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Delta-oriented programming (DOP) is a flexible transfoiiova! approach to implement software
productlines. In delta-oriented product lines, varianésgenerated by applying operations contained
in delta modules to a (possibly empty) base program. Thesgatipns can add, remove or modify
named elements in a program (e.g., classes, methods ansl ifiedd Java program). This paper
presents algorithms for refactoring a delta-oriented pebdine into monotonic form, i.e., either
to contain add and modify operations only (monotonic insigg) or to contain remove and modify
operations only (monotonic decreasing). Because of thapler structure, monotonic delta-oriented
product lines are easier to analyze. The algorithms aredtzed by means of a core calculus for
DOP of product lines of Java programs and their correctmedsamplexity are given.

1 Introduction

A Software Product LinéSPL) is a set of similar programs, calledriants that have a well documented
variability and are generated from a common code hasddlla-Oriented Programmin{DOP) [14] 3]

is a flexible and modular transformational approach to iiiglet SPLs. A DOP product line comprises
a Feature ModelFM), a Configuration KnowledgéCK), and anArtifact Base(AB). The FM provides

an abstract description of variants in termdeztures(each representing an abstract description of func-
tionality): each variant is described by a set of featuraied aproduct The AB provides the (language
dependent) code artifacts used to build the variants, nanslpossibly empty) base program from
which variants are obtained by applying program transfdiona, described bgelta modulesthat can
add, remove or modify code. The CK provides a mapping frontlpets to variants by describing the
connection between the code artifacts in the AB and the ffeatin the FM: it associates to each delta
module anactivation conditionover the features and specifies @pplication orderingbetween delta
modules. DOP supports automated product derivation,aree the features of a product are selected,
the corresponding variant is generated by applying theatetl delta modules to the base program ac-
cording to the application ordering.

Delta modules are constructed framelta operationghat canadd, modify and removecontent to
and from the base program (e.g., for Java programs, a deltalmoan add, remove or modify classes
interfaces, fields and methods). As pointed out in [15], Slehbility allows DOP to supporproactive
(i.e., planning all products in advancegactive(i.e., developing an initial SPL comprising a limited set
of products and evolving it as soon as new products are needenlv requirements arise), aexkractive
(i.e., gradually tranforming a set of existing program®iah SPL) SPL development [|10]. DOP allows
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for quick SPL evolution and extension, as modifying or addimoducts/variants can straightforwardly

be achieved by adding to the SPL new delta modules that maéifyove and add code on top of the

original implementation of the SPL. However, a number ofisG®L evolution and extension phases
lead, almost ineluctably, to a multiplication of oppositland remove operations, making the resulting
SPL complex, difficult to understand and to analyze [16].

Refactoring [[6] is an established technique to reduce cexitgland to prevent the process of soft-
ware aging, and consists of program transformations thahgd the internal structure of a program
without altering its external (visible) behavior. Refautg for DOP product lines, i.e. changing the
internal structure of an SPL without changing its prodwetsants, has been investigated[inl[16]. There,
a catalogue of refactoring algorithms and code smells isgmted. Most of these refactorings are based
on object-oriented refactorings|[6]. In particular, théaotorings that refer to delta modules focus on a
single delta module or a pair of delta modules.

In this paper, we propose two new refactoring algorithmsitomatically eliminate opposite add and
remove operations across the whole SPL, consequentlyirgdine overall complexity of the refactored
SPL and making it easier to analyze. These algorithms argtrembed around the notion ofonotonicity
whereincreasing monotoni&SPL corresponds to only adding new content to the base pmogkdile
decreasing monotoni8PL corresponds to only removing content from the base pnagrThese two
notions of monotonicity are discussed in Secfibn 5, wher@rpose several definitions with different
versions of these concepts. The refactoring algorithmsaténtroduce code duplication in the AB of
the refactored SPL and have at most quadratic complexifyanesand time. We formalize the notions of
monotonicity and the refactoring algorithms by meansm#&RATIVE FEATHERWEIGHT DELTA JAVA
(IFAJ) [3], a core calculus for DOP product lines where variamésveritten in an imperative version
of FEATHERWEIGHT Java (FJ) [8]. A prototypical implementation of the refactorimdgorithms is
available at([11].

Section 2 introduces our running example. Sedfibn 3 retalld. Sectiori ¥4 introduces some aux-
iliary notations. Sectiohl5 illustrates the notions of mmmicity, the refactoring algorithms, and their
properties. Sectidnl 6 briefly discusses the related workSsutior{ ¥ concludes the paper.

2 Example

In order to illustrate the monotonicity concept and our ctdeing algorithms, we use a variant of the
expression product linEEPL) benchmark (see, e.d.. [13, 3]). We consider the foligugrammar:

Exp ::= Lit | Add | Neg Lit ::= <integers> Add ::= Exp "+" Exp Neg ::="—" Exp
Two different operations can be performed on the expressiescribed by this grammar: printing, which

returns the expression as a string, and evaluating, whiomethe value of the expression, either as an
int or as a literal expression.

