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This paper deals with the probabilistic behaviours of distributed systems described by a process

calculus considering both probabilistic internal choices and nondeterministic external choices. For

this calculus we define and study a typing system which extends the multiparty session types in order

to deal also with probabilistic behaviours. The calculus and its typing system are motivated and

illustrated by a running example.

1 Introduction

Probabilities allow uncertainty to be described in quantitative terms. If there are no uncertainties about

how a system behaves, then its expected behaviour has a 100% chance of occurring, while any other

behaviour would have no chance (i.e., 0% chance). Regarding the possible behaviours of a system,

people working in artificial intelligence have used probability distributions over a set of events [9]. In

such an approach, the probabilities assigned to behaviours are real numbers from [0,1] rather than values

in {0,1}. In [5], the authors made explicitly the assumption that probabilities are distributed over a

restricted set of events, each of them corresponding to an equivalence class of events. We adapt these

ideas to the framework of multiparty session types, and introduce probabilities assigned to actions and

label selections.

An important feature of a probabilistic model is given by the distinction between nondeterministic

and probabilistic choices [18]. The nondeterministic choices refer to the choices made by an external

process, while probabilistic choices are choices made internally by the process (not under control of an

external process). Intuitively, a probabilistic choice is given by a set of alternative transitions, where

each transition has a certain probability of being selected; moreover, the sum of all these probabilities

(for each choice) is 1. To clarify the difference between nondeterministic and probabilistic choices, we

consider a variant of the two-buyers-seller protocol [14] depicted in Figure 1. Two buyers (Alice and Bob)

wish to buy an expensive book (out of several possible ones) from a Seller by combining their money

(in various amounts depending on the amount of cash Alice is willing to pay). The communications

between them can be described in several steps. Firstly, Alice sends (out of several choices) a book title

(a string) or an ISBN (a number) to the Seller. The fact that Alice chooses which book she wants to

buy by sending the book title or book ISBN is an example of a probabilistic choice, because it is under

her control and preference (this is why in Figure 1 we added probabilities to the possible choices of

Alice regarding the book). Then, Alice waits for an answer regarding the quote of the book. This is a

nondeterministic choice, because the choice of the answer received by Alice is out of her control. This

is due to the fact that the Seller may provide different quotes depending on the buying history of Alice

and existing discounts. Next, Seller sends back a quote (an integer) to Alice and Bob. Alice tells Bob

how much she can contribute (an integer). Depending on the contribution of Alice, Bob notifies Seller

whether it accepts the quote or not. If Bob accepts, he sends his home or office address (a string), and

awaits from the Seller a delivery date when the requested book will be received.
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p41 : ok1

homeAddress
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p42 : ok2

officeAddress
p61 : date1

p62 : date2
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p12 : ISBN1

:
p13:title2

:
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choice

Figure 1: Dotted lines stand for probabilistic choices pi j, dashed lines for branching, solid lines for

deterministic choices, while double headed dotted lines for session initialization.

One goal of the current research lines is to use a formal approach to describe in a rigorous way

how distributed systems should behave, and then to design these systems properly in order to satisfy

the behavioural constraints. In the last few years the focus has moved towards the quantitative study

of the distributed systems behaviour to be able to solve problems that are not solvable by deterministic

approaches (e.g., leader election problem [7]).

Probabilistic modelling is usually used to represent and quantify uncertainty in the study of dis-

tributed systems. Several probabilistic process calculi have been considered in the literature: probabilis-

tic CCS [10], probabilistic CSP [15], probabilistic ACP [2], probabilistic asynchronous π-calculus [11],

PEPA [12]. The basic idea of these probabilistic process calculi is to include a probabilistic choice

operator. Essentially, there are two possibilities of extending such an approach: either to replace nonde-

terministic choices by probabilistic choices, or to allow both probabilistic and nondeterministic choices.

In this paper we consider the second alternative, and allow probabilistic choices made internally by

the communicating processes (sending a value or a label), and also nondeterministic choices controlled

by an external process (receiving a value or a label). Notice that in our operational semantics we impose

that for each received value/label, the continuation of a nondeterministic choice is unique; thus, the

corresponding execution turns out to be completely deterministic. We use a probabilistic extension of the

process calculus presented in [14], a calculus which is also an extension of the π-calculus [16] for which

the papers [11, 20] present a probabilistic approach. For this calculus we define and study a typing system

by extending the multiparty session types with both nondeterministic and probabilistic behaviours.

Session types [13, 19] and multiparty session types [14] provide a typed foundation for the design of

communication-based systems. The main intuition behind session types is that a communication-based

application exhibits a structured sequence of interactions. Such a structure is abstracted as a type through

an intuitive syntax which is used to validate programs. Session types are terms of a process algebra that

also contains a selection construct (an internal choice among a set of branches), a branching construct
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(an external choice offered to the environment) and recursion. Session types are able to guarantee several

properties in a session: (i) interactions never lead to a communication error (communication safety); (ii)

channels are used linearly (linearity) and are deadlock-free (progress); (iii) the communication sequence

follows a declared scenario (session fidelity, predictability).

While many communication patterns can be captured through such sessions, there are cases where

basic multiparty session types are not able to capture interactions which involve internal probabilistic

choices of the participants. Probabilities are used in the design and verification of complex systems in

order to quantify unreliable or unpredictable behaviour, but also taken also into account when analyz-

ing quantitative properties (measuring somehow the success level of the protocol). Overall, we study

the nondeterministic and probabilistic choices in the framework of multiparty session types in order to

understand better the quantitative aspects of uncertainty that might arise in communicating processes.

In the following, Section 2 presents the syntax and semantics of our probabilistic process calculus,

and motivates the key ideas by using the two-buyers-seller protocol. Section 3 explains the global and

local types, and the connection between them. Section 4 describes the new typing system and presents

the main results. Section 5 concludes and discusses some related probabilistic approaches involving

typing systems.

