
Giovanna D’Agostino, Salvatore La Torre (Eds.):
Proceedings of the Second International Symposium on
“Games, Automata, Logics and Formal Verification” (GandALF2011)
EPTCS 54, 2011, pp. 17–30, doi:10.4204/EPTCS.54.2

c© Christian Appold
This work is licensed under the
Creative Commons Attribution License.

Improving BDD Based Symbolic Model Checking with
Isomorphism Exploiting Transition Relations

Christian Appold
Chair of Computer Science V

University of Würzburg
Würzburg, Germany

appold@informatik.uni-wuerzburg.de

Symbolic model checking by using BDDs has greatly improved the applicability of model checking.
Nevertheless, BDD based symbolic model checking can still be very memory and time consuming.
One main reason is the complex transition relation of systems. Sometimes, it is even not possible to
generate the transition relation, due to its exhaustive memory requirements. To diminish this problem,
the use of partitioned transition relations has been proposed. However, there are still systems which
can not be verified at all. Furthermore, if the granularity ofthe partitions is too fine, the time required
for verification may increase. In this paper we target the symbolic verification of asynchronous
concurrent systems. For such systems we present an approachwhich uses similarities in the transition
relation to get further memory reductions and runtime improvements. By applying our approach,
even the verification of systems with an previously intractable transition relation becomes feasible.

1 Introduction

The presence of concurrent software is steadily increasingdue to the shift towards multi-core CPUs.
This software consists of several parallel threads, which are executed asynchronously and interleaved.
Some models for inter-thread communication exist, but the most flexible and prominent one is the use
of fully shared variables. Well-known programming APIs like the POSIX pthread model or the WIN32
API support this model of communication. Unfortunately, concurrent software often is very error-prone,
and bugs tend to be subtle and are hard to detect. Thus, to enable its use in safety-critical areas, reliable
techniques to verify the correct operation of concurrent software are mandatory. One formal verification
technique which has been proven to be successful in the verification of concurrent systems is temporal
logic model checking [7], [18]. There, desired properties of a system are formulated in a temporal logic
(like CTL [2] or LTL [16]), and the state-space of the system is investigated exhaustively to validate
these properties. A very effective model checking technique is symbolic model checking [8], [12] based
on Binary Decision Diagrams (BDDs) [3].

Nevertheless, BDD-based model checking is often still verymemory and time consuming. This
sometimes circumvents the successful verification of systems. The main reason for the large memory
requirements of symbolic model checking is often the huge size of the BDD representing the transition
relation. Therefore, some methods have been proposed to diminish this problem. Originally a monolithic
transition relation consisting of a single BDD was used. Dueto the large size of this BDD, the authors
of [4] suggested to use partitioned transition relations. There, the transition relation is split into several
pieces and each of these pieces can often be represented by a small BDD. Pieces of partitioned transition
relations of asynchronous systems frequently possess manyidentity patterns for identity transformations
of state variables. In [13] and [5] the removal of such identity patterns has been suggested to reduce
the memory overhead. In this paper we target the symbolic verification of asynchronous concurrent

http://dx.doi.org/10.4204/EPTCS.54.2
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

18 Symbolic Model Checking with Isomorphism Exploiting Transition Relations

systems, like e.g. concurrent software. We present a new memory saving approach to store the transition
relation with BDDs. It allows to exploit similarities in theBDDs of the component transition relations.
Additionally, identity patterns are removed, too. Furthermore, we introduce an algorithm that enables
the efficient use of our new technique for model checking. Ourexperimental results show (see section
5) that this can lead to significant memory and runtime improvements. The approach is not restricted to
asynchronous systems, but can be used for synchronous systems as well. To our knowledge, this is the
first paper where similarities in the transition relation ofcomponents of a system are exploited that way.

The rest of this paper is organized as follows. In the next section we present some background
information. We introduce our model of an asynchronous concurrent system (2.1) and give a short
introduction into BDDs (2.2), symbolic state-space generation (2.3), and symbolic representations of
transition relations and related work (2.4). Thereafter, Section 3 presents our new approach to store the
transition relation and in Section 4 we exemplify an efficient algorithm to build the AND of an ordinary
BDD and our new data structure. Experimental results which demonstrate the efficiency of our new
approach can be found in Section 5. The paper closes with a conclusion and an outlook to future work.

2 Background

2.1 Asynchronous Concurrent Systems

In this paper we target finite state asynchronous concurrentsystemsMm= (S,R,S0), whereS is the finite
set of possible states,S0 ⊆ S is the set of initial states andR is the transition relation. We assume that an
asynchronous systemMm is composed ofm> 1 components, and a states∈ S is a tuples= (~g, l1, ..., lm).
Thus, a system state consists of the values~g of all global shared variables (not associated with any
component) and thelocal state li of each componenti ∈ {1, ...,m} (i.e. values of all local variables of
componenti). The transition relation is defined asR= {(x,x′)| x ∈ S∧ x′ ∈ S∧ statex′ can be reached
from statex in a single step}.

The execution model of a systemMm is that of interleaved asynchrony. Only one component can
execute a transition at a time and a transition of a componenti only depends on and only changes
the values of the shared variables~g as well as its own local statel i . That means, a component has
neither read nor write access to local variables of other components. We denote this frequently oc-
curring behavior astransition locality. Let RiP be a relation withRiP = {((~g, l i),(~g′, l ′i))| (~g

′, l ′i) results
from (~g, l i) by executing a single step ofi} and letRi be the transition relation of componenti that
contains the transitions executable by componenti. In systems with transition locality the following
holds ∀i ∈ {1, ...,m} : Ri = {((~g, l1, ..., lm),(~g′, l ′1, ..., l

′
m))|∀ j 6= i : l ′j = l j ∧ ((~g, l i),(~g′, l ′i)) ∈ RiP} and

R=
⋃

i∈mRi. An example for this system type is the tremendous importance gaining concurrent software
for multi-core architectures with threads which communicate via shared variables. Also the subtype
of concurrent software with replicated threads is most relevant in practice. A formal definition of this
system type can be found in [10].