2.1 The Feature Model

The functionalities in the EPL can be described by two setfieatures: the ones concerned with the
data are.it (for literals), Add (for the addition) andNeg (for the negation); the ones concerned with the
operations ar€rint (for the classizoString method) Evall (for theeval method returning an int) and
Eval2 (for theeval method returing a literal expression). The featuriegndPrint are mandatory, while
Add, Neg, Evall andEval2 are optional. Moreover, dvall andEval2 define the same method, they are
mutually exclusive. Figurel 1 shows the feature model of tRé& Eepresented as a feature diagram.
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Figure 1: Expression Product Line: Feature Model

class Exp extends Object { // only used as a type class Add extends Exp {
String toString() { return null; } Exp exprl;
Exp expr2;
class Lit extends Exp { Add setAdd(Exp a, Exp b) { exprl = a; expr2 = b; return this; }
int value; String toString() { return exprl.toString() +
Lit setLit(int n) { value = n; return this; } "4." + expr2.toString(); }
String toString() { return value +""; } }

Figure 2: Base Program

2.2 The Artifact Base

Base Program. In our example, the EPL is constructed from the base progteowrs in Figure R,
which is the variant implementing featurieis, Add andPrint. This program comprises the clagsp, the
classLit for literal expressions and the classd for addition expressions. All these classes implement
thetoString method. Moreovet,.it andAdd also have a setter method.

Implementing Feature Neg. Figure[3 presents the three delta modules (introduced bkeiord
delta) that add the featurdleg to the base program. NamelpNeg adds the clas¥eg with a sim-
ple setter;DNegPrint adds to clasdleg the toString method (relevant for th®rint feature); and
DOptionalPrint adds glue code to ensure that the two optional featideisandNeg cooperate prop-
erly: it modifiesthe implementation of theoString method of the clasgdd by putting parentheses
around the textual representation of a sum expressionatluiding ambiguity in printing. E.g., without
applyingDOptionalPrint both the following expressions

(new Add()).setAdd( new (Neg()).setNeg((new Lit()).setLit(3)), new (Lit()).setLit(5) ) // (-3) + 5
(new Neg()).setNeg( new (Add()).setAdd((new Lit()).setLit(3), new (Lit()).setLit(5)) ) // —(3+5)

would be printed as “-3+5"; while after applyingdptionalPrint the former is printed as “(-3+5)”
and the latter is printed as “-(3+5)”. Delta modolgptionalPrint illustrates the usage of the special

delta DNeg { delta DOptionalPrint {
adds class Neg extends Exp { modifies Add {
Exp expr; modifies String toString() {
Neg setNeg(Exp a) { expr = a; return this; } return " (" + original() + ")"; }
}
}

delta DNegPrint {
modifies Neg {
adds String toString() {
return " —" + expr.toString(); }
}
}

Figure 3: Delta Modules for thMeg Feature



F. Damiani & M. Lienhardt 5

delta DLitEvall { delta DLitEval2 {
modifies Exp { modifies Exp {
adds int eval() { return 0; } adds Lit eval() { return null; }
modifies Lit { modifies Lit {
adds int eval() { return value; } adds Lit eval() { return this; }
} }
delta DAddEvall { delta DAddEval2 {
modifies Add { modifies Add {
adds int eval() { adds Lit eval() {
return exprl.eval() + expr2.eval(); Lit res = expl.eval();
} return res.setLit(res.value + exp2.eval()); }
} }
} }
delta DNegEvall{ delta DNegEval2{
modifies Neg { modifies Neg {
adds int eval() { return (—1) * expr.eval(); } adds Lit eval() { Lit res = exp.eval();
} return res.setLit((—1) * res.value); }
} }

}
Figure 4: Delta Modules for Featurésall (left) andEval2 (right)

delta DremAdd { removes Add }

Figure 5: Delta Module for Removing thedd Feature

methodoriginal which allows here to call the original implementation of thethodtoString, and
surround the resulting string with parenthesis.

Implementing Features Evall and Eval2. Figure[4 presents the delta modules that add the fea-
turesEvall andEval2 (on the left and on the right, respectively). The delta medulitEvall (resp.
DLitEval2) modifies the classe&xp andLit by adding to them theval method corresponding to the
Evall (resp.Eval2) feature: eval takes no parameter and returns an int (redpitaobject). The delta
moduleDAddEvall (resp.DAddEval2) does the same operation on th&i class; and the delta module
DNegvall (resp.DANegEval?2) does the same operation on thsg class.

Removing the Add Feature. If the featureAdd is not selected, the generated variant must not contain
the classAdd. This is ensured by the delta modwWeemAdd in Figure[% which removes the clasdd
from the program.

