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Ioana Leuştean Natalia Moangă
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Faculty of Mathematics and Computer Science,
University of Bucharest, Str. Academiei 14, 010014 Bucharest, Romania

ioana@fmi.unibuc.ro, natalia.moanga@drd.unibuc.ro, traian.serbanuta@fmi.unibuc.ro

Building on our previous work on hybrid polyadic modal logic we identify modal logic equivalents
for Matching Logic, a logic for program specification and verification. This provides a rigorous way
to transfer results between the two approaches, which should benefit both systems.

1 Introduction

In this paper, we continue our work from [9, 10], where we defined a (hybrid) many-sorted polyadic
modal logic, for which we proved soundness and completeness, generalizing well-known results from
the mono-sorted setting [5].

Our research was inspired by Matching logic [12] which made some connections with modal logic 1.
Nevertheless, while the system we proposed in [10] was strong enough for performing specification and
formal verification, its connection with Matching logic, its original motivation, was still to be established.

The purpose of this paper is that of stating the relation between our modal-logic-based systems and
Matching logic. In this way we provide a rigorous way to transfer the results between the two approaches,
hopefully in the benefit of both systems. To this aim, we make the following contributions:

(1) We isolate HΣ(∀), a fragment of the system presented in [10], and we show that, when restricted
to global deduction, it is equivalent with Matching Logic without definedness.

(2) We introduce HΣ(@z,∀), a strengthening of the system from [10] which allows the satisfaction
operators @s

z to also range over state variables, and we show that, when restricted to global deduction, it
is equivalent to Matching Logic with the definedness operator.

Background. For a general background on modal logic we refer to [5]. We recall that hybrid logics are
modal logics that have special symbols (called “nominals”) that name the particular states of a model.
Recall that the satisfaction in modal logic is local, i.e. one analyzes what happens in a given point of the
model. With respect to this, nominals can be seen as local constants and, given a model (a frame and
an evaluation), the value of a nominal is a fixed singleton set. State variables are variables that range
over the individual points of a model, while the usual (propositional) variables range over arbitrary sets
of points. All these notions will be detailed in our many-sorted context, but we refer to [1] for a basic
introduction in hybrid modal logics.

For (S,Σ) a many-sorted signature, the many-sorted polyadic modal logic HΣ defined in [9] is re-
called in Figure 1. The system HΣ(∀), defined in Section 2, is a fragment of the system introduced
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1Note that Matching logic was further developed in [6], where techniques from modal logic are employed for the theoretical
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by [10] which enriches HΣ with nominals, state variables and the forall binder. This system is a many-
sorted generalization of a hybrid modal logic defined in [3]. The second system,HΣ(@z,∀) is an en-
richment of the first one, through the incorporation of the modal satisfaction operators @s

x for s ∈ S and
x a state variable or a nominal. Intuitively, the operator @s

z allows us to “jump” at the element(world,
state) denoted by z and the truth value we infer at this point is visible on all sorts. One can see [1] for a
discussion on the expressivity of satisfaction operators in hybrid modal logic.

The systems HΣ(∀) and HΣ(@z,∀) are presented in Section 2 and Section 3, along with their com-
pleteness results, while the connection with Matching logic is clarified in Section 4.

2 The many-sorted hybrid modal logic HΣ(∀)

Let (S,Σ) be a many-sorted signature. In this section we perform hybridization on top of HΣ, the many-
sorted polyadic modal logic defined in [9].

We recall that our language is determined by an S-sorted set of propositional variables PROP =
{PROPs}s∈S such that PROPs 6= /0 for any s ∈ S and PROPs1 ∩PROPs2 = /0 for any s1 6= s2 in S. For any
n ∈ N and s,s1, . . . ,sn ∈ S, we denote Σs1...sn,s = {σ ∈ Σ | σ : s1 · · ·sn→ s}. The formulas of HΣ are an
S-sorted set defined by:

φs := p | j | ys | ¬φs | φs∨φs | σ(φs1 , . . . ,φsn)s.
For any σ ∈ Σs1...sn,s the dual operation is σ�(φ1, . . . ,φn) := ¬σ(¬φ1, . . . ,¬φn).

In general, the sort of a formula will be determined by its context. When necessary, we’ll denote by
ϕs the fact that the formula ϕ has the sort s.

In order to define the semantics we introduce (S,Σ)-frames and (S,Σ)-models. An (S,Σ)-frame is a
tuple F = (W,(Rσ )σ∈Σ) where W = {Ws}s∈S is an S-sorted set (whose elements are referred as points,
worlds, states, etc.) such that Ws 6= /0 for any s ∈ S , and Rσ ⊆Ws×Ws1 × . . .×Wsn for any σ ∈ Σs1···sn,s.
An (S,Σ)-model based on F is a pair M = (F ,V ) where V = {Vs}s∈S such that Vs : PROPs→P(Ws)
for any s ∈ S. The model M = (F ,V ) will be simply denoted as M = (W,(Rσ )σ∈Σ,V ). For s ∈ S,
w∈Ws and φ a formula of sort s, the many-sorted satisfaction relation M ,w |s= φ is defined by structural
induction of formulas (see [9] for details). Moreover, let s ∈ S and assume φ is a formula of sort s. Then
φ is satisfiable if M ,w |s= φ for some model M and some w ∈Ws. The formula φ is valid in a model M
if M ,w |s= φ for any w ∈Ws; in this case we write M |s= φ .

The deductive system of HΣ is recalled in 1 and the completeness theorem is proved in [9].
The hybridization of our many-sorted modal logic is developed using a combination of ideas and

techniques from [1, 2, 3, 5, 7, 8], but for this section we drew our inspiration mainly form [3]. We refer
to [10] for some similar proofs of the results presented in this section.

Hybrid logic is defined on top of modal logic by adding nominals, states variables and specific
operators and binders. Nominals allow us to directly refer the worlds (states) of a model, since they
are evaluated in singletons in any model. However, a nominal may refer different worlds in different
models. The sorts will be denoted by s, t, . . . and by PROP = {PROPs}s∈S, NOM = {NOMs}s∈S and
SVAR = {SVARs}s∈S we will denote some countable S-sorted sets. The elements of PROP are ordinary
propositional variables and they will be denoted p, q,. . .; the elements of NOM are called nominals and
they will be denoted by j, k, . . .; the elements of SVAR are called state variables and they are denoted
x, y, . . .. We shall assume that for any distinct sorts s 6= t ∈ S, the corresponding sets of propositional
variables, nominals and state variables are distinct. A state symbol is a nominal or a state variable.

Definition 1 (HΣ(∀) formulas). For any s ∈ S we define the formulas of sort s:
φs := p | j | ys | ¬φs | φs∨φs | σ(φs1 , . . . ,φsn)s | ∀xt φs
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Here, p ∈ PROPs, j ∈ NOMs, t ∈ S, x ∈ SVARt , y ∈ SVARs and σ ∈ Σs1···sn,s. We also define the dual
binder ∃: for any s, t ∈ S, if φ is a formula of sort s and x is a state variable of sort t, then ∃xφ :=¬∀x¬φ

is a formula of sort s. The notions of free state variables and bound state variables are defined as usual.

In order to define the semantics for HΣ(@z,∀) more is needed. Given a model M =(W,(Rσ )σ∈Σ,V ),
an assignment is an S-sorted function g : SVAR→W . If g and g′ are assignment functions s ∈ S and
x ∈ SVARs then we say that g′ is an x-variant of g (and we write g′ x∼ g) if gt = g′t for t 6= s ∈ S and
gs(y) = g′s(y) for any y ∈ SVARs, y 6= x.

Definition 2 (The satisfaction relation in HΣ(∀)). In the sequel M = (W,(Rσ )σ∈Σ,V ) is a model and
g : SVAR→W an S-sorted assignment. The satisfaction relation is defined as follows:

• M ,g,w |s= a, if and only if w ∈Vs(a), where a ∈ PROPs∪NOMs,

• M ,g,w |s= x, if and only if w = gs(x), where x ∈ SVARs,

• M ,g,w |s= ¬φ , if and only if M ,g,w 6|s= φ

• M ,g,w |s= φ ∨ψ , if and only if M ,g,w |s= φ or M ,g,w |s= ψ

• if σ ∈ Σs1...sn,S then M ,g,w |s= σ(φ1, . . . ,φn), if and only if there is
(w1, . . . ,wn) ∈Ws1×·· ·×Wsn such that Rσ ww1 . . .wn and M ,g,wi |

si= φi for any i ∈ [n],

• M ,g,w |s= ∀xφ , if and only if M ,g′,w |s= φ for all g′ x∼ g.
Consequently,

• M ,g,w |s= ∃xφ , if and only if ∃g′(g′ x∼ g and M ,g′,w |s= φ).

