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Distributed cyber-physical systems (DCPS) are pervasive in areas such as aeronautics and ground
transportation systems, including the case of distributed hybrid systems. DCPS design and verifica-
tion is quite challenging because of asynchronous communication, network delays, and clock skews.
Furthermore, their model checking verification typically becomes unfeasible due to the huge state
space explosion caused by the system’s concurrency. The PALS (“physically asynchronous, logically
synchronous”) methodology has been proposed to reduce the design and verification of a DCPS to
the much simpler task of designing and verifying its underlying synchronous version. The original
PALS methodology assumes a single logical period, but Multirate PALS extends it to deal with mul-
tirate DCPS in which components may operate with different logical periods. This paper shows how
Multirate PALS can be applied to formally verify a nontrivial multirate DCPS. We use Real-Time
Maude to formally specify a multirate distributed hybrid system consisting of an airplane maneu-
vered by a pilot who turns the airplane according to a specified angle through a distributed control
system. Our formal analysis revealed that the original design was ineffective in achieving a smooth
turning maneuver, and led to a redesign of the system that satisfies the desired correctness properties.
This shows that the Multirate PALS methodology is not only effective for formal DCPS verification,
but can also be used effectively in the DCPS design process, even before properties are verified.

1 Introduction

Distributed cyber-physical systems (DCPS) are pervasive in areas such as aeronautics, ground trans-
portation systems, medical systems, and so on; they include, in particular, the case of distributed hybrid
systems, whose continuous dynamics is governed by differential equations. DCPS design and verifica-
tion is quite challenging, because to the usual complexity of a non-distributed CPS one has to add the
additional complexities of asynchronous communication, network delays, and clock skews, which can
easily lead a DCPS into inconsistent states. In particular, any hopes of applying model checking veri-
fication techniques in a direct manner to a DCPS look rather dim, due to the typically huge state space
explosion caused by the system’s concurrency.

For these reasons, we and other colleagues at UIUC and Rockwell-Collins Corporation have been
developing the physically asynchronous but logically synchronous PALS methodology [9, 11], which
can drastically reduce the system complexity of a DCPS so as to make it amenable to model checking
verification (for a comparison of PALS with related methodologies see [13]). The PALS methodology
applies to the frequently occurring case of a DCPS whose implementation must be asynchronous due
to physical constraints and for fault-tolerance reasons, but whose logical design requires that the system
components should act together in a virtually synchronous way. For example, distributed control systems
are typically of this nature. The key idea of PALS is to reduce the design and verification of a DCPS
of this kind to the much simpler task1 of designing and verifying the idealized synchronous system that

1 For a simple avionics case study in [10], the number of system states for their simplest possible distributed version with
perfect clocks and no network delays was 3,047,832, but the PALS pattern reduced the number of states to a mere 185.
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should be realized in a distributed and asynchronous way. This is achieved by a model transformation
E 7→ A (E ,Γ) that maps a synchronous design E to a distributed implementation A (E ,Γ) which is
correct-by construction and that, as shown in [9, 10], is bisimilar to the synchronous system E . This
bisimilarity is the essential feature allowing the desired, drastic reduction in system complexity and
making model checking verification feasible: since bisimilar systems satisfy the exact same temporal
logic properties, we can verify that the asynchronous system A (E ,Γ) satisfies a temporal logic property
ϕ (which typically would be impossible to model check directly on A (E ,Γ)) by verifying the same
property ϕ on the vastly simpler synchronous system E .

The original PALS methodology presented in [9, 11] assumes a single logical period, during which
all components of the DCPS must communicate with each other and transition to their next states. How-
ever, a DCPS such as a distributed control system may have components that, for physical reasons, must
operate with different periods, even though those periods may all divide an overall longer period. That is,
many such systems, although still having to be virtually synchronous for their correct behavior, are in fact
multirate systems, with some components running at a faster rate than others. An interesting challenge
is how to extend PALS to multirate DCPS. This challenge has been given two different answers. On the
one hand, an engineering solution for Multirate PALS based on the AADL modeling language has been
proposed by Al-Nayeem et al. in [1]. On the other hand, three of us have defined in [4] a mathematical
model of a multirate synchronous system E , and have formally defined a model transformation

E 7→ MA (E ,T,Γ)

that generalizes to multirate systems the original single-rate PALS transformation defined in [9, 10].
As before, we have proved in [4] that MA (E ,T,Γ) is a correct-by-construction implementation of E ,
and that E and MA (E ,T,Γ) are bisimilar, making it possible to verify temporal logic properties about
MA (E ,T,Γ) on the much simpler system E .

But how effective is Multirate PALS in practice? Can it be applied to formally verify important
properties of a nontrivial multirate CPS such as a distributed hybrid system? The main goal of this paper
is to show that the answer is an emphatic yes. We use Real-Time Maude [12] to formally specify in
detail a multirate distributed hybrid system consisting of an airplane maneuvered by a pilot, who turns the
airplane according to a specified angle α through a distributed control system with effectors located in the
airplane’s wings and rudder. Our formal analysis revealed that the original design had control laws that
were ineffective in achieving a smooth turning maneuver. This led to a redesign of the system with new
control laws which, as verified in Real-Time Maude by model checking, satisfies the desired correctness
properties. This shows that the Multirate PALS methodology is not only effective for formal DCPS
verification, but, when used together with a tool like Real-Time Maude, can also be used effectively
in the DCPS design process, even before properties are verified. To the best of our knowledge, this is
the first time that the Multirate PALS methodology has been applied to the model checking verification
of a DCPS. In this sense, this paper complements our companion paper [4], where the mathematical
foundations of Multirate PALS were developed in detail, but where only a brief summary of some of the
results presented here was given.

