg,Neg.expr,Neg.setNeg} and, e.g., o(Neg.expr) = (Exp expr)

There are two subtleties in this algorithm. First, it can occur that before anadds operation adding
a classC, removal operations can be applied on theattributesof C, and so, the condition in line 17
“o2.ρ ∈ dom(o1)” captures all possible attributes ofo1.ρ . Second, in line 36, we only readd attributes,
not classes, to ensure that the base program contains every elements declared in the SPL. Note also that in
this example, there is no need of a setSto define the order of the delta modules created inmergeToBase:
the order simply is the one of the originald1 delta module.

5.2.2 Example: Refactoring the EPL into Decreasing Monotonicity

We applied this refactoring algorithm to the EPL example. All its delta modules butDremAdd and
DOptionalPrint add new content to the base program, and all of them are modified by the refactoring
as follows: they are emptied out by therefactor function which removes theadds operations, that are
then reintroduced to the SPL by themergeToBase in the base program with few new delta modules. The
structure of the resulting SPL is presented in Figure 11—it contains 8 empty delta modules (lines 27, 29,
31, 33, 38, 41, 44 and 47), which can be straightforwardly removed. The left part of Figure 11 contains
the new base program which now contains all the elements declared in the SPL: the classNeg as well as
the attributestoString andeval are declared in the base program. Note that as the delta modules im-
plementing theEval1 feature are before the ones implementing theEval2 feature, the new base program
contains theEval1 version of theeval methods. The right part of Figure 11 presents the newly added
delta modules. The names of these delta modules are constructed in two parts: first the operation they
perform, and then the delta module that created them. For instance,DremNeg DNeg is the removing delta
module created in themergeToBase function from theDNeg delta module: it removes theNeg class
when the featureNeg is not selected. The second delta moduleDremNegToString DNegPrint is the
delta module removing the methodNeg.toString when neitherNeg norPrint are selected. The second
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1 class Exp extends Object {
2 String toString() { return ””; }
3 int eval() { ... }
4 }
5 class Lit extends Exp {
6 int value;
7 Lit setLit(int n) { ... }
8 String toString() { ... }
9 int eval() { ... }

10 }
11 class Add extends Exp {
12 Exp expr1;
13 Exp expr2;
14 Add setAdd(Exp a, Exp b) { ... }
15 String toString() { ... }
16 int eval() { ... }
17 }
18 class Neg extends Exp {
19 Exp expr;
20 Neg setNeg(Exp a) { ... }
21 String toString() { ... }
22 int eval() { ... }
23 }

24 DremNeg DNeg { removes Neg }
25 DremNegToString DNegPrint { modifies class Neg { removes toString } }
26
27 DreaddNegEval DNegEval1 { }
28 DremNegEval DNegEval1 { modifies class Neg { removes eval } }
29 DreaddExpEval DLitEval1 { }
30 DremExpEval DLitEval1 { modifies class Exp { removes eval } }
31 DreaddLitEval DLitEval1 { }
32 DremLitEval DLitEval1 { modifies class Lit { removes eval } }
33 DreaddAddEval DAddEval1 { }
34 DremAddEval DAddEval1 { modifies class Add { removes eval } }
35
36 DreaddNegEval DNegEval2 {
37 modifies class Neg { readds Lit eval() { ... } } }
38 DremNegEval DNegEval2 { }
39 DreaddExpEval DLitEval2 {
40 modifies class Exp { readds Lit eval() { ... } } }
41 DremExpEval DLitEval2 { }
42 DreaddLitEval DLitEval2 {
43 modifies class Lit { readds Lit eval() { ... } } }
44 DremLitEval DLitEval2 { }
45 DreaddAddEval DAddEval2 {
46 modifies class Add { readds Lit eval() { ... } } }
47 DremAddEval DAddEval2 { }

Figure 11: EPL Modified by the Decreasing Refactor Algorithm

set of delta modules (from line 27 to 34) corresponds to the integrations of theEval1 feature in the base
program. For instance,DreaddNegEval DNegEval1 is thed delta module created by themergeToBase
function (line 35 in Figure 10), and does not contain any operations as the base program did not originally
contain theevalmethod;DremNegEval DNegEval1 is thed′ delta module created by themergeToBase
function (line 39 in Figure 10), and removes theNeg.eval method when the featureEval1 or Neg is not
selected. The last set of delta modules (from line 36 to 47) corresponds to the integrations of theEval2
feature in the base program. As when including this feature in the base program, the delta modules for
Eval1 already have been integrated, thereaddingdelta modules contains the implementation of theEval2
version of theeval method; and on the opposite, theremovingdelta modules are empty.