In order to define the axioms of our system, one more definition is needed.
We assume #s be a new propositional variable of sort s and we inductively define NC = {NCs}s by

• #s,>s ∈ NCs for any s ∈ S

• if σ ∈ Σs1···sn,s and ηi ∈ NCsi for any i ∈ [n] then σ(η1, . . . ,ηn) ∈ NCs.

We further define NomC = {NomCs}s∈S such that η ∈ NomCs iff η ∈ NCs and |{#s | s ∈ S,#s ∈ η}|= 1.
If η ∈ NomCs then η� is its dual and η(ϕ) := η [ϕ/#s′ ].

Remark 3. If η ∈ NomCs and ϕ ∈ Forms′ then M ,g,w |s= η(ϕ) iff M ,h,w′ |s
′
= ϕ for some w′ in the sub-

model generated by X where Xs = {w} and Xt = /0 for t 6= s. Dually, M ,g,w |s=η�(ϕ) iff M ,h,w′ |s
′
=ϕ

for any w′ in the submodel generated by X .

The deductive system is presented in Figure 1.

Note: The proofs for the following lemmas: Agreement Lemma, Substitution Lemma, Generalization
on nominals are similar to the ones in [10].

Lemma 4 (Agreement Lemma). Let M be a standard model. For all standard M -assignments g and h,
all states w in M and all formulas φ of sort s ∈ S, if g and h agree on all state variables occurring freely
in φ , then: M ,g,w |s= φ iff M ,h,w |s= φ

Lemma 5 (Substitution Lemma). Let M be a standard model. For all standard M -assignments g, all
states w in M and all formulas φ , if y is a state variable that is substitutable for x in φ and j is a nominal
then:

• M ,g,w |s= φ [y/x] iff M ,g′,w |s= φ where g′ x∼ g and g′s(x) = gs(y)

• M ,g,w |s= φ [ j/x] iff M ,g′,w |s= φ where g′ x∼ g and g′s(x) =Vs( j)
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The system HΣ

• For any s ∈ S, if φ is a formula of sort s which is a theorem in propositional logic, then φ is an axiom.

• Axiom schemes: for any σ ∈ Σs1···sn,s and for any formulas φ1, . . . ,φn,φ ,χ , ψ of appropriate sorts, the
following formulas are axioms:

(Kσ ) σ�(. . . ,φi−1,φ → χ,φi+1, . . .)→ (σ�(. . . ,φi−1,φ ,φi+1, . . .)→ σ�(. . . ,φi−1,χ,φi+1, . . .))
(Dualσ ) σ(φ1, . . . ,φn)↔¬σ�(¬φ1, . . . ,¬φn)

• Deduction rules:
(MP) if |s φ and |s φ → ψ then |s ψ

(UG) if |si φ then |s σ�(φ1, ..,φ , ..φn)

The system HΣ(∀)

• The axioms and the deduction rules of KΣ

• Axiom schemes: for any σ ∈Σs1···sn,s and for any formulas φ1, . . . ,φn,φ ,ψ of appropriate sorts, the following
formulas are axioms:

(Q1) ∀x(φ → ψ)→ (φ →∀xψ) where φ contains no free occurrences of x
(Q2) ∀xφ → φ [y/x] where y is substitutable for x in φ

(Name) ∃xx
(Barcan) ∀xσ�(φ1, . . . ,φn)→ σ�(φ1, . . . ,∀xφi, . . . ,φn)
(Nom) ∀x [η(x∧φ)→ θ�(x→ φ)], for any s ∈ S, η and θ ∈ NomCs, x ∈ SVARs′

• Deduction rules:
(Gen) if |s φ then |s ∀xφ , where φ ∈ Forms and x ∈ SVARt for some t ∈ S.

Figure 1: (S,Σ) hybrid logic

Lemma 6 (Generalization on nominals). Assume |s φ [i/x] where i ∈ NOMt and x ∈ SVARt for some
t ∈ S. Then there is a state variable y ∈ SVARt that does not appear in φ such that |s ∀yφ [y/x]

Following the construction of the canonical model of K∀ we define M K∀ = (W K∀,RK∀,V K∀) as
follows: (1) for any s ∈ S, W K∀

s = {Φ ⊆ Forms | Φ is maximal K∀-consistent set}, (2) for any σ ∈
Σs1...sn,s,w ∈W K∀

s ,u1 ∈W K∀
s1

, . . . ,un ∈W K∀
sn

we define RK∀
σ wu1 . . .un iff σ(ψ1, . . . ,ψn) ∈ w implies ψ1 ∈

u1, . . . ,ψn ∈ un, (3) for every propositional symbol or nominal a, V K∀= {V K∀
s }s∈S is the valuation defined

by V K∀
s (a) = {w ∈W K∀

s | a ∈ w} for any s ∈ S. Note that V K∀
s (a) might be empty or might contain more

that one element. We address these issues in the rest of this section.

Definition 7 (Witnessed Sets). Let s ∈ S and Γs a maximal K∀-consistent set. Γs is called witnessed iff
for any K∀-formula of the form ∃xφ with φ ∈ Forms there is a nominal j having the same sort as x such
that ∃xφ → φ [ j/x] ∈ Γs.

Lemma 8 (Extended Lindenbaum Lemma). Let K∀ and K∀+ be two countable languages such that K∀+
is K∀ extended with a countably infinite set of new nominals. Then every consistent set of K∀-formulas,
Γs, can be extended to a witnessed maximal K∀+-consistent set, Γ+

s .

Proof. Let En = { j1, j2, j3 . . .} be an enumeration of the set of all new nominals that are in K∀+, and
let E f = {φ1,φ2,φ3 . . .} be an enumeration of all K∀+-formulas. We define inductively the maximal
K∀+-consistent set Γ+

s for any s ∈ S.
Let Γ0

s = Γs. Γ0
s contains no nominals from En, therefore it is consistent when regarded as a set of

K∀+-formulas. To prove this, let us suppose that we can prove ⊥s by making use of nominals from En,
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then by replacing all the En nominals in such a proof with state variables from K∀ , we get a proof of ⊥s

in K∀ , which is a contradiction.
We define Γn

s as follows. If Γn
s ∪{φn} is inconsistent, then Γn+1

s = Γn. Otherwise:

1) Γn+1
s = Γn

s ∪{φn}, if φn is not of the form ∃xψ

2) Γn+1
s = Γn

s ∪{φn}∪ {ψ[ j/x]}, if φn = ∃xψ and j is the the first nominal in the enumeration En

which is not used in the definitions of Γi
s for all i≤ n and also does not appear in φn.

Let Γ+
s =

⋃
n≥0 Γn

s . By construction Γ+
s is maximal and witnessed and we need to prove that it is con-

sistent. Let us suppose that Γ+
s is inconsistent, therefore for some n≥ 0, Γn

s is inconsistent. But we will
prove that all Γn

s are consistent. Hence, we need to prove that expansion using 2) preserve consistency.
Suppose Γn+1

s = Γn
s ∪{φn}∪{ψ[ j/x]} is inconsistent, where φn = ∃xψ . Then there is a formula χ which

is a conjunction of a finite number of formulas from Γn
s ∪{φn}, such that |s χ →¬ψ[ j/x]. By Lemma

6 we can prove that |s ∀y(χ →¬ψ[ j/x]), for some state variable y that does not occur in χ →¬ψ[ j/x].
Therefore by (Q1) we get |s χ →∀y¬ψ[y/x]. Hence Γn

s ∪{φn} |s ∀y¬ψ[y/x], and by Lemma 5 we ob-
tain Γn

s ∪{φn} |s ∀x¬ψ . But φn = ∃xψ , and this contradicts the consistency of Γn
s ∪{φn}.

Definition 9 (Witnessed Models). Let M wit
K∀ be the witnessed canonical model which is defined as the

canonical model, but only witnessed maximal consistent sets are considered, i.e. all the relations, as well
as the valuation are restricted and co-restricted to witnessed maximal consistent sets.