This paper is organized as follows. Section 2 explains Multirate PALS and Real-Time Maude. Sec-
tion 3 describes a simple model of an airplane turning control system whose continuous dynamics is
governed by differential equations. Section 4 presents a modeling framework for multirate ensembles in
Real-Time Maude, and Section 5 then formally specifies the airplane turning control system using the
ensemble framework. Section 6 illustrates Real-Time Maude-based verification of the airplane turning
control system. Finally, Section 7 gives some concluding remarks.
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2 Preliminaries on Multirate PALS and Real-Time Maude

2.1 Multirate PALS

In many distributed real-time systems, such as automotive and avionics systems, the system design is
essentially a synchronous design that must be realized in a distributed setting. Both design and verifi-
cation of such virtually synchronous distributed real-time systems is very hard because of asynchronous
communication, network delays, clock skews, and because the state space explosion caused by the sys-
tem’s concurrency can make it unfeasible to apply model checking to verify required properties. The
(single-rate) PALS (“physically asynchronous, logically synchronous”) formal design pattern [9, 11] re-
duces the design and verification of a virtually synchronous distributed real-time system to the much
simpler task of designing and verifying its synchronous version, provided that the network infrastructure
can guarantee bounds on the messaging delays and the skews of the local clocks.

We have recently developed Multirate PALS [4], which extends PALS to hierarchical multirate sys-
tems in which controllers with the same rate communicate with each other and with a number of faster
components. As is common for hierarchical control systems [1], we assume that the period of the higher-
level controllers is a multiple of the period of each fast component. Given a multirate synchronous de-
sign E, bounds Γ on the network transmission times and clock skews, and function T assigning to each
distributed component its period, Multirate PALS defines a transformation (E,T,Γ) 7→MA (E,T,Γ)
mapping each synchronous design E to a specification MA (E,T,Γ) of the corresponding distributed
multirate real-time system. In [4] we formalize Multirate PALS and show that the synchronous design E
and the asynchronous distributed model MA (E,T,Γ) satisfy the same temporal logic properties.

Multirate Synchronous Models. In Multirate PALS, the synchronous design is formalized as the syn-
chronous composition of a collection of typed machines, an environment, and a wiring diagram that
connects the machines. A typed machine M is a tuple M = (Di,S,Do,δM), where Di = Di1×·· ·×Din is
an input set, S is a set of states, Do = Do1×·· ·×Dom is an output set, and δM ⊆ (Di×S)× (S×Do) is a
transition relation. Such a machine M has n input ports and m output ports.

To compose a collection of machines with different rates into a synchronous system in which all
components perform one transition in lock-step in each iteration of the system, we “slow down” the
faster components so that all components run at the slow rate in the synchronous composition. A fast
machine that is slowed, or decelerated, by a factor k performs k internal transitions in one synchronous
step. Since the fast machine consumes an input and produces an output in each of these internal steps, the
decelerated machine consumes (resp. produces) k-tuples of inputs (resp. outputs) in each synchronous
step. A k-tuple output from the fast machine must therefore be adapted so that it can be read by the
slow component. That is, the k-tuple must be transformed to a single value (e.g., the average of the k
values, the last value, or any other function of the k values); this transformation is formalized as an input
adaptor. Likewise, the single output from a slow component must be transformed to a k-tuple of inputs
to the fast machine; this is also done by input adaptors which may, for example, transform an input d to a
k-tuple (d,⊥, . . . ,⊥) for some “don’t care” value ⊥. Formally, an input adaptor αM for a typed machine
M = (Di,S,Do,δM) is a family of functions αM = {αk : D′k→ Dik}k∈{1,...,n}, each of which determines a
desired value from an output D′k of another typed machine.

Typed machines (with rate assignments and input adaptors) can be “wired together” into multirate
machine ensembles as shown in Figure 1, where “local” fast environments are integrated with their
corresponding fast machines. A multirate machine ensemble is a tuple

E= (JS∪ JF ∪{e},{M j} j∈Js∪JF ,E,src,rate,adaptor)
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where: (i) JS (resp., JF ) is a finite set of indices for controller components (resp., fast components), and
e 6∈ JS∪JF is the environment index, (ii) {M j} j∈JS∪JF is a family of typed machines, (iii) the environment
is a pair E =(De

i ,D
e
o), with De

i the environment’s input set and De
o its output set, (iv) src is a function that

assigns to each input port ( j,n) (input port n of machine j) its “source,” such that there are no connections
between fast machines, (v) rate is a function assigning to each fast machine a value denoting how many
times faster the machine runs compared to the controller machines, and (vi) adaptor is a function that
assigns an input adaptor to each l ∈ JF ∪ JS.

M1
(rate=1)

M2
(rate=1)

M3
(rate=3)

M4 + env2
(rate=2)

M5 + env3
(rate=3)

Figure 1: A multirate machine ensemble. M1 and M2 are controller machines, and env2 and env3 are local
environments with faster rates, hidden from high-level controllers.

The transitions of all machines in an ensemble are performed simultaneously, where each fast ma-
chine with rate k performs k “internal transitions” in one synchronous transition step. If a machine has a
feedback wire to itself and/or to another machine, then the output becomes an input at the next instant.
The synchronous composition of a multirate ensemble E is therefore equivalent to a single machine ME,
where each state of ME consists of the states of its subcomponents and of the contents in the feedback
outputs, as explained in [4, 10]. The synchronous composition of the ensemble in Figure 1 is the machine
given by the outer box. Since ME is itself a typed machine which can appear as a component in another
multirate ensemble, we can easily define hierarchical multirate systems.

2.2 Real-Time Maude

Real-Time Maude [12] extends the Maude language and tool [6] to support the formal modeling analysis
of real-time systems in rewriting logic. In Real-Time Maude, the data types of the system are defined by
a membership equational logic [6] theory (Σ,E) with Σ a signature2 and E a set of confluent and termi-
nating conditional equations; the system’s instantaneous (i.e., zero-time) local transitions are defined by
(possibly conditional) labeled instantaneous rewrite rules3; and time elapse is modeled explicitly by tick
rewrite rules of the form crl [l] : {u} => {v} in time τ if cond, which specifies a transition
with duration τ from an instance of the term {u} to the corresponding instance of the term {v}.

The Real-Time Maude syntax is fairly intuitive. A function symbol f is declared with the syntax op

f : s1 . . . sn -> s, where s1 . . . sn are the sorts of its arguments, and s is its (value) sort. Equations are
written with syntax eq u = v, or ceq u = v if cond for conditional equations. We refer to [6]
for more details on the syntax of Real-Time Maude.