2.3 The Configuration Knowledge

The configuration knowledge specifies how variants are geeerby i) specifying for which product
(i.e., set of selected features) each delta module is #etivand ii) specifying a partial application
order on the delta modules. Figlife 6 presents the activatioditions and the partial order of the delta
modules. The activation conditions and the partial ordééecethe explanations about the delta modules
of the EPL given in Section 2.2. For instance, the delta mobiég is activated whenever the feature
Neg is activated, the delta moduberemAdd is activated whenever the featuked is not selected, and the
delta moduleDOptionalPrint is activated whenever both featur&dd andNeg are activated (recall
that featurePrint is mandatory).
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Delta Module Activation Delta Module | Activation Delta Module | Activation
DNeg Neg DLitEvall Evall DLitEval2 Eval2
Activations: DNegPrint Neg A Print DAddEvall Evall A Add DAddEval2 Eval2 A Add
DOptionalPrint | Neg A Add DNegEvall Neg A Evall DNegEval2 Neg A Eval2
DremAdd -Add
Order: DVeg <t { DNegPrint, DOptionalPrint }

<L { DLitEvall, DAddEvall, DNegEvall } <| { DLitEval2, DAddEval2, DNegEval2 } <| DremAdd
Figure 6: Expression Product Line: Configuration Knowledge

P :=CD Program
CD ::=class C extends C { AD } Class
AD :=FD | MD Attribute (Field or Method)
FD :=Cf Field

MD ::=Cm(C x) {return &;} Method
e =x | ef | en(® | newC() | (C)e | ef=e | null Expression

L =P A FM CK

A :=deltad { CO}

CO:=addsCD | removesC | modifies C [extends C'| { AO}
AO ::=adds AD | modifies MD | removes a

Figure 7: Synax of IFJ (top) and A8 (bottom)

Product Line

Delta Module
Class Operation
Attribute Operation

Following [3], the partial order is specified as a total ordara partition of the set of delta mod-
ules. The partial order must ensure that the variants of #le &n be generated. Therefore, it states
that the delta moduleBleg (that adds the clas$eg) must be applied beforeNegPrint, DNegEvall
andDNegEval2 (that modify clasNeg). The partial order also ensures that, independently fioen t
activation conditions, the delta modules occurring in thme partition perform disjoint delta opera-
tions (thus guranteeing that applying any subset of thenrminpossible order always produces the
same transformation)—this guarantees that the produeidinnambiguous (i.e., applying the activated
delta modules in any possible total order that respectsghkcation order produces the same variant).
Therefore, the delta modules for featuteall and the delta modules for featuEeal2 are put in two
different parts; and the delta modueemAdd (that removes the clagsid) is applied afteDAddEvall,
DAddEval2 andDOptionalPrint (that modify classidd).

3 The IFAJ Calculus

In this section we briefly recall the {8 [3] core calculus for DOP. We present the calculus in twpsste
() we introduce the IFJ calculus, which is an imperativesi@r of FJ [8]; and (ii) we introduce the
constructs for variability on top of it. The full descripnf IFAJ is given in|[[3], where a type-cheching
technique for ensuring type soundness of all variants isgmted. The version of I presented in
this paper is indeed a slight extension of the one present{&]:ithe AB contains also an IFJ program
outside of any delta module. This makes thAJSyntax a direct extension of the IFJ syntax.

The abstract syntax of IFJ is presented in Fidire 7 (top)owaig [8], we use the overline notation
for (possibly empty) sequences of elements: for inst@stands for a sequence of expressions. Variables
x include the special variablehis (implicitly bound in any method declaratidviD), which may not be
used as the name of a formal parameter of a method. A proBrema sequence of class declarations
CD. A class declaratiomlass C extends C' { AD } comprises the name of the class, the nam& of
the superclass (which must always be specified, even ifligidtilt-in clas9bject), and a list of field



F. Damiani & M. Lienhardt 7

and method declaratiosD. All fields and methods are public, there is no field shadowihgre is no
method overloading, and each class is assumed to have dnitrophstructor that initializes all fields to
null. The subtyping relatior:: on classes, which is the reflexive and transitive closutb@fmmediate
subclass relation (given by tlextends clauses in class declarations), is supposed to be acyclic.

The abstract syntax of the languagé\JHs given in Figur&]7 (bottom). An K SPLL comprises:

a possibly empty or incomplete IFJ progrdma set of delta moduleA that, together with the base
programP, represents the artifact base; a feature médiéispecifying the features and the products of
the SPL; and a configuration knowledG& (i.e., the ordering between delta modules and their aativat
conditions).

To simplify the presentation, we do not give a syntactic dpson of FM nor of CK and we rely on
getter functions as follows..features is the set of featured;.products specifies the products (i.e.,
a subset of the power set22tures): | activation maps each delta module naméo its activation
condition; and_.order (or <, for short) is the application ordering between the deltauhes.

A delta module declaratioA comprises the nameé of the delta module and class operatidd®
representing the transformations performed when the dedtdule is applied to an IFJ program. A class
operation can add, remove, or modify a class. A class can loifisw by (possibly) changing its super
class and performing attribute operatioh® on its body. Anattribute namea is either a field name
f or a method nama. An attribute operation can add or remove fields and methas,modify the
implementation of a method by replacing its body. The newybody call the special methattiginal,
which is implicitly bound to the previous implementationtioé method and may not be used as the name
of a method.

The projectionof a product line on a subset of its products is obtained hyic#ag L.products to
describe only the products in the subset and by dropping dedidules that are never activated.

Example 1. For instance, the AB of the projection of the EPL on the prdslwgthout featureVeg is
obtained by dropping the delta moduleeg, DNegPrint and DOptionalPrint; and the AB of the
projection of the EPL on the products without featuiea/2 is obtained by dropping the delta modules
DLitEval2, DAddEval2 andDNegEval2.

