
A. Rensink & E. Zambon (Eds.): Graphs as Models 2015 (GaM’15)
EPTCS 181, 2015, pp. 80–96, doi:10.4204/EPTCS.181.6

© N. Hoch & U. Montanari & M. Sammartino
This work is licensed under the
Creative Commons Attribution License.

Dynamic Programming on Nominal Graphs∗

Nicklas Hoch
Volkswagen AG, Corporate Research Group

nicklas.hoch@volkswagen.de

Ugo Montanari
University of Pisa, Computer Science Department

ugo@di.unipi.it

Matteo Sammartino
Radboud University, Institute for Computing and Information Sciences

m.sammartino@cs.ru.nl

Many optimization problems can be naturally represented as (hyper) graphs, where vertices corre-
spond to variables and edges to tasks, whose cost depends on the values of the adjacent variables.
Capitalizing on the structure of the graph, suitable dynamic programming strategies can select certain
orders of evaluation of the variables which guarantee to reach both an optimal solution and a minimal
size of the tables computed in the optimization process. In this paper we introduce a simple algebraic
specification with parallel composition and restriction whose terms up to structural axioms are the
graphs mentioned above. In addition, free (unrestricted) vertices are labelled with variables, and the
specification includes operations of name permutation with finite support. We show a correspon-
dence between the well-known tree decompositions of graphs and our terms. If an axiom of scope
extension is dropped, several (hierarchical) terms actually correspond to the same graph. A suitable
graphical structure can be found, corresponding to every hierarchical term. Evaluating such a graph-
ical structure in some target algebra yields a dynamic programming strategy. If the target algebra
satisfies the scope extension axiom, then the result does not depend on the particular structure, but
only on the original graph. We apply our approach to the parking optimization problem developed
in the ASCENS e-mobility case study, in collaboration with Volkswagen. Dynamic programming
evaluations are particularly interesting for autonomic systems, where actual behavior often consists
of propagating local knowledge to obtain global knowledge and getting it back for local decisions.

1 Introduction

Many optimization problems can naturally be represented as hypergraphs, where each hyperedge is
an atomic subproblem and is attached to vertices corresponding to the problem’s variables. However,
these hypergraphs often lack an algebraic structure, which would allow for the recursive resolution of
problems, and are not able to represent the secondary optimization problem, that is: finding an optimal
variable elimination strategy. The order in which variables are eliminated may dramatically affect the
computation cost of solutions.

In this paper we introduce a simple algebraic specification for representing optimization problems.
It is similar to a process calculus, based on nominal structures (namely permutation algebras, see e.g.
[21, 14]). Optimization problems are represented as terms over the variables of the problem, consisting
of the parallel composition of subproblems. A key feature is the representation of variable elimination
via the restriction operator. In fact, since a restricted variable can only occur in its scope, its value can be
determined when solving the subproblem it encloses. For instance

(x1)((x2)A(x1,x2) ∥ (x3)B(x1,x3))
∗Research supported by the EU Integrated Project 257414 ASCENS and by the Italian MIUR Project CINA (PRIN 2010),

grant number 2010LHT4KM.

http://dx.doi.org/10.4204/EPTCS.181.6
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


N. Hoch & U. Montanari & M. Sammartino 81

represents a problem with three variables x1,x2,x3 and two atomic problems A,B, sharing x1. One can
solve the subproblem (x2)A(x1,x2) w.r.t. x2 right away, thus eliminating x2 and obtaining a solution
A′(x1) parametric w.r.t. x1; similarly for (x3)B(x1,x3). Then x1 can be eliminated in (x1)(A′(x1) ∥
B′(x1)), which yields the global solution.

The specification provides axioms that are common in process algebras, and have a natural inter-
pretation in terms of optimization problems. For instance: subproblems can be solved in any order, the
formal names of their variables are irrelevant and so on. In particular, scope extension (actually, scope re-
duction) becomes a crucial operation: it allows variables to be eliminated earlier, when solving a smaller
subproblem. This produces a more efficient solution of the secondary optimization problem of dynamic
programming.

The computation of an optimal solution is formalized as an evaluation of terms in a suitable domain
of cost functions, giving a cost to each assignment of free variables. This domain is indeed an algebra for
the specification: constructors are interpreted as operations over cost functions, performing optimization
steps, and axioms become useful properties. In particular, they tell that cost functions are preserved under
rearranging the structure of the problem to get a more efficient computation. Moreover, the underlying
nominal structure provides a notion of support, that is the set of variables that are really relevant for the
computation. This is the key for a finite, efficient representation of cost functions.

Then we introduce a graphical notation for optimization problems, called nominal hypergraphs. They
are hypergraphs with an interface where names are assigned to some vertices. These vertices are vari-
ables for the overall problem. Other vertices are variables of subproblems that must be eliminated in the
optimization process.

We show that nominal hypergraphs can be given an algebraic structure, and that (isomorphic) nomi-
nal hypergraphs can be described by (congruent) terms of our specification. This allows us to recursively
compute the cost function of a nominal hypergraph by performing the computation on any of the corre-
sponding terms. Moreover, we show that well-known structures to represent parsing of graphs, namely
tree decompositions [22, 16], can be represented in our framework as terms.

However, nominal graphs still lack a description of the variable elimination strategy. We describe
this information as hierarchical nominal hypergraphs, that are trees describing the decomposition of a
nominal hypergraph in terms of nested components, each corresponding to a subproblem. Such trees
correspond to terms without the scope extension axioms, i.e., where the scope of restrictions is fixed. A
bottom-up visit of a hierarchical nominal graph yields a dynamic programming algorithm with the given
variable elimination strategy.

We apply our approach to the e-mobility case study from the Autonomic Service-Component Ensem-
bles (ASCENS) project. In ASCENS, systems are modeled as self-aware, self-adaptive and autonomic
components running in ensembles (dynamic aggregations of components), which through interactions
among them and with the environment accomplish both individual (local) and collective (global) goals
by optimizing the use of resources.

In the e-mobility case study, carried on in collaboration with Volkswagen, the traffic system is mod-
eled as ensembles of electrical vehicles with the goal to optimize the usage of resources (electricity,
parking places, etc.), while ensuring the fulfillment of individual goals (such as reaching in time the
destination) and collective goals (avoiding traffic jams or guaranteeing that all vehicles find a spot where
to park). So in general, besides optimizing local resources, for example by finding the best trips and
journeys for each vehicle, the e-mobility case study aims at solving global problems, involving large en-
sembles of different vehicles. In [15] several optimization problems are presented for the e-mobility case
study. In [8] a parking problem is considered. In the formulation we present in this paper, parking sys-
tems are regarded as nominal hypergraphs, where each hyperedge is a parking zone and vertices are cars



82 Dynamic Programming on Nominal Graphs

that may be parked inside the zone. Their term representation is interpreted as functions telling the cost
of parking cars inside or outside certain parking zones. Thus cost functions only have binary arguments.
While more efficient, this domain choice yields operators remarkably neater than those of the classical
point-wise interpretation and our framework is flexible enough to accommodate them.