2.2 Binary Decision Diagram (BDD)

Decision diagrams are used in symbolic model checking to store sets of states as well as the transition
relation of a system. Abinary decision diagram(BDD) [3] for N-variables can be used to encode a
function f : {0,1}N 7→ {0,1}.

Christian Appold 19

Definition 1. A BDD is an acyclic directed graph with a single root vertex and two types of vertices,
nonterminal vertices and terminal vertices. Each nonterminal vertex v is labeled by a variable var(v)
and has two successors low(v) and high(v). A terminal vertex v is labeled by a value value(v) ∈ {0,1}.

As we did in this paper, most oftenreduced ordered binary decision diagramsROBDDs [3] are
used. ROBDDs are a canonical representation for boolean functions. Canonicity is achieved by using
two restrictions for BDDs. There should be no isomorphic subtrees or redundant vertices in the diagram,
and the variables should appear in the same order along each path from the root vertex to aterminal
vertex. The same order for the variables along each path is ensured by using a total ordering≺ on
the variables that label the vertices in a BDD. Thenvar(u) ≺ var(v) is required for any vertexu in the
diagram that has anonterminalsuccessorv. One can decide whether a particular truth assignment to
its variables makes a function represented as a BDD true, or not, by traversing the graph from the root
vertex to a terminal vertex. The value of a reachedterminal vertex is the value of the function for the
given variable assignment.

2.3 Symbolic State-Space Generation

As mentioned in the last section, BDDs are used in symbolic model checking to store sets of states as
well as the transition relation of a system. A set of statesZ can be encoded with a BDD through its
characteristic functionχZ. If the shared states~g of an asynchronous system withm components can
be encoded withng boolean variables and the local states of a componenti with nli boolean variables,
then a BDD forN = ng +∑m

i=1nli variables can be used to store sets of system states. To encode the
transition relation with a BDD, transitions between states, instead of single states, have to be encoded.
Therefore, a BDD for twice as many variables as for BDDs that encode sets of states is necessary and the
transition relation can be encoded with a BDD for2N-variables. ThereN-variables are needed for the
from-state and alsoN-variables for thetarget-state of a transition. As BDD variable ordering for the2N-
variables, all possible permutations are applicable. But it is widely acknowledged that variable ordering
with interleaving of the correspondingfrom- andtarget-state variables is often the most efficient variable
ordering by terms of nodes required to store the transition relation. Thus, we consider only interleaved
variable ordering in this work. In interleaved variable ordering the correspondingfrom- andtarget-state
variables are next to each other in a BDD.

This paper targets on forward reachability analysis. There, the image computations are forward
images and the forward image for a set of statesZ is defined as:Image(Z) = {x′|∃x∈ Z,(x,x′) ∈ R}. In
forward reachability analysis state-space search starts with the set of initial statesS0. The set of reachable
states is the minimal set satisfyingZ ⊇ S0 andZ ⊇ Image(Z) which can be computed through iterated
forward image calculations. The traditional approach for symbolic state-space generation, which we
also used within this paper, uses breadth-first iterations.Each breadth-first iteration consists of an image
computation with the entire transition relationR of a system. At theith iteration all states with distance
less or equali from the initial states have been explored.

2.4 Symbolic Representations of Transition Relations and Related Work

A monolithic transition relation of a single BDD is often intractably large. Therefore, the use of parti-
tioned transition relations has been proposed in [4]. Partitioned transition relations consist of conjunc-
tions or disjunctions of a number of pieces of the single BDD.These pieces can often be represented by
a small BDD. In this paper we consider asynchronous concurrent systems and use disjunctive partitioned

20 Symbolic Model Checking with Isomorphism Exploiting Transition Relations

transition relations. A component-wise disjunctively partitioned transition relation for an asynchronous
system withm components is composed of the transition relationsRi of the components, and can be
written asR= R1∨R2∨ ...∨Rm. In this work we consider only systems with transition locality (see
section 2.1). Our method further reduces the memory requirements of the partitioned transition relation
approach through exploiting similarities in the transition relation of the components. For the use of parti-
tioned transition relations, it’s worth mentioning that a too fine granulated transition relation may not be
the best choice. As long as the BDDs don’t become too large, itis better to combine several transitions
in one disjunct. In this way, fewer BDD nodes may be needed andalso image calculation can possi-
bly be accelerated. In [19] the authors presented and investigated an approach where the partitions of
partitioned transition relations can consist of several transitions. Their experimental results confirm that
larger partitions lead to big runtime savings. But they alsoobserved an increase in the number of BDD
nodes for coarser partitioned transition relations. By considering similarities in the transition relations
of the components our approach allows to build much coarser partitions of transitions. Additionally, in
the presence of large isomorphic subgraphs no strong increase in the total number of BDD nodes occurs.
Thus, our approach can reduce the runtime without causing anincrease of the memory requirements.