4 Auxiliary Notations

In this section we introduce some auxiliary notations thilitlve used in Sectiofi]5. Our first notation
relates thanodifies operators on methods to the concept of monotonicity. Indieegeneraimodifies

on methods is not monotonic: the body of the method is redldagesome code that can be entirely
different. However, we can distinguish two cases in whiabdifies can be considered monotonic:
when it callsoriginal, the generated variant contains the original body of thénotetand senodifies
can be consideremcreasing monotonjcwhen the body of the method ¥wided(i.e., it is replaced by
return null) modifies can be consideredecreasing monotonic

Notation 1 (wraps andvoids). Letwraps denote anodifies operation on method that caltariginal,
and voids denote amodifies operation that removes the content of a methediids m corresponds to
modifies Cm(---) {return null}.

The goal of the two following notations is to unify delta ogéons on classes and on attributes in a
single model, in order to manage uniformly these two kind pérations in our refactoring algorithms.
Using these notations simplifies the description of ouratefang algorithms.
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Notation 2. A referencewritten p, is either a class name or a qualified attribute name.a and we
write p < p’ if p = p’ orif p is a prefix ofp’. By abuse of notation, we also consider #xtends clause
as an attribute of its class, and considgextends as a valid reference.

Notation 3. We abstract a delta module by a setAdfstract Delta Operation@DO) which are triplets
(dok,p,D) where: i) dok is a delta operation keyworda@lds, removes or modifies), ii) p is the
reference on whicllok is applied, iii) D is the data associated with this operations, and iwWdk =
modifies thenp is not a class name. Given an ADQwe denote its operator asdok, its reference as
o.p and its data a®.D.

These two notations are ilustrated by the following example particular, the first example shows
that amodifies operation on a class that contains onlyadds operations on attributes is represented
by the set of ADOs containing only theds operations: thenodifies C operation is only a syntactic
construction to introduce theseds operations and is not included in our representation.

Example 2. The delta modul®LitEval2 in Figure[4 that modifies class&kp andLit by adding a
methodeval to each of them, is modeled with only two ADOs:

(adds, Exp.eval, Liteval() { return null; }) and (adds, Lit.eval, Lit eval() { return this; })

These ADOs model the addition of theal methods, the modification of classes andLit being
implicit asExp (resp.Lit) is a prefix ofExp.eval (resp.Lit.eval).

Example 3. The delta modul®0ptionalPrint in Figure[3 that modifies the claggid by modifying
the methodtoString, is modeled with only one ADO:

(modifies, Add.toString, String toString() { return ‘(" 4+ original() + )"; })

Example 4. Note that, according to Definition] 3, the projection of thelE&h the products without
feature Neg does not contaimodifies operations.

Our last notations are used to iterate over delta modules; e present the notations to get a set of
delta module names, then we present the notations to orderasset so to iterate over it infar loop.

Notation 4. The set of delta module names declared in L is denoteth@s). When L is clear from the
context, we writdefore(d) the set of delta module names that are befbfer L.order.

Notation 5. Given a set of delta names=S{d; | i € 1 }, we denotg'S (resp..S) a sequencg;,, . .., d;,) of
all the names in S that respects the partial order (resp. #mtigd order opposite from the one) specified
by Lorder.

5 Monotonicity and Refactoring Algorithms

In the introduction, we pointed out that the flexibility prdgd by delta operations, being very useful for
easily constructing SPLs, can lead to unnecessary compleih many adding and removing operations
cancelling each other. Monotonicity is a natural approadbwer such complexity as it forbids opposite
adding and removing operations: informaligcreasing monotonicitys constructing a variant only by
adding new content to the base program and is in principlédaino Feature-Oriented Programming
(FOP) [2]@ on the other handjecreasing monotonicifg constructing it only by removing content from
the base program and share similarities with annotativecaighes (see, e.d../[5, 9)).

1As pointed out in[[15], DOP is a generalization of FOP: the AB&OP product line consists of a setfefiture modules
which are delta modules that correspond one-to-one toresaand do not contain remove operations.
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Sectior 511 focuses on increasing monotonicity: it foraediand motivates different levels of purity
for it, then presents a refactoring algorithm transformamgSPL into an increasing monotonic equiva-
lent and illustrates it on the EPL example. Secfiod 5.2 fdimaa decreasing monotonicity, presents a
refactoring algorithm and its application to the EPL. Smub.3 gives correctness and complexity of the
refactoring algorithms.

5.1 Increasing Monotonicity

Before presenting the first refactoring algorithm, we gedlyuintroduce three notions of increasing
monotonicity, from the most intuitive one, calletrictly-increasing to the most flexible one, called
pseudo-increasing Depending on the properties of the input SPL, the algorittam produce SPLs
corresponding to any of the three notions. A first intuitiaion of increasing monotonicity is only to
allow adds operations:

Definition 1 (Strictly-increasing monotonic)An SPL isstrictly-increasing monotoniiff it only contains
adds operations.

Note that this notion is quite restrictive, as it does nahwalthe extension of method implementation, or
the modification of theextends clause of a class, two operations possible in FOP. The follguwnore
liberal notion allows to increase the body of existing meghby using themodifies operator by always
calling original. Still, it does not include the modification of tlatends clause of a class present in
FOP.

Definition 2 (Increasing Monotonic) An SPL isincreasing monotonidff it only containsadds and
wraps operations.