Lemma 10. Let M K∀=(W K∀,RK∀,V K∀) be a canonical model, ϒ be a witnessed maximal consistent set
of sort s, where ϒ∈W K∀

s and let M wit
K∀ = (W wit ,Rwit ,V wit) be the witnessed submodel of M K∀ generated

by ϒ. For any t ∈ S, any state symbol x ∈ SVARt and for all witnessed maximal consistent sets Γ and ∆

in W wit
t , if x ∈ Γ∩∆, the Γ = ∆.

Proof. Suppose that Γ and ∆ are different, then there is a formula φ such that φ ∈ Γ and φ 6∈ ∆. But
∆ and Γ are maximal consistent sets, therefore, we get φ ∈ Γ and ¬φ ∈ ∆. From hypothesis, we have
x ∈ SVARt , where x ∈ Γ∩ ∆. Thus, x∧ φ ∈ Γ and x∧¬φ ∈ ∆. Recall that Γ and ∆ belong to the
generated submodel, therefore, exists η1,η2 ∈ NCs such that η1(x∧ φ) ∈ ϒ and η2(x∧¬φ) ∈ ϒ. As ϒ

contains every instance of a Nom schema, for some state variable y ∈ SVARt that does not occur freely
in φ , ∀y(η1(y∧ φ)→ η�

2 (y→ φ)) ∈ ϒ. Suppose that x is substitutable for y in φ . By Q2, we get
η1(x∧φ)→ η�

2 (x→ φ)∈ ϒ. But η1(x∧φ)∈ ϒ, therefore η�
2 (x→ φ)∈ ϒ. So, we have ¬η2(x∧¬φ)∈ ϒ

and η2(x∧¬φ) ∈ ϒ, which contradicts that ϒ is a maximal consistent set. We conclude that Γ = ∆.

Recall that to have a standard model we need a model in which every nominal is true at exactly
one state. Until now, from the previous lemma we know that the nominals are contained in at most one
maximal consistent set in a witnessed model. Therefore, whenever we have a witnessed model M wit

K∀
such that some state variable does not occur in any maximal consistent set in M wit

K∀ , we will complete the
model by adding a new dummy state symbol ?.

Definition 11. Let M wit
K∀ = (W wit ,Rwit ,V wit) be a witnessed model generate by the witnessed maximal

consistent set ϒ. For any t ∈ S and any x ∈ SVARt if there exists a maximal consistent set ∆ ∈W wit
t

such that x ∈ ∆, then the completed model M wit
? is simply M wit

K∀ . Otherwise, W wit?
t = W wit

t ∪{?t} and
Rwit? = Rwit ∪{(?t ,ϒ) | t ∈ S,?t ∈W wit?

t }. For all propositional symbols p, V wit?
t (p) = V wit

t (p) and for
all nominals j, V wit?

t ( j) = {Γt ∈M wit
K∀ | j ∈ Γt} if this set is not empty, and V wit?

t ( j) = {?} otherwise. For
all state variables x ∈ SVARt , gwit?

t (x) = {Γt ∈M wit
K∀ | x ∈ Γt} if this set is not empty, and gwit?

t (x) = {?}
otherwise.
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Lemma 12. Let φ and χ be formulas and x and y state variables such that y is substitutable for x in χ ,
and y does not have free occurrences in either φ or χ . Then for any sort s ∈ S and any ϕi ∈ Formsi , for
i ∈ [n] and i 6= t, we have that:
|s σ(ϕ1, . . . ,ϕt−1,φ ,ϕt+1, . . . ,ϕn)→∃yσ(ϕ1, . . . ,ϕt−1,(∃xχ → χ[y/x])∧φ ,ϕt+1, . . . ,ϕn).

Proof. The proof is similar to the one in [3].

Lemma 13 (Existence Lemma for Witnessed Models). Let w be a witnessed maximal consistent set.
If σ(φ1, . . . ,φn) ∈ w then there exists witnessed maximal consistent sets ui such that RK∀

σ wu1 . . .un and
φi ∈ ui for any i ∈ [n].

Proof. The proof for unary operators is similar with [5, Lemma 4.20] for any sort s ∈ S. We prove this
lemma for higher arity and start with σ a binary operator.

Suppose σ(φ1,φ2) ∈ w, where φ1 ∈ Forms1 and φ2 ∈ Forms2 . We define u−1 := {ψ|σ�(ψ,¬φ2) ∈
w}. We prove that u−1 ∪ {φ1} is consistent. Let us suppose is not consistent. Then there are for-
mulas of sort s1, ψ1, . . . , ψm ∈ u−1 such that |s1 ψ1∧ . . .∧ψm→¬φ1. Easy modal reasoning yields
|s σ�(ψ1∧ . . .∧ψm,¬φ2)→ σ�(¬φ1,¬φ2). But |s σ�(ψ1,¬φ2)∧ . . .∧σ�(ψm, ¬φ2)→ σ�(ψ1 ∧ . . .∧
ψm,¬φ2), so | s σ�(ψ1,¬φ2)∧ . . .∧ σ�(ψm,¬φ2) → σ�(¬φ1,¬φ2). We have σ�(ψ1,¬φ2) ∈ w, . . . ,
σ�(ψm,¬φ2)∈w and w is a witnessed maximal consistent set, thus it follows that σ�(¬φ1,¬φ2)∈w. So,
we get that ¬σ(φ1,φ2) ∈ w, which is a contradiction, since w is consistent. Therefore, u−1 ∪{φ1} is con-
sistent and can be extended by Lindenbaum’s Lemma to u1 a maximal consistent set. By construction,
φ1 ∈ u1. We define u−2 := {ψ2| exists ψ1 ∈ u1 such that σ�(¬ψ1,ψ2) ∈ w}. We prove that u−2 ∪{φ2} is
consistent. Let us suppose is not consistent. Then there exists formulas of sort s2, ψ1

2 , . . . ,ψ
m
2 ∈ u−2 such

that |s2 ψ1
2 ∧ . . .∧ψm

2 →¬φ2. Also, because ψ1
2 , . . . ,ψ

m
2 ∈ u−2 ,by definition of u−2 , we have that there ex-

ists formulas ψ1
1 , . . . ,ψ

m
1 ∈ u1 such that σ�(¬ψ1

1 ,ψ
1
2 , . . . ,σ

�(¬ψm
1 ,ψ

m
2 ∈ w. Let ψ := ¬ψ1

1 ∨ . . .∨¬ψm
1 .

Therefore, we have σ�(ψ,ψ1
2 ), . . . ,σ

�(ψ,ψm
2 ) ∈ w.

Easy modal reasoning applied on |s2 ψ1
2 ∧ . . .∧ψm

2 → ¬φ2 yields that | s σ�(ψ,ψ1
2 ∧ . . .∧ψm

2 )→
σ�(ψ,¬φ2). But | s σ�(ψ,ψ1

2 )∧ . . .∧σ�(ψ,ψm
2 )→ σ�(ψ,ψ1

2 ∧ . . .∧ψm
2 ), therefore | s σ�(ψ,ψ1

2 )∧
. . .∧σ�(ψ,ψm

2 )→ σ�(ψ,¬φ2). We have σ�(ψ,ψ1
2 ), . . . ,σ

�(ψ,ψm
2 ) ∈ w and w is a witnessed maximal

consistent set, thus it follows that σ�(φ ,¬φ2) ∈ w. So, by definition of u−1 , we get that ψ ∈ u−1 ⊆ u1,
which is equivalent with ¬ψ1

1 ∨ . . .∨¬ψm
1 ∈ u1. Hence, exists k ∈ [m] such that ¬ψk

1 ∈ u1. But ψk
1 ∈ u1

and this contradicts the consistency of u1. Therefore, u−2 ∪{φ2} is consistent and can be extended by
Lindenbaums Lemma to u2 a maximal consistent set. By construction, φ2 ∈ u2.

Let us verify if RK∀
σ wu1u2. From [9, Lemma 2.18] we need to verify that σ�(ψ1,ψ2) ∈ w implies

ψ1 ∈ u1 or ψ2 ∈ u2. Suppose σ�(ψ1,ψ2) ∈ w. We have two cases. If ψ1 ∈ u1, then we get RK∀
σ wu1u2. If

ψ1 6∈ u1, then ¬ψ1 ∈ u1, so σ�(¬(¬ψ1)),ψ2) ∈ w. By definition of u−2 , we can conclude that ψ2 ∈ u2.
In the same way we can prove the case for higher arity. Let us suppose than w is a maximal consis-

tent set and σ(φ1, . . . ,φn−1) ∈ w then there exists maximal consistent sets ui such that RK∀
σ wu1 . . .un−1

and φi ∈ ui for any i ∈ [n− 1] where u−n−1 := {ψn−1| for any i ∈ [n− 2] there exists ψi ∈ ui such that
σ�(¬ψ1, . . . ,¬ψn−2,ψn−1) ∈ w}.