2That is, Σ is a set of declarations of sorts, subsorts, and function symbols.
3E = E ′∪A, where A is a set of axioms such as associativity and commutativity, so that deduction is performed modulo A.
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A class declaration class C | att1 : s1, . . ., attn : sn declares a class C with attributes att1
to attn of sorts s1 to sn. An object of class C is represented as a term <O : C | att1 : val1, ...,attn : valn >
where O is the object’s identifier, and where val1 to valn are the current values of the attributes att1 to
attn. The global state has the form {t}, where t is a term of sort Configuration that has the structure
of a multiset of objects and messages, with multiset union denoted by a juxtaposition operator that is
declared associative and commutative. A subclass inherits all the attributes and rules of its superclasses.

The dynamic behavior of concurrent object systems is axiomatized by specifying each of its transition
patterns by a rewrite rule. For example, the rule

rl [l] : m(O,w) < O : C | a1 : x, a2 : O’, a3 : z > =>

< O : C | a1 : x + w, a2 : O’, a3 : z > dly(m’(O’),x) .

defines a parametrized family of transitions in which a message m, with parameters O and w, is read and
consumed by an object O of class C. The transitions change the attribute a1 of the object O and send a
new message m’(O’) with delay x. “Irrelevant” attributes (such as a3) need not be mentioned in a rule.

A Real-Time Maude specification is executable, and the tool provides a variety of formal analysis
methods. The rewrite command (trew t in time <= τ .) simulates one behavior of the system
within time τ , starting with a given initial state t. The search command

(tsearch [n] t =>* pattern such that cond in time <= τ .)

uses a breadth-first strategy to find n states reachable from the initial state t within time τ , which match
a pattern and satisfy a condition. The Real-Time Maude’s LTL model checker checks whether each
behavior from an initial state, possibly up to a time bound, satisfies a linear temporal logic formula. State
propositions are operators of sort Prop. A temporal logic formula is constructed by state propositions
and temporal logic operators such as True, ~ (negation), /\, \/, -> (implication), [] (“always”), <>
(“eventually”), U (“until”), and O (“next”). The command (mc t |=u ϕ in time <= τ .) checks
whether the temporal logic formula ϕ holds in all behaviors up to duration τ from the initial state t.

3 The Airplane Turning Control System

This section presents a simple model of an avionics control system to turn an aircraft. In general, the
direction of an aircraft is maneuvered by the ailerons and the rudder. As shown in Figure 2, an aileron is
a flap attached to the end of the left or the right wing, and a rudder is a flap attached to the vertical tail
(the aircraft figures in this section are borrowed from [7]).

116 3 Aerodynamics and Aircraft Control

Fig. 3.15 Aircraft axes and velocity components.

(c) Body axes are natural ones for the pilot and are the axes along which the inertia
forces during manoeuvres (e.g. the normal acceleration during turns) are sensed.

(d) The transformation of motion data with respect to body axes to fixed space axes
is not difficult with modern processors. Broadly speaking body axes are used in
deriving the control dynamics and short term behaviour of the aircraft. Space
axes are more suitable for the longer period guidance aspects in steering the
aircraft to follow a particular flight path with respect to the Earth.

Referring to Figure 3.15, the origin of the axes, O, is located at the centre of
gravity (CG) of the aircraft with OX and OZ in the plane of symmetry of the air-
craft (longitudinal plane) with OZ positive downwards and OY positive to starboard
(right). The figure shows the longitudinal and lateral planes of the aircraft. A fixed
frame of axes is assumed to be instantaneously coincident with the moving frame
and the velocity components of the aircraft CG along the OX, OY, OZ axes with re-
spect to this fixed frame are the forward velocity, U , the sideslip velocity, V , and the
vertical velocity, W , respectively. The corresponding angular rates of rotation of the
body axes frame about OX, OY, OZ are the roll rate, p, the pitch rate, q , and the yaw
rate, r , with respect to this fixed frame of axes. The derivation of the acceleration
components when the aircraft’s velocity vector is changing both in magnitude and
direction is set out below as it is fundamental to deriving the equations of motion.
Basically the components are made up of centrifugal (strictly speaking centripetal)
acceleration terms due to the changing direction of the velocity vector as well as the
components due to its changing magnitude.

Figure 2: The ailerons and the rudder of an aircraft.
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When an aircraft makes a turn, the aircraft rolls towards the desired direction of the turn, so that the
lift force caused by the two wings acts as the centripetal force and the aircraft moves in a circular motion.
The turning rate dψ can be given as a function of the aircraft’s roll angle φ :

dψ = (g/v) ∗ tanφ (1)

where ψ is the direction of the aircraft, g is the gravity constant, and v is the velocity of the aircraft [7].
The ailerons are used to control the rolling angle φ of the aircraft by generating different amounts of lift
force in the left and the right wings. Figure 3 describes such a banked turn using the ailerons.

3.4 Aircraft Dynamics 129

Fig. 3.23 Rolling moment due to rate of roll.

on the other wing is decreased and a rolling moment is thus generated. The rolling
moment due to the rate of roll, p, acts in the opposite sense to the direction of rolling
and is equal to Lpp where Lp is the rolling moment derivative due to rate of roll.

Yawing moment derivative due to rate of roll Np. The rate of roll which increases
the lift on the outer part of one wing and reduces it on the other also creates a
differential drag effect. The increase in lift is accompanied by an increase in drag in
the forward direction and the decrease in lift on the other wing by a corresponding
reduction in drag. A yawing moment is thus produced by the rate of roll, p, which
is equal to Npp where Np is the yawing moment derivative due to rate of roll.

Yawing moment derivative due to rate of yaw Nr . The rate of yaw, r , produces
a tangential velocity component equal to lf r where lf is the distance between the
aerodynamic centre of the fin and the yaw axis through the CG. The resulting change
in the effective fin incidence angle, lf r/VT , produces a lift force which exerts a
damping moment about the CG opposing the rate of yaw. The yawing moment due
to the rate of yaw is equal to Nrr where Nr is the yawing moment derivative due to
rate of yaw.

Rolling moment derivative due to rate of yaw Lr . When the aircraft yaws, the
angular velocity causes one wing to experience an increase in velocity relative to
the airstream and the other wing a decrease. The lift on the leading wing is thus
increased and the trailing wing decreased thereby producing a rolling moment. The
rolling moment derivative due to rate of yaw is denoted by Lr and the rolling mo-
ment due to rate of yaw is equal to Lrr .

Lateral control derivatives due to ailerons and rudder. The ailerons and rudder
are illustrated in Figure 3.15. The angle through which the ailerons are deflected
differentially from their position in steady trimmed flight is denoted by ξ and the
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Fig. 3.33 Forces acting in a turn.

Z sin ! = mVT "̇

Vertical component of the lift force is Z cos !. Equating this to the aircraft weight
gives

Z cos ! = mg

from which

tan ! = VT "̇

g
(3.66)

Thus the acceleration towards the centre of the turn is g tan !.
Referring to the inset vector diagram in Figure 3.33, the normal acceleration

component is thus equal to g sec !. Thus a 60◦ banked turn produces a centripetal
acceleration of 1.73g and a normal acceleration of 2g. At a forward speed of 100 m/s
(200 knots approx.) the corresponding rate of turn would be 10.4◦/s.

The lift required from the wings increases with the normal acceleration and the
accompanying increase in drag requires additional engine thrust if the forward speed
is to be maintained in the turn. The ability to execute a high g turn thus requires a
high engine thrust/aircraft weight ratio.

To execute a coordinated turn with no sideslip requires the operation of all three
sets of control surfaces, that is the ailerons and the tailplane (or elevator) and to a
lesser extent the rudder. It is also necessary to operate the engine throttle(s) to con-
trol the engine thrust. The pilot first pushes the stick sideways to move the ailerons
so that the aircraft rolls, the rate of roll being dependent on the stick movement. The
rate of roll is arrested by centralising the stick when the desired bank angle for the
rate of turn has been achieved. The pilot also pulls back gently on the stick to pitch
the aircraft up to increase the wing incidence and hence the wing lift to stop loss

Figure 3: Forces acting in a turn of an aircraft with φ a roll angle and ρ a roll rate.
3.4 Aircraft Dynamics 127

Fig. 3.21 Lateral forces.

Side force derivative due to sideslip velocity Yv . The change in sideslip velocity,
v, during a disturbance changes the incidence angle, β, of the aircraft’s velocity
vector, VT , (or relative wind) to the vertical surfaces of the aircraft comprising the
fin and fuselage sides (see Figure 3.21). The change in incidence angle v/VT results
in a sideways lifting force being generated by these surfaces. The net side force from
the fuselage and fin combined is equal to Yvv where Yv is the sideforce derivative
due to the sideslip velocity.

Yawing moment derivative due to sideslip velocity Nv . The side force on the fin
due to the incidence, β, resulting from the sideslip velocity, v, creates a yawing
moment about the CG which tends to align the aircraft with the relative wind in a
similar manner to a weathercock (refer to Figure 3.21).

The main function of the fin is to provide this directional stability (often referred
to as weathercock stability). This yawing moment is proportional to the sideslip ve-
locity and is dependent on the dynamic pressure, fin area, fin lift coefficient and the
fin moment arm, the latter being the distance between the aerodynamic centre of the
fin and the yaw axis through the CG. However, the aerodynamic lateral forces acting
on the fuselage during side-slipping also produce a yawing moment which opposes
the yawing moment due to the fin and so is destabilising. The net yawing moment
due to sideslip is thus dependent on the combined contribution of the fin and fusel-
age. The fin area and moment arm, known as the fin volume, is thus sized to provide

Figure 4: Adverse yaw.

However, the rolling of the aircraft causes a difference in drag
on the left and the right wings, which produces a yawing moment
in the opposite direction to the roll, called adverse yaw. This ad-
verse yaw makes the aircraft sideslip in a wrong direction with the
amount of the yaw angle β , as described in Figure 4. This undesir-
able side effect is usually countered by using the aircraft’s rudder,
which generates the side lift force on the vertical tail that opposes
the adverse yaw. To turn an aircraft safely and effectively, the roll
angle φ of the aircraft should be increased for the desired direction
while the yaw angle β stays at 0.

Such a roll and yaw can be modeled by simple mathematical
equations under some simplifying assumptions, including: (i) the
aircraft’s wings are flat with respect to the horizontal axis of the
aircraft, (ii) the altitude of the aircraft does not change, which can
be separately controlled by using the aircraft’s elevator (a flap at-
tached to the horizontal tail of the aircraft), (iii) the aircraft main-
tains a constant speed by separately controlling the thrust power of
the aircraft, and (iv) there are no external influences such as wind
or turbulence. Then, the roll angle φ and the yaw angle β can be
modeled by the following equations [2]:
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dφ
2 = (Lift Right − Lift Left)/(Weight ∗ Length of Wing) (2)

dβ
2 = Drag Ratio ∗ (Lift Right − Lift Left)/(Weight ∗ Length of Wing)

+Lift Vertical/(Weight ∗ Length of Aircraft) (3)

The lift force from the left, the right, or the vertical wing is given by the following linear equation:

Lift = Lift constant ∗ Angle (4)

where, for Lift Right and Lift Left, Angle is the angle of the aileron, and for Lift Vertical, Angle is the
angle of the rudder. The lift constant depends on the geometry of the corresponding wing, and the drag
ratio is given by the size and the shape of the entire aircraft.

We model the airplane turning control system as a multirate ensemble with 4 typed machines: the
main controller, the left wing controller, the right wing controller, and the rudder controller. The environ-
ment for the airplane turning control system is given by the pilot console, which is modeled as another
typed machine and is connected to the main controller on the outside of the control system. Each sub-
controller moves the surface of the wing towards the goal angle specified by the main controller, which
sends the desired angles to the sub-controllers to make a coordinated turn whose goal direction is spec-
ified from the pilot console. The main controller also models position sensors that measure the roll, the
yaw, and the direction by using the aeronautics equations above. In this case study, we assume that the
main controller has period 60ms, the left and the right wing controllers have period 15ms (rate 4), and
the rudder controller has period 20ms (rate 3). Our model is a two-level hierarchical multirate ensemble,
since the airplane turning control system itself forms a single typed machine with period 60ms (rate 10)
and then is connected to the pilot console with period 600ms, as illustrated in Figure 5.