2 An algebraic specification for optimization problems

We introduce an algebraic specification for describing the structure of optimization problems. Variables
are represented as names, belonging to an enumerable setN . We write Perm(N ) for the set of permuta-
tions over N , i.e., bijective functions π ∶N →N .
Definition 1 (Optimization signature). Let C be a set of constants denoting atomic problems, equipped
with an arity function ar ∶C→N telling how many variables each problem involves. We assume the empty
problem nil, with ar(nil) = 0. The optimization signature is given by the following grammar

p,q ∶= p ∥ q ∣ (x)p ∣ pπ ∣ A(x̃) ∣ nil

where A ∈C, π ∈ Perm(N ), {x}∪ x̃ ⊆N and ∣x̃∣ = ar(A) (we overload the notation x̃ to indicate both a
vector and a set of names).

Here:
• the parallel composition p ∥ q represents the problem consisting of two subproblems p and q,

possibly sharing some variables;

• the restriction (x)p is p where the assignment for x has already been determined;

• the permutation pπ is p where variable names have been exchanged according to π;

• the atomic problem A(x̃) represents a problem that only involves the problem A over variables x̃;

• nil represents the empty problem.
We assume restriction has precedence over parallel composition.

Free names of p are recursively defined as follows

f n(p ∥ q) = f n(p)∪ f n(q) f n((x)p) = f n(p)∖{x} f n(pπ) = π( f n(p))
f n(A(x̃)) = x̃ f n(nil) =∅

We consider syntax up to structural congruence axioms shown in fig. 1. The operator ∥ forms a com-
mutative monoid, meaning that problems in parallel can be solved in any order (AX∥). Restrictions can
be α-converted (AXα ), i.e. names of assigned variables are irrelevant. Restrictions can also be swapped,
i.e., assignments can happen in any order, and removed, whenever their scope is nil (AX(x)). The scope
of restricted variables can be narrowed to terms where they occur free (AXSE). Axioms regarding per-
mutations say that identity and composition behave as expected (AXπ ) and that permutations distribute
over syntactic operators (AXp

π ). Permutations are assumed to behave in a capture avoiding way when
applied to (x)p. We call optimization algebraic specification the specification made of the optimization
signature and the congruence axioms, and optimization terms the terms for the specification.

We include permutations in the specification because they provide a general mechanism to compute
the set of “free” names in any algebra, called (minimal) support.
Definition 2 (Support). Let A be an algebra for the optimization specification, and let π

A be the inter-
pretation of π in A. We say that X ⊂N supports a ∈ A whenever, for all permutations π acting as the
identity on X, we have aπ

A = a. The minimal support supp(a) is the intersection of all sets supporting a.
For instance, let π

t be the interpretation of π on optimization terms: given a term p, pπ
t applies π to

all free names of p in a capture avoiding way. It is easy to verify that supp(p) = f n(p).



N. Hoch & U. Montanari & M. Sammartino 83

(AX∥) p ∥ q ≡ q ∥ p (p ∥ q) ∥ r ≡ p ∥ (q ∥ r) p ∥ nil ≡ p

(AX(x)) (x)(y)p ≡ (y)(x)p (x)nil ≡ nil

(AXα ) (x)p ≡ (y)p[x↦ y] (y ∉ f n(p))

(AXSE) (x)(p ∥ q) ≡ (x)p ∥ q (x ∉ f n(q))

(AXπ ) p id ≡ p (pπ
′)π ≡ p(π ○π

′)

(AXp
π )

A(x1, . . . ,xn)π ≡ A(π(x1), . . . ,π(xn)) nil π ≡ nil (p ∥ q)π ≡ pπ ∥ qπ

((x)p)π ≡ (x)pπ
′ (π

′(x) = x,π ′(y) = π(y) for x ≠ y)

Figure 1: Structural congruence axioms of the optimization specification.

2.1 Hierarchical optimization specification

The scope of restrictions determines a solution for the secondary optimization problem, because it spec-
ifies when restricted variables should be eliminated. However, the presence of (AXSE) identifies terms
corresponding to different solutions. We call hierarchical optimization specification the optimization
specification without (AXSE), and hierarchical terms its freely generated terms.

We are interested in two forms of hierarchical terms.

Definition 3 (Normal and canonical forms). A term is said to be in normal form whenever it is of the
form

(x̃)(A1(x̃1) ∥ A2(x̃2) ∥ ⋅ ⋅ ⋅ ∥ An(x̃n))

with Ai ∈C (i = 1, . . . ,n) and x̃ ⊆ x̃1∪⋅ ⋅ ⋅∪ x̃n. It is in canonical form whenever it is obtained by the repeated
application to a non-hierarchical term of (AXSE), from left to right, until termination. For both forms, we
assume that subterms of the form (x̃)nil (where x̃ may be empty) are removed using (AX(x)) and (AX∥).

Normal and canonical forms are somewhat dual: normal forms have all restrictions at the top level,
whereas in canonical forms every restriction (x) is as close as possible to the atomic terms where x occurs
(if any). A term in normal form is intuitively closer to a typical optimization problem: x̃ specifies which
variables should be assigned, and the term in its scope represents subproblems and their connections.
In a term in canonical form, variables are eliminated as soon as possible. Notice that a term may have
more than one canonical form, whereas normal forms are unique (up to the hierarchical optimization
specification congruence).

Remark 1. Hierarchical terms in normal and canonical form can be regarded as canonical represen-
tatives of ≡-classes (recall that ≡ is the structural congruence of fig. 1), because ≡ is coarser than the
hierarchical optimization specification congruence.

3 Optimization problems as nominal hypergraphs

Recall that a hypergraph G is a triple (VG,EG,aG∶EG→V⋆
G), where VG is the set of vertices, EG is the set

of hyperedges and, for each e ∈EG, aG(e) is the tuple of vertices attached to e (V⋆
G is the set of tuples over

VG). Let E be a set of edge labels, equipped with a function ar∶E →N telling the number of vertices ar(l)



84 Dynamic Programming on Nominal Graphs

of an edge with label l. A labeled hypergraph G is a hypergraph G plus a function lab∶EG→ E mapping
each hyperedge e ∈ EG to its label l such that ∣aG(e)∣ = arl(l). Given two (labeled) hypergraphs G1 and
G2, we write G1⊎G2 for their component-wise disjoint union.