So, we proved that there exist maximal consistent sets ui. Now we want to prove that we can expand
those maximal consistent sets to witnessed maximal consistent sets.

Enumerate all the formulas of form ∃xχ , where x can be any state formula of any sort. For each
formula in the enumeration we add a suitable witnessed conditional. In this way we inductively expand
each ui for any i ∈ [n] to a witnessed maximal consistent set.

Suppose that σ : Forms1×·· ·×Formsn→Forms and define ♦t(ϕ) :=σ(ϕ1, . . . ,ϕt−1,ϕ,ϕt+1, . . . ,ϕn)
where ϕ ∈ Formst . Now we enumerate all the formulas of form ∃xχ of sort st where x can be any state
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variable of any sort. The notation ω(∃xχ, i) stands for the witnessed conditional for ∃xχ in nominal i, in
other words the formula ∃xχ→ χ[i/x]. Also, we use the notation u0

t := ut for the maximal consistent set
from which we start to expand it to the needed witnessed maximal consistent set. Suppose that for the
firsts m formulas in the enumeration we expanded u0

t to a witnessed maximal consistent set um
t . We shall

prove that if εm+1 is the (m+1)-formula in the enumeration then it is possible to choose a nominal jm+1
such that the set um+1

t = um
t ∪{ω(εm+1, jm+1} is consistent. Therefore, we will prove that it is possible

to choose jm+1 so that ♦t(ϕ ∧ω(ε1, j1)∧ . . .∧ω(εm, jm)∧ω(εm+1, jm+1)) ∈ w.
As we suppose we have already construct um

t a witnessed maximal consistent set which contains the
witnessed conditionals ω(ε1, j1), . . . ,ω(εm, jm) for the firsts m formulas in the enumeration, such that
♦t(ϕ ∧ω(ε1, j1)∧ . . .∧ω(εm, jm)) ∈ w. Let φ := ϕ ∧ω(ε1, j1)∧ . . .∧ω(εm, jm).

Suppose that εm+1 is ∃xχ . By Lemma 12 we have |st ♦t(φ)→ ∃y♦t((∃xχ → χ[y/x])∧φ) where y
does not have free occurrences in either φ or χ . Because ♦t(φ) ∈ w, then so is ∃y♦t((∃xχ → χ[y/x])∧
φ)∈w. Since w is a witnessed maximal consistent set, then there is a nominal jm+1 such that ♦t((∃xχ→
χ[ jm+1/x])∧φ)∈w.Therefore, we chose ω(εm+1, jm+1) = ∃xχ→ χ[ jm+1/x] to be the needed witnessed
conditional and we define um+1

t := um
t ∪{ω(εm+1, jm+1)}.

By construction, we have ♦t(ϕ ∧ω(ε1, j1)∧ . . .∧ω(εm, jm)∧ω(εm+1, jm+1)) ∈ w. But is um+1
t

consistent? Let us suppose that um+1
t is not consistent. Then there is a conjunction τ in u−t where

u−t = {ϕ | for any i ∈ [n], i 6= t there exists ϕi ∈ ui such that σ�(ϕ1, . . . ,ϕt−1,ϕ,ϕt+1, . . . ,ϕn)} such that
|st τ → ¬(ϕ ∧ω(ε1, j1)∧ . . .∧ω(εm, jm)∧ω(εm+1, jm+1)). By modal reasoning, we get | s �t(τ)→
�t(¬(ϕ ∧ω(ε1, j1)∧ . . .∧ω(εm, jm) ∧ω(εm+1, jm+1)). From definition of u−t we know that �t(τ) ∈ w,
so either �t(¬(ϕ∧ω(ε1, j1)∧ . . .∧ω(εm, jm)∧ω(εm+1, jm+1))∈w, equivalent with¬♦t((ϕ∧ω(ε1, j1)∧
. . .∧ω(εm, jm)∧ω(εm+1, jm+1)) ∈ w and this contradicts the consistency of w. For any m ≥ 0, um

t is a
witnessed consistent set, therefore

⋃
m≥0 um

t is a witnessed consistent set and can be extended by Linden-
baum’s Lemma to a maximal consistent set. In this way we get the needed witnessed maximal consistent
sets for any sort.

Lemma 14 (Truth Lemma). Let M be a completed model, g a completed M -assignment and w an
maximal consistent set. For any sort s ∈ S and any formula φ of sort s, we have:

φ ∈ w if and only if M ,g,w |s= φ

Proof. We make the proof by structural induction on φ .

• M ,g,w |s= a,where a ∈ PROPs∪NOMs, iff w ∈Vs(a) iff a ∈ w;

• M ,g,w |s= x, where x ∈ SVARs, iff w = gs(x), iff x ∈ w;

• M ,g,w |s= ¬φ iff M ,g,w 6|s= φ iff φ 6∈ w (inductive hypothesis) iff ¬φ ∈ w (maximal consistent
set);

• M ,g,w |s= φ ∨ψ iff M ,g,w |s= φ or M ,g,w |s= ψ iff φ ∈ w or ψ ∈ w (inductive hypothesis) iff
φ ∨ψ ∈ w;

• let σ ∈ Σs1...sn,s and φ = σ(φ1, . . . ,φn);

“⇐” M ,g,w |s=σ(φ1, . . . ,φn), if and only if for any i∈ [n] there exists ui ∈Wsi such that M ,g,ui |
si=

φi and RKΛ
σ ww1 . . .wn. Using the induction hypothesis we get φi ∈ wi for any i ∈ [n]. Because

no maximal consistent set precedes ?, we can conclude that neither ui is ?. Therefore, the
successors of w must be themselves maximal consistent sets which satisfy the correspondent
φi. In the end, by applying the induction hypothesis we get φi ∈ ui for any i ∈ [n]. Since
RK∀

σ wu1 . . .un by definition we infer that φ ∈ w.
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“⇒” Suppose σ(φ1, . . . ,φn)∈w. Using Existence Lemma 13, for any i∈ [n] there are ui witnessed
maximal consistent sets such that φi ∈ ui and Rwu1 . . .un. Using the induction hypothesis we
get M ,g,ui |

si= φi for any i ∈ [n], so M ,g,w |s= φ .

• let φ = ∃xψ

“⇐” Suppose M ,g,w |s= ∃xψ . Then there exists s ∈M such that M ,g′,w |s= ψ) where g′ x∼ g
and g′(x) = {s}. Because of the definition of the completed models, we know that either a
nominal j or a state variable y is true at a state s with respect to the M -assignment function
g, even if s = ?.

[Case 1 ] Suppose V (i) = {s}. By Substitution Lemma 5, M ,g,w |s= ψ[ j/x] and by inductive
hypothesis ψ[ j/x] ∈ w. By means of contrapositive of axiom (Q2) it follows φ ∈ w.

[Case 2 ] Suppose g(y) = {s}. Firstly, y may not be substitutable for x in ψ , therefore we need to
replace all the bounded occurrences of y in ψ by some state variable that does not occur
in ψ at all. In this way, we get a new formula which we will name it ψ ′. By Lemma 5 it
follows that ψ ↔ ψ ′ is provable and by soundness we get that it is valid. Now, we have
that M ,g′,w |s=ψ ′ and since y is now substitutable for x in ψ ′, by clause 1 of Substitution
Lemma 5 it follows M ,g′,w |s= ψ ′[y/x]. By inductive hypothesis ψ ′[y/x] ∈ w and by
applying the contrapositive of the (Q2) axiom, it follows ∃xψ ′ ∈ w. But ∃xψ↔∃xψ ′ is
provable, therefore ∃xψ ∈ w.

“⇒” Suppose ∃xψ ∈ w. As w is a witnessed maximal consistent sets then there is a nominal j of
sort s such that ψ[ j/x] ∈ w. By the induction hypothesis M ,g,w |s= ψ[ j/x] and by means of
contrapositive of axiom (Q2) it follows M ,g,w |s= ∃xψ .

Theorem 15 (Hybrid Completeness). Every consistent set of formulas is satisfiable.

Proof. The proof is similar to the one in [3].