Transition relations of asynchronous systems often contain many identity patterns. As introduced
in 2.1, if a componenti executes a transition in a system with transition locality,then the local states
for all other componentsj 6= i remain unchanged. Therefore, the BDD for the transition relation Ri of
componenti contains identity patterns for the local state bits of all other componentsj 6= i. An example
of an identity pattern can be found in Figure 1. There levelk contains a vertex of afrom-state and level
k+ 1 a vertex of the correspondingtarget-state. According to Figure 1, if the vertices at levelk and
k+1 get assigned different values, then the BDD evaluates to 0.That means, if a BDD for a transition
contains an identity pattern for a variable, the variable doesn’t change its value when the transition is
executed. To avoid the memory overhead to store identity patterns, [14] introduces an approach which
uses reduced matrix diagrams (MxDs) [13] without identity nodes for the transition relation. The authors
of [5] suggested to use a new identity reduction rule for MDDs[11] to get fully identity reduced MDDs
for the transition relation. These papers just present approaches for identity reduction, but no method
to use similarities in the transition relations of components. A technique to exploit sharing in BDDs
for regular circuits that differ only in their support variables has been presented in [9]. Similar to our
approach a remapping of input variables is used there. But such a remapping can not be used for BDDs of
transition relations of components in asynchronous concurrent systems. The reason is different positions
of identity patterns in the BDD variable ordering for different components. Additionally, they always
expand a BDD with modified input variables before performinga BDD operation. This is very time
consuming and can even be intractable for large transition relations. To solve this problem, we present in
section 4 an efficient algorithm for boolean operation calculation with our new BDD type, which avoids
the expansion to a normal BDD.

3 Transition Locality Exploiting BDDs (TLEBDDs)

In this section we present our new approach to store the transition relation of systems with transition
locality (see section 2.1). It makes use of the circumstancethat BDDs for subsets of the transition
relation may have a very similar structure, if the transition relation is split component-wise in partitioned
transition relations. To exploit those similarities and toreduce the memory requirements of transition
relations we suggest to useTransition Locality Exploiting BDDs (TLEBDDs). A TLEBDD consists
of a normal BDD (see section 2.2) and a mapping list. For a system withm components, the transition

Christian Appold 21

Figure 1: Example of an identity
pattern

Figure 2: Variable Ordering Concatenated

relation of a component can be represented by a BDD with 2·N variables, whereN= ng+∑m
i=1 nli . In the

rest of the paper we assume that the BDD of a TLEBDD for a component i is defined over the variables
X = {x1,x2, ...,x2·(ng+nli)

} and the mapping list is defined over the variablesY = {y1,y2, ...,y2·N}. We will
denote the variables inX as reduced variables and the variables inY as actual variables. The mapping
list is necessary to map the reduced variables to the actual variables of the corresponding characteristic
function χRi of Ri for which the TLEBDD has been built. For a componenti this mapping can be
described with a functionπ : {1,2, ..,2 · (ng + nli)} → {1,2, ..,2 ·N} that maps mapping list entries to
variable indices fromY.

Definition 2. A n-mapping list is a list over Y with n elements, that is
[yπ(1), ...,yπ(n)].

According to section 2.1 the transition relationRi of a componenti in a system with transition locality
is defined asRi = {((~g, l1, ..., lm),(~g′, l ′1, ..., l

′
m))|∀ j 6= i : l ′j = l j ∧ ((~g, l i),(~g′, l ′i)) ∈ RiP} (see section 2.1

for the definition ofRiP) and the values of~g′ and l ′i depend only on~g and l i . TLEBDDs exploit the
circumstance that for every transition of a componenti holds∀ j 6= i : l ′j = l j , and no vertices are used in
the transition relation of a componenti for the local states of an other componentj 6= i.

Definition 3. A TLEBDD for the transition relation of a component i in a system with transition locality
is a tuple(G,b), where G is a normal BDD and b is a mapping list. G is a BDD with the 2 · (ng +nli)
reduced variables X= {x1,x2, ...,x2·(ng+nli)

}. They are used for the bits of the shared states (2 ·ng bits)
of the system and the local state bits (2·nli bits) of the component for which the TLEBDD has been built.
For actual variables of the other n−1 components a TLEBDD implicitly assumes identity patterns.The
mapping list b contains n= {1,2, ...,2· (ng +nli)} elements and is used to map the reduced variables of
G to the actual variables. It contains for each position q∈ {1,2, ...,2·(ng+nli)} in the variable ordering
of the BDD G the associated actual variable yπ(q). Thereby it holds for q1,q2 ∈ {1,2, ...,2 · (ng +nli)}
with q1 6= q2 that yπ(q1) 6= yπ(q2).

TLEBDDs can be used for the efficient representation of component transition relations. A corre-
sponding BDD can be obtained from a TLEBDD(G,b) through substitution of the reduced variables of
the TLEBDD with the corresponding actual variables and the insertion of identity patterns. That means,
the TLEBDD(G, [yπ(1), ...,yπ(n)]) and the BDD∆(G[yπ(1)/x1, ...,yπ(n)/xn]) represent the same function.

22 Symbolic Model Checking with Isomorphism Exploiting Transition Relations

HereG[y/x] is the substitution of any occurrence ofx in G with y and∆ is an operation which inserts
identity patterns for associated pairs of from- and target-state actual variables for which no correspond-
ing reduced variables exist. TLEBDDs use the same reduced variables to represent the local state bits of
different components. In the prominent special case of asynchronous systems with only one replicated
component type, even all corresponding local state bits of themcomponents can be mapped to the same
reduced variables. In this way we get isomorphic subgraphs which aren’t isomorphic in BDDs of ordi-
nary partitioned transition relations, because the position of local state bits of components or of identity
patterns in the variable ordering differs. This enables us to use the common property of BDD packages
like Cudd [20] to store isomorphic subgraphs only once. Our experimental results in section 5 confirm
that this can lead to enormous memory savings. TLEBDDs can bemade canonical by requiring that
mapping lists are ordered with respect to some strict ordering≺ on the actual variablesY.