Optimization problems can naturally be seen as hypergraphs labeled over atomic subproblems, where
vertices correspond to variables. We introduce a notion of labeled hypergraph where some vertices are
associated variable names.

Definition 4 (Labeled nominal hypergraph and their morphisms). A labeled nominal hypergraph (NH-
graph in short) is a pair η ⊳ G, where G is a labeled hypergraph without isolated vertices and η is a
partial injection from VG to N , assigning names to some vertices of G. The set img(η) is called the
interface of G and de f (η) (the domain of definition of η) are called interface vertices. Given two NH-
graphs η1 ⊳G1 and η2 ⊳G2, a NH-graph morphism h∶η1 ⊳G1→η2 ⊳G2 is a homomorphism G1→G2 of
labeled hypergraphs that preserves names, namely η1 ○hV = η2, where hV is the action of h on vertices.

Interface vertices can be understood as “external” vertices, with a public, global identity. They may
be interaction points, i.e., they may be shared, with other graphs. This will allow for a simple definition of
parallel composition of NH-graphs. Notice that NH-graph homomorphisms must be injective on vertices,
because they must commute with functions that are injective on vertices.

We say that η1 ⊳ G1 and η2 ⊳ G2 are isomorphic, written η1 ⊳ G1 ≅ η2 ⊳ G2, whenever there is an
NH-graph isomorphism (i.e., a NH-graph morphism whose underlying hypergraph homomorphism is an
isomorphism) between them.

Remark 2. A NH-graph η ⊳ G can be seen as the following span of (total) injective graph homomor-
phisms

[N ] [img(η)]? _
ηloo � � ηr // G

where [img(η)] is the discrete graph with vertices img(η),N is the infinite discrete graph with vertices
N , ηl(v) = η(v) and ηr is an embedding.

3.1 Example

Consider the optimization term shown in the introduction, without the outer restriction

(x2)A(x1,x2) ∥ (x3)B(x1,x3)

Recall that such a term may represent the following optimization problem: given two subproblems A and
B, with cost functions parametric in x1, x2, and x1, x3, respectively, find the optimal total cost. Actually,
here x1 is free, meaning that the total cost is parametric in x1.

The problem can be represented as a NH-graph η ⊳G with two hyperedges, labeled A and B, and three

A

v2v1

B

v3

x1

vertices v1,v2,v3, corresponding to x1,x2 and x3. Actually, only x1 becomes an
interface name, because it is the only variable the problem “exposes”. Other vari-
ables are not part of the interface, meaning that they are taken up to α-conversion.
The NH-graph is depicted on the right: the dashed line describes the domain of
definition of η , namely η(v1) = x1.

3.2 An algebra for NH-graphs

Now we show that we can regard NH-graphs as elements of an algebra for the optimization specification.
This will allow us to recursively evaluate (parsing of) NH-graphs as cost functions, as done in section 4.



N. Hoch & U. Montanari & M. Sammartino 85

Operations are interpreted as follows

η1 ⊳G1 ∥g
η2 ⊳G2 = η ⊳ (G1⊎G2)/∼V where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∼V = {(v1,v2) ∈VG1 ×VG2 ∣
η1(v1) = η2(v2)
≠ undefined

}

η([v]∼v) =
⎧⎪⎪⎨⎪⎪⎩

η1(v) v ∈VG1

η2(v) v ∈VG2

(x)g(η ⊳G) = η∖x ⊳G where η∖x(v) =
⎧⎪⎪⎨⎪⎪⎩

undefined η(v) = x
η(v) otherwise

(η ⊳G)π
g = (π ○η) ⊳G

The parallel composition η1 ⊳ G1 ∥g η2 ⊳ G2 is computed by taking the disjoint union of the two NH-
graphs and then identifying vertices with the same interface names (formally, / ∼V takes equivalence
classes of vertices). The function η is defined on equivalence classes of vertices as expected. The restric-
tion (x)gη ⊳G of η ⊳G w.r.t. x simply removes x from the interface of η ⊳G.

The interpretation of constants can be defined via a mapping

JA(x1,x2, . . . ,xn)Kg =

A

v1 v2 vn…

x1 x2 xn

JnilKg = !∶∅→N ⊳ 0G

where !∶∅→N is the (unique) mapping from ∅ to N and 0G is the empty hypergraph
Now we have to show that we have indeed defined an algebra. We have to check that congruence

axioms are satisfied. We first need the following characterization of the minimal support of a NH-graph.

Lemma 1. supp(η ⊳G) = img(η).

Proposition 1. Operations ∥g, (x)g, π
g satisfy axioms of fig. 1, where ≡ becomes ≅ and f n(−) becomes

supp(−).

Now we can define a unique evaluation of optimization terms: given p, the corresponding NH-graph
JpKg can be computed by structural recursion using the evaluation of constants given above and the inter-
pretation of operations on NH-graphs. This induces a sound and complete axiomatization for NH-graphs.
In fact, structurally equivalent optimization terms are evaluated to isomorphic NH-graphs (soundness).

For completeness, given a NH-graph η ⊳ G, we can construct an equivalent term in normal form
(regarded as canonical representative of its ≡-class, by remark 1) as follows. We encode each edge e of G
as an atomic term with label labG(e). The arguments of this term are the names of the interface vertices
of e, and arbitrary ones for non-interface vertices. Finally, we form the parallel composition of all these
terms and we restrict the names that are not in the interface. Every choice of restricted names is valid:
α-conversion guarantees that all possible encodings of η ⊳G are in the same structural congruence class.

3.3 Tree decompositions

In graph theory, we have the well-known notion of tree decomposition of a graph [22], which can be
understood as a way of parsing a graph. We report the definition by [16].



86 Dynamic Programming on Nominal Graphs

Definition 5 (Tree decomposition). A tree decomposition (TD) of a hypergraph G is a pair (T,X), where
T = (N,A) is a tree (i.e., an undirected, acyclic graph) and X = {Xn}n∈N is a family of subsets Xn ⊆VG,
one for each node of N, such that: (a) ⋃n∈N Xn =VG; (b) for all e ∈EG there is n ∈N such that aG(E) ⊆Xn;
(c) for all v ∈VG, the set of nodes {n ∈N ∣ v ∈ Xn} induces a subtree of T .

In our framework, ordinary hypergraphs (without isolated vertices) can naturally be seen as NH-
graphs with empty interface, and each of their TDs can be represented as an optimization term.
Theorem 1. Every TD for G induces an optimization term t such that JtKg ≅ ↑ ⊳ G, where ↑∶VG →N is
the nowhere defined function.

The idea is constructing t via a visit of T from a chosen root r. We first associate the induced subgraph
Gn of G to Xn, for each node n ∈ N. Each time a new node n is expanded in the visit, we generate
the following subterms of t, all in parallel: one term representing edges and nodes of Gn not already
in t; the subterms corresponding to n’s children. Correctness of the translation is guaranteed by (a)-
(c) of definition 5. Notice that, since all variables are restricted, choosing a different root amounts to
rearranging restrictions. By soundness, this operation results in terms with isomorphic images via J−Kg,
all isomorphic to G.

4 Representing and solving optimization problems

We now show how typical optimization problems can be represented and solved in our algebraic frame-
work.1 Suppose we have n atomic problems A1, . . . ,An whose variables can be assigned values in D, and
we want to minimize a function of the form

∑
1≤i≤n

cAi(x̃i)

where each cAi(x̃i)∶D∣x̃i∣ →R∞, for i = 1, . . . ,n, gives a cost to each variable assignment for the problem
Ai; an infinite cost represents a forbidden assignment.

The problem can be represented as the following term in normal form

p = (x̃)(A1(x̃1) ∥ ⋅ ⋅ ⋅ ∥ An(x̃n)) where x̃ = x̃1∪⋅ ⋅ ⋅∪ x̃n

and the computation of the optimal cost as a function

JpKc ∶(N →D)→R∞

giving a cost to each assignment of variables. More precisely, its computation is performed by assigning
values to the free variables of p (discarding assignments to other variables), and minimizing w.r.t. bound
ones. Typically we have f n(p) =∅, so minimization is performed w.r.t. all variables.

Formally, we take an algebra for the optimization specification formed by cost functions φ ∶(N →
D)→R∞, where we interpret optimization terms. For any assignment of variables ρ ∶N →D, the inter-
pretation of constants is

JAi(x1, . . . ,xn)Kc
ρ = cAi(ρ(x1), . . . ,ρ(xn)) JnilKc

ρ = 0

and complex terms are recursively interpreted as follows

Jp1 ∥ p2K
c
ρ = Jp1K

c
ρ + Jp2K

c
ρ J(x)pKc

ρ =min
v∈D

JpKc (ρ[x↦ v]) JpπKc
ρ = JpKc (ρ ○π

−1)

We have the following property, which comes from the theory of permutation algebras.
1A different, more efficient, setting will be described in section 5.1.



N. Hoch & U. Montanari & M. Sammartino 87

Property 1. supp(JpKc) ⊆ f n(p).
We introduce a condition on cost functions, called compactness. A compact φ depends only on a

“few” variables. This is essential to compute and store cost functions in an efficient way, as we will see
later.
Property 2 (Compactness). We say that φ ∶(N → D)→ R∞ is compact if ρ∣supp(φ) = ρ

′
∣supp(φ) implies

φρ = φρ
′, for all ρ,ρ ′∶N →D.

When considering a term p, by property 2, JpKc is compact if it depends only on assignments to free
variables of p. This is clearly the case for the interpretation of constants, and can be shown by structural
induction for complex terms. Notice that this property is not true for the whole algebra of functions
φ ∶(N →D)→R∞, but only for the subalgebra in the image of J−Kc.

Canonical forms and normal forms of a term always have the same cost function. This is thanks
to the following proposition, which is a direct consequence of cost functions forming an algebra of the
optimization specification.
Proposition 2. If p ≡ q then JpKc = JqKc.

4.1 Computational complexity of cost functions

Although structurally congruent terms have the same cost functions, these functions may be computed
in different ways, each possibly with a different computational cost. In fact, the position of restrictions
inside a term determines a strategy for variable elimination. As already mentioned, finding the best one
amounts to giving a solution for the secondary optimization problem.

We introduce a notion of complexity for an optimization problem p, similar to the one of [1], estimat-
ing the cost of computing its value JpKc. This is given by the function with greatest “size” encountered
while inductively constructing JpKc, the size being given by the variables in the support, that are the only
ones determining the value of JpKc (property 2).

Formally, the complexity of p, written ⟪p⟫, is recursively defined as follows

⟪A(x̃)⟫ = ∣x̃∣ ⟪nil⟫ = 0 ⟪(x)p⟫ = ⟪p⟫ ⟪p ∥ q⟫ =max{⟪p⟫,⟪q⟫, ∣ f n(p ∥ q)∣}

The interesting cases are (x)p and p ∥ q: the computation of J(x)pKc relies on that of JpKc, whose support
may be bigger, so we set the complexity of (x)p to that of p; computing Jp ∥ qKc requires computing JpKc

and JqKc, but the support of the resulting function is the union of those of p and q, so we have to find the
maximum value among ⟪p⟫, ⟪q⟫ and the overall number of free variables.

Complexity is well-defined only for hierarchical terms: applying (AXSE) to choose a different vari-
able elimination strategy may change the complexity. Consider, for instance, the following term in normal
form

p = (x1)(x2)(x3)(A(x1,x2) ∥ B(x2,x3)) ;

we have ⟪p⟫ = 3, but if we take a canonical form

q = (x2)((x1)A(x1,x2) ∥ (x3)B(x2,x3))

we have ⟪q⟫ = 2. Indeed, we have the following results for hierarchical terms.
Lemma 2. Given (x)(p ∥ q), with x ∉ f n(q), we have ⟪(x)p ∥ q⟫ ≤ ⟪(x)(p ∥ q)⟫.

As an immediate consequence, all the canonical forms of a term always have lower or equal com-
plexity than the normal form.
Theorem 2. Given a term p, let n be its normal form. Then, for all canonical forms c of p we have
⟪c⟫ ≤ ⟪n⟫.



88 Dynamic Programming on Nominal Graphs

(a) JA(x1,x2)Kc

x1 x2 cost

d1 d1 7
d1 d2 5
d2 d1 ∞
d2 d2 2

(b) JB(x2,x3)Kc

x2 x3 cost

d1 d1 9
d1 d2 1
d2 d1 6
d2 d2 13

(c) J(x1)A(x1,x2)Kc

x2 cost

d1 min{7,∞} = 7
d2 min{5,2} = 2

(d) J(x3)B(x2,x3)Kc

x2 cost

d1 min{9,1} = 1
d2 min{6,13} = 6

(e) J(x1)A(x1,x2) ∥ (x3)B(x2,x3)Kc

x2 cost

d1 7+1 = 8
d2 2+6 = 8

Table 1: Cost functions for the problems in the example.

4.2 Example

Consider two problems A and B, with two variables each, ranging over {d1,d2}. Their cost functions are
shown in Tables 1a and 1b. We consider the optimization problem that consists in finding the minimal
value of A(x1,x2)+B(x2,x3).

As we already saw, the term in canonical form representing the problem is

p = (x2)((x1)A(x1,x2) ∥ (x3)B(x2,x3))

We now show how JpKc can be computed. We proceed in a bottom-up order, from atomic subterms to
increasingly complex terms. This is close to a dynamic programming algorithm, as it allows computing
and storing a (finite, thanks to the compactness property) representation of cost functions once and for
all. Table 1 show such finite representations in a tabular form. We perform the following optimization
steps, each corresponding to an operator of the syntax:

1. J(x1)A(x1,x2)Kc and J(x3)B(x2,x3)Kc are computed by minimizing JA(x1,x2)Kc and JB(x2,x3)Kc

w.r.t. x1 and x3 respectively (Tables 1c and 1d). Notice that these functions can be computed in
parallel.

2. J(x1)A(x1,x2) ∥ (x3)B(x2,x3)Kc is computed by evaluating J(x1)A(x1,x2)Kc and J(x3)B(x2,x3)Kc

on the same value for x2, and then summing up the results (Table 1e).

3. Finally, J(x2)((x1)A(x1,x2) ∥ (x3)B(x2,x3))Kc is computed by minimizing the function of step 2)
w.r.t. x2.

The last step gives the overall minimal value 8. By looking at Tables in a top-down order, from 1e
to 1a, each time picking those variable assignments that contributed to the cost, one can recover the
corresponding optimal assignment(s) for x1,x2 and x3, namely d1,d1,d2 and d2,d2,d1.

5 Dynamic programming on hierarchical NH-graphs

The existence of an algebra of NH-graphs allows us to recursively compute cost functions for these
graphs: given a NH-graph η ⊳ G and an optimization term such that JpKg = η ⊳ G, we can compute its
cost function in the style of section 4.



N. Hoch & U. Montanari & M. Sammartino 89

(x2)((x1)A(x1,x2) ∥ (x3)B(x2,x3))

?
x2

x1 x2 x2 x3

A

x1 x2 x2

B

x3

Figure 2: A hierarchical term and the corresponding hierarchical NH-graph.

However, the information about the variable elimination strategy cannot be recovered from the NH-
graph itself. In order to do this, we need to introduce the graphical counterpart of hierarchical terms,
which we call hierarchical NH-graphs. They are trees that describe the structure of a NH-graph η ⊳G in
terms of nested components. These trees are such that:

• the root is the discrete hypergraph formed by the interface vertices of G;

• each internal node n is a discrete subgraph of G;

• leaves are hypergraphs with a single hyperedge of G;

• there is an arc from G to G′ whenever G ⊂G′.

The intuition is that each internal node n of the tree is a component of η ⊳G that exposes some additional
vertices and includes all the components in the subtree rooted in n. Leaves are basic components, i.e.,
hyperedges.

The correspondence between hierarchical terms and hierarchical NH-graph graphs is exemplified in
fig. 2. The scope of each restriction determines a component in the tree, where a vertex for the restricted
name is added. For convenience, we used the same name for restricted variables and corresponding non-
interface vertices, but the latter, as in ordinary NH-graphs, are actually up to α-conversion. A top-down
visit of the tree amounts to “opening” scopes and revealing their names.

As hierarchical terms, hierarchical NH-graphs describe a solution for the secondary optimization
problem. It is possible to show that hierarchical NH-graphs form an algebra for the hierarchical op-
timization specification. As seen in the example, each hierarchical term corresponds to a hierarchical
NH-graph. We also have the opposite correspondence.

Proposition 3. Each hierarchical NH-graph can be represented as a hierarchical term.

Exploiting this correspondence, we can interpret hierarchical NH-graphs as evaluations of cost func-
tions with a specific variable elimination strategy, which can be implemented via dynamic programming.

Remark 3. In remark 2 we have characterized NH-graphs as spans of hypergraph homomorphisms.
Interestingly, exploiting this characterization we can recover the NH-graph of which a given hierarchical
NH-graph is the decomposition. In fact, a hierarchical NH-graph can be regarded as a span where the
right part is a diagram T made of a “tree” of graph embeddings.

[N ] [img(η)]? _
ηloo � � ηr // T



90 Dynamic Programming on Nominal Graphs

Here ηr maps interface vertices to themselves in the root of T . Notice that the morphisms of T tell which
are the interface vertices in the nodes of T . In order to “paste” together leaf hypergraphs of T , we can
make a colimit of T in the category of graphs and their morphisms. The result is the disjoint union of
such hypergraphs, where vertices that are images of the same interface one, along the morphisms of T ,
are identified.

5.1 The parking optimization problem

We now introduce the parking optimization problem and we apply our approach to it. The parking op-
timization problem consists in finding the best parking zone for each vehicle of an ensemble, that is a
group of vehicles with similar features. This can be formalized as follows. Assume a set of parking zones
P = {A,B, . . .} and of car variables C = {x,y, . . .}, and two functions:

• c∶P→N, assigning a capacity to every zone;

• F ∶C→ P→R∞, specifying the cost F(x)(A) for x to park in A.

Given an assignment ρ ∶C→ P of cars to zones, let ρA = {x ∣ ρ(x) = A}. We want to find an assignment ρ

such that ∣ρA∣ ≤ c(A), for all A ∈ P, minimizing

∑
x∈N

F(x)(ρ(x))

The problem can be specified in the style of section 2. Here a term p represents a parking system:
A(x1, . . . ,xn) means that xi might be parked in A; (x)p means that car x cannot be parked outside of p, so
it must have a parking spot in one of the zones of p. In general, a term p represents a part of the system
made of one or more parking zones.

In section 4 we presented an algebra of cost functions for typical optimization problems. Here we
introduce another, “more efficient” algebra which, nevertheless, fits into our algebraic framework and
can be used to evaluate optimization terms. To each parking system p we associate a function

JpKc ∶P( f n(p))→R∞

The intended meaning of JpKc X is the cost of parking in p cars X ⊆ f n(p) and all cars corresponding to
variables restricted in p. Notice that the evaluation function J−Kc is quite different from that of section 4.
Here assignments do not fix the values of variables, i.e., the parking zones where cars are allocated, but
only their positions with respect to the present p. However, our framework is able to accommodate also
this more efficient setting.