The last notion, which is a generalization of FOP, is to alioadifies also to modify theextends clause
of a class and to replace the implementation of a methodinganly removes as a forbidden operation:

Definition 3 (Pseudo-increasing monotonicAn SPL ispseudo-increasing monotonitf it does not
containremoves operations.

We have qualified the above notion pseudo; since it allows delta modules to replace #eends
clause of a class and to remove or entirely replace contemt fine body of method definitions. Thus, it
does not reflect the informal definition of increasing monatity given at the beginning of Sectidnh 5.

5.1.1 Increasing Monotonicity Refactoring Algorithm

The refactoring algorithm, presented in Figure 8, tramafoits input DOP product link by eliminating
all removes operations and without eliminating or introducing newadifies operations. Therefore, the
refactored SPL is

e strictly-increasing, il does not contaimodifies operations;

e increasing, if all thamodifies operations irL arewraps operations; and

e pseudo-increasing, otherwise.
Note that the algorithm may turn an existing delta module amt empty delta module which can then
can be removed by a straightforward algorithm (Seé [16]).

To illustrate how the refactoring algorithm works, considedelta modulei containing a removal

operation on an elemept(either a class or an attribute). This operation would bdiegpnly whend is
activated, and would remove all declarations (and modifinabf p that are donéeforethe application
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Delta Module Name d;, dy; 23 mergeOperations() =
Operation: o1, 0; 24 S+SuU{dy}
Set of Delta Module Name S; 25 L(d2) «-L(d2)\ o2
26 if(L(d2) ={ ) L<+L\dxfi
refactor() = 27 L +L+d fresh with{
for dq €fdm(L) do 28 L(d) «+{ o2}
for 01 € L(d;) do 29 L.activation(d) <—dp A —dj
if (01.dok = removes) 30 L.order(d) <Lorder(dy)
L(dl) <—L(d1) \01 31
manageOperation() 32
fi 33 mergeToBase() =
done 34 D <«L.P(o1.p)
done 35 if(D#£1)
36 L.P <apply(o1,L.P)
manageOperation() = 37 L <L +d fresh with{
S«+0 38 L(d) +{ (adds, o1.0,D ) }
for dy €/before(ds) do 39 L.activation(d) <——dj
for op € L(dz) do 40 L.order(d) < before®
if(o1.p < 02.p) mergeOperationsf) 41 }
done 42  fi;
done
mergeToBase();

Figure 8: Refactoring Algorithm for Increasing MonotoniPIS

of 4. Hence, to cancel this removal operation, we can simplysfomm the SPL so thab is never
declared befora and when it is activated.

The algorithm is structured in four functions with four gédtvariables. The main function of our
algorithm isrefactor which takes the SPL to refactor as parameter. This functiokd in order at
all the delta modules and when findingeamoves operationo; inside a delta moduléd;, it cancels it
from d; and calls thenanageOperation function. The goal of theanageOperation function is to
transform the SPL for the, operation as described before. It is structured in two p&itst, it looks in
order at all the delta operations applied beféyeand upon finding an operatiarn in a delta modulel,
that manipulates.p, it callsmergeOperation which extracts that operation frody and changes the
application condition oé, (using a freshly created delta moddleso it is executed only whesy would
not be executed. Second, it callsrgeToBase which looks if the element removed ly is declared
in the base program, and if so, extracts it from the base pnegnto a fresh opposite delta modue
that is activated only when; would not be executed. The addition of this new delta modsilgoine
in lines 37-41 where we state tHatis changed by adding a fresh delta moddleith the following
characteristics: its set of ADQ(4) is the singleton(adds,o;.p,D) that addso;.p again to the base
program; its activation conditioh.activation(d) is the opposite ofi;; and its orderind-.order(d)
states that it must be applied before all the delta modul&s in

There are three subtleties in this algorithm. First, to de#h the fact that removing a class also
removes all its attributes, the condition in line 1945.p < 02.p” meaning that: ifo; removes a class,
then previous additions and modificationsCaind its attributes will be changed witlergeOperation.
Second, in line 26, empty delta modules are eliminated tadam@ating too much of them. Third, we
compute inSthe set of all delta modules manipulatiag p befored; to set the order relation of the delta
module created in theergeToBase function.
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delta DNotDremAdd { delta DAddEvall_DremAdd {
adds class Add extends Exp { modifies Add {
Exp exprl; adds int eval() {
Exp expr2; return exprl.eval() + expr2.eval();
Add setAdd(Exp a, Exp b) { }
exprl = a; expr2 = b; return this; } 1}
String toString() { return exprl.toString() delta DAddEval2_DremAdd {
+ "+ + expr2.toString(); } modifies Add {
}} adds Lit eval() {
delta DOptionalPrint_DremAdd { Lit res = expl.eval();
modifies Add { return res.setLit(res.value + exp2.eval()); }
modifies String toString() { 1}

return " (" + original() + ")"; }
b}

Figure 9: Delta Modules of the EPL Changed by the Increasieigdtoring Algorithm

5.1.2 Example: Refactoring the EPL into Increasing Monotoiicity

We applied our implementation of this algorithm on the EPLegiin Section 2. It contains only one
removes operation, in th®remAdd delta module, removing th&dd class. Thus, by construction of our
algorithm, only the delta modules\ddEvall, DAddEval2, DOptionalPrint and the base program,
that modify and declare th&dd class (respectively), are changed by the refactoring geoce

Let us illustrate the modification done on the delta modulesdmsideringbAddEval1i: the function
mergeOperations extract the only operation inside this delta module (ling 28&moveDAddEvall as
it is now empty (line 26), and then basically recreatesme(l27), with the activation condition extended
with —DremAdd, corresponding tadd. Hence, the delta modules are simply renamed by the algarith
However, the base program is changed by the funatiargeToBase which removes the clagsdd from
it, and creates a new delta module reintroducing that clé#bstine activation conditiomDremAdd which
corresponds tadd.