Definition 4. A n-mapping list is ordered, if yπ(i) ≺ yπ(i+1), for all 1≤ i < n.

Theorem 1. If (G,bg) and(H,bh) are two TLEBDDs with mapping lists which are ordered with respect
to some strict ordering≺ on the actual variables Y , then for boolean functions g,h of component transi-
tion relations with g represented through(G,bg) and h represented through(H,bh), g= h holds, if and
only if G= H and bg = bh.

Proof. Let bg = bh = [yπ(1), ...,yπ(n)]. By expansion of the TLEBDDs we getgexp=
∆(G[yπ(1)/x1, ...,yπ(n)/xn]) andhexp= ∆(H[yπ(1)/x1, ...,yπ(n)/xn]), where∆ is defined as introduced be-
fore. BecauseG= H, we getgexp= hexp and therefore holdsg= h.
Be nowg= h. Because the mapping lists have to be strictly ordered and the same actual variables have
to be mapped to reduced variables, there is only one unique ordered mapping list. Thusbg = bh holds. If
G 6= H would hold, then the TLEBDDs(G,bg), and(H,bh) respectively, have to have different mapping
lists bg andbh thatg= h can be valid. Therefore alsoG= H holds.

A TLEBDD can be built for a componenti through encoding of the relationRiP by using the reduced
variables instead of the actual variables. Additionally the mapping of the 2· (ng+nli) reduced variables
to the 2N = 2· (ng +∑m

i=1nli) actual variables has to be stored in the mapping list. To evaluate the truth
value of a particular assignment of values to the variables of a TLEBDD, its BDD has to be traversed from
the root vertex to a terminal vertex similar to a BDD. Additionally, during its traversal the information
which has been stored in the mapping list has to be consideredto map the reduced variables to their
corresponding actual variables and to take into account themissing identity patterns.

To use TLEBDDs and ordinary BDDs for model checking, it’s necessary that they can be combined
through boolean operations. An approach that allows the useof the traditional BDD algorithms to com-
bine a TLEBDD and a BDD is to adapt the TLEBDD variable ordering to the variable ordering of the
BDD and to insert simultaneously the omitted identity patterns. Though this works, here the uncom-
pressed BDD has to be built for a TLEBDD. This would cause an additional runtime overhead, which
can sometimes be very large. Also, if this BDD is huge a lot of memory may be required. In the worst
case this can lead to an abort of the subsequent forward imagecalculation and therewith the model check-
ing run. Therefore, we developed an effective algorithm forthe calculation of boolean operations which
avoids to generate normal BDDs for TLEBDDs entirely. In thisway the vertices of a corresponding
BDD for a TLEBDD are not needed at all, and we achieve the maximum possible memory reduction.

Christian Appold 23

4 Efficient Algorithm for Boolean Operation Calculation

Here, we exemplify an efficient algorithm to compute the AND of a TLEBDD and a BDD. The AND
of two BDDs is a very important step in forward image computation, because in every forward image
computation the AND of the BDD with states which still have tobe explored and the transition relation
has to be calculated. Listing 1 sketches our new algorithm which allows to build the AND of a TLEBDD
and a BDD without building the corresponding normal BDD for the TLEBDD at all. Prior to the exe-
cution of the algorithm the variable ordering of the reducedvariables of the TLEBDD has to be adapted
according to the variable ordering of the BDD .

Listing 1: Recursively compute the AND of a TLEBDD and a normal BDD
1 ANDRecursive(TLEBDDVertex TLEroot , BDDVertex BDDroot , int actualVarTLE){

2 BDDVertex result = TERMINAL_CASE(TLEroot ,BDDroot ,actualVarTLE);

3 if(result != NULL){

4 return result ;} // terminal case found

5 result = COMPUTED_TABLE_HAS_ENTRY (AND ,TLEroot ,BDDroot , actualVarTLE);

6 if(result != NULL){

7 return result ;} // result has already been calculated before

8
9 if(BDDroot .variable ≺ actualVarTLE){

10 v = BDDroot .variable ;

11 T = ANDRecursive(TLEroot ,BDDroot v,actualVarTLE);

12 E = ANDRecursive(TLEroot ,BDDroot v,actualVarTLE);}

13 else{

14 v = actualVarTLE;

15 w = TLEroot .variable ;

16 TLErootw = getNextVertex(TLEroot ,TLErootw,actualVarTLE);

17 actualVarNeww = getNextVertexVar(TLEroot ,TLErootw,actualVarTLE);

18 TLErootw = getNextVertex(TLEroot ,TLErootw,actualVarTLE);

19 actualVarNeww = getNextVertexVar(TLEroot ,TLErootw,actualVarTLE);

20 T=ANDRecursive(TLErootw,BDDroot v,actualVarNeww);

21 E=ANDRecursive(TLErootw,BDDroot v,actualVarNeww);}

22
23 if(T == E) return T;

24 R = FIND_OR_GENERATE_AND_ADD_UNIQUE_TABLE (v,T,E);

25 INSERT_COMPUTED_TABLE ((AND ,TLEroot ,BDDroot ,actualVarTLE),R);

26 return R;}

One main difference of the algorithm in Listing 1 to the usualAND algorithm is the use of a variable
actualVarTLEfor the current actual variable of a TLEBDD vertex. This variable is necessary to achieve
that only those TLEBDD and BDD vertices are evaluated together that would also be evaluated together if
the AND would be done between two ordinary BDDs. In line 2 of the algorithm it is detected if a terminal
case of the recursive computation has been reached. If a terminal vertex is reached in a normal BDD,
then its value is the value of the represented function for the variable assignment that led to this terminal
vertex. In our algorithm a terminal vertex of a TLEBDD is really a terminal vertex, if its value is 0. If
its value is 1, possibly missing identity patterns have to beevaluated before the terminal vertex is valid.
This problem can be solved by using the value ofactualVarTLEto decide the validity of such terminal
vertices during the detection of terminal cases. The value of actualVarTLEalso has to be considered
during computed table accesses (see lines 5 and 25). This hasto be done because different partial results
of the AND operation can occur with the same TLEBDD and BDD vertices. By considering the value of

24 Symbolic Model Checking with Isomorphism Exploiting Transition Relations

actualVarTLEthese partial results can be differentiated.