2 Probabilistic Multiparty Session Processes

The most natural way to define a probabilistic extension of a process calculus consists of adding proba-

bilistic information to some actions [8]. Probabilities are not attached to some actions, while others have

probabilities (see [20]). When modelling the probabilistic behaviour of a distributed system, we should

be able to model the fact that either the system or the environment chooses between several alternative

behaviours. Moreover, when modelling such a system we should avoid to ‘approximate’ the nonde-

terministic choice by a probabilistic distribution (very often a uniform distribution is used). For these

reasons, we define a probabilistic extension of the process calculus used in [14] that combines both non-

deterministic and probabilistic behaviours. We actually define a calculus that puts together probabilistic

internal choices (sending a value and selecting a label) with nondeterministic external choices (receiving

a value and branching a process by using a selected value). In this setting, the nondeterministic actions

of a process use information (values and labels) provided only by probability actions. The type system

for this calculus is inspired from the synchronous multiparty session types [3]. As far as we know, our

approach is new among the existing models used to formalize multiparty processes in the framework of

multiparty session types.

2.1 Syntax

In what follows we use our variant of the two-buyers-seller protocol to illustrate some of the syntactic

constructs defined afterwards.

Example 1. Let us note that the book to buy represents the choice of Alice, and so she sends the title

of a book (a string) or an ISBN (a ten digit number). Since this is under her control and preference, it

represents an example of a probabilistic choice.

Alice = 0.3 : as!〈“War and Peace′′〉;Alice1 + 0.5 : as!〈“The Art of War′′〉;Alice2

+ 0.2 : as!〈0195014766〉;Alice3.

Here ‘as’ denotes the channel used for the communication between Alice and the Seller. Actually, chan-

nels ‘as’ and ‘ab’ are used by Alice to communicate with Seller and with Bob, while channel ‘bs’ is used
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by Bob to communicate with Seller. We denote by Alicei (1 ≤ i ≤ 3) the different behaviours of Alice after

she sent her book choice. We use this index notation to keep track of the behaviours for each participant,

to simplify the syntax and make it easier to read. The detailed description of all participants can be

found in Example 3.

When receiving the book orders, the Seller expects the buyers sending him either a string representing

a title of the book or a number representing an ISBN. This behaviour is nondeterministic depending on

the received information: Seller = as?(title : string);Seller1 + as?(ISBN : nat);Seller2.

Informally, a session is a series of interactions between multiple parties serving as a unit of conversation.

A session is established via a shared name representing a public interaction point, and consists of series

of communication actions performed on fresh session channels. The syntax for processes is based on

user-defined processes [14] extended with probabilistic choices. The syntax is presented in Table 1,

where we use: probabilities p1, p2, . . .; shared names a, b, n, . . . and session names x, y, . . .; channels

s, t, . . .; expressions e, ei, . . .; labels l, li, . . ., participants q, . . .. We use symbols q to name participants

despite the fact that they are in reality numbers.

Processes P ::= a[n](s̃).P (multicast session request)

p a[q](s̃).P (session acceptance)

p ∑
i∈I

pi : s!〈ẽi〉;Pi (value sending)

p ∑
i∈I

s?(x̃i : S̃i);Pi (S̃k 6= S̃t , for k, t ∈ I, k 6= t) (value reception)

p s!〈〈s̃〉〉;P (session delegation)

p s?((s̃));P (session reception)

p ∑
i∈I

pi : s⊳ li;Pi (lk 6= lt , for k, t ∈ I, k 6= t) (label selection)

p s⊲{li : Pi}i∈I (lk 6= lt , for k, t ∈ I, k 6= t) (label branching)

p if e then P else Q (conditional branch)

p P | Q (parallel)

p 0 (inaction)

p (νn)P (hiding)

p µX .P (recursion)

p X (variable)

Expressions e ::= v p e and e′ p not e p . . .
Values v ::= a p true p f alse p . . .
Sorts S ::= bool | nat | . . . (value types)

Table 1: Syntax

Excepting the primitives for value sending, value receiving and label selection, all the other con-

structs are from [14]. The process a[n](s̃).P sends along channel a a request to start a new session using

the channels s̃ with participants 1 . . . n, where it participates as 1 and continues as P. Its dual a[q](s̃).P
engages in a new session as participant q. The communications taking place inside an established ses-

sion are performed using the next six primitives: sending/receiving a value, session delegation/reception,

and selection/branching. By using the delegation/reception pair, a process delegates to another one the

capability to participate in a session by passing the channels associated with the session. The conditional

branching establishes the continuation of an evolution based on the truth value of an expression e. It is

worth mentioning that the internal choices (sending a value and selecting a label) are probabilistically

chosen, while the receiving values represent a nondeterministic choice (as external choice). The condi-

tional branch, parallel and inaction are standard. A sequence of parallel composition is written ΠiPi. The
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syntax (νn)P makes the name n local to P. Interaction which can be repeated unboundedly is realized

by recursion; as in [4], we do not use arguments when defining recursion. We often omit writing 0 at the

end of processes (e.g., s!〈ẽi〉;0 is written as s!〈ẽi〉).

The notions of identifiers (bound and free), process variables (bound and free), channels, alpha equiv-

alence ≡α and substitution are standard. The bound identifiers are s̃ in multicast session request, session

acceptance and session reception, x̃ j in value reception and n in hiding, while the bound process variable

is X in recursion. fv(P) and fn(P) denote the sets of free process variables and free identifiers of P,

respectively.

2.2 Operational Semantics

Structural equivalence for processes is the least equivalence relation satisfying the following equations:

P | 0 ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)

(νn)P | Q ≡ (νn)(P | Q) if n /∈ fn(Q) (νn)(νn′)P ≡ (νn′)(νn)P
(νn)0 ≡ 0 µX .0 ≡ 0 pi : P+ p j : Q ≡ p j : Q+ pi : P P+Q ≡ Q+P.