The Airplane Turning Control System (60ms, rate = 10)

Main
Controller

+
Sensors

(60ms, rate = 1)

Left-wing Sub-controller 
(15ms, rate = 4)

Rudder Sub-controller 
(20ms, rate = 3)

Right-wing Sub-controller 
(15ms, rate = 4)

Pilot
Console

(600ms,
  rate = 1)

Figure 5: The architecture of our airplane turning control system.

Using the framework introduced in Section 4 for specifying and executing multirate synchronous
ensembles in Real-Time Maude, we specify in Section 5 (and redefine in Section 6) the multirate ensem-
ble E corresponding to the above airplane control system. In Section 6 we then exploit the bisimulation
E ' MA (E,T,Γ) (see [4]) to verify properties about the asynchronous realization MA (E,T,Γ) by
model checking them on the much simpler system E.
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4 Multirate Synchronous Ensembles in Real-Time Maude

We have defined a framework for formally modeling and analyzing multirate ensembles in Real-Time
Maude. Given a specification of deterministic single typed machines, their periods, input adaptors, a
wiring diagram, and one top-level nondeterministic environment, our framework gives an executable
Real-Time Maude model of the synchronous composition of the ensemble. It is natural to assume that
controller components are deterministic; however, if we have a nondeterministic component, our frame-
work could be modified so that local transitions are modeled by rewrite rules instead of equationally
defined functions. If the system has “local” fast environments, they should be dealt with by the corre-
sponding fast machines.4

This section gives a brief overview of our framework and of how the user should specify the ensem-
ble; the entire definition of our framework is given in our longer report [3].

Representing Multirate Ensembles in Real-Time Maude. The multirate ensemble can be naturally
specified in an object-oriented style, where its machines and the ensemble can be modeled as objects.
A typed machine is represented as an object instance of a subclass of the base class Component, which
has the common attributes rate, period, and ports.

class Component | rate : NzNat, period : Time, ports : Configuration .

The period denotes the period of the typed machine, and rate denotes its rate in a multirate ensemble.
The ports attribute contains the input/output ”ports” of a typed machine, represented as a multiset of
Port objects, whose content attribute contains the data content as a list of values of the supersort Data:

class Port | content : List{Data} . class InPort . class OutPort .

subclass InPort OutPort < Port .

For each typed machine, the user must define an appropriate subclass of the class Component, the
function delta defining its transition function, and the adaptor function for each input port:

op delta : Object -> Object .

op adaptor : ComponentId PortId NeList{Data} -> NeList{Data} .

where the sort NeList{Data} denotes a non-empty list of data.
A multirate machine ensemble is modeled as an object instance of the class Ensemble. We support

the definition of hierarchical ensembles by letting an ensemble be a Component, which also contains the
wiring diagram (connections) and the machines in the ensemble. In this case, the ports attribute
represents the environment ports of the ensemble:

class Ensemble | machines : Configuration, connections : Set{Connection} .

subclass Ensemble < Component .

A wiring diagram is modeled as a set of connections. A connection from an output port P1 of a com-
ponent C1 to an input port P2 of a component C2 is represented as a term C1.P1 --> C2.P2. Similarly, a
connection between an environment port P1 and a machine port P2 of a subcomponent C2 is represented
as a term P --> C2.P2 (for an environment input) or a term C2.P2 --> P (for an environment output).

4An environment can be viewed as a nondeterministic typed machine [10]. Therefore, a faster machine’s environment and
the fast machine itself form a nondeterministic 2-machine ensemble.
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Defining Synchronous Compositions of Multirate Ensembles. Given these definitions of an ensem-
ble, our framework defines its synchronous composition as follows. The function delta of a multi-rate
machine ensemble E defines the transitions in the synchronous composition of E.

eq delta(< C : Ensemble | >)

= transferResults(execute(transferInputs(< C : Ensemble | >))) .

In the above equation, the function transferInputs first transfers to each input port a value in the
corresponding environment output port or the feedback output port. The execute function below ap-
plies the appropriate input adaptor to each sub-component, and then performs the function delta of
each component as many times as its deceleration rate. Finally, the new outputs in sub-components are
transferred to the environment ports by the function transferResults.

eq execute(< C : Ensemble | machines : COMPS >)

= < C : Ensemble | machines : executeSub(COMPS) > .

eq executeSub(< C : Component | > COMPS)

= k-delta(applyAdaptors(< C : Component | >)) executeSub(COMPS) .

eq executeSub(none) = none .

where k-delta applies delta as many times as the rate of a given typed machine:

eq k-delta(< C : Component | rate : N >) = k-delta(N, < C : Component | >) .

eq k-delta(s N, OBJECT) = k-delta(N, delta(OBJECT)) .

eq k-delta( 0, OBJECT) = OBJECT .

The rates and periods should be consistent in an ensemble; that is, if some component has rate k and
period p, then any component with rate k · t in the same ensemble should have period p/t.

Formalizing the Synchronous Steps. When each typed machine is deterministic and the system con-
tains one (nondeterministic) top-level environment, the dynamics of the entire system given by a multirate
machine ensemble is specified by the following tick rewrite rule that simulates each synchronous step of
the composed system:

crl [step] : {< C : Component | period : T >}

=>

{delta(envOutput(ENVOUTPUT, clearOutputs(< C : Component | >)))}

in time T

if possibleEnvOutput => ENVOUTPUT .

In the condition of the rule, any possible environment output can be nondeterministically assigned
to the variable ENVOUTPUT, since the constant possibleEnvOutput can be rewritten to any possible
environment output by user-defined rewriting rules of the form

rl possibleEnvOutput => (PortId1 = Value1, . . ., PortIdn = Valuen) .