To avoid handling polymorphic functions, we automatically extend functions JpKc to the whole N ,
namely JpKc ∶P(N )→R∞, by letting

JpKc X = JpKc (X ∩ f n(p)). (1)

However, this function is still determined by subsets of f n(p), so it admits a finite representation that
can be efficiently computed and stored. Formally, properties 1 and 2 hold for extensions to N (regarded
as functions (N → {0,1})→R∞).

Cost functions can be defined by recursion on the structure of systems. As mentioned, it is enough to
define their action on a subset X of their support. We have

JA(x̃)Kc X =
⎧⎪⎪⎨⎪⎪⎩

∑x∈X F(x)(A) ∣X ∣ ≤ c(A)
∞ otherwise



N. Hoch & U. Montanari & M. Sammartino 91

meaning that cars X ⊆ x̃ can be parked in zone A iff their number is at most the capacity of A. For nil we
simply have JnilKc X = 0.

Then we have

Jp ∥ qKc X = min
{X1,X2}∈P2(X)

{JpKc X1+ JqKc X2 ∣
X1 ⊆ f n(p),
X2 ⊆ f n(q) }

where P2(X) are the partitions in two sets of X ⊆ f n(p ∥ q). Here, to park cars X in component p ∥ q,
one has to park each of them in either component p or component q, but not in both. Thus the best option
must be chosen. Finally, we have

J(x)pKc X = JpKc (X ∪{x}).
Here it is required that car x is parked in component p.

Typically, the whole system s has no free names. Thus JsK∅ is a real number, the total minimized
cost, or ∞ if the problem has no solution.

In order to have a proper theory of cost functions, we have to show that we have indeed defined
a model of the optimization specification. Let Xπ be the element-wise application of a permutation
π ∶N →N to X ⊆N . Then we have the following theorem.

Theorem 3. Cost functions φ ∶P(N )→R∞ satisfying (1) form a model of the optimization specification,
together with the given interpretation of operators and the permutation action (φπ)X = φ(Xπ

−1).

5.2 Dynamic programming algorithm

Consider the scenario with three possible parking zones A,B,C and three cars x1,x2 and x3. We assume
the following values for F and c.

F(x1)(A) = 3 F(x1)(B) =∞ F(x1)(C) =∞ c(A) = 2 c(B) = 2 c(C) = 2

F(x2)(A) = 4 F(x2)(B) = 6 F(x2)(C) =∞
F(x3)(A) =∞ F(x3)(B) = 4 F(x3)(C) = 1

In fig. 3, on the left side, we show the term in normal form, and the corresponding NH-graph, mod-
eling the system. We want to compute the cost function JpKc using dynamic programming. The crucial
property is compactness of cost functions: JpKc can be represented as a table of size ∣ f n(p)∣2. Although
a problem is typically specified as a term in normal form, we consider its canonical form c, shown on the
right side of fig. 3, because its complexity is equal or lower (theorem 2). We assume that all occurrences
of nil have been eliminated via structural congruence.

We propose a dynamic programming algorithm that is driven by the hierarchical NH-graph that c
describes, shown in the right side of fig. 3. This algorithm operates as the one in section 4.2, but tables
are computed using the different interpretation of operators on cost functions, introduced in section 5.1.

The algorithm starts from the cost functions for the leaves. These are shown in Tables 2a to 2c, where
the leftmost columns indicates whether a car is parked inside (✓) or outside (−) each zone. They are
computed as described in section 5.1: e.g., for JA(x1,x2)Kc, the cost for each row is JA(x1,x2)Kc X , where
X are the variables marked with ✓ in that row. Then, the algorithm performs a bottom-up visit of the tree
and eliminates variables accordingly. More precisely, whenever an edge from G to G′ is traversed, with
G and G′ discrete hypergraphs, variables G∖G′ are eliminated. In the following we show the elimination
steps, also indicated in fig. 3:

2The actual size is O(2∣ f n(p)∣
), but we show the exponent, as 2x

≤ 2y iff x ≤ y.



92 Dynamic Programming on Nominal Graphs

Normal Canonical

p = (x1)(x2)(x3)(A(x1,x2) ∥ B(x2,x3) ∥C(x3))
c = (x2)((x1)A(x1,x2) ∥ (x3)(B(x2,x3) ∥C(x3)))

A

x1 x2

B

x3

C

?
x2

x1 x2 x2 x3

A

x1 x2 x2

B

x3

C

x3

x2

(1) (2)

(3)

Figure 3: Graphical and corresponding term representation of a parking problem.

(1) Elimination of x1: Table J(x1)A(x1,x2)Kc (2d), with only one column x2, is computed by forcing x1
to be inside A;

(2) Elimination of x3: the table J(x3)(B(x2,x3) ∥C(x3))Kc is computed: Table 2e shows values for x2,
the partitions considered when computing the output cost, and the final cost. Notice that this and the
previous step could be executed in parallel. This fact comes immediately from terms (x1)A(x1,x2)
and (x3)(B(x2,x3) ∥C(x3)) being composed in parallel in (x1)A(x1,x2) ∥ (x3)(B(x2,x3) ∥C(x3)).

(3) Elimination of x2: finally, the Table JpKc (2f) is computed, by comparing costs of parking x2 inside
either (x1)A(x1,x2) or (x3)(B(x2,x3) ∥C(x3)).

(4) Optimal variable assignment: tracking back through the Tables we find:

• x2 inside (x1)A(x1,x2) ∥ (x3)(B(x2,x3) ∥C(x3));
• x2 inside (x1)A(x1,x2);
• x2 inside A(x1,x2) with cost 4;
• x1 inside A(x1,x2) with cost 3;
• x3 inside B(x2,x3) ∥C(x3);
• x3 inside C(x3) with cost 1.

Notice that, in general, the outcome of the algorithm may be ∞, whenever there is no car assignment to
parking zones that respect capacities.

6 Conclusion

In the paper we have introduced two process algebra-like specifications for the description of optimiza-
tion problems. The more abstract version (which includes the scope extension axiom) defines (hyper)
graphs, where vertices are variables, and edges are tasks whose costs depend on the values of the adja-
cent variables. Dropping the above axiom yields a specification corresponding to different parsing trees



N. Hoch & U. Montanari & M. Sammartino 93

Table 2: Example tables. Parameters of atomic subterms are often omitted.