We define the operational semantics in such a way that it distinguishes between probabilistic choices

made internally by a process and nondeterministic choices made externally. This distinction allows us to

reason about the evolutions of the system in which the nondeterministic actions of a process use only the

data send by the probability actions. The operational semantics is given by a reduction relation denoted

by P →r Q (meaning P reduces to Q with probability r) representing the smallest relation generated by

the rules of Table 2 (where e ↓ v means that expression e is evaluated to value v).

a[n](s̃).P1 | Πq∈{2..n}a[q](s̃).Pq →1 (ν s̃)Πq∈{1..n}Pq (LINK)

∑
i∈I

pi : s!〈ẽi〉;Pi | ∑
j∈J

s?(x̃ j : S̃ j);Pj →pi
Pi | Pj{ṽi/x̃ j} (ẽi ↓ ṽi, ṽ j : S̃ j) (COM)

s!〈〈s̃〉〉;P | s?((s̃));Q →1 P | Q (DELEG)

∑
i∈I

pi : s⊳ li;Pi | s⊲{l j : Pj} j∈J →pi
Pi | Pj ( j ∈ J) (LABEL)

if e then P else Q →1 P (e ↓ true) (IFT)

if e then P else Q →1 Q (e ↓ f alse) (IFF)

µX .P →1 P{µX .P/X} (CALL)

P →p P′ implies (νn)P →p (νn)P′ (SCOPE)

P →p P′ and Q 6→ implies P | Q →p P′ | Q (PAR1)

P →p P′ and Q →q Q′ implies P | Q →p·q P′ | Q′ (PAR2)

P ≡ P′ and P′ →p Q′ and Q′ ≡ Q′ implies P →p Q (STRUCT)

Table 2: Operational Semantics

Rule (LINK) describes a session initiation among n parties, generating |s̃| fresh multiparty session

channels. For simplicity, we consider that this rule has probability 1; a normalization based on the pos-

sible reachable processes in one step is eventually needed (as done in [8]). Rules (COM), (DELEG) and

(LABEL) are used to communicate values, session channels and labels. The values to be communicated

in the rules (COM) and (LABEL) are chosen probabilistically, a fact illustrated by adding the probability

of the consumed action to the transition of the reduction relation. In both rules (COM) and (LABEL), the

choice of the continuation process to be executed after sending or selecting is probabilistic, while when

receiving or branching is nondeterministic. Inspired by [1], we add the conditions S̃k 6= S̃t (meaning that

the types of x̃k and x̃t are different ) and lk 6= lt (meaning that lk and lt are different) in the rules (COM) and

(LABEL) to indicate that each value and label leads to a unique continuation. This means that a process
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of the form s?(x : S);P+ s?(x : S).Q is not possible in our syntax. Thus, the probability of the transition

is equal with the probability of the sending/selecting process. It could be noticed from (LINK), (COM)

and (LABEL) that the calculus is synchronous; this choice is made in order to simplify the presentation.

The rules (IFT) and (IFF) choose which branch to take depending on the truth value of ei. The rules

(SCOPE) and (STRUCT) are standard. Rule (PAR2) is used to compose the evolutions of parallel pro-

cesses, while rule (PAR1) is used to compose concurrent processes that are able to evolve with processes

that are not able to evolve. In rule (PAR1), Q 6→ means that the process Q is not able to evolve by means

of any rule (we say that Q is a stuck process). Negative premises are used to denote the fact that passing

to a new step is performed based on the absence of actions. The use of negative premises does not lead

to an inconsistent set of rules. The following example illustrates how and when the rule (PAR1) is used.

Example 2 (cont.). Let us consider the process P = Alice | Seller | Bob, where Alice and Seller have the

definitions from Example 1, while Bob can have any form. By applying a (COM) rule, we could have

Alice | Seller →0.2 Alice3 | Seller2{0195014766/ISBN}
In order to illustrate the evolution of P, we need to add also Bob to the above reduction. Notice that

during this step Bob is not able to interact neither with Alice nor with Seller. This is done by using the

rule (PAR1), and so obtaining P →0.2 Alice3 | Seller2{0195014766/ISBN} | Bob .

Example 3 (cont.). Let us consider an instance of the two-buyers-seller protocol in which Alice wants

to buy one of the following two books:

• Title: “War and Peace” / ISBN: 0140447938;

• Title: “The Art of War” / ISBN: 0195014766.

Firstly, Alice sends to Sellera book identifier (title or ISBN), namely with probability 0.3 the book title

“War and Peace”, with probability 0.5 the book title “The Art of War”, and with probability 0.2 the ISBN

0195014766 of the latter book. Then Alice waits for Seller to send a quote to both her and Bob. Alice

tells Bob how much she can contribute (based on certain probabilities and the book she actually wants).

For example, for the book “War and Peace” she is willing to participate with either quote/2 or quote/3

with the same probability 0.5. We now describe formally the behaviour of Alice as a process:

Alice
de f
= a[3](ab,as,bs).
0.3 : as!〈“War and Peace′′〉;as?(quote : nat);

0.5 : ab!〈quote/2〉.P1 +0.5 : ab!〈quote/3〉.P1

+ 0.5 : as!〈“The Art of War′′〉;as?(quote : nat);
0.4 : ab!〈quote/2〉.P1 +0.2 : ab!〈quote/3〉.P1 +0.4 : ab!〈quote/4〉.P1

+ 0.2 : as!〈0195014766〉;as?(quote : nat);
0.4 : ab!〈quote/2〉.P1 +0.2 : ab!〈quote/3〉.P1 +0.4 : ab!〈quote/4〉.P1

Notice that the price options for the second book (searched either by title or ISBN) are the same; however,

this is just a coincidence and not a requirement in our calculus. By using probabilities, it is possible to

describe executions that may return different prices for the same title sold by the same Seller, but possibly

printed by different publishers.