3 The many-sorted hybrid modal logic HΣ(@z,∀)

Let (S,Σ) be a many-sorted signature. As already announced, in this section we extend the sistem defined
in Section 2 by adding the satisfaction operators @s

z where s∈ S and z is a state symbol, that is, a nominal
or a state variable. The formulas of HΣ(@z,∀) are defined as follows:

φs := p | j | ys | ¬φs | φs∨φs | σ(φs1 , . . . ,φsn)s | ∀xt φs |@s
zψt

Here, p ∈ PROPs, j ∈NOMs, t ∈ S, x ∈ SVARt , y ∈ SVARs, σ ∈ Σs1···sn,s, z is a state symbol of sort t and
ψ is a formula of sort t.

The satisfaction relation is defined similar with the one in HΣ(∀), but we only need to add the
definition for @z: M ,g,w |s= @s

zφ if and only if M ,g,Deng(z) |
t
= φ where z is a state symbol of sort t

and φ is a formula of the same sort t. Here, Deng(z) is the denotation of the state symbol z of sort s in a
model M with an assignment function g, where Deng(z) =Vs(z) if z is a nominal, and Deng(z) = gs(z)
if z is a state variable.

Let us remark that if z is a nominal, then the satisfaction relation is equivalent with the one in [10]:
M ,g,w |s=@s

zφ if and only if M ,g,Deng(z) |
t
= φ if and only if M ,g,v | t= φ where Deng(z)=Vt(z)= {v}.

Note: Due to the similarities between HΣ(@,∀) and HΣ(@z,∀), the following section will contain
only the most distinctive proofs.
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The system HΣ(@z,∀)
• The axioms and the deduction rules of KΣ

• Axiom schemes: any formula of the following form is an axiom, where s,s′, t are sorts, σ ∈Σs1···sn,s,
φ ,ψ,φ1, . . . ,φn are formulas (when necessary, their sort is marked as a subscript), x is state variable
and y, z are state symbols:

(K@) @s
z(φt → ψt)→ (@s

zφ →@s
zψ) (Agree) @t

y@t ′
z φs↔@t

zφs

(Sel f Dual) @s
zφt ↔¬@s

z¬φt (Intro) z→ (φs↔@s
zφs)

(Back) σ(. . . ,φi−1,@si
z ψt ,φi+1, . . .)s→@s

zψt (Re f ) @s
zzt

(Q1) ∀x(φ → ψ)→ (φ →∀xψ) where φ contains no free occurrences of x
(Q2) ∀xφ → φ [y/x] where y is substitutable for x in φ

(Name) ∃xx
(Barcan) ∀xσ�(φ1, . . . ,φn)→ σ�(φ1, . . . ,∀xφi, . . . ,φn)

(Barcan@) ∀x@zφ →@z∀xφ ,where x 6= z
(Nomx) @zx∧@yx→@zy

• Deduction rules:
(BroadcastS) if |s @s

zφt then |s′ @s′
z φt

(Gen@) if |s′ φ then |s @zφ , where z and φ have the same sort s′

(Paste0) if |s @s
z(y∧φ)→ ψ then |s @zφ → ψ

where z is distinct from y that does not occur in φ or ψ

(Paste1) if |s @s
zσ(. . . ,y∧φ , . . .)→ ψ then |s @s

zσ(. . . ,φ , . . .)→ ψ

where z is distinct from y that does not occur in φ or ψ

(Gen) if |s φ then |s ∀xφ , where φ ∈ Forms and x ∈ SVARt for some t ∈ S.

Figure 2: (S,Σ) hybrid logic

Proposition 16 (Soundness). The deductive systems for HΣ(@z,∀) from Figure 2 is sound.

Lemma 17. Let Γs be a maximal consistent set that contains a state symbol of sort s, and for all state
symbols z, let ∆z = {φ |@s

zφ ∈ Γs. Then:

1) For every state symbol z of sort s, ∆z is a maximal consistent set that contains z.

2) For all state symbols z and y of same sort, @s
zφ ∈ ∆y iff @s

zφ ∈ Γs.

3) There is a state symbol z such that Γs = ∆z.

4) For all state symbols z and y of same sort, if z ∈ ∆y then ∆z = ∆y.

Proof. The proofs are similar to the ones in [4].

This Lemma gives us the maximal consistent sets needed in the Existence Lemma. We build our
models out of named sets, i.e. sets containing nominals, and also these are automatically witnessed,
therefore, we don’t need to glue a dummy state symbol as we deed in the first system, HΣ(∀), presented
in this paper. But more is needed in order for our model to support an Existential Lemma. Therefore, we
add the Paste rules, as you can see in Figure 2. In this setting, the system is still sound as we prove in
the following:

Now, let M be an arbitrary named model.
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(Paste0) Suppose M ,g,w |s= @s
z(y∧φ)→ ψ iff M ,g,w |s= @s

z(y∧φ) implies M ,g,w |s= ψ . Hence,

(M ,g,v |s
′
= y∧ φ where Deng(z) = {v} implies M ,g,w |s= ψ) iff (M ,g,v 6|s

′
= y and M ,g,v 6|s

′
= φ , where

Deng(z) = {v}, or M ,g,w |s= ψ). It follows that (M ,g,v 6|s
′
= y or M ,g,w |s= ψ) and (M ,g,v 6|s

′
= φ or

M ,g,w |s= ψ), where Deng(z) = {v}. Then, (M ,g,v 6|s
′
= φ or M ,g,w |s= ψ), where Deng(z) = {v}. So,

M ,g,w |s= @s
zφ → ψ .

(Paste1) Suppose M ,g,w |s=@s
zσ(ψ1, . . . ,ψi−1,y∧φ ,ψi+1, . . . ,ψn)→ψ iff M ,g,w |s=@s

jσ(ψ1, . . . ,

ψi−1,y∧ φ ,ψi+1, . . . ,ψn) implies M ,g,w |s= ψ . Hence, M ,g,v |s
′
= y∧ φ where Deng(z) = {v} iff ex-

ists (v1, . . . ,vn) ∈Ws1 × . . .×Wsn such that Rσ vv1 . . .vi . . .vn where Deng(z) = {v} and M ,g,ve |
s′
= ψe

for any e ∈ [n],e 6= i and M ,g,vi |
si= y∧ φ . Hence, M ,g,vi |

si= y and M ,g,vi |
si= φ , so Deng(y) = {vi}

and M ,g,vi |
si= φ . Then, if there exists (v1, . . . ,vn) ∈Ws1 × . . .×Wsn such that Rσ vv1 . . .vi . . .vn where

Deng(z) = {v} and M ,g,ve |
s′
= ψe for any e ∈ [n],e 6= i and M ,g,vi |

si= φ , these imply M ,g,w |s= ψ . So,

M ,g,v |s
′
= σ(ψ1, . . . ,ψi−1,φ ,ψi+1, . . . ,ψn) where Deng(z) = {v} implies M ,g,w |s= ψ . In conclusion,

M ,g,w |s
′
= @s

zσ(ψ1, . . . ,ψi−1,φ ,ψi+1, . . . ,ψn)→ ψ .
Definition 18 (Named, pasted and @-witnessed sets). Let s∈ S and Γs be a set of formulas of sort s from
HΣ(@z,∀). We say that
• Γs is named if one of its elements is a nominal,

• Γs is pasted if it is both 0-pasted and 1-pasted:
(-) Γs is 0-pasted if, for any t ∈ S, σ ∈ Σs1···sn,t , z a state symbol of sort t, and φ a formula of

sort si, whenever @s
zφ ∈ Γs there exists a nominal j ∈ NOMsi such that @s

zσ(. . . ,φi−1, j∧
φ ,φi+1, . . .) ∈ Γs.

(-) Γs is 1-pasted if, for any t ∈ S, σ ∈ Σs1···sn,t , z a state symbol of sort t, and φ a formula of
sort si, whenever @s

zσ(. . . ,φi−1,φ ,φi+1, . . .) ∈ Γs there exists a nominal j ∈NOMsi such that
@s

zσ(. . . ,φi−1, j∧φ ,φi+1, . . .) ∈ Γs.

• Γs is @-witnessed if the following two conditions are satisfied:
(-) for s′, t ∈ S , x ∈ SVARt , k ∈ NOMs′ and any formula φ of sort s′, whenever @s

k∃xφ ∈ Γs

there exists j ∈ NOMt such that @s
kφ [ j/x] ∈ Γs,

(-) for any t ∈ S and x ∈ SVARt there is js ∈ NOMt such that @s
jxx ∈ Γs.

Lemma 19 (Extended Lindenbaum Lemma). Let Λ be a set of formulas in the language of HΣ(@z,∀)
and s ∈ S. Then any consistent set Γs of formulas of sort s from HΣ(@z,∀) +Λ can be extended to
a named, pasted and @-witnessed maximal consistent set by adding countably many nominals to the
language.

Proof. The proof generalizes to the S-sorted setting well-known proofs for the mono-sorted hybrid logic,
see [5, Lemma 7.25], [2, Lemma 3, Lemma 4], [3, Lemma 3.9].

For each sort s ∈ S, we add a set of new nominals and enumerate this set. Given a set of formulas
Γs, define Γk

s to be Γs ∪{ks}∪ {@s
jxx| x ∈ SVARs}, where ks is the first new nominal of sort s in our

enumeration and jx are such that if x and y are different state variables of sort s then also jx and jy are
different nominals of same sort s. As showed in [10], Γk

s is consistent.
Now we enumerate on each sort s ∈ S all the formulas of the new language obtained by adding the

set of new nominals and define Γ0 := Γk
s . Suppose we have defined Γm, where m ≥ 0. Let φm+1 be the

m+1− th formula of sort s in the previous enumeration. We define Γm+1 as follows. If Γm∪{φm+1} is
inconsistent, then Γm+1 = Γm. Otherwise:
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(i) Γm+1 = Γm ∪{φm+1}, if φm+1 is not of the form @zσ(. . . ,ϕ, . . .), @xx or @ j∃xϕ(x), where j is
any nominal of sort s′′, ϕ a formula of sort s′′, x ∈ SVARs′′ and z is a state symbol.

(ii) Γm+1 = Γm∪{φm+1}∪{@x(k∧ x)}, if φm+1 is of the form @xx.

(iii) Γm+1 = Γm∪{φm+1}∪{@xσ(. . . ,k∧φ , . . .)}, if φm+1 is of the form @xσ(. . . ,ϕ, . . .).

(iv) Γm+1 = Γm∪{φm+1}∪{@ jϕ[k/x]}, where φm+1 is of the form @ j∃xϕ(x).

In clauses (ii) and (iii), k is the first new nominal in the enumeration that does not occur in Γi for all
i≤ m, nor in @xσ(. . . ,ϕ, . . .).

Let Γ+ =
⋃

n≥0 Γn. Because k ∈ Γ0 ⊆ Γ+, this set in named, maximal, pasted and @-witnessed by
construction. We will check if it is consistent for the expansion made in the second, third and fourth
items.

Suppose Γm+1 = Γm∪{φm+1}∪{@x(k∧x)} is an inconsistent set, where φm+1 is @xx. Then there is
a conjunction of formulas χ ∈ Γm∪{φm+1} such that |s χ →¬@x(k∧ x) and so |s @x(k∧ x)→¬χ . But
k is the first new nominal in the enumeration that does not occur neither in Γm, nor in @xx and by Paste0
rule we get |s @xx→¬χ . Then |s χ →¬@xx, which contradicts the consistency of Γm∪{φm+1}.

Suppose Γm+1 = Γm ∪ {φm+1} ∪ {@xσ(. . . ,k∧ϕ, . . .)} is an inconsistent set, where φm+1 has the
form @xσ(. . . ,ϕ, . . .). Then there is a conjunction of formulas χ ∈ Γm ∪ {φm+1} such that | s χ →
¬@xσ(. . . ,k∧ϕ, . . .) and so |s @xσ(. . . ,k∧ϕ, . . .)→¬χ . But k is the first new nominal in the enu-
meration that does not occur neither in Γm, nor in @xσ(. . . ,ϕ, . . .), therefore, by Paste1 rule we get
| s @xσ(. . . ,ϕ, . . .)→ ¬χ . It follows that | s χ → ¬@xσ(. . . ,ϕ, . . .), which contradicts the consistency
of Γm∪{φm+1}.

Definition 20 (Named models and natural assignments). For any s ∈ S, let Γs be a named, pasted and
witnessed maximal consistent set and for all state symbols z, let ∆z = {ϕ |@s

zϕ ∈Γs}. Define Ws = {∆x | z
a state symbol of sort s}. Then, we define M = (W,{Rσ}σ∈Σ), the named model generated by the S-
sorted set Γ = {Γs}s∈S, where Rσ and V are the restriction of the canonical relation and the canonical
valuation. We define the natural assignment gs : SVARs→Ws by gs(x) = {w ∈Ws | x ∈ w}.
Lemma 21 (Existence Lemma). Let M = (W,{Rσ}σ∈Σ) be a named model generated by a named and
pasted S-sorted set Γ and let w be a witnessed maximal consistent set. If σ(φ1, . . . ,φn) ∈ w then there
exists witnessed maximal consistent sets ui such that Rσ wu1 . . .un and φi ∈ ui for any i ∈ [n].

Proof. Let σ(φ1, . . . ,φn) ∈ w, then @s
jσ(φ1, . . . ,φn) ∈ Γs, but Γs is pasted( then 1− pasted), so there

exists k1 a nominal of sort s1 such that @s
jσ(φ1 ∧ k1, . . . ,φn) ∈ Γs, so σ(φ1 ∧ k1, . . . ,φn) ∈ ∆ j = w. We

want to prove that ∆k1 , . . . ,∆kn are suitable choices for u1, . . . ,un.
Let ψ1 ∈ ∆k1 . Then @k1ψ1 ∈ Γs and by agreement property we get @k1ψ1 ∈ ∆ j. But | s k1 ∧ψ1→

@k1ψ1 (instance of Introduction axiom), and by modal reasoning we get σ(@k1ψ1,φ2, . . . ,φn) ∈ ∆ j.
From Back axiom, @k1ψ1 ∈ ∆ j and by using the agreement property, @k1ψ1 ∈ Γs. Hence, ψ1 ∈ ∆k1 .

Now, σ(ψ1,φ2, . . . ,φn) ∈ ∆ j, then @ jσ(ψ1,φ2, . . . ,φn) ∈ Γs, but the set is pasted, then exists k2 a
nominal of sort s2 such that @ jσ(ψ1,k2∧φ2,φ3, . . . ,φn) ∈ Γs. Then σ(ψ1,k2∧φ2,φ3, . . . ,φn) ∈ ∆ j.

Let ψ2 ∈ ∆k2 . Then @k2ψ2 ∈ Γs and by agreement property we get @k2ψ2 ∈ ∆ j. But | s k2 ∧ψ2→
@k2ψ2 (instance of Introduction axiom), and by modal reasoning we get σ(ψ1,@k2ψ2,φ3, . . . ,φn) ∈
∆ j. From Back axiom, @k2ψ2 ∈ ∆ j and by using the agreement property, @k2ψ2 ∈ Γs. Hence, ψ2 ∈
∆k2 . Therefore, by induction, we get that ψi ∈ ∆ki for any i ∈ [n]. Then @kiψi ∈ Γs if and only if, by
agreement property, @kiψi ∈ ∆ j. But σ(k1, . . . ,kn) ∈ ∆ j and by using the Bridge axiom, it follows that
σ(ψ1, . . . ,ψn)∈∆ j. We proved that for any i∈ [n], ψi ∈∆ki we have σ(ψ1, . . . ,ψn)∈∆ j and by Definition
20, it follows that Rσ ∆ j∆k1 . . .∆kn .
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Lemma 22 (Truth Lemma). Let M be a model, g an M -assignment and w a maximal consistent set.
For any sort s ∈ S and any formula φ of sort s, we have φ ∈ w if and only if M ,g,w |s= φ .

Proof. We make the proof by structural induction on φ . All the cases except the one for @z are similar
with the ones of the HΣ(∀) system. Suppose M ,g,w |s= @s

zφ iff M ,g,∆z |
s
= @s

zφ (by Lemma 17.(3))
iff φ ∈ ∆z (inductive hypothesis) iff @s

zφ (by Intro axiom together with z ∈ ∆z) iff @s
zφ ∈ w (by Lemma

17.(2)).

Theorem 23 (Hybrid Completeness). Every consistent set of formulas is satisfied.

As in the mono-sorted case, in HΣ(@z,∀) we can define the universal modality: Asϕ := ∀x@s
xϕ ,

where ϕ is a formula of sort t and x ∈ SVARt . Its dual is defined Esϕ = ¬As¬ϕ .
Note that, in our many-sorted setting, the universal modality has also the role of connecting the sorts

(similarly to satisfaction operators).

Lemma 24. Let M = (W,{Rσ}σ∈Σ,V ) be an S-sorted model in HΣ(@z,∀) and ϕ a formula of sort t.
Then, for any s ∈ S, M |s= Asϕ iff M | t= ϕ

Proof. M |s= Asϕ iff for any g, any w ∈Ws, M ,g,w |s= Asϕ iff for any g, any w ∈Ws, M ,g,w |s= ∀x@s
xϕ

iff for any g, any w ∈Ws, any g′ x∼ g, M ,g′,w |s= @s
xϕ iff for any g, any w ∈Ws, any g′ x∼ g, M ,g′,v | t= ϕ

where g′t(x) = v iff for any g, any w ∈Ws, any g′ x∼ g, M ,g′,v | t= ϕ for any v ∈Wt iff M | t= ϕ .

Let Γ = {Γs}s∈S an S-sorted set of formulas. Then M |Γ= if and only if M |s= Γs, for any s ∈ S. We
define ΓA

s = Γs∪{Asψ | ψ ∈ Γt for some t 6= s}

Proposition 25. Let M = (W,{Rσ}σ∈Σ,V ) be an S-sorted model in HΣ(@z,∀) and Γ = {Γs}s∈S an
S-sorted set of formulas. Let s ∈ S, then M |= Γ if and only if M |s= ΓA

s .

Proof. Suppose M |= Γ if and only if M |s= Γs for any s ∈ S. Then M |s= ϕ for any ϕ ∈ Γs for any s ∈ S.
Let s, t ∈ S, so for any ψ ∈ Γt , M | t= ψ and by Lemma 24, we get M |s= Asψ , for any ψ ∈ Γt . It follows
that, for any ϕ ∈ ΓA

s , we have M |s= ϕ if and only if M |s= ΓA
s . For the right-to-left direction, let s ∈ S

and M |s= ΓA
s . Then, for any ϕ ∈ ΓA

s , we have M |s= ϕ . If ϕ ∈ Γs, then M |s= Γs. If ϕ ∈ ΓA
s \Γs, then ϕ

is Asψ , where ψ ∈ Γt for some t 6= s in S. Since M |s= Asψ , by Lemma 24, M | t= ψ . Hence M | t= ψ for
any ψ ∈ Γt and any t 6= s in S. It follows that M | t= Γt for any t 6= s, so M |= Γ.

4 The connection between Matching Logic and Hybrid Modal Logic

In this section we analyze the connection between Matching logic (ML) and the Many-sorted hybrid
modal logic (HModL). We denote by ML a Matching logic system (with and without definedness) and
by HModL the corresponding Many-sorted hybrid modal logic system, as follows: for ML without
definedness, the corresponding system is HΣ(∀), while for ML with definedness, the corresponding
system is HΣ(@z,∀).

Recall that a matching logic signature or simply a signature ΣML = (S,VAR,Σ) is a triple with a
nonempty set S of sorts, an S-indexed set VAR= {VARs}s∈S of countably infinitely many sorted variables
denoted x : s; y : s, etc., and an (S∗× S)-indexed countable set Σ = {Σs1...sn,s}s1...sn,s∈S of many-sorted
symbols.
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A matching logic ΣML-model M = ({Ms}s∈S, {σM}σ∈Σ) consists of a non-empty carrier set Ms for
each sort s ∈ S and a function σM : Ms1 × . . .×Msn →P(Ms) for each symbol σ ∈ Σs1...sn,s called the
interpretation of σ in M.

The pointwise extension, σM : P(Ms1)× . . .×P(Msn)→P(Ms) is defined as:
σM(A1, . . . ,An) =

⋃
{σm(a1, . . . ,an)|ai ∈ Ai f or all i ∈ [n]}, where Ai ⊆Mi for all i ∈ [n].

Let ΣML = (S,VAR,Σ) and let M be a ΣML-model. Given a map ρ : VAR→M, called an M-valuation,
let its extension ρ : PAT T ERNML→P(M) be inductively defined as fallows:

• ρ(x) = {ρ(x)}, for all x ∈ VARs

• ρ(¬ϕ) = Ms\ρ(ϕ), for all ϕ ∈ PAT T ERNs

• ρ(ϕ1∨ϕ2) = ρ(ϕ1)∪ρ(ϕ2), for all ϕ1,ϕ2 patterns of the same sort

• ρ(σ(ϕ1, . . . ,ϕn)) = σM(ρ(ϕ1), · · · ,ρ(ϕn)), for all σ ∈ Σs1...sn,s and appropriate ϕ1, . . . ,ϕn

• ρ(∃x.ϕ) =
⋃

a∈Ms′
ρ[a/x](ϕ), for all x ∈ VARs

where “\” is set difference and ρ[a/x] denotes de M-valuation ρ ′ with ρ ′(x) = a and ρ ′(y) = ρ(y) for all
y 6= x.

In Matching logic M satisfies ϕs, written M |= ϕs, iff ρ(ϕs) = Ms for all ρ : VAR→M.
For any sorts (not necessarily distinct) s1,s2 ∈ S, we consider the unary symbol d−es2

s1
∈ Σs1,s2 , called

the definedness symbol, and the pattern/symbol dx : s1es2
s1
∈ Σs1,s2 , called (De f inedness). For all ρ , we

have ρ(dϕes2
s1
) = Ms2 if ρ(ϕ) 6= /0, and ρ(dϕes2

s1
) = /0, otherwise. Totality, b−c

s2
s1

, is defined as a derived
construct dual to definedness: bϕcs2

s1
= ¬b¬ϕcs2

s1
. The following remark clarifies the relation between

definedness from Matching Logic and satisfaction operator from our logic.

Remark 26. In a Matching Logic system with a definedness pattern, we can define @s
xφ = dx∧ φessx

,
while in HΣ(@z,∀) we can define the Matching Logic definedness operator as dφessφ

= ∃x@s
xφ . Note

that the definedness operator is thus the dual of the universal modality A recalled in the previous section.

Note that any formula of ML is a formula of HModL, but the converse does not hold, since a HModL
formula might contain nominals or propositional variables. Let Form0 = Form0

s s∈S be the set of formulas
in HModL that does not contain nominals and propositional variables, i.e. the only variables in these
formulas are state variables. The following remark characterizes the models of a formula from Form0.

Remark 27. Let F = (W,{Rσ}σ∈Σ) be an S-sorted frame in (hybrid) modal logic and g : SVARs→W
an assignment function. For any V1 6= V2 evaluation functions and any models based on the frame F ,
M1 = (F ,V1) and M2 = (F ,V2), we have M1,g,w |

s
= ϕ if and only if M2,g,w |

s
= ϕ for any ϕ ∈

Form0
s . In other word, because the evaluation function is defined to evaluate nominals and propositional

variables, the satisfiability of formulas which contain only state variables will not be changed in models
with the same frame and assignment function, but different evaluation functions.

For any s ∈ S, ϕ ∈ Form0
s we define F ,g,w |s= ϕ if and only if M ,g,w |s= ϕ for any M model based

on the frame F if and only if M ,g,w |s= ϕ for some M model based on the frame F . Therefore, we
use the following notation: (F ,g) |s= ϕ if and only if F ,g,w |s= ϕ for any w of sort s in any model based
on the frame F .

The following definition gives the correspondence between the models of ML and those of HModL,
both logics having the same many-sorted signature.

Definition 28. Let (S,Σ) be a many-sorted signature.
(1) Let M be a model of ML and ρ an M-valuation. We define the frame FM in HModL such that Ws =Ms

for any s ∈ S and Rσ ww1 . . .wn if and only if w ∈ σM(w1, . . . ,wn). Moreover, let gs(x) = ρ(x) for any
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s ∈ S and x ∈ SVARs. Hence, to any model and valuation (M,ρ) of ML we associate a model (F ,ρ) of
HModL.

(2) Let (F ,g) be a model of HModL with F = (W,{Rσ}σ∈Σ). We define a model in ML as follows:
let Ms =Ws for any s ∈ S, w ∈ σM(w1, . . . ,wn) if and only if Rσ ww1 . . .wn and ρ(x) = gs(x) for any s ∈ S
and x ∈ SVARs. Hence, to any model (F ,g) of HModL we can associate a model (MF ,g) of ML.