Listing 2: Compute a successor vertex of the current TLErootin a TLEBDD
1 getNextVertex(TLEBDDVertex TLEroot , TLEBDDVertex TLEroot succ,int actualVarTLE){

2 TLEBDDVertex TLEroot new = TLEroot succ;

3
4 if(isTerminalVertex(TLEroot) ||

5 (actualVarTLE ≺ mappingList [TLEroot .variable])){

6 TLEroot new = TLEroot ;}

7
8 return TLEroot new;}

Line 9 decides which of the two decision diagrams has the top variable in the used variable ordering at
a step of the recursion. Adjustments toactualVarTLEandTLEroot for recursive calls of ANDRecursive
have to be done only ifactualVarTLEis the current top variable. Otherwise, its value is kept because
the current root of the TLEBDD corresponds to an actual variable which has to be evaluated later. In
theelsepath the new values ofactualVarTLE(actualVarNeww andactualVarNeww) as well asTLEroot
(TLErootw andTLErootw) have to be determined according to the current value ofactualVarTLEand the
mapping of the reduced variables of the TLEBDD vertices intothe BDD variable ordering. Thereby the
values of the newTLEroots are calculated with the functiongetNextVertex()(see lines 16 and 18) and the
new values ofactualVarTLEare calculated with the functiongetNextVertexVar()(see lines 17 and 19).
In the functiongetNextVertex()(see Listing 2)TLEroot has to keep its value, if it is already a terminal
node, or if the value ofactualVarTLEis before the actual variable that corresponds to the reduced vari-
able of TLEroot in the variable ordering. This is necessary,because of the missing identity patterns in
a TLEBDD, andTLEroot has to be evaluated later in the variable ordering. Otherwise getNextVertex()
returns the successorTLErootsucc as the new root of the TLEBDD. The new value ofactualVarTLEis
calculated by the functiongetNextVertexVar()(see Listing 3). If the successor vertexTLErootsucc is a ter-
minal vertex with value 0, then the terminal vertex can be evaluated immediately andactualVarTLEgets
the value for a terminal vertex (see line 6). Otherwise, the function identityPatternBeforeSuccVertex()
detects if there is an actual variable for an identity pattern betweenactualVarTLEand the corresponding
actual variable ofTLEroot in the variable ordering. If there is such an actual variable, the functionget-
NextActualIdentityPatternCurrVar()calculates the next occurring actual variable of an identity pattern
for a from-state andactualVarNewis set to this value.

These calculations can be done with the help of the mapping list and the parameter values of the
functions identityPatternBeforeTLEroot(), and getNextActualIdentityPatternCurrVar()respectively. If
no actual variable for an identity pattern exists in the variable ordering before the corresponding actual
variable ofTLEroot, actualVarNewcan be set to a value for a terminal vertex ifTLEroot is a terminal
vertex. WhenTLEroot is no terminal vertex,actualVarNewis set to the value of an actual variable for
an identity pattern beforeTLErootsuccor to the actual variable that corresponds to the formal variable of
TLErootsucc. By setting the value ofactualVarNewto the first variable of every occurring identity pattern,
we achieve that the recursion definitely holds at each such variable. The impact of the missing identity
patterns then can be considered at these recursion steps.

Christian Appold 25

Listing 3: Compute a new value foractualVarTLE
1 getNextVertexVar(TLEBDDVertex TLEroot , TLEBDDVertex TLEroot succ,int actualVarTLE){

2 int actualVarNew;

3
4 if((TLEroot succ.index == CONST_INDEX) && (TLEroot succ.value ==0)){

5 {//a terminal vertex with value 0 can be evaluated immediately

6 actualVarNew = CONST_INDEX ;}

7 else{

8 // decide if there is an identity pattern before TLEroot

9 // that has to be evaluated

10 if(identityPatternBeforeTLEroot (TLEroot , actualVarTLE)== TRUE){

11 actualVarNew =

12 getNextActualIdentityPatternCurrVar (TLEroot ,actualVarTLE);}

13 else{

14 if(TLEroot .index == CONST_INDEX){

15 actualVarNew = CONST_INDEX ;}

16 else{

17 if(identityPatternBeforeTLEroot (TLEroot succ,actualVarTLE)== TRUE){

18 actualVarNew =

19 getNextActualIdentityPatternCurrVar (TLEroot succ,actualVarTLE);}

20 else{

21 actualVarNew = mappingList [TLEroot succ.variable];}}}}}

22
23 return actualVarNew;}

If a step of the recursion has finished, the calculated subgraphsT andE have to be combined and the
result has to be returned. The return value is determined in lines 23 and 24 of Listing 1. If the top
variable of the recursion step isn’t a variable for an identity pattern, the return value can be calculated as
it is done in the algorithm for the AND between two normal BDDs. When the top variable is a variable
for an identity pattern, the recursion definitely holds at this recursion step and the variable is a from-
state variable of the identity pattern. Here the impact of the missing identity patterns to the result of
an AND operation is taken into account. Figure 3 illustratesthe effect of identity patterns on the result
calculation. In principle three different cases have to be considered. They are marked with a, b, and
c, andxk is the top and also from-state variable of an identity pattern. For each case the Figure shows
in the left the result of the recursion at this step if the AND had been calculated with identity patterns.
On the right side the result which our algorithm returns for TLEBDDs is shown. Except for the first
case (a), two subgraphs are shown as solutions for our algorithm. There are two different subgraphs
because of different optimizations that we used. Generally, after forward image calculations first the
from-state variables are existentially abstracted and after that the target-state variables are shifted to their
corresponding from-state variables. This is done with two different functions calls. Beneath the image
calculation itself, these functions often need a lot of runtime. If TLEBDDs are used the abstraction of
the from-state variables can be done easily and with little runtime overhead for variables for identity
patterns. To do this there have to be inserted no vertices forthe from-state level but only the correct
remaining subgraph without the from-state vertex has to be built. Therefore we developed a version
where from-state variables for identity patterns are abstracted away immediately. The outcome of the
result combination with this immediate abstraction are captioned with exist abst. in Figure 3. Also
we observed that the shift to the from-state variables oftenneeds a lot of runtime. We developed a
second method for result combination, where the target-state variables are immediately shifted to their
corresponding from-state variables. This can be done easily for identity patterns. For the verification
experiments we implemented the immediate shift for all variables. For non identity variables there is

26 Symbolic Model Checking with Isomorphism Exploiting Transition Relations

Figure 3: Handling of identity patterns during combinationof the subgraphsT andE

more work to do to get the correct subgraphs. As our experimental results show, the immediate shift leads
to very large runtime and memory improvements. Thus interleaved variable ordering is very efficient in
combination with the immediate shift to the from-state variables. In the first case (a) the target-state
vertices at levelk+1 have as one successor the same subgraphT. This corresponds to the case where
T andE are equal in our algorithm (see line 23 in Listing 1). WhenT equalsE, the subgraphT can be
returned regardless if an immediate abstraction of the from-state variables or an immediate shift to the
from-state variables was done. IfT andE are not equal, the result is calculated in line 24. Here two
different cases can occur in the presence of identity patterns. The one is numbered with (b) in Figure
3 and there different subgraphsT andE exist for the identity paths. After abstraction of the from-state
variables the subgraph with root variablexk+1 is the correct result. If an immediate shift is done, the
result is the subgraph with rootxk. In the last case (c) only a system state exists for the value 1of xk for
the current variable assignment (the same behavior can occur with value 0 forxk). Here our algorithm
also returns the subgraph with rootxx+1 or xx in dependency of the chosen result combination strategy.
After the result has been calculated for a recursion step, itis inserted into the computed table (see line
25) and returned.

5 Experimental Results

In this section we present the results of our verification experiments. The experiments run on an Intel
Pentium Core 2 CPU with 2.4 GHz and 3 GB main memory by using a single core. The verification ex-
periments have been done with an adapted version of the symbolic model checker Sviss [21], which uses
the Cudd BDD package [20]. For our experiments we have chosenthe variable ordering concatenated
for the bits of the components in the BDDs, because it is efficient for asynchronous systems. Figure 2
presents this variable ordering. The first bits in this variable ordering arebg1 to bg(2ng). They denote
the from-state and target-state bits for the shared variables of a system state. The bitsbi j denote thejth
bit of componenti. All experiments have been done with partitioned transition relations with identi-
cal sets of transitions in every partition for the differenttransition relation types. All testcases describe
asynchronous systems with replicated components. In the following tables the number of replicated
components can be found in the columnProblemafter the name of the verification benchmark.Number
of BDD Nodesis the largest number of live BDD nodes that appeared during averification experiment.

Christian Appold 27

This is the memory bottleneck of a verification experiment, because the model checker has to store
this number of BDD nodes to finish verification successfully [22]. Timeis the runtime of a verification
experiment, where s, m and h are abbreviations for seconds, minutes and hours. In Table 1 we show
experimental results for forward reachability analysis. Experimental results for a standard partitioned
transition relation, a TLEBDD as transition relation (from-state variables are abstracted immediately for
identity patterns here (see section 4)) and a TLEBDD as transition relation where we immediately shift
the target-state variables to its corresponding from-state variables are presented there. With the imme-
diate shift we achieve significant runtime improvements andthe memory gain can be maximized. One
reason for the memory gain is that vertices which can be savedin a TLEBDD are not needed for the
intermediate result BDD before the shift to the from-state variables. For the experiments in Table 1 we
used a timeout of 24 hours.

Table 1: Verification results for forward reachability analysis

Ordinary Partitioned
Transition Relation

Transition Relation
with TLEBDDs

Transition Relation
with TLEBDDs and
shift to target-state
immediately

Problem Number of
BDD Nodes

Time Number of
BDD Nodes

Time Number of
BDD Nodes

Time

MutexLocal 5 252,176 34s 176,577 29s 140,808 3s
MutexLocal 7 6,618,487 47:59m 4,977,342 44:05m 4,090,041 5:37m
MutexLocal 8 41,448,929 7:45h 31,092,345 7:10h 25,704,013 51:37m
Peterson 5 1,470,096 6:32m 720,661 5:28m 577,274 49s
Peterson 6 11,051,785 3:20h 8,562,251 3:20h 6,344,196 24:40m
Peterson 7 >100,000,000 >24h >100,000,000 >24h 89,401,785 10:46h
CCP 5 205,449 1:02m 172,964 57s 117,875 4s
CCP 8 9,840,064 4:49h 9,118,465 4:35h 5,855,155 16:23m
CCP 10 >75,000,000 >24h >75,000,000 >24h 67,822,819 12:32h
DP 15 309,329 3:55m 294,403 3:50m 193,402 16s
DP 20 3,614,204 2:27h 3,539,148 2:27h 2,267,828 8:41m
DP 22 9,595,403 9:06h 9,446,319 9:11h 6,018,632 32:34m

