
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2012
EPTCS 105, 2012, pp. 1–4, doi:10.4204/EPTCS.105.1

c© R.Huuck
This work is licensed under the
Creative Commons Attribution License.

Formal Verification, Engineering and Business Value

Ralf Huuck
NICTA

Sydney, Australia
School of Computer Science and Engineering

University of New South Wales
Sydney, Australia

ralf.huuck@nicta.com.au

How to apply automated verification technology such as model checking and static program analysis
to millions of lines of embedded C/C++ code? How to package this technology in a way that it can be
used by software developers and engineers, who might have no background in formal verification?
And how to convince business managers to actually pay for such a software? This work addresses a
number of those questions. Based on our own experience on developing and distributing the Goanna
source code analyzer for detecting software bugs and security vulnerabilities in C/C++ code, we ex-
plain the underlying technology of model checking, static analysis and SMT solving, steps involved
in creating industrial-proof tools.

1 Motivation

Formal verification has come a long way from being a niche domain for mathematicians and logicians
to an accepted practice, at least in academia, and frequently being taught in undergraduate courses.
Moreover, starting out from a pen-and-paper approach, a range of supporting software tools have been
developed over time including specification tools for (semi-)formal languages such as UML, Z or various
process algebrae, interactive theorem-provers for formal specification, proof-generation and verification,
as well as a large number of algorithmic software tools for model checking, run-time verification, static
analysis and SMT solving to name a few [5].

Despite all the effort, however, there has been only limited penetration of verification tools into
industrial environments, mostly remaining confined to the respective R&D laboratories of larger corpo-
rations, defense projects or selective avionics work. The use of verification tools by the average software
engineer is rare and typically stops at formal techniques built into the compiler or debugger.

One of the key motivations for our work has been to contribute to some of the technology transfer
from classical academic domains to industrial applications and use. In particular, we have been working
on bringing verification techniques such as model checking [8, 2], abstract interpretation [3] and SMT
solving [4] to professional software engineers.

To make verification technology applicable, we believe a number of core principles must be met:
First of all, any verification tool has to be so simple to use that it does not require much or any learning
from users outside the formal methods domain. Secondly, the performance of the tool has to match
the typical workflow of the end-user. This means, if the end-user is accustomed to doing things in a
particular order, those steps should remain largely the same. Moreover, run-time performance of any
additional analysis or verification should be similar to existing processes. Finally, and most importantly,
a new analysis tool should provide real value to an end-user. This means, it should deliver information
or a degree of reliability that was previously not available, making the use of the tool worthwhile.
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2 Software Tool Challenges

The result of our endeavor is Goanna [6], an automated software analysis tool for detecting software
bugs, code anomalies and security vulnerabilities in C/C++ source code. Goanna is designed to be run at
compile-time and does not require any annotations, code modifications or user interaction. Moreover, the
tool can directly be integrated into common development environments such as Eclipse, Visual Studio
or build systems based on, e.g., Makefiles. To achieve acceptance in industry, all formal techniques are
hidden behind a typical programmer’s interface, all of C/C++ is accepted as input (even, e.g., Microsoft
specific compiler extensions) and scalability had to be ensured for many millions of lines of code in
reasonable time.

To achieve this, a number of trade-offs had to be made: While using a range of formal verification
techniques, Goanna is not a verification tool as such, but rather a bug detection tool. This means, it
does no conclusively show the absence of errors, but does its best to find certain classes of bugs. More-
over, Goanna comes by default with a fixed set of pre-defined checks for errors such as buffer overruns,
memory leaks, NULL-pointer dereferences, arithmetic errors, or C++ copy control mistakes as well as
with support for certain safety-critical coding standards such as MISRA [1] or CERT [9] totaling over
200 individual checks. To achieve reasonable performance that is of the same order as the compiler, a
number of assumptions and approximations (as well as refinements) are made. Naturally, this leads to
missed errors (false negatives) as well as to spurious errors (false positives). Finding the right balance
between precision, speed and number of supported checks is very much an engineering art supported by
new verification and abstraction techniques. This work will focus on some key insights:

Core Analysis The core of our program analysis is based on CTL model checking. In particular, most
static analysis tasks such as NULL-pointer detection, buffer overrun analysis and memory leak
detection are outsourced to an explicit state CTL model checker and an abstract interpretation
framework. The approach of model checking the distribution of syntactic elements in C/C++ code
creates particular requirements such as handling many small verification tasks. We implemented
our own explicit state model checker outperforming some existing state-of-the-art implementation
by up to an order of magnitude.