Using this process (behaviour) of Alice, we can find answers to questions like:

• What is the probability that Alice buys ”The Art of War“ with quote/3?

This means that Alice needs to execute

0.5 : as!〈“The Art of War′′〉;as?(quote : nat);0.2 : ab!〈quote/3〉.P1

with probability 0.5×0.2 = 0.1, or to execute

0.2 : as!〈0195014766〉;as?(quote : nat);0.2 : ab!〈quote/3〉.P1

with probability 0.2×0.2 = 0.04. Thus we get:
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– Answer: 0.5×0.2+0.2×0.2 = 0.14.

• What is the most probable choice made by Alice?

– Answer: ”The Art of War“ with quote/2 and quote/4, with probability 0.7×0.4 = 0.28.

Alice is willing to contribute partially to the quote, contribution that is probabilistically chosen out of

several possibilities, depending on the book Alice intends to purchase. In process P1, Alice may perform

the remaining transactions with Seller and Bob.

3 Global and Local Types

In what follows, the notion of probability already presented in the previous section scales up to the

global types. Since the probabilities are static, the global types just need to check if the probabilities

to execute certain actions are the desired ones. Usually session types lead to a unique description of a

distributed system by means of processes. If we would simply incorporate probabilities in the session

types as done for processes, this would be too restrictive as the slightest perturbation of the probabilities

in the processes can make the system failing the prescribed behaviour. This is why in what follows we

use probabilistic intervals in session types, allowing for several processes to be considered behavioural

equivalent by having the same type.

3.1 Global Types

The global types G,G′, . . . presented in Table 3 describe the global behaviour of a probabilistic multiparty

session process. In what follows we use probabilistic intervals δ having one of the following forms

(c,d), [c,d], (c,d] or [c,d], where c,d ∈ [0,1] and c ≤ d. For simplicity, we write δ = ⌊c,d⌋ with

⌊∈ {[,(} and ⌋ ∈ {],)}. In what follows, we use also the addition of intervals defined as: if δ1 = ⌊c1,d1⌋
and δ2 = ⌊c2,d2⌋ then δ1 + δ2 = ⌊min(c1 + c2,1),min(d1 + d2,1)⌋. If δ = [c,c], we use the shorthand

notation δ = c.
Global G ::= ∑

i∈I

q →δi
q′ : k〈Si〉.Gi (probValues)

p q →1 q′ : k〈T @p〉.G′ (delegation)

p ∑
i∈I

q →δi
q′ : k{li : Gi} (probBranching)

p G,G′ (parallel)

p µt.G (recursive)

p t (variable)

p end (end)

Sorts S ::= bool | nat | . . . (value types)

Table 3: Syntax of Global Types

Type ∑
i∈I

q →δi
q′ : k〈Si〉.Gi states that a participant q sends with a probability in the interval δi a

message of type Si to a participant q′ through the channel k, and then the interactions described by Gi

take place. We assume that in each communication q → q′ we have q 6= q′, i.e. we prohibit reflexive

interactions. Type q →1 q′ : k〈T @p〉.G′ denotes the delegation of a session channel of type T (called

local type) with role p (written as T @p). The local types are discussed in detail later.

Type ∑
i∈I

q →δi
q′ : k{li : Gi} says that participant q sends with a probability in the interval δi one label

on channel k to another participant q′. If li is sent, evolution described by type Gi takes place. Type G,G′
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represents concurrent runs of processes specified by G and G′. Type µt.G is a recursive type, where type

variable t is guarded in the standard way (they only appear under some prefix). Similar to the approach

presented in [4], we overload the notation µ as it is easy to see from the context if it precedes a process

or a type. Type end represents the termination of a process; we identify both G,end and end,G with G.

In a probabilistic choice, identically behaved branches can be replaced by a single branch with a

behaviour having the sum of the probabilities of the individual branches.

Remark 1. If all the possible interactions communicate the same types (all Si are identical), all select the

same branch (all li are identical), and the continuations after communications respect the same global

type (all Gi are identical), then the global systems can be simplified by using the following rules:

• ∑
i∈I

q →δi
q′ : k〈Si〉.Gi is the same as q →∑i∈I δi

q′ : k〈S〉.G whenever S = Si and G = Gi for all i;

• ∑
i∈I

q →δi
q′ : k{li : Gi} is the same as q →∑i∈I δi

q′ : k{li : Gi} whenever all li are equal.

This means that if ∑i∈I δi = 1, then global types may contain only probabilities equal to 1, namely a form

similar to the global types in multiparty session types from [14]. Therefore, for the processes of this

particular type, all the results presented in [14] hold.

Example 4 (cont.). Using the previous remark, the following is a global type of the two-buyers-seller

protocol of Example 1:

Alice →⌊0.7,0.9⌋ Seller : as〈string〉.G1 +Alice →⌊0.15,0.25⌋ Seller : as〈nat〉.G1, where

G1 = Seller →1 Alice : as〈int〉.Seller →1 Bob : bs〈int〉.

Alice →1 Bob : ab〈int〉. Bob →⌊0.18,0.22⌋ Seller : bs{ok1 : Bob →1 Seller : bs〈string〉.

Seller →1 Bob : bs〈date〉.end}

+Bob →⌊0.27,0.31⌋ Seller : bs{ok2 : Bob →1 Seller : bs〈string〉.

Seller →1 Bob : bs〈date〉.end}

+Bob →⌊0.45,0.52⌋ Seller : bs{quit.end}.

This global type for Alice is due to the fact that even if she has different book titles that she wants

to buy, the global type only records the type of the sent value (namely a string). Also, the fact that she

behaves in a similar manner after sending the title, the global type can be reduced to a simpler form

(according to the above remark).