The first benchmark in Table 1 is an extended simple Mutual Exclusion Algorithm. There, a critical
section exists which can be reached by a component if a sharedvariable points to it. This benchmark has
also other shared variables. They store for every control state of the components the number of compo-
nents currently being in this control state. Additionally,every component has one local variable which
stores the number of components currently being in the new control state when a component moves its
control state. Our experimental results show that big memory improvements can be achieved by using
our TLEBDD to store the transition relations and we also see slight runtime improvements. The runtime
improvements occur with TLEBDDs because we don’t have to walk through edges of identity patterns
in the recursion by using our new algorithm ANDRecursive. Ifwe additionally shift the state variables
immediately to the corresponding from-state variables, weeven get further memory reductions and also
large runtime improvements. The second testcase in Table 1 is the Peterson Mutual Exclusion Protocol
[15]. It is a protocol where entry to the critical section is gained by a single process via a series of
n−1 competitions. There is at least one loser for each competition and the protocol satisfies the mutual

28 Symbolic Model Checking with Isomorphism Exploiting Transition Relations

exclusion condition, since at most one process can win the final competition. Table 1 shows that we
achieve significant memory gains by just using TLEBDDs as transition relation. If we additionally shift
the state variables immediately, we can further reduce the peak number of live nodes and we get very
large runtime improvements. Table 1 also shows experimental results for the CCP Cache Coherence
Protocol. It refers to a cache coherence protocol developedfrom S. German (see for example [17]). As
our experimental results show, we can slightly reduce the memory requirements by using a TLEBDD.
When we shift the state variables immediately, we get significant additional memory and runtime im-
provements. The last testcase in Table 1 is the Dining Philosophers Problem (mentioned DP in Table
1). Our implementation is an imitation of the monitors solution from [1]. The experimental results show
that the memory requirements can not be reduced very much by using TLEBDDs. Also a little runtime
increase can be observed for 22 components. This runtime increase can presumably be eliminated by
optimizing the cache utilization. Nevertheless, significant memory and runtime savings can be observed
again when we shift the state variables immediately.

Table 2: Experimental results for building only the transition relation

Ordinary Partitioned
Transition Relation

Transition Relation
only identity reduced

Transition
Relation with
TLEBDDs

Problem Number of BDD
Nodes

Number of BDD
Nodes

Number of BDD
Nodes

MutexLocal 75 115,735,537 10,105,558 141,623
MutexLocal 255 mem ov 77,576,543 320,755
MutexLocal 2047 mem ov mem ov 3,414,118
Peterson 8 110,560,066 47,415,495 17,403,225
Peterson 9 mem ov 115,675,330 40,089,105
Peterson 10 mem ov mem ov 90,597,275
CCP 18 74,758,155 74,728,268 9,840,393
CCP 19 mem ov mem ov 19,671,729
CCP 21 mem ov mem ov 78,656,120

Table 2 shows experimental results about the maximum numberof components for which the tran-
sition relation can be built alone with different transition relation types. We there present experimental
results for a standard partitioned transition relation, a partitioned transition relation which is only identity
reduced and for a transition relation with TLEBDDs. As our experimental results show, the number of
components for which the transition relation can be built can always be enlarged by using TLEBDDs. If
we use only identity reduction, we can not increase the number of components as large as with TLEBDDs
and we even don’t get an increase in the number of components for the CCP testcase. This shows the
efficiency of our TLEBDD approach. We omitted the experimental results for the dining philosophers
testcase here, because it only has a small transition relation that can already be build with an ordinary
partitioned transition relation for more than 1000 components.

6 Conclusion and Outlook

In this paper we presented a new approach to store the transition relation of asynchronous systems. Our
approach exploits the common property of BDD packages to store isomorphic subgraphs only once. The

Christian Appold 29

presented experimental results confirm that our approach can lead to big memory savings. This allows
the verification of larger systems. Additionally, our method can enlarge the parts of the transition relation
which can be stored in a single partition of a partitioned transition relation. In this way fewer nodes may
be needed and verification can possibly be accelerated. Additionally, we presented a new algorithm to
combine BDDs and TLEBDDs efficiently. As our experimental results confirm, an immediate shift to the
from-state variables leads to very large runtime and memoryreductions for interleaved variable orderings
by using this new algorithm.

In the future we intend to investigate the usage of TLEBDDs for storing the transition relation with
other state-space exploration algorithms than the traditional breadth-first algorithm. By using other al-
gorithms, like e.g. breadth-first generation with chaining, or the saturation algorithm, possibly even
greater memory savings may occur. To investigate the performance of the use of TLEBDDs with other
verification benchmarks and state-space exploration algorithms we intend to implement their usage for
the symbolic model checker NuSMV [6]. Also, we will try to investigate the consequences of different
TLEBDD variable orderings on the memory requirements and the verification runtime.

References

[1] M. Ben-Ari (2006): Principles of Concurrent and Distributed Programming (2ndEdition) (Prentice-Hall
International Series in Computer Science). Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

[2] M. Ben-Ari, Z. Manna & A. Pnueli (1981):The temporal logic of branching time. In: POPL ’81: Proceedings
of the 8th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, ACM, pp. 164–
176, doi:10.1145/567532.567551.