(a) JA(x1,x2)Kc

x1 x2 cost

✓ ✓ 7
✓ − 3
− ✓ 4
− − 0

(b) JB(x2,x3)Kc

x2 x3 cost

✓ ✓ 10
✓ − 4
− ✓ 6
− − 0

(c) JC(x3)Kc

x3 cost

✓ 1
− 0

(d) J(x1)A(x1,x2)Kc

x2 cost

✓ 7
− 3

(e) J(x3)(B(x2,x3) ∥C(x3))Kc

x2 JBKc JCKc JBKc+ JCKc cost

✓

x3 x2 x3

7
✓ ✓ − 10
− ✓ ✓ 7

− ✓ − − 4
1− − ✓ 1

(f) J(x2)( (x1)A(x1,x2) ∥ (x3)(B(x2,x3) ∥C(x3)) )Kc

J(x1)AKc J(x3)(B ∥C)Kc J(x1)AKc+ J(x3)(B ∥C)Kc cost

x2 x2

8
✓ − 8
− ✓ 10

of the given graph. Choosing a particular tree corresponds to selecting a dynamic programming strategy
for the given problem, whose execution can be carried on via a bottom up visit of the tree. We apply
our approach to the parking optimization problem developed, in collaboration with Volkswagen, in the
ASCENS e-mobility case study.

The idea of exploiting graphs to decompose and solve various kinds of problems is not new. In [11]
graphs are represented as elements of an algebra and monadic second-order properties are evaluated on
them. In [7] dynamic programming algorithms are derived from (nice) tree decompositions of graphs. In
[6] tree decompositions are represented as in a category of spans and cospans, and then as terms of an
algebraic specification. Our approach has the following advantages w.r.t. the cited ones:

• Our algebraic specification is simpler, but nonetheless expressive. In fact, variable elimination
strategies can be represented via restrictions. Moreover, we have a graphical representation of such
strategies as hierarchical NH-graphs, which can be regarded as very simple tree decompositions.

• Our algebras are permutation algebras, which provide: (a) a state-of-the-art treatment of α-
conversion and of freshness requirements; (b) a uniform and general definition of domain given by
the notion of support. Operations are defined on the whole set of names, so they are independent
of the actual interface (support), unlike [6]. Moreover, the notion of support automatically defines
the sizes of the tables employed in the dynamic programming implementation.

The following lines of research are also related to our work. Bistarelli, Montanari and Rossi deal
with SCSP [2] and its combination with logic programming [3, 4] and concurrency [5]. They give an
interpretation of constraints over certain semirings, e.g., the tropical semiring, as we do here. However,



94 Dynamic Programming on Nominal Graphs

operations on constraints are defined point-wise using the semiring operations: the approach is too re-
strictive, e.g., it does not easily accommodate the case study shown in this paper. A direct connection
between (logical) CSP and dynamic programming is shown in [20]. Dechter in [13] introduces bucket
elimination as a general solution technique for a variety of problems: it consists in a strategy of prob-
lem reduction employing a convenient elimination ordering of variables and constraints. The associated
technique of conditioning search allows for approximated versions of the bucket elimination approach.
Kohlas and Pouly in [17] suggest valuation algebras as a foundation for a general view of information
processing. They define axioms for valuation algebras, consider a number of instantiations and provide
generic inference algorithms for their processing. Our approach is similar, but more direct, being based
on a simple process algebra specification and on a bottom up visit of a tree of graphs satisfying the
specification. In [10] distributed systems are represented as CHARMs (Concurrency and Hiding in an
Abstract Rewriting Machine), that are hypergraphs with a global and a local part. They form an algebra
including edges and vertices restriction. Our algebras and NH-graphs are similar, but we do not need
edges restriction.

Dynamic programming evaluations are particularly interesting for autonomic systems, as studied by
the ASCENS project, where the actual behavior often consists, typically for the dynamic programming
case, of propagating local knowledge to obtain global knowledge and getting it back for local decisions.
When dealing with global problems, however, the complexity of the dynamic programming algorithms
can grow exponentially even for graphs of limited complexity. Consider a rectangular grid of size n,
with vertices labeled by variables, and edges by cost functions with two arguments. It is shown in [18]
that its complexity is exponential in n. There are efficient algorithms for finding the optimal elimination
order of vertices in a graph, but they deal with specific cases (e.g., Gaussian elimination [12, 23]). Thus
approximation techniques are quite relevant, in particular when a good global solution, possibly not
optimal, is still acceptable.

Several heuristic techniques can be experimented. For instance, for the parking problem we could
restrict the number of possible zones for each car, taking the best k of them. Then if the optimal solution
would include a choice worse than k for some car, the solution found, if any, would not be optimal.
However, at least no client would be treated too badly. Another, quite general, approximation technique
would be to artificially reduce the dimensions of tables by decomposing high dimensional ones into
the sums of a few lower dimensional tables. The latter can be computed minimizing the mean square
error [19]. The storage reduction can be propagated in such a way to reduce substantially the overall
complexity.

An interesting piece of future work would be to extend our approach to graphs which are incremen-
tally modified, e.g., extended, at run time. The resulting scenario could consist of a (soft) (concurrent)
constraint component together with a mobile pi-calculus-like process algebra component. A good exam-
ple of this combination is cc-pi [9]. Other aspects should be investigated in a precise way: the correspon-
dence between classes of terms (normal,canonical) and NH-graphs; the nominal structure of NH-graphs.

References
[1] Umberto Bertelè & Francesco Brioschi (1973): On Non-serial Dynamic Programming. J. Comb. Theory, Ser.

A 14(2), pp. 137–148, doi:10.1016/0097-3165(73)90016-2.
[2] Stefano Bistarelli, Ugo Montanari & Francesca Rossi (1997): Semiring-based constraint satisfaction and

optimization. J. ACM 44(2), pp. 201–236, doi:10.1145/256303.256306.

http://dx.doi.org/10.1016/0097-3165(73)90016-2
http://dx.doi.org/10.1145/256303.256306


N. Hoch & U. Montanari & M. Sammartino 95

[3] Stefano Bistarelli, Ugo Montanari & Francesca Rossi (2001): Semiring-based contstraint logic programming:
syntax and semantics. ACM Trans. Program. Lang. Syst. 23(1), pp. 1–29, doi:10.1145/383721.383725.

[4] Stefano Bistarelli, Ugo Montanari & Francesca Rossi (2002): Soft Constraint Logic Programming and Gen-
eralized Shortest Path Problems. J. Heuristics 8(1), pp. 25–41, doi:10.1023/A:1013609600697.

[5] Stefano Bistarelli, Ugo Montanari & Francesca Rossi (2006): Soft concurrent constraint programming. ACM
Trans. Comput. Log. 7(3), pp. 563–589, doi:10.1145/1149114.1149118.