The modified delta modules are shown in Figure 9. The modiféese program, which is not shown,
is obtained from the original base program (see Figure 2ybyming the declaration of clagsid. Note
that, since all thenodifies operations of the original SPL wereraps operations, the refactored SPL
is increasing monotonic. On the other hand, since the piojeof the original EPL on the products
without featureNeg does not contaimodifies operations (see Examglé 4 in Sectidn 4), its increasing
monotonic refactoring would produce a strict-increasingdpct line.

5.2 Decreasing Monotonicity

Like for increasing monotonicity, we introduce severalisvof purity for decreasing monotonicity be-
fore presenting the refactoring algorithm. Straightfardvadaptations of Definitidnl L] 2 ahdl 3 lead to the
following definitions of strictly-decreasing, decreasimgd pseudo-decreasing monotonicity.
Definition 4 (Strictly-decreasing monotonicfn SPL isstrictly-decreasing monotoniff it only contains
removes operations.
Definition 5 (Decreasing Monotonic)An SPL isdecreasing monotonidf it only containsremoves
operations androids operations.
Definition 6 (Pseudo-decreasing monotonién SPL igpseudo-decreasing monotoifidt only contains
removes and modifies operations.

Unfortunately, the three above notions suffer of a majomtbeck: not all product lines can be
expressed by following their prescriptions. For instanoegrder to conform to any of Definition 4] 5
and 6, the base program of the EPL (cf. Sediion 2) must cottiainlass declaration
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class Exp extends Object {
String toString() { return null; }
Lit eval() { return null; }
int eval() { return 0; }

}
that contains two method declarations with same signaturg) and therefore is not valid in Java. In

order to overcome this drawback, we introduce the followintation to express the notion of “readding”
(i.e., to remove and to immediately add) an attribute.

Notation 6 (readds). Let (readds,p,D) denotes the sequence of removing the attrifut@nd then
performing(adds, p,D).

We can now give the definitions of read-strictly-decreasirgdd-decreasing and read-pseudo-decreasing
monotonicity that does not suffer of the above drawback.

Definition 7 (Readd-strictly-decreasing monotonidn SPL isreadd-strictly-decreasing monotonft
it only containsreadds andremoves operations.

Definition 8 (Readd-decreasing monotonidn SPL isreadd-decreasing monotonftit only contains
readds operationsremoves operations androids operations.

Definition 9 (Readd-pseudo-decreasing monotonish SPL isreadd-pseudo-decreasing monotaiffic
it only containsreadds, removes and modifies operations.

5.2.1 Decreasing Monotonicity Refactoring Algorithm

Our algorithm, presented in Figure] 10, refactors a DOP mlihe L by eliminating alladds operations
and without eliminating or introducing nemodifies operations. Therefore, the refactored SPL is

e readd-strictly-decreasing lif does not contaimodifies operations;

e readd-decreasing if all th@odifies operations irL. arevoids operations; and

e readd-pseudo-decreasing, otherwise.

The decreasing monotonic refactoring algorithm may indioedempty new delta modules. As pointed
out in the discussion at the beginning of Secfion 5.1.1, grdptta modules can be removed from the
refactored product line by a straightforward algorithm. ristaver, if each class/attribute is introduced
(i.e., either declared in the base program or added by a ohaitiule) only once, then decreasing mono-
tonic refactoring does not introdueeadds operations.