[3] R. E. Bryant (1986):Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transactions on
Computers35, pp. 677–691, doi:10.1109/TC.1986.1676819.

[4] J. R. Burch, E. M. Clarke & D. E. Long (1991):Symbolic Model Checking with Partitioned Transition
Relations. North-Holland, pp. 49–58.

[5] G. Ciardo & A. J. Yu (2005):Saturation-based symbolic reachability analysis using conjunctive and disjunc-
tive partitioning. In: Proc. CHARME, LNCS 3725, Springer-Verlag, pp. 146–161.

[6] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani & A. Tacchella
(2002): NuSMV Version 2: An OpenSource Tool for Symbolic Model Checking. In: Proc. International
Conference on Computer-Aided Verification (CAV 2002), LNCS 2404, Springer, Copenhagen, Denmark.

[7] E. M. Clarke & E. A. Emerson (1982):Design and Synthesis of Synchronization Skeletons Using Branching-
Time Temporal Logic. In: Logic of Programs, Workshop, Springer-Verlag, London, UK, pp. 52–71, doi:10.

1007/BFb0025774.

[8] E. M. Clarke, O. Grumberg & D. A. Peled (2000):Model checking. MIT Press.

[9] A. Goel, G. Hasteer & R. Bryant (2003):Symbolic representation with ordered function templates. In:
Proceedings of the 40th annual Design Automation Conference, DAC ’03, ACM, New York, NY, USA, pp.
431–435, doi:10.1145/775832.775946.

[10] Alexander Kaiser, Daniel Kroening & Thomas Wahl (2010): Dynamic Cutoff Detection in Parameterized
Concurrent Programs. In: Computer-Aided Verification (CAV), doi:10.1007/978-3-642-14295-6_55.

[11] T. Kam, T. Villa, R. Brayton & A. Sangiovanni-Vincentelli (1998): Multi-valued decision diagrams: theory
and applications. Multiple-Valued Logic4(1-2), pp. 9–62.

[12] K. L. McMillan (1993): Symbolic Model Checking. Kluwer Academic Publishers, Norwell, MA, USA.

http://dx.doi.org/10.1145/567532.567551
http://dx.doi.org/10.1109/TC.1986.1676819
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1145/775832.775946
http://dx.doi.org/10.1007/978-3-642-14295-6_55

30 Symbolic Model Checking with Isomorphism Exploiting Transition Relations

[13] A. S. Miner (2001):Efficient solution of GSPNs using Canonical Matrix Diagrams. In: Proceedings of the
9th International Workshop on Petri Nets and Performance Models, IEEE Comp. Soc. Press, pp. 101–110,
doi:10.1109/PNPM.2001.953360.

[14] A. S. Miner (2004):Saturation for a General Class of Models. In: QEST ’04: Proceedings of the The
Quantitative Evaluation of Systems, First International Conference, IEEE Computer Society, Washington,
DC, USA, pp. 282–291, doi:10.1109/QEST.2004.38.

[15] G. L. Peterson (1981):Myths About the Mutual Exclusion Problem.Inf. Process. Lett.12(3), pp. 115–116,
doi:10.1016/0020-0190(81)90106-X.

[16] A. Pnueli (1981):A temporal logic of concurrent programs. Theoretical Computer Science13, pp. 45–60.

[17] A. Pnueli, S. Ruah & L. Zuck (2001):Automatic Deductive Verification with Invisible Invariants. Springer,
pp. 82–97.

[18] J.-P. Queille & J. Sifakis (1982):Specification and verification of concurrent systems in CESAR. In: DesPro-
ceedings of the 5th Colloquium on International Symposium on Programming, Springer-Verlag, London,
UK, pp. 337–351, doi:10.1007/3-540-11494-7_22.

[19] R. K. Ranjan, A. Aziz, R. K. Brayton, B. Plessier & C. Pixley (1995):Efficient BDD algorithms for FSM
synthesis and verification. In: In IEEE/ACM Proceedings International Workshop on Logic Synthesis, Lake
Tahoe (NV.

[20] F. Somenzi (2009):CUDD: CU Decision Diagram Package, Release 2.4.2. University of Colorado at Boul-
der, http://vlsi.colorado.edu/ fabio/CUDD/.

[21] T. Wahl, N. Blanc & A. Emerson (2008):Sviss: Symbolic Verification of Symmetric Systems. In: Tools and
Algorithms for the Construction and Analysis of Systems (TACAS).

[22] B. Yang, R. E. Bryant, D. R. O’Hallaron, A. Biere, O. Coudert, G. Janssen, R. K. Ranjan & F. Somenzi
(1998):A Performance Study of BDD-Based Model Checking. In: Proceedings of the Second International
Conference on Formal Methods in Computer-Aided Design, FMCAD ’98, Springer-Verlag, London, UK, pp.
255–289.

http://dx.doi.org/10.1109/PNPM.2001.953360
http://dx.doi.org/10.1109/QEST.2004.38
http://dx.doi.org/10.1016/0020-0190(81)90106-X
http://dx.doi.org/10.1007/3-540-11494-7_22

	1 Introduction
	2 Background
	2.1 Asynchronous Concurrent Systems
	2.2 Binary Decision Diagram (BDD)
	2.3 Symbolic State-Space Generation
	2.4 Symbolic Representations of Transition Relations and Related Work

	3 Transition Locality Exploiting BDDs (TLEBDDs)
	4 Efficient Algorithm for Boolean Operation Calculation
	5 Experimental Results
	6 Conclusion and Outlook