Example 5. Let us consider now that Alice decided that, instead of the books “War and Peace” and

“The Art of War”, she wants the books “Peter Pan” and “Robinson Crusoe”, and she is willing to pay

different amount from the quote. More exactly,

Alice
de f
= a[3](ab,as,bs).

0.15 : as!〈“Peter Pan′′〉;as?(quote : nat); 1 : ab!〈quote/3〉.P1

+ 0.65 : as!〈“Robinson Crusoe′′〉;as?(quote : nat); 0.35 : ab!〈quote/3〉.P1+0.65 : ab!〈quote/4〉.P1

+ 0.2 : as!〈1593080115〉;as?(quote : nat); 0.45 : ab!〈quote/2〉.P1 +0.55 : ab!〈quote/4〉.P1 .

It is worth mentioning that the two-buyers-seller protocol in which Alice is described by this definition

is well-typed using the same global type (the one from Example 4) as the initial protocol of Example 1.

Therefore, several different processes may have the same global type.

3.2 Local Types

Local types T,T ′, . . . presented in Table 4 describe the local behaviour of processes, acting as a link

between global types and processes.
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Local T ::= ∑
i∈I

δi : k!〈Si〉.Ti (send)

p ∑
i∈I

k?(Si).Ti (receive)

p k!〈T @q〉.T ′ (sessionDelegation)

p k?(T @q).T ′ (sessionReceive)

p k⊕{δi : (li : Ti)}i∈I (selection)

p k&{li : Ti}i∈I (branching)

p µt.T (recursive)

p t (variable)

p end (end)

Sorts S ::= bool | nat | . . . (value types)

Table 4: Syntax of Local Types

Type ∑
i∈I

δi : k!〈Si〉.Ti represents the behaviour of sending with probability in the interval δi a value of

type Si, and then behaving as described by type Ti. Similarly, ∑
i∈I

k?(Si).Ti is for nondeterministic receiv-

ing, and then continuing as described by local type Ti. The type k!〈T @q〉.T ′ represents the behaviour

of delegating a session of type T @q, while k?(T @q).T ′ describes the behaviour of receiving a session

of type T @q. Type k⊕{δi : (li : Ti)}i∈I describes a branching: it waits for |I| options, and behaves as

type Ti if the i-th label is selected with probability in the interval δi. Type k&{li : Ti}i∈I represents the

behaviour which nondeterministically selects one of the tags (say li), and then behaves as Ti. The rest is

the same as for the global types, demanding type variables to occur guarded by a prefix. For simplicity,

as done in [14], the local types do not contain the parallel composition.

Example 6. The following is a local type for the process Alice presented in Example 3:

⌊0.7,0.9⌋ : as!〈string〉.as?(int).1 : ab!〈int〉.T1 + ⌊0.15,0.25⌋ : as!〈nat〉.as?(int).1 : ab!〈int〉.T1 ,

where T1 is the local type of process P1 from the definition of Alice.

We define the projection of a global type to a local type for each participant.

Definition 1. The projection for a participant q appearing in a global type G, written G ↾ q, is inductively

given as:

• (q1 →1 q2 : k〈T @p〉.G′) ↾ q =











k!〈T @p〉.(G′ ↾ q) if q = q1 6= q2

k?(T @p).(G′ ↾ q) if q = q2 6= q1

G′ ↾ q if q 6= q1 and q 6= q2

;

• (∑
i∈I

q1 →δi
q2 : k〈Si〉.Gi) ↾ q =































∑
i∈I

δi : k!〈Si〉.(Gi ↾ q) if q = q1 6= q2

∑
i∈I

k?(Si).(Gi ↾ q) if q = q2 6= q1

G1 ↾ q if q 6= q1 and q 6= q2

∀i, j ∈ J, Gi ↾ q = G j ↾ q

;

• (∑
i∈I

q1 →δi
q2 : k{li : Gi}) ↾ q =























k⊕{δi : (li : Gi ↾ q)}i∈I if q = q1 6= q2

k&{li : Gi ↾ q}i∈I if q = q2 6= q1

G1 ↾ q if q 6= q1 and q 6= q2

∀i, j ∈ J, Gi ↾ q = G j ↾ q

;
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• (G1,G2) ↾ q =

{

Gi ↾ q if q ∈ Gi and q /∈ G j, i 6= j ∈ {1,2}

end if q /∈ G1 and q /∈ G2

;

• (µt.G) ↾ q =

{

µt.(G ↾ q) if G ↾ q 6= end or G ↾ q 6= t

end otherwise
;

• t ↾ q = t • end ↾ q = end.

When none of the side conditions hold, the projection is undefined.

Remark 2. Regarding the check of linear usage of channels, the verification is similar to the one per-

formed in [14], noting that the probabilistic and nondeterministic choices are treated similar to the

branching in [14]. However, due to the use of synchronous communications, the sequence of interactions

follows more strictly the one of the global behaviour description, resulting in a simpler linear property

than in [14]. It should be said that in the branching clause, the projections of those participants different

from q1 and q2 should generate an identical local type (otherwise undefined).

Hereafter we assume that global types are well-formed, i.e. G ↾ q is defined for all q occurring in G.

4 Probabilistic Multiparty Session Types

We introduce a typing system with the purpose of typing efficiently the probabilistic behaviours of our

processes. This typing system uses a map from shared names to either their sorts (S,S′, . . .), or to a

special sort 〈G〉 used to type sessions. Since a type is inferred for each participant, we use notation T @q

(called located type) to represent a local type T assigned to a participant q. Using these, we define

Γ ::= /0 | Γ,x : S | Γ,a : 〈G〉 | Γ,X : ∆ ∆ ::= /0 | ∆, s̃ : {T @q}q∈I .