These values are inserted into the appropriate component input port by the envOutput function, after
clearing the outputs generated in the previous round by the clearOutputs function.

eq envOutput((P = DL, ENVASSIGNS), < C : Component | ports : < P : InPort | > PORTS >)

= envOutput(ENVASSIGNS, < C : Component | ports : < P : InPort | content : DL > PORTS >) .

eq envOutput(empty, < C : Component | >) = < C : Component | > .
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The delta function is finally applied to perform the transition of the component. Since an ensemble
is an instance of the Component class and the delta function is also given for the Ensemble class,
this tick rewrite rule can also be applied to a hierarchical multirate ensemble. After each synchronous
step, the input ports of the component contain the environment input given by the possibleEnvOutput,
and the output ports will have the resulting environment output generated by the delta function. The
period does not have any effect on the structure of the transition system, but can be useful to verify
timed properties, such as time-bounded LTL properties and metric CTL properties [8].

5 Modeling the Airplane Turning Control System

In this section we formally specify the airplane turning control system in Section 3 using the ensemble
framework in Real-Time Maude described in Section 4. The entire specification is available in our
report [3]. The following parameters are chosen to be representative of a small general aviation aircraft.
The speed of the aircraft is assumed to be 50m/s, and the gravity constants is g = 9.80555m/s2.

eq planeSize = 4.0 . eq weight = 1000.0 . eq wingSize = 2.0 .

eq virtLiftConst = 0.6 . eq horzLiftConst = 0.4 . eq dragRatio = 0.05 .

Subcontroller. The subcontrollers for the ailerons and the rudder are modeled as object instances of
the following class SubController:

class SubController | curr-angle : Float, goal-angle : Float, diff-angle : Float .

subclass SubController < Component .

A subcontroller increases/decreases the curr-angle toward the goal-angle in each round, but the
difference in a single (fast) round should be less than or equal to the maximal angle diff-angle. The
transition function delta of a subcontroller is then defined by the following equation:

ceq delta(< C : SubController | ports : < input : InPort | content : D LI >

< output : OutPort | content : LO >,

curr-angle : CA, goal-angle : GA, diff-angle : DA >)

=

< C : SubController | ports : < input : InPort | content : LI >

< output : OutPort | content : LO d(CA’) >,

curr-angle : CA’, goal-angle : GA’ >

if CA’ := angle(moveAngle(CA,GA,DA))

/\ GA’ := angle(if D == bot then GA else float(D) fi) .

where moveAngle(CA,GA,DA) equals the angle that is increased or decreased from the current angle
CA to the goal angle GA up to the maximum angle difference DA:

eq moveAngle(CA, GA, DA) = if abs(GA - CA) > DA then CA + DA * sign(GA - CA) else GA fi .

The angle function keeps the angle value between −180◦ and 180◦. The delta function updates the
goal angle to the input from the main controller, and keeps the previous goal if it receives bot (i.e., ⊥).

Main Controller. The main controller for the aircraft turning control system is modeled as an object
instance of the following class MainController:

class MainController | velocity : Float, goal-dir : Float,

curr-yaw : Float, curr-rol : Float, curr-dir : Float .

subclass MainController < Component .
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The velocity attribute denotes the speed of the aircraft. The curr-yaw, curr-roll, and curr-dir

attributes model the position sensors of the aircraft by indicating the current yaw angle β , roll angle φ ,
and direction Ψ, respectively. The goal-dir attribute denotes the goal direction given by the pilot.

For each round of the main controller, the attributes curr-yaw, curr-roll, and curr-dir are
updated5 using the angles of the wings in the input ports that are transferred from the subcontrollers. The
goal-dir is also updated if a new goal direction arrives to the input ports. Based on the new current
position status and the goal direction, the new angles of the wings are evaluated and sent back to the
subcontrollers. The transition function delta of the main controller is then defined as follows:

ceq delta(< C : MainController |

ports : < input : InPort | content : IN PI > < output : OutPort | content : PO >

< inLW : InPort | content : d(LA) LI > < outLW : OutPort | content : LO >

< inRW : InPort | content : d(RA) RI > < outRW : OutPort | content : RO >

< inTW : InPort | content : d(TA) TI > < outTW : OutPort | content : TO >,

velocity : VEL, period : T,

curr-yaw : CY, curr-rol : CR,

curr-dir : CD, goal-dir : GD >)

=

< C : MainController |

ports : < input : InPort | content : PI > < output : OutPort | content : PO OUT >

< inLW : InPort | content : LI > < outLW : OutPort | content : LO d(- RA’) >

< inRW : InPort | content : RI > < outRW : OutPort | content : RO d(RA’) >

< inTW : InPort | content : TI > < outTW : OutPort | content : TO d(TA’) >,

curr-yaw : CY’, curr-rol : CR’,

curr-dir : CD’, goal-dir : GD’ >

if CY’ := angle( CY + dBeta(LA,RA,TA) * float(T) )

/\ CR’ := angle( CR + dPhi(LA,RA) * float(T) )

/\ CD’ := angle( CD + dPsi(CR,VEL) * float(T) )

/\ GD’ := angle( if IN == bot then GD else GD + float(IN) fi )

/\ RA’ := angle( horizWingAngle(CR’, goalRollAngle(CR’, CD’, GD’)) )

/\ TA’ := angle( tailWingAngle(CY’) )

/\ OUT := dir: CD’ roll: CR’ yaw: CY’ goal: GD’ .

The first four lines in the condition compute new values for curr-yaw, curr-roll, curr-dir, and
goal-dir, based on values in the input ports. A non-⊥ value in the port input is added to goal-dir.
The variables RA’ and TA’ denote new angles of the ailerons and the rudder, computed by the control
functions explained below. Such new angles are queued in the corresponding output ports, and will be
transferred to the related subcontrollers at the next synchronous step since they are feedback outputs.
The last line in the condition gives the output for the current step, the new position information of the
aircraft, which will be transferred to its container ensemble at the end of the current synchronous step.