The structure of this refactoring algorithm is similar t@ thne to get increasing monotonicity: the
main functionrefactor takes as parameter the SPL to refactor, and iterates ouvlieallelta modules
to find anadds operator to remove. Upon finding an operationwith an adds operator in a delta
moduleds, the functionmanageOperation is called. This function, like for the increasing refachoyi
algorithm, is structured in two parts. First, it looks in ercht all the delta operations applied befaie
and upon finding an operatian in a delta modulel, that manipulates;.p with a removes operator,
it callsmergeOperation which extracts that operation fro» and update the application condition of
o2 as done in the other algorithm. Second, it caksgeToBase which integrates the operationg in
the base program as follows: first, it completes the baser@nmogvith all the declarations introduced in
o; that was missing from it; second, it creates a new delta nectitiat readds (see Definition 6) all the
declarations originally done in the base program by the doee inoj; finally, it creates a new delta
moduled’ opposite too; that removes all the declarations doneoinif these operations would not be
executed. For the creation of these delta modules in lined35ve use the following notations: d¢e)
is the set of references that are declared in that operatm (p) is the data D associated jpoin o.
For instance, with being theadds operation in thé®Neg delta module, we have
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Delta Module Named;, dy; 23 mergeOperations() =
Operation o1, o2; 24 L(d2) +L(d2)\ 02
25  if(L(d2) =0)L <L\ dpfi
refactor() = 26 L <L+ d fresh with{
for module d; €7dm(L) do 27 L(d) «{ o2}
for o1 € L(d1) do 28 L.activation(d) <—dp A —dz
if (01.dok = adds) 29 L.order(d) <L.order(dy)
L(d1) <-L(d1)\ o1 3 kK
manageOperation() 31
fi 32 mergeToBase() =
done 33  Setof reference S«+dom(L.P)
done 34 LP<+LPU{pD|(adds,p,D) €01 Ap¢&S};
35 L <L +4d fresh with{
manageOperation() = 36 L(d) <{ (readds,C.a,01(p)) | C.a € dom(o1) NS}
for module d; €]before(d;) do 37 L.activation(d) <—dj
for oy € L(dz) do 38 L.order(d) <L.order(d;)
if ((02.p € dom(o1)) & (02.dok = removes)) 39 } + d fresh with{
mergeOperations() 40 L(d") +{ (removes,p,0) | p € dom(o1)\ S}
fi 41 L.activation(d') +——d;
done 42 L.order(d’) +L.order(d;)
done 43 kL
mergeToBase();

Figure 10: Refactoring Algorithm for Decreasing MonotoSieL

dom(o) = {Neg,Neg.expr,Neg.setNeg} and, e.g., o(Neg.expr) = (Exp expr)

There are two subtleties in this algorithm. First, it canuwcthat before aradds operation adding

a classc, removal operations can be applied on #i&ibutesof C, and so, the condition in line 17
“02.p € dom(o1)” captures all possible attributes of.p. Second, in line 36, we only readd attributes,
not classes, to ensure that the base program contains éeergréas declared in the SPL. Note also that in
this example, there is no need of a Séb define the order of the delta modules createtkirgeToBase:

the order simply is the one of the origingl delta module.

5.2.2 Example: Refactoring the EPL into Decreasing Monotoitity

We applied this refactoring algorithm to the EPL example.l idl delta modules bubremAdd and
DOptionalPrint add new content to the base program, and all of them are mbthfi¢he refactoring

as follows: they are emptied out by thefactor function which removes thadds operations, that are
then reintroduced to the SPL by tihergeToBase in the base program with few new delta modules. The
structure of the resulting SPL is presented in Figuie 11-e+itains 8 empty delta modules (lines 27, 29,
31, 33, 38, 41, 44 and 47), which can be straightforwardlyowsd. The left part of Figurie 11 contains
the new base program which now contains all the elementamelin the SPL: the cladéeg as well as
the attributexoString andeval are declared in the base program. Note that as the delta ewoih
plementing thetvall feature are before the ones implementingEhel2 feature, the new base program
contains theEvall version of theeval methods. The right part of Figurelll presents the newly added
delta modules. The names of these delta modules are caestrinctwo parts: first the operation they
perform, and then the delta module that created them. F@rios DremNeg DNeg is the removing delta
module created in theergeToBase function from theDNeg delta module: it removes thideg class
when the featurdleg is not selected. The second delta modtemnNegToString DNegPrint is the
delta module removing the meth@idg.toString when neitheNeg nor Print are selected. The second
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class Exp extends Object { 24 DremNeg_DNeg { removes Neg }
String toString() { return ""; } 25 DremNegToString_DNegPrint { modifies class Neg { removes toString } }
inteval() { ... } 26
27 DreaddNegEval_DNegEvall { }
class Lit extends Exp { 28 DremNegEval_DNegEvall { modifies class Neg { removes eval } }
int value; 29 DreaddExpEval_DLitEvall { }
Lit setLit(int n) { ... } 30 DremExpEval_DLitEvall { modifies class Exp { removes eval } }
String toString() { ... } 31 DreaddLitEval_DLitEvall { }
inteval() { ... } 32 DremlLitEval_DLitEvall { modifies class Lit { removes eval } }
33 DreaddAddEval_DAddEvall { }
class Add extends Exp { 34 DremAddEval_DAddEvall { modifies class Add { removes eval } }
Exp exprl; 35
Exp expr2; 36 DreaddNegEval_DNegEval2 {
Add setAdd(Exp a, Exp b) { ... } 37 modifies class Neg { readds Lit eval() { ... } } }
String toString() { ... } 38 DremNegEval_DNegEval2 { }
inteval() { ... } 39 DreaddExpEval_DLitEval2 {
40 modifies class Exp { readds Liteval() { ... } } }
class Neg extends Exp { 41 DremExpEval_DLitEval2 { }
Exp expr; 42 DreaddLitEval_DLitEval2 {
Neg setNeg(Exp a) { ... } 43 modifies class Lit { readds Lit eval() { ... } } }
String toString() { ... } 44  DremlitEval_DLitEval2 { }
inteval() { ... } 45 DreaddAddEval_DAddEval2 {
} 46 modifies class Add { readds Liteval() { ... } } }

47 DremAddEval_DAddEval2 { }
Figure 11: EPL Modified by the Decreasing Refactor Algorithm

set of delta modules (from line 27 to 34) corresponds to ttegnations of théevall feature in the base
program. For instanc®readdNegEval DNegEvall is thed delta module created by thergeToBase
function (line 35 in Figureé_10), and does not contain any afi@ns as the base program did not originally
contain thesval method,DremNegEval DNegEvall is thed’ delta module created by thergeToBase
function (line 39 in Figuré_10), and removes tiez.eval method when the featuitevall or Neg is not
selected. The last set of delta modules (from line 36 to 4ifesponds to the integrations of tEeal2
feature in the base program. As when including this featuthé base program, the delta modules for
Evall already have been integrated, thaddingdelta modules contains the implementation offkel2
version of theeval method; and on the opposite, treanovingdelta modules are empty.