Note that, since the original SPL contains methodmodifies operations that are notvoids, the refac-
tored SPL is readds-pseudo-decreasing monotonic.On the other hand, since in the projection of the orig-
inal EPL on the products without featureEval2 each class/attribute is added only once (see Example 1 in
Section 3), its decreasing monotonic refactoring would produce a pseudo-decreasing product line.

5.3 Properties

We finally present the main properties of these two refactoring algorithms. As they both share the same
characteristics, we state our theorems for both of them.

Theorem 1(Correctness). Applying one of therefactor algorithms on one SPL L is a monotonic SPL
that have the same products and variants as L.

Proof (sketch).Let us consider the increasing version of therefactor algorithm (proving the result for
the decreasing version is similar), and let us denoteL′ asrefactor(L). The fact thatL′ is monotonic
is a direct consequence of the algorithm iterating over all delta operations and deleting all theremoves

operations. The fact thatL′ has the same products asL is a direct consequence ofrefactor not changing
the FM of L. The fact thatL′ has the same variants asL can be proven by checking that each product
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p of L generates the same variant inL′ and inL: this can be done by induction on the number of delta
modules and delta operations used to generate the variant ofp in L.

Recall that the notion of increasing (resp. decreasing) monotonicity satisfied by the refactored SPL de-
pends on the properties of the original SPL, as pointed out atthe beginning of Section 5.1.1 (resp.
Section 5.2.1).

Theorem 2 (Complexity). The space complexity of therefactor algorithms is: i) constant in the size
of IFJ code; ii) linear in the number of delta operations; andiii) linear in the number of delta operations
times the number of delta modules for the generation of the activation condition of the new delta modules.
The time complexity of therefactor algorithms is quadratic in the number of delta operations.

Proof (sketch).i) is a direct consequence of the algorithm not creating or duplicating IFJ code. ii) is
more subtle: in the increasing refactor,o1 is replaced by one delta module containing one operation, and
o2 is kept as it is; however in the decreasing refactor, to matchall the readds andremoves operations
generated inmergeToBase, we need to consider that adding a class corresponds to oneadds operation
for the class name, and oneadds operation for each of its fields. iii) it is straightforward to see that the
length of the activation condition of the delta module created in functionmergeOperations is linear
in the number of delta modules inL. Finally, refactor is quadratic in time in the number of delta
operations as it iterates over them with two inner loops (onein function refactor, one in function
manageOperation).

6 Related Work

To the best of our knowledge, refactoring in the context of DOP has been studied only in [16] and [7].
The former considers product lines of Java programs, while the latter considers delta modeling of soft-
ware architectures. We refer to [16] for the related work in the FOP or annotative approaches. Note that
both of these approaches are monotonic by construction (FOPbeing increasing, and annotative being de-
creasing), and so no refactoring algorithms to achieve monotonicity exist for them. In [16], a catalogue
of refactoring and code smells is presented, and most of themfocus on changing one delta module, one
feature at a time. Two of their refactorings are related to ours. Resolve Modification Actionreplaces a
modifies operations that does not calloriginal with anadds operation, by modifying the activation
condition of previousmodifies andadds operations.Resolve Removal Actioneliminatesremoves op-
erations also by changing the application condition of previousmodifies andadds operations. Other
refactoring algorithms focus on how to enable extractive SPL development for FOP [1, 12]. These works
are related to ours, as DOP natively supports extractive SPLdevelopment: refactoring such a SPL into
an increasing monotonic one using our algorithms is close toadapting this SPL to FOP.

7 Conclusion and Future Work

In this paper, we presented two refactoring algorithms withthe goal of lowering the complexity of the
input SPL, by removing oppositeadds andremoves operations. These algorithms work by removing
one kind of operation from the input SPL, eitheradds or removes, and so they do not duplicate code
nor change the structure of the input SPL, except for the parts related to the removed operation.

We plan four lines of future work for monotonicity in DOP. First, we would like to investigate
alternative means to reach (a possibly more flexible versionof) monotonicity. Second, complementarily
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to our algorithms, one could consider also refactoring code. For instance, splitting the definition of a
method into several ones would help into transformingmodifies operations invoids operations. Third,
we would like to identify specific analysis scenarios where monotone product lines are simpler to analyze.
Fourth, we plan to develop case studies in order to evaluate the advantages and the drawbacks of the
proposed refactorings.

Acknowledgements. We are grateful to the FMSPLE 2016 anonymous reviewers for many comments
and suggestions for improving the presentation.
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