A sorting (Γ,Γ′, . . .) is a finite map from names to sorts, and from process variables to sequences of

sorts and types. Typing (∆,∆′, . . .) records linear usage of session channels by assigning a family of

located types to a vector of session channels. pid(G) stands for the set of participants occurring in G,

while sid(G) stands for the number of session channels in G. We write s̃ : T @q for a singleton typing

s̃ : {T @q}. Given two typings ∆ and ∆′, their disjoint union is denoted by ∆,∆′ (by assuming that their

domains contain disjoint sets of session channels).

The type assignment system for processes is given in Table 5. We use the judgement Γ⊢P⊲∆ saying

that “under the environment Γ, process P has typing ∆”. The rules (TNAME),(TBOOL) and (TOR) are for

typing names and expressions. The rules (TMCAST) and (TMACC) are for typing the session request and

session accept, respectively. The type for s̃ is the projection on participant q of the declared global type G

for a in Γ. It could be noticed that in rule (TMCAST) the projection is made on the participant requesting

the session, while in (TMACC) the projection is made for each of the (n−1) accepting participants. The

local type (G ↾ q)@q means that the participant q has G ↾ q (namely the projection of G onto q) as its

local type. The condition |s̃|= sid(G) ensures that the number of session channels meets those in G.

The rules (TSEND) and (TRECEIVE) are for sending and receiving values, respectively. As these

rules require probabilistic and nondeterministic choices, the rules should check all the possible choices

with respect to Γ. Since one of the channels appearing in s̃ (say k) is used for communication, we

record k by using the name s[k] as part of the typed process. In both rules, q in s̃ : Ti@q ensures that each

Pi represents (being inferred as) the behaviour for participant q, and its domain should be s̃. Then the

relevant type prefixes ∑
i∈I

δi : k!〈S̃i〉;Ti@q for the output and ∑
i∈I

k?(S̃i);Ti@q for the input are composed in

the session environment (as conclusion). The rules (TSDELEG) and (TSRECEIVE) are for delegation of
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Γ,x : S ⊢ x : S Γ ⊢ true, false : bool (TNAME), (TBOOL)

∆ end only

Γ ⊢ 0⊲∆

Γ ⊢ ei : bool

Γ ⊢ e1 or e2 : bool
(TEND), (TOR)

Γ ⊢ a : 〈G〉 Γ ⊢ P⊲∆, s̃ : (G ↾ 1)@1 {1, . . . ,n} = pid(G) |s̃|= sid(G)

Γ ⊢ a[n](s̃).P⊲∆
(TMCAST)

Γ ⊢ a : 〈G〉 Γ ⊢ P⊲∆, s̃ : (G ↾ q)@q q ∈ pid(G) q 6= 1 |s̃|= sid(G)

Γ ⊢ a[q](s̃).P⊲∆
(TMACCEPT)

∀i.Γ ⊢ ẽi : S̃i ∀i.Γ ⊢ Pi ⊲∆, s̃ : Ti@q ∑i∈I pi = 1 pi ∈ δi

Γ ⊢ ∑
i∈I

pi : s[k]!〈ẽi〉;Pi ⊲∆, s̃ : ∑
i∈I

δi : k!〈S̃i〉;Ti@q
(TSEND)

∀i.Γ, x̃i : S̃i ⊢ Pi ⊲∆, s̃ : Ti@q

Γ ⊢ ∑
i∈I

s[k]?(x̃i : S̃i);Pi ⊲∆, s̃ : ∑
i∈I

k?(S̃i);Ti@q
(TRECEIVE)

Γ ⊢ P⊲∆, s̃ : T @q

Γ ⊢ s[k]!〈〈t̃〉〉;P⊲∆, s̃ : k!〈 ˜T ′@q′〉;T @q, t̃ : T ′@q′
(TSDELEG)

Γ ⊢ P⊲∆, s̃ : T @q, t̃ : T ′@q′

Γ ⊢ s[k]?((t̃));P⊲∆, s̃ : k?(T ′@q′);T @q
(TSRECEIVE)

∀i.Γ ⊢ Pi ⊲∆, s̃ : Ti@q ∑i∈I pi = 1 pi ∈ δi

Γ ⊢ ∑
i∈I

pi : s[k]⊳ li;Pi ⊲∆, s̃ : k⊕{δi : (li : Ti)}i∈I@q
(TSELECT)

∀ j.Γ ⊢ Pj ⊲∆, s̃ : Tj@q

Γ ⊢ s[k]⊲{l j;Pj} j∈J ⊲∆, s̃ : k&{l j : Tj} j∈J@q
(TBRANCH)

Γ ⊢ P⊲∆ Γ ⊢ Q⊲∆′

Γ ⊢ P | Q⊲∆,∆′

Γ ⊢ e⊲bool Γ ⊢ P⊲∆ Γ ⊢ Q⊲∆

Γ ⊢ if e then P else Q⊲∆
(TCONC), (TIF)

Γ,a : 〈G〉 ⊢ P⊲∆

Γ ⊢ (νa)P⊲∆

Γ ⊢ P⊲∆, s̃ : {Ti@i}i∈I

Γ ⊢ (ν s̃)P⊲∆
(TNRES), (TCRES)

∆′
end only

Γ,X : ∆ ⊢ X ⊲∆,∆′

Γ,X : ∆ ⊢ P⊲∆

Γ ⊢ µX .P⊲∆
(TVAR), (TREC)

Table 5: Typing System

a session and its dual. They are similar to the rules (TSEND) and (TRECEIVE), except that here a vector

of session channels is communicated instead of values. The carried type T ′ is located, making sure that

the receiver takes the role of a specific participant (here q′) in the delegated multiparty session. It should

be noticed that in rule (TSDELEG) the type of t̃ : T ′@q′ does not appear in the type of P, while it appears

in rule (TSRECEIVE) meaning that it uses the channels of P. The rules (TSELECT) and (TBRANCH)

are for typing selection and branching, respectively. Similar to (TSEND) and (TRECEIVE), these rules

employ probabilistic and nondeterministic choices, respectively. This means that the rules should check

all the possible choices with respect to Γ.