The new angles of the ailerons and the rudder are computed by the control functions. The function
horizWingAngle computes the new angle for the aileron in the right wing, based on the current roll
angle and the goal roll angle. The angle of the aileron in the left wing is always exactly opposite to
the one of the right wing. The function goalRollAngle computes the desired roll angle φ to make
a turn, based on the current roll angle and the difference between the goal direction and the current
direction. Finally, in order to achieve a coordinated turn where the yaw angle is always 0, the function
tailWingAngle computes the new rudder angle based on the current yaw angle. We define all three
control functions by simple linear equations as follows, where CR is a current roll angle and CY is a
current yaw angle:

5 We currently use the simple Euler’s method to compute such position values given by the differential aeronautical equations
(1-3), but more precise methods can be easily applied.
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eq goalRollAngle(CR,CD,GD) = sign(angle(GD - CD)) * min(abs(angle(GD - CD)) * 0.3, 20.0) .

eq horizWingAngle(CR,GR) = sign(angle(GR - CR)) * min(abs(angle(GR - CR)) * 0.3, 45.0) .

eq tailWingAngle(CY) = sign(angle(- CY)) * min(abs(angle(- CY)) * 0.8, 30.0) .

That is, the goal roll angle is proportional to the difference GD − CD between the goal and current direc-
tions with the maximum 20◦. The horizontal wing (aileron) angles are also proportional to the difference
GR − CR between the goal and current roll angles with the maximum 45◦. Similarly, the rudder angle
is proportional to the difference −CY between the goal and current yaw angles with the maximum 30◦,
where the goal yaw angle is always 0◦.

Pilot Console. The pilot console, the environment for the aircraft turning control system, is modeled
as an object instance of the following class PilotConsole:

class PilotConsole | scenario : List{Data} .

subclass PilotConsole < Component .

The attribute scenario contains a list of goal angles that are transmitted to the main controller. The
transition function delta of the pilot console keeps sending goal angles in the scenario to its output
port until no more data remains in the scenario. In addition, the pilot console has an extra input port
to receive an outer environment input to generate nondeterministic goal directions. A non-⊥ value in the
input port is added to the output given by the scenario.

ceq delta(< C : PilotConsole | ports : < input : InPort | content : IN LI >

< output : OutPort | content : LO >,

scenario : d(F) SL >)

=

< C : PilotConsole | ports : < input : InPort | content : LI >

< output : OutPort | content : LO OUT >,

scenario : SL > .

if OUT := d(if IN == bot then F else angle(F + float(IN)) fi) .

eq delta(< C : PilotConsole | ports : < input : InPort | content : IN LI >

< output : OutPort | content : LO >,

scenario : nil >)

=

< C : PilotConsole | ports : < input : InPort | content : LI >

< output : OutPort | content : LO bot > > .

If the scenario is empty, i.e., nil, the outer environment input is ignored, and the pilot console will
keep sending ⊥ to its output port.

Airplane System. The entire architecture of the airplane turning control system in Figure 5, including
the environment (i.e., the pilot console), is then represented as an ensemble object with subcomponents
as follows (some parts of the specification are replaced by ‘...’):

< airplane : Ensemble |

rate : 1,

period : 600,

ports : < input : InPort | content : nil > < output : OutPort | content : nil >,

connections :

input --> pilot . input ; pilot . output --> csystem . input ; csystem . output --> output,

machines :(
< pilot : PilotConsole | rate : 1, period : 600,... >
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< csystem : Ensemble |

rate :10, period : 60,

ports : < input : InPort | content : nil >

< output : OutPort | content : nil >,

connections :

input --> main . input ; main . output --> output ;

left . output --> main . inLW ; main . outLW --> left . input ; ...,

machines : (< main : MainController | rate : 1, period : 60,... >

< left : SubController | rate : 4, period : 15,... >

< right : SubController | rate : 4, period : 15,... >

< rudder : SubController | rate : 3, period : 20,... >) >
)
>

The top-level ensemble airplane includes the pilot console pilot and the ensemble csystem for the
airplane turning control system. The airplane has one input port for the pilot console to generate
nondeterministic goals, and one output port to display the result.

In the ensemble csystem, the input adaptors for the subcontrollers generate a vector with extra ⊥’s
and the adaptor for the main controller selects the last value of the input vector.

eq adaptor(left, input, D) = D bots(3) . eq adaptor(rudder, input, D) = D bots(2) .

eq adaptor(right, input, D) = D bots(3) . eq adaptor(main, P, LI D) = D .

The function bots(n) generates n ⊥-constants. Similarly, in the top ensemble airplane, the input
adaptor for the ensemble csystem generates a vector with extra⊥’s, and the adaptor for the pilot console
selects the last value of the input vector.

eq adaptor(csystem, input, D) = D bots(9)

eq adaptor(pilot, input, LI D) = D .

6 Formal Analysis of the Airplane Turning Control System

This section explains how we have formally analyzed the above Real-Time Maude model of the multirate
synchronous design of the airplane turning control system, and how the turning control system has been
improved as a result of our analysis. Multirate PALS ensures that the verified properties also hold in a
distributed real-time realization of the design. There are two important requirements that the airplane
turning control system should satisfy:

• Liveness: the airplane should reach the goal direction within a reasonable time with a stable status
in which both the roll angle and the yaw angle are close to 0.

• Safety: during a turn, the yaw angle should always be close to 0.

We first analyze deterministic behaviors when the airplane turns +60◦ to the right.6 In this case,
there are no outer environment inputs to the pilot console, so that the pilot console sends the goal angles
in the scenario to the main controller in turn. We consider the following three scenarios:

1. The pilot gradually increases the goal direction in 6 seconds, +10◦ for each second.

2. The pilot sets the goal direction to +60◦ at the first step.

3. The goal direction is at first −30◦, and then it is suddenly set to +60◦ in one second.

Figure 6 shows the simulation results for these three scenarios up to 6 seconds, obtained by using the
Real-Time Maude simulation command (trew {model(Scenario)} in time <= 6000 .), where

6In our model, a turn of positive degrees is a right turn, and one of negative degrees a left turn.
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Figure 6: Simulation results for turning scenarios: the directions of aircraft (left), the roll angles (top
right), and the yaw angles (bottom right)

model(Scenario) gives the initial state of the system with the scenario Scenario for the pilot console.
For example, the scenario 3 is represented as the term “d(-30.0) d(90.0)” for a list of directions. As
we can see in the graph, the airplane reaches the goal direction 60◦ in a fairly short time, and the roll
angle also goes to a stable status. However, the yaw angle seems to be quite unstable.