Note that, since the original SPL contains metinaaddifies operations that are nebids, the refac-
tored SPL is readds-pseudo-decreasing monotonic.Onlilee lodnd, since in the projection of the orig-
inal EPL on the products without featulteal2 each class/attribute is added only once (see Example 1 in
SectiorB), its decreasing monotonic refactoring wouldipoe a pseudo-decreasing product line.

5.3 Properties

We finally present the main properties of these two refactpalgorithms. As they both share the same
characteristics, we state our theorems for both of them.

Theorem 1(Correctness)Applying one of theefactor algorithms on one SPL L is a monotonic SPL
that have the same products and variants as L.

Proof (sketch).Let us consider the increasing version of thef actor algorithm (proving the result for
the decreasing version is similar), and let us dehotasrefactor(L). The fact thatl’ is monotonic

is a direct consequence of the algorithm iterating overeltidoperations and deleting all themoves
operations. The fact that has the same productslags a direct consequence péfactor not changing
the FM of L. The fact thatl.’ has the same variants Bscan be proven by checking that each product
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p of L generates the same variantlihand inL: this can be done by induction on the number of delta
modules and delta operations used to generate the variarinaf. O

Recall that the notion of increasing (resp. decreasing)ataicity satisfied by the refactored SPL de-
pends on the properties of the original SPL, as pointed otiheatbeginning of Section 5.1.1 (resp.
Sectior[ 5.2.1).

Theorem 2 (Complexity) The space complexity of thefactor algorithms is: i) constant in the size

of IFJ code; ii) linear in the number of delta operations; aififilinear in the number of delta operations

times the number of delta modules for the generation of ttieedion condition of the new delta modules.
The time complexity of theefactor algorithms is quadratic in the number of delta operations.

Proof (sketch).i) is a direct consequence of the algorithm not creating qlidating IFJ code. ii) is
more subtle: in the increasing refactey,is replaced by one delta module containing one operatiah, an
o2 is kept as it is; however in the decreasing refactor, to malictine readds andremoves operations
generated imergeToBase, we need to consider that adding a class corresponds tadaseoperation

for the class name, and ondds operation for each of its fields. iii) it is straightforward $ee that the
length of the activation condition of the delta module ceéain functionmergeOperations is linear

in the number of delta modules In Finally, refactor is quadratic in time in the number of delta
operations as it iterates over them with two inner loops (onfunction refactor, one in function
manageOperation). O

6 Related Work

To the best of our knowledge, refactoring in the context offDitas been studied only in [16] and [7].
The former considers product lines of Java programs, whéddtter considers delta modeling of soft-
ware architectures. We refer {0 [16] for the related worlhi@ EOP or annotative approaches. Note that
both of these approaches are monotonic by construction {e®ig increasing, and annotative being de-
creasing), and so no refactoring algorithms to achieve noonmgty exist for them. In[[16], a catalogue
of refactoring and code smells is presented, and most of theus on changing one delta module, one
feature at a time. Two of their refactorings are related ts.0Resolve Modification Actioreplaces a
modifies operations that does not caltiginal with anadds operation, by modifying the activation
condition of previousnodifies andadds operations.Resolve Removal Acti@liminatesremoves op-
erations also by changing the application condition of neymodifies andadds operations. Other
refactoring algorithms focus on how to enable extractive &¥elopment for FOR 1, 12]. These works
are related to ours, as DOP natively supports extractive @Rkelopment: refactoring such a SPL into
an increasing monotonic one using our algorithms is closal&pting this SPL to FOP.

7 Conclusion and Future Work

In this paper, we presented two refactoring algorithms withgoal of lowering the complexity of the
input SPL, by removing oppositedds andremoves operations. These algorithms work by removing
one kind of operation from the input SPL, eithatds or removes, and so they do not duplicate code
nor change the structure of the input SPL, except for thespalated to the removed operation.

We plan four lines of future work for monotonicity in DOP. &tir we would like to investigate
alternative means to reach (a possibly more flexible versfpmonotonicity. Second, complementarily



16 Refactoring Delta-Oriented Product Lines to Achieve Momatity

to our algorithms, one could consider also refactoring cdeler instance, splitting the definition of a
method into several ones would help into transforrmngdifies operations irvoids operations. Third,
we would like to identify specific analysis scenarios whemmotone product lines are simpler to analyze.
Fourth, we plan to develop case studies in order to evallm@dvantages and the drawbacks of the
proposed refactorings.

Acknowledgements. We are grateful to the FMSPLE 2016 anonymous reviewers fayymamments
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