[6] Christoph Blume, H. J. Sander Bruggink, Martin Friedrich & Barbara König (2013): Treewidth, pathwidth
and cospan decompositions with applications to graph-accepting tree automata. J. Vis. Lang. Comput. 24(3),
pp. 192–206, doi:10.1016/j.jvlc.2012.10.002.

[7] Hans L. Bodlaender & Arie M. C. A. Koster (2008): Combinatorial Optimization on Graphs of Bounded
Treewidth. Comput. J. 51(3), pp. 255–269, doi:10.1093/comjnl/bxm037.

[8] Tomás Bures, Rocco De Nicola, Ilias Gerostathopoulos, Nicklas Hoch, Michal Kit, Nora Koch, Gia-
coma Valentina Monreale, Ugo Montanari, Rosario Pugliese, Nikola B. Serbedzija, Martin Wirsing & Franco
Zambonelli (2013): A Life Cycle for the Development of Autonomic Systems: The E-mobility Showcase. In:
SASOW, pp. 71–76, doi:10.1109/SASOW.2013.23.

[9] Maria Grazia Buscemi & Ugo Montanari (2007): CC-Pi: A Constraint-Based Language for Specifying Ser-
vice Level Agreements. In: ESOP, pp. 18–32, doi:10.1007/978-3-540-71316-6 3.

[10] Andrea Corradini, Ugo Montanari & Francesca Rossi (1994): An Abstract Machine for Concurrent Modular
Systems: CHARM. Theor. Comput. Sci. 122(1&2), pp. 165–200, doi:10.1016/0304-3975(94)90206-2.

[11] Bruno Courcelle & Mohamed Mosbah (1993): Monadic Second-Order Evaluations on Tree-Decomposable
Graphs. Theor. Comput. Sci. 109(1&2), pp. 49–82, doi:10.1016/0304-3975(93)90064-Z.

[12] Elias Dahlhaus (2002): Minimal elimination ordering for graphs of bounded degree. Discrete Applied Math-
ematics 116(1-2), pp. 127–143, doi:10.1016/S0166-218X(00)00331-0.

[13] Rina Dechter (1999): Bucket Elimination: A Unifying Framework for Reasoning. Artif. Intell. 113(1-2), pp.
41–85, doi:10.1016/S0004-3702(99)00059-4.

[14] Fabio Gadducci, Marino Miculan & Ugo Montanari (2006): About permutation algebras, (pre)sheaves and
named sets. Higher-Order and Symbolic Computation 19(2-3), pp. 283–304, doi:10.1007/s10990-006-8749-
3.

[15] Nicklas Hoch, Kevin Zemmer, Bernd Werther & Roland Siegwart (2012): Electric vehicle travel
optimization-customer satisfaction despite resource constraints. In: IEEE IVS, pp. 172–177,
doi:10.1109/IVS.2012.6232240.

[16] Ton Kloks (1994): Treewidth, Computations and Approximations. Lecture Notes in Computer Science 842,
Springer, doi:10.1007/BFb0045375.

[17] Jürg Kohlas & Marc Pouly (2011): Generic Inference: A Unifying Theory for Automated Reasoning. John
Wiley & Sons, Inc., doi:10.1002/9781118010877.ch2.

[18] Alberto Martelli & Ugo Montanari (1972): Nonserial Dynamic Programming: On the Optimal Strategy of
Variable Elimination for the Rectangular Lattice. J. Math. Anal. Appl. 40, pp. 226–242, doi:10.1016/0022-
247X(72)90046-7.

[19] Ugo Montanari (1971): On the Optimal Approximation of Discrete Functions with Low-dimensional Tables.
In: IFIP Congress (2), pp. 1363–1368.

[20] Ugo Montanari & Francesca Rossi (1991): Constraint Relaxation may be Perfect. Artif. Intell. 48(2), pp.
143–170, doi:10.1016/0004-3702(91)90059-S.

[21] A. M. Pitts (2013): Nominal Sets: Names and Symmetry in Computer Science. Cambridge Tracts in Theoret-
ical Computer Science 57, Cambridge University Press, doi:10.1017/CBO9781139084673.

[22] Neil Robertson & Paul D. Seymour (1984): Graph minors. III. Planar tree-width. J. Comb. Theory, Ser. B
36(1), pp. 49–64, doi:10.1016/0095-8956(84)90013-3.

http://dx.doi.org/10.1145/383721.383725
http://dx.doi.org/10.1023/A:1013609600697
http://dx.doi.org/10.1145/1149114.1149118
http://dx.doi.org/10.1016/j.jvlc.2012.10.002
http://dx.doi.org/10.1093/comjnl/bxm037
http://dx.doi.org/10.1109/SASOW.2013.23
http://dx.doi.org/10.1007/978-3-540-71316-6{_}3
http://dx.doi.org/10.1016/0304-3975(94)90206-2
http://dx.doi.org/10.1016/0304-3975(93)90064-Z
http://dx.doi.org/10.1016/S0166-218X(00)00331-0
http://dx.doi.org/10.1016/S0004-3702(99)00059-4
http://dx.doi.org/10.1007/s10990-006-8749-3
http://dx.doi.org/10.1007/s10990-006-8749-3
http://dx.doi.org/10.1109/IVS.2012.6232240
http://dx.doi.org/10.1007/BFb0045375
http://dx.doi.org/10.1002/9781118010877.ch2
http://dx.doi.org/10.1016/0022-247X(72)90046-7
http://dx.doi.org/10.1016/0022-247X(72)90046-7
http://dx.doi.org/10.1016/0004-3702(91)90059-S
http://dx.doi.org/10.1017/CBO9781139084673
http://dx.doi.org/10.1016/0095-8956(84)90013-3


96 Dynamic Programming on Nominal Graphs

[23] Mihalis Yannakakis (1981): Computing the Minimum Fill-In is NP-Complete. SIAM Journal on Algebraic
Discrete Methods 2(1), pp. 77–79, doi:10.1137/0602010.

http://dx.doi.org/10.1137/0602010

	1 Introduction
	2 An algebraic specification for optimization problems
	2.1 Hierarchical optimization specification

	3 Optimization problems as nominal hypergraphs
	3.1 Example
	3.2 An algebra for NH-graphs
	3.3 Tree decompositions

	4 Representing and solving optimization problems
	4.1 Computational complexity of cost functions
	4.2 Example

	5 Dynamic programming on hierarchical NH-graphs
	5.1 The parking optimization problem
	5.2 Dynamic programming algorithm

	6 Conclusion