The rule (TCONC) composes two processes if their local types are disjoint. The rules (TIF), (TEND),

(TREC) and (TVAR) are standard. The rules (TNRES) and (TCRES) represent the restriction rules for

shared names and channel names, respectively. In (TEND), “∆ end only” means that ∆ contains only end

types.

As processes interact, their dynamics is formalized as in [14] by a reduction relation ⇒ on typing ∆:
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• s̃ : {∑
i∈I

δi : k!〈S̃i〉;Ti@q1,∑
j∈J

k?(S̃ j);Tj@q2} ⇒δk1

s̃ : {Tk1
@q1,Tk2

@q2, . . .}, for k1 ∈ I, k2 ∈ J and Sk1
= Sk2

;

• s̃ : {k!〈T ′@q′〉;T @q, ,k?(T ′@q′);T ′′@q′′} ⇒1 s̃ : {T @q,T ′′@q′′}

• s̃ : {k⊕{δi : (li : Ti)}i∈I@q1,k&{l j : Tj} j∈J@q2, . . .} ⇒δk1

s̃ : {Tk1
@q1,Tk2

@q2, . . .}, for k1 ∈ I, k2 ∈ J and Sk1
= Sk2

;

• ∆,∆′ ⇒p ∆,∆′′ if ∆′ ⇒p ∆′′.

The first rule corresponds to sending/receiving a value of type S̃ j by the participant q, while the second

rule corresponds to session delegation. The third rule illustrates the choice and reception of a label l j by

the participant q. The last rule is used to compose typings when only a part of a typing changes.

We present two basic properties of our type system: substitution and weakening. The substitution

plays a central role in proving type preservation, while weakening allows introducing new entries in a

typing.

Lemma 1.

(1) (substitution) Γ, x̃ : S ⊢ P⊲∆ and Γ ⊢ ṽ : S imply Γ ⊢ P{ṽ/x̃}⊲∆.

(2) (type weakening) Whenever Γ ⊢ P⊲∆ is derivable, then its weakening is also derivable,

namely Γ ⊢ P⊲∆,∆′ for disjoint ∆′, where ∆′ contains only end.

Proof. The proof is rather standard, similar to that presented in [14].

We now prove that our probabilistic typing system is sound, namely its type-checking rules prove

only terms that are valid with respect to both structural congruence and operational semantics. In what

follows, by inverting a rule we describe how the (sub)processes of a well-typed process can be typed.

This is a basic property that is used in some papers when reasoning by induction on the structure of

processes (see [4] and [14], for instance).

Theorem 1 (type preservation under equivalence). Γ ⊢ P⊲∆ and P ≡ P′ imply Γ ⊢ P′⊲∆ .

Proof. The proof is by induction on ≡ , showing (in both ways) that if one side has a typing, then the

other side has the same typing.

• Case P | 0 ≡ P .

⇒ Assume Γ ⊢ P | 0⊲∆. By inverting the rule (TCONC), we obtain Γ ⊢ P⊲∆1 and Γ ⊢ 0⊲∆2,

where ∆1,∆2 = ∆. By inverting the rule (TEND), ∆2 is only end and ∆2 is such that dom(∆1)∩
dom(∆2) = /0. Then, by weakening, we get that Γ ⊢ P⊲∆, where ∆ = ∆1,∆2.

⇐ Assume Γ ⊢P⊲∆. By rule (TEND), it holds that Γ ⊢ 0⊲∆′, where ∆′ is only end and dom(∆)∩
dom(∆′) = /0. By applying rule (TCONC), we obtain Γ ⊢ P | 0⊲∆,∆′, and for ∆′ = /0 we obtain

Γ ⊢ P | 0⊲∆, as required.

The remaining cases are proved in a similar manner.

According to the following theorem, if a well-typed process takes a reduction step of any kind, the

resulting process is also well-typed.

Theorem 2 (type preservation under reduction).

Γ ⊢ P⊲∆ and P →pi
P′ imply Γ ⊢ P′⊲∆′, where ∆ = ∆′ or ∆ ⇒δi

∆′ with pi ∈ δi.
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Proof. By induction on the derivation of P →pi
P′. There is a case for each operational semantics rule,

and for each operational semantics rule we consider each typing system rule generating Γ ⊢ P⊲∆.

• Case (COM): ∑
i∈I

pi : s!〈ẽi〉;Pi | ∑
j∈J

s?(x̃ j);Pj →pi
Pi | Pj{ṽi/x̃ j} .

By assumption, Γ ⊢ ∑
i∈I

pi : s!〈ẽi〉;Pi | ∑
j∈J

s?(x̃ j);Pj ⊲∆. By inverting the rule (TCONC), we get

Γ ⊢ ∑
i∈I

pi : s!〈ẽi〉;Pi ⊲∆1, Γ ⊢ ∑
j∈J

s?(x̃ j);Pj ⊲∆2 with ∆ = ∆1,∆2. Since these can be inferred only

from (TSEND) and (TRECEIVE), we know that ∆1 = ∆′
1, s̃ : ∑

i∈I

δi : k!〈S̃i〉;Ti@q1 and ∆2 = ∆′
2, s̃ :

∑
j∈J

k?〈S̃ j〉;Tj@q2. By inverting the rules (TSEND) and (TRECEIVE), we get that ∀i.Γ ⊢ ẽi : S̃i,

∑i∈I pi = 1, pi ∈ δi, ∀i.Γ ⊢ Pi ⊲∆′
1, s̃ : Ti@q1 and ∀ j.Γ, x̃ j : S̃ j ⊢ Pj ⊲∆′

2, s̃ : Tj@q2. Assuming that

ei ↓ vi and knowing that ∀i.Γ ⊢ ẽi : S̃i, it implies that ∀i.Γ ⊢ ṽi : S̃i. From Γ ⊢ ṽi : S̃i and Γ, x̃ j : S̃ j ⊢
Pj⊲∆′

2, s̃ : Tj@q2, by applying the substitution part of Lemma 1, we get that Γ ⊢ Pj{vi/x j}⊲∆′
2, s̃ :

Tj@q2. By applying the rule (TCONC), we get Γ ⊢ Pi | Pj{vi/x j}⊲∆′
1, s̃ : Ti@q1,∆

′
2, s̃ : Tj@q2.