There are basically two reasons why the yaw angle is not sufficiently close to 0 during a turn. First,
since all control functions are linear, the new angles for the ailerons and the rudder are not small enough
when the yaw angle is near 0. Second, the roll angle is sometimes changing too fast, so that the rudder
cannot effectively counter the adverse yaw. Therefore, we modify the control functions as follows:

ceq horizWingAngle(CR, GR)

= sign(FR) * (if abs(FR) > 1.0 then min(abs(FR) * 0.3, 45.0) else FR ^ 2.0 * 0.3 fi)

if FR := angle(GR - CR) .

ceq tailWingAngle(CY)

= sign(FY) * (if abs(FY) > 1.0 then min(abs(FY) * 0.8, 30.0) else FY ^ 2.0 * 0.8 fi)

if FY := angle(- CY) .

ceq goalRollAngle(CR, CD, GD)

= if abs(FD * 0.32 - CR) > 1.5 then CR + sign(FD * 0.32 - CR) * 1.5 else FD * 0.32 fi

if FD := angle(GD - CD) .

When the difference between the goal and the current angles (i.e., FR or FY) is less than or equal to 1,
the functions horizWingAngle and tailWingAngle are now not proportional to the difference, but
proportional to the square of it. Furthermore, the goal roll angle can be changed at most 1.5◦ at a time,
so that there is no more abrupt rolling.

In order to check if the new control functions are safe, we define some auxiliary functions. The
function PortId ?= Component returns the content of the corresponding port in the Component:

eq P ?= < C : Component | ports : < P : Port | content : DL > PORTS > = DL .

and the function safeYawAll(OutputDataList) checks whether every output data in the given list has
a safe yaw angle, namely, an angle less than 1.0◦.
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eq safeYawAll(DO LI) = abs(yaw(DO)) < 1.0 and safeYawAll(LI) .

eq safeYawAll(nil) = true .

Then, we can verify, using the Real-Time Maude search command, that there is no dangerous yaw angle
within sufficient time bound; e.g., for the scenario 3:

Maude> (tsearch [1] {model(d(-30.0) d(90.0))} =>* {SYSTEM}

such that not safeYawAll(output ?= SYSTEM) in time <= 27000 .)

No solution

Although each state of the transition system captures only the slow steps for the top ensemble (i.e., every
600ms), safeYawAll also checks all fast steps for the main controller (every 60ms), since it accesses the
history of the main controller’s status in the output port of the top ensemble, which the main controller
sends to the top ensemble for each fast step of it.

Furthermore, we can use Real-Time Maude’s LTL model checking to verify both liveness and safety
at the same time. The desired property is that the airplane reaches the desired direction with a stable
status while keeping the yaw angle close to 0, which can formalized as the LTL formula

�(¬stable→ (safeYaw U (reach∧stable)))

where the atomic propositions safeYaw, stable, and reach are defined as follows:

eq {SYSTEM} |= safeYaw = safeYawAll(output ?= SYSTEM) .

eq {SYSTEM} |= stable = stableAll(output ?= SYSTEM) .

ceq {SYSTEM} |= reach = abs(angle(goal(DO) - dir(DO))) < 0.5

if DO := last(output ?= SYSTEM) .

and the function stableAll(OutputDataList) returns true only if both the yaw angle and the roll
angle are less than 0.5◦ for every output data in the OutputDataList. We have verified that all three
scenarios satisfy the above LTL property with the new control functions, using the time-bounded LTL
model checking command of Real-Time Maude:

Maude> (mc {model(d(-30.0) d(90.0))} |=t [] (~ stable -> (safeYaw U reach /\ stable))

in time <= 7200 .)

Result Bool : true

Finally, we have verified nondeterministic behaviors in which the pilot sends one of the turning
angles −60.0◦, −10.0◦, 0◦, 10◦, and 60.0◦ to the main controller for 6 seconds. Such nondeterministic
behaviors can be defined by adding the following five rewrite rules, which nondeterministically assign
one of these values to the input port of the pilot console:

rl possibleEnvOutput => input = d(0.0) .

rl possibleEnvOutput => input = d(10.0) . rl possibleEnvOutput => input = d(-10.0) .

rl possibleEnvOutput => input = d(60.0) . rl possibleEnvOutput => input = d(-60.0) .

The following model checking command then shows that our redesigned system, with the new control
functions, satisfies the above LTL property within 18 seconds, where one of the above five angles is
nondeterministically chosen and added to the angle 0◦ in the scenario for each step of the pilot console:

Maude> (mc {model(d(0.0) d(0.0) d(0.0) d(0.0) d(0.0) d(0.0))}

|=t

[] (~ stable -> (safeYaw U (reach /\ stable))) in time <= 18000 .)

Result Bool : true
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The number of states explored in this model checking analysis is 246,785,7 which is a huge state space
reduction compared to the distributed asynchronous model since: (i) asynchronous behaviors are elim-
inated thanks to PALS, and (ii) any intermediate fast steps for the sub-components are merged into a
single-step of the system’s top-level ensemble.

7 Conclusions

The present work can be seen from different perspectives. First, from the perspective of research on the
PALS methodology, its main contribution is to demonstrate that Multirate PALS, when used in combina-
tion with a tool like Real-Time Maude, can be effectively applied to the formal verification of nontrivial
DCPS designs, and even to the process of refining a DCPS design before it is verified. Second, from the
perspective of the formal specification and verification of distributed hybrid systems, it also shows that
Real-Time Maude is an effective tool for specifying and verifying such systems.

Much work remains ahead. On the one hand, more case studies like this one should be developed.
On the other hand, our work in [5], which applies PALS to a synchronous fragment of the AADL CPS
modeling language in the single rate case, should be extended to the Multirate PALS case. Finally, the
hybrid system applications of Real-Time Maude should be further developed independently of PALS.
Several such applications have been developed in the past; but many more are possible, and a richer
experience will be gained.
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