In the sequel, we need to speak about satisfiability in ML and satisfiability in HModL. Therefore, to
distinguish these two notions, we use |s=ML when refer to satisfiability in ML and we use |s=HModL for
HModL.

Proposition 29. Let ϕ ∈ Form0
s . Then

(1) (M,ρ) |s=ML ϕ if and only if (FM,ρ) |s=HModL ϕ

(2) (F ,g) |s=HModL ϕ if and only if (MF ,g) |s=ML ϕ

Proof. We only prove the first item of the proposition by induction over ϕ , the other one is similar.
• (M,ρ) |s=ML x, where x ∈ SVARs iff ρ(x) = Ms = {w} iff Ws = Ms and ρ(x) = w iff

FM,ρ,w |s=HModL x, for any w ∈Ws iff (FM,ρ) |s=HModL x.
• (M,ρ) |s=ML ¬ϕ iff (M,ρ) 6|s=ML ϕ iff (FM,ρ) 6|s=HModL ϕ (induction hypothesis) iff

(FM,ρ) |s=HModL ¬ϕ .
• (M,ρ) |s=ML ϕ1∨ϕ2 iff (M,ρ) |s=ML ϕ1 or (M,ρ) |s=ML ϕ2 iff (FM,ρ) |s=HModL ϕ1 or (FM,ρ) |s=HModL ϕ2

(induction hypothesis) iff (FM,ρ) |s=HModL ϕ1∨ϕ2.
• (M,ρ) |s=ML σ(ϕ1, . . . ,ϕn) iff σM(ρ(ϕ1), . . . ,ρ(ϕn)) = Ms iff

⋃
{σM(m1, . . . ,mn) | mi ∈ ρ(ϕi), for

any i ∈ [n]} = Ms iff for any m ∈ Ms exist m1 ∈ ρ(ϕ1), . . . ,mn ∈ ρ(ϕn) such that m = σM(m1, . . . ,mn)

iff for any m ∈Ms exist m1 ∈Ms1 , . . . ,mn ∈Msn such that Rσ mm1 . . .mn and FM,ρ,mi |
si=HModL ϕi for any

i ∈ [n] iff for any m ∈Ms, FM,ρ,m |s=HModL σ(ϕ1, . . . ,ϕn) iff (FM,ρ) |s=HModL σ(ϕ1, . . . ,ϕn).
• (M,ρ) |s=ML ∀xϕ iff ρ(∀xϕ) = Ms iff

⋂
a∈Ms′
{ρ ′(ϕ) | for all ρ ′

x∼ ρ}= Ms iff for all m ∈Ms and for

all ρ ′
x∼ ρ , m ∈ ρ ′(ϕ) iff for all ρ ′

x∼ ρ , (M,ρ ′) |s=ML ϕ iff for all ρ ′
x∼ ρ , (FM,ρ ′) |s=HModL ϕ (induction

hypothesis) iff (FM,ρ ′) |s=HModL ∀xϕ .

Theorem 30. For any formula ϕ from ML, we have | MLϕ iff |s HModLϕ .

Proof. Let ϕ be a formula of sort s from Matching logic. Then ϕ ∈ Form0
s . From the Completeness

Theorem proved in [6], |
ML

ϕ iff for any model M from ML, (M,ρ) |s=ML ϕ . From the Completeness

Theorem proved for HModL, we have |s
HModL

ϕ iff for any model M and any w ∈Ws, M ,g,w |s=HModL ϕ .

Let M be a model from ML, such that (M,ρ) |s=ML ϕ . But ϕ ∈Form0
s , so the satisfiability of the formula ϕ

is not affected by the evaluation function, but by frame, by assignment function and by world. Therefore,
|s

HModL
ϕ iff for any w∈Ws and any F , F ,g,w |s=HModL ϕ iff for any w∈Ws and any F , (F ,g) |s=HModL ϕ .

But case 1. from Proposition 29 tell us that to any model in ML where (M,ρ) |s=ML ϕ we can associate a
model in HModL such that (FM,ρ) |s=HModL ϕ . And case 2 of Proposition 29 tell us that for any model in
HModL (F ,ρ) |s=HModL ϕ we have (M,ρ) |s=ML ϕ . Therefore, our proof is completed.

So far we’ve remarked that formulas of ML are particular formulas of HModL and we’ve analized
the satisfaction of such formulas in both logics. In the most general case, a formula from HModL has
nominals and propositional variables (that are interpreted as sets that are not necessarily singletons).
In the sequel we show how we can represent any HModL formula in ML. Following the well-known
theorem of constants, our main steps are the following:
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1. we represent the propositional variables from HModL as constant operations in ML;

2. we represent the nominals from HModL as constant operations in ML and, in order to interpret
them as singletons, we ask them to satisfy the property of the functional patterns from ML.

We need to recall further definitions from ML. For each pair of sorts s1 (for the compared patterns)
and s2 (for the context in which the equality is used), equality is defined − =s2

s1 − as the following derived
construct: ϕ =s2

s1
ϕ ′ ≡ bϕ ↔ ϕ ′cs2

s1
, where ϕ,ϕ ′ ∈ PAT T ERNs1 .

Let (S,Σ) be a many sorted signature and assume that HModL(S,Σ) is the system HΣ(@z,∀) as
before. We define ΣPROP = {cp | p ∈ PROP} and ΣNOM = {ci | i ∈ NOM}. We set

Σ′ = Σ∪ΣPROP∪ΣNOM and Γ′ = {∃x(x = ci)|i ∈ NOM}.
If ϕ is a formula in HModL(S,Σ), let ϕ ′ be the formula obtained by replacing p with cp for any

p ∈ PROP and i with ci for any i ∈ NOM. Hence ϕ ′ is a formula in ML over the signature (S,Σ′), which
will be called ML(S,Σ′).

Theorem 31. Let (S,Σ) be a many-sorted signature and assumeϕ is a formula of sort s in HModL(S,Σ).
If Σ′, Γ′ and ϕ ′ are defined as above then |s HModL(S,Σ)

ϕ iff Γ′ `ML(S,Σ′) ϕ ′.

Proof. Let M = (W,{Rσ}σ∈Σ,V ) be a model for ϕ in HModL(S,Σ). We define M′ = (W,{σM′}σ∈Σ′)
such that σM′ is defined as in Definition 28 for σ ∈ Σ, cpM′ =V (p) for any p ∈ SVAR and ciM′ =V (i) for
any i ∈ NOM. Note that V (i) is a singleton set, so M′ |=ML(S,Σ′) Γ′. For any g : SVAR→W one can easily

prove that M ,g,w |s=HModL(S,Σ) ϕ for any w ∈Ws if and only if (M,g) |=ML(S,Σ′) ϕ ′. Conversly, if (M′,ρ)
is a model for ϕ ′ in ML(S,Σ′) such that M′ |=ML(S,Σ′) Γ′ then ρ(ci) is a singleton set by [12, Proposition
5.18], so we can safely define V (i) = ρ(ci) for any i ∈ NOM and V (p) = ρ(cp) for any p ∈ PROP. If
M = (M′,{Rσ}σ∈Σ,V ) where Rσ is defined as in Definition 28. One can easily see that M′ |=ML(S,Σ′) ϕ ′

if and only if M ,ρ,w |s=HModL(S,Σ) ϕ for any w ∈Ms. The intended syntactical connection follows using
the completness theorems for ML and HModL.

5 Conclusions

The results proved in Section 4 allow the transfer of results between many-sorted hybrid modal logic and
Matching logic. Note that, both in this paper, as well as in [6, 12], there are two pairs of systems we can
consider, the connection being stated by Theorem 30 and Theorem 31: HΣ(@z,∀) is related to Matching
logic with Definedness [12], while HΣ(∀) is related to Matching logic without Definedness [6].

While Matching logic is a young logic for program verification, the hybrid modal logic is quite es-
tablished, with roots go back to the work of Prior in the 50’s [11]. As we proved in this paper, they are
strongly connected and the connection goes both ways. At the same time, each system has its peculiari-
ties, an important distinction being the local (in the modal case) versus global (in the case of Matching
logic) approach to deduction. Modal logic in general and hybrid logic in particular has a plethora of
applications, both theoretical and practical. Matching logic supports the development of the K frame-
work, leading not only to formal specification, but also to concrete implementations. We hope that the
interaction between this two approaches will be of further interest for both systems and we plan to further
investigate it in the future.
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