Refinements & Heuristics Goanna, in its academic version, integrates with SMT solvers and applies
a refinement loop for distinguishing spurious errors from real ones [7]. Moreover, a substantial
engineering effort has been done to apply heuristics matching common programmer patterns and
expectations to keep the overall false-alarm rate to a minimum.

Engineering Challenges While formal methods tend to be precise and define right and wrong, software
practice is often much less rigorous and one person’s bug is another person’s feature. Moreover,
C/C++ are complex languages with often tricky semantics and, more importantly, are neither stable
with new features being added through the C++11 standard or compiler extensions, nor are these
languages the same for everyone, but rather determined by how the individual compiler manufac-
turer supports and interprets C/C++.

Internally, we have to deal with huge number of verification tasks. This can range to hundreds
of millions of model checking specifications for larger projects and sometimes billions of pre-
processing pattern matching queries. This is typically contrary to an academic environment, where
one is often interested in a few complex verification tasks only. Apart from new algorithms this
requires dedicated engineering solutions for efficient caching, incremental analysis, inter-function
summaries and databases for storage and look-up between runs.
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Figure 1: High-level Goanna Architecture

Business Value Interestingly, software analysis plays only a small role in the overall software develop-
ment lifecycle and general product development process. Most importantly, organizations need to
get products to market as fast as possible with as many features as possible. Bugs are of concern
if they lead to critical failure and therefore a loss in business. A bug that never or very rarely man-
ifests is often not of primary concern. However, of importance is being able to track the overall
software quality and observe trending, see levels of compliance to standards and coding guidelines,
and to obtain reports that can be understood by management. Most importantly, it is worth to note
that the people making purchasing decisions are typically different from the software developers
and motivated by quite different reasons.

Figure 1 depicts the high-level architecture of our software analysis tool. At the core are the different
analysis engines for abstract interpretation, model checking, SMT solving and pattern matching. As
input the tool takes C/C++ projects and a set of specifications that are written in our own domain-specific
language and pre-defined for standard users. Goanna can be run on the command line, integrates with
IDEs and can be embedded in the build system. It outputs warning messages classified by severity,
displays error traces based on counter-examples, and can create summary reports.

3 Lessons

While it is a difficult endeavor to target industry with formal methods there are a range of valuable
lessons that can be learned. This starts out with understanding the problem domain, the actual demands
and challenges faced by the end-user as well as understanding their processes and potential value add by
tools. Technology is only one piece of a larger puzzle.

Moreover, software developers face time constraints and pressure to deliver results. Learning a new
tool from scratch is not only a process change management shies away from, but typically comes with
some kind of formal training in many organization often being much more costly than the actual software
tool. Hence, any tool that integrates into existing IDEs and processes that work “with the click of a
button” gains much easier acceptance.

From a formal methods researcher’s point of view demands are often sobering. Real life applications
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require to deal with huge amounts of code in relatively short time. This will require not only abstractions,
but all various heuristics, both on an algorithmic level as well as on an engineering level predicting
typical developer behavior. Generally, the engineering requirements can easily become a roadblock for
the acceptance of more advanced formal analysis techniques.

Finally, with much less effort we believe that many existing academic tools could see a larger industry
uptake by following sometimes simple rules. This includes: providing a clear and end-user friendly
license agreement, providing a well documented introduction to a tool, as well as a delivering degree of
reliability that the software works in most cases. This is, however, easier said than done as academic
environments typically do no provide for dedicated software engineers to develop and maintain tools
over longer period of time.
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