Using the reduction on types, we get ∆ ⇒δi
∆′, where ∆′ = ∆′

1, s̃ : Ti@q1,∆
′
2, s̃ : Tj@q2 and pi ∈ δi.

• Case (DELEG): s!〈〈s̃〉〉;P | s?((s̃));Q →1 P | Q .

By assumption, Γ ⊢ s!〈〈s̃〉〉;P | s?((s̃));Q⊲∆. By inverting the rule (TCONC), we get that Γ ⊢
s!〈〈s̃〉〉;P⊲∆1, Γ ⊢ s?((s̃));Q⊲∆2 with ∆ = ∆1,∆2. Since these can be inferred only from (TSDE-

LEG) and (TSRECEIVE), we know that ∆1 = ∆′
1, s̃ : k!〈 ˜T ′@q′〉;T @q, t̃ : T ′@q′ and ∆2 = ∆′

2, s̃ :

k?(T ′@q′);T ′′@q′′. By inverting the rules (TSDELEG) and (TSRECEIVE), we get that Γ ⊢
P⊲∆′

1, s̃ : T @q and Γ ⊢ Q⊲∆′
2, s̃ : T ′′@q′′, t̃ : T ′@q′. By applying the rule (TCONC), we get

Γ ⊢ P | Q⊲∆′
1, s̃ : T @q,∆′

2, s̃ : T ′′@q′, t̃ : T ′@q′′. By using the reduction on types, we get that

∆ ⇒1 ∆′, where ∆′ = ∆′
1, s̃ : T @q,∆′

2, s̃ : T ′′@q′′, t̃ : T ′@q′.

The remaining cases are proved in a similar manner.

A corollary of the type preservation result is the probabilistic-error freedom. An error is reached

when a process performs an action that violates the constraints prescribed by its type. To formulate

this property of probabilistic-error freedom, we extend the syntax by including a process error, while

the reduction rules for processes are extended as below. This is done to accommodate the fact that the

processes with value sending and label selection in which the sum of all probabilities is different from 1

generate an error.

∑
i∈I

pi : s!〈ẽi〉;Pi | ∑
j∈J

s?(x̃ j : S̃ j);Pj →1 error (if ∑
i∈I

pi 6= 1) (ECOM)

∑
i∈I

pi : s⊳ li;Pi | s⊲{l j : Pj} j∈J →1 error (if ∑
i∈I

pi 6= 1) (ELABEL)

Table 6: Extending Operational Semantics with Rules for error

Theorem 3 (probabilistic-error freedom). If Γ ⊢ P⊲∆ and P →pi
P′, then P′ 6= error.

Proof. We assume that P 6= error, and proceed by case analysis on the reduction P →pi
P′. If the last

reduction is by one of the rules of Table 2 then P′ 6= error since these rules do not introduce error

processes. Also, by using Theorem 2, we are able to show that Γ ⊢ P′⊲∆′ for some ∆′ (obtained by some

reduction from ∆).
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The only reductions introducing error processes are provided by the rules of Table 6. We consider

only one case (as the other is treated in a similar manner). Consider the rule (ECOM) applied to P having

the form ∑
i∈I

pi : s!〈ẽi〉;Pi | ∑
j∈J

s?(x̃ j : S̃ j);Pj. Then by (ECOM) we have ∑
i∈I

pi 6= 1. By hypothesis, P is

well-typed. By using the typing rules (TSEND) and (TRECEIVE) of Table 5, process P can be typed by

using the condition ∑
i∈I

pi = 1 which contradicts the fact that rule (ECOM) can be applied. The fact that

none of the reductions introducing errors can be applied means that the result holds.

By the correspondence between local types and global types given in Section 3.2, these results guar-

antee that interactions between typed processes follow exactly the interactions specified in a global type.

5 Conclusion

We have defined and studied a typing system extending the (synchronous version of) multiparty ses-

sion types to deal also with probabilistic and nondeterministic choices. We proposed a process calculus

considering both the probabilistic internal choices (sending a value and selecting a label) with the non-

deterministic external choices (receiving a value and branching a process by using a selected value). We

used a system inspired from the synchronous calculus presented in [3], but avoiding the use (and typing)

of queues presented in [3]. The calculus from [3] has been modified in [6] and [17] by using channels

with roles, and so eliminating the need to use the notation T @q for delegation. However, we feel that

this notation for delegation makes the rules easier to read; thus, we keep it in our typing system.

The approach presented in this paper has attractive properties and features. It retains the classical

approach (type system), and it is specified in such a way to satisfy the axioms of a standard probability

theory for computing the probability of a behaviour. As far as we know, in the field of session types there

is no other related work.

Several formal tools have been proposed for probabilistic reasoning. Some approaches concern the

use of probabilistic logics. In [5], terms are assigned probabilistically to types via probabilistic type

judgements, and from an intuitionistic typing system is derived a probabilistic logic as a subsytem [21].

In [20] there are proposed two semantics of a probabilistic variant of the π-calculus. For these, the

types are used to identify a class of nondeterministic probabilistic behaviours which can preserve the

compositionality of the parallel operator in the framework of event structures. The authors claim to per-

form an initial step towards a good typing discipline for probabilistic name passing by employing Segala

automata [18] and probabilistic event structures. In comparison with them, we simplify the approach and

work directly with processes, giving a probabilistic typing in the context of multiparty session types.
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