Improving BDD Based Symbolic Model Checking with
Isomorphism Exploiting Transition Relations

Christian Appold

Chair of Computer Science V
University of Wiirzburg
Wirzburg, Germany

appold@informatik.uni-wuerzburg.de

Symbolic model checking by using BDDs has greatly improvedapplicability of model checking.
Nevertheless, BDD based symbolic model checking can stiltdry memory and time consuming.
One main reason is the complex transition relation of systé®ometimes, it is even not possible to
generate the transition relation, due to its exhaustive angnequirements. To diminish this problem,
the use of partitioned transition relations has been pregholdowever, there are still systems which
can not be verified at all. Furthermore, if the granularityhaf partitions is too fine, the time required
for verification may increase. In this paper we target the ksylin verification of asynchronous
concurrentsystems. For such systems we present an appvbatiuses similarities in the transition
relation to get further memory reductions and runtime improents. By applying our approach,
even the verification of systems with an previously intratgdransition relation becomes feasible.

1 Introduction

The presence of concurrent software is steadily increaduggto the shift towards multi-core CPUs.

This software consists of several parallel threads, whiehestecuted asynchronously and interleaved.
Some models for inter-thread communication exist, but tlestrfilexible and prominent one is the use
of fully shared variables. Well-known programming APIslithe POSIX pthread model or the WIN32

API support this model of communication. Unfortunatelyncorrent software often is very error-prone,

and bugs tend to be subtle and are hard to detect. Thus, tteatsabse in safety-critical areas, reliable

techniques to verify the correct operation of concurrefitsare are mandatory. One formal verification

technique which has been proven to be successful in thecagitin of concurrent systems is temporal

logic model checking [7]/118]. There, desired propertiéa gystem are formulated in a temporal logic

(like CTL [2] or LTL [L6]), and the state-space of the systesnnvestigated exhaustively to validate

these properties. A very effective model checking techmigusymbolic model checkin@![8], [12] based

on Binary Decision Diagrams (BDDs)![3].

Nevertheless, BDD-based model checking is often still vegmory and time consuming. This
sometimes circumvents the successful verification of systeThe main reason for the large memory
requirements of symbolic model checking is often the huge sf the BDD representing the transition
relation. Therefore, some methods have been proposed islnthis problem. Originally a monolithic
transition relation consisting of a single BDD was used. Buthe large size of this BDD, the authors
of [4] suggested to use partitioned transition relationser€, the transition relation is split into several
pieces and each of these pieces can often be representedniayl BBD. Pieces of partitioned transition
relations of asynchronous systems frequently possess iahamiyty patterns for identity transformations
of state variables. Ir_[13] andl[5] the removal of such idgnpiatterns has been suggested to reduce
the memory overhead. In this paper we target the symbolidicegion of asynchronous concurrent

Giovanna D’Agostino, Salvatore La Torre (Eds.):

Proceedings of the Second International Symposium on
“Games, Automata, Logics and Formal Verification” (GandA20A.1)
EPTCS 54, 2011, pp. 17330, doi:10.4204/EPTCS|54.2

© Christian Appold
This work is licensed under the
Creative Commoris Attribution License.

http://dx.doi.org/10.4204/EPTCS.54.2
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

18 Symbolic Model Checking with Isomorphism Exploiting Tr&ie Relations

systems, like e.g. concurrent software. We present a newomyesaving approach to store the transition
relation with BDDs. It allows to exploit similarities in tH@DDs of the component transition relations.
Additionally, identity patterns are removed, too. Furthere, we introduce an algorithm that enables
the efficient use of our new technique for model checking. &guerimental results show (see section
[B) that this can lead to significant memory and runtime impnognts. The approach is not restricted to
asynchronous systems, but can be used for synchronousnsyatewell. To our knowledge, this is the
first paper where similarities in the transition relatiorcofnponents of a system are exploited that way.
The rest of this paper is organized as follows. In the nexti@eave present some background
information. We introduce our model of an asynchronous soeat system[(2]1) and give a short
introduction into BDDs[(Z.2), symbolic state-space geti@na(2.3), and symbolic representations of
transition relations and related wotk (2.4). Thereaftect®n[3 presents our new approach to store the
transition relation and in Sectign 4 we exemplify an efficiaigorithm to build the AND of an ordinary
BDD and our new data structure. Experimental results whigtma@hstrate the efficiency of our new
approach can be found in Sectidn 5. The paper closes withdusion and an outlook to future work.

2 Background

2.1 Asynchronous Concurrent Systems

In this paper we target finite state asynchronous concussatemdV™ = (SR,), whereSis the finite

set of possible state§y C Sis the set of initial states ariglis the transition relation. We assume that an
asynchronous systeM™ is composed ofn > 1 components, and a state Sis a tuples= (g, 11, ...,Im)-
Thus, a system state consists of the valgesf all global shared variables (not associated with any
component) and thiocal statej of each componerite {1,...,m} (i.e. values of all local variables of
component). The transition relation is defined &= {(x,X)| x € SAX € SA statex' can be reached
from statex in a single step.

The execution model of a systeki™ is that of interleaved asynchrony. Only one component can
execute a transition at a time and a transition of a componenty depends on and only changes
the values of the shared variablgsas well as its own local state. That means, a component has
neither read nor write access to local variables of otherpmmants. We denote this frequently oc-
curring behavior asransition locality. Let R, be a relation wittR, = {((g, 1), (d.l]))| (d,l]) results
from (G,l;) by executing a single step of and letR be the transition relation of componeinthat
contains the transitions executable by componerin systems with transition locality the following
holds Vi € {1,...m} : R = {((Gl1,..-,Im), (@, 11, ... W) IVi # i 1j =1, A((G,)i),(d,I]) € Rp} and
R=UiemRi- An example for this system type is the tremendous impoe@aining concurrent software
for multi-core architectures with threads which commutgcaia shared variables. Also the subtype
of concurrent software with replicated threads is mostvegiein practice. A formal definition of this
system type can be found in [10].

2.2 Binary Decision Diagram (BDD)

Decision diagrams are used in symbolic model checking t@ stets of states as well as the transition
relation of a system. Ainary decision diagran{BDD) [3] for N-variables can be used to encode a
function f : {0, 1}N + {0,1}.

Christian Appold 19

Definition 1. A BDD is an acyclic directed graph with a single root vertexdawo types of vertices,
nonterminal vertices and terminal vertices. Each nonteahiertex v is labeled by a variable van)
and has two successors 0wy and highv). A terminal vertex v is labeled by a value vajuee {0,1}.

As we did in this paper, most ofteeduced ordered binary decision diagrarROBDDs [3] are
used. ROBDDs are a canonical representation for booleastifuns. Canonicity is achieved by using
two restrictions for BDDs. There should be no isomorphictseds or redundant vertices in the diagram,
and the variables should appear in the same order along edlchrpm the root vertex to terminal
vertex. The same order for the variables along each pathsisred by using a total ordering on
the variables that label the vertices in a BDD. Than(u) < var(v) is required for any vertex in the
diagram that has aonterminalsuccessor. One can decide whether a particular truth assignment to
its variables makes a function represented as a BDD trueptoibg traversing the graph from the root
vertex to a terminal vertex. The value of a reaclhedninal vertex is the value of the function for the
given variable assignment.

2.3 Symbolic State-Space Generation

As mentioned in the last section, BDDs are used in symbolidehohecking to store sets of states as
well as the transition relation of a system. A set of statesan be encoded with a BDD through its
characteristic functioryz. If the shared stateg of an asynchronous system with components can
be encoded witmg boolean variables and the local states of a componeiith n; boolean variables,
then a BDD forN = ng+ S, n;, variables can be used to store sets of system states. Toeetitad
transition relation with a BDD, transitions between statastead of single states, have to be encoded.
Therefore, a BDD for twice as many variables as for BDDs thabde sets of states is necessary and the
transition relation can be encoded with a BDD &i¥-variables. Theré-variables are needed for the
from-state and alsbl-variables for theéargetstate of a transition. As BDD variable ordering for @s-
variables, all possible permutations are applicable. Bstwidely acknowledged that variable ordering
with interleaving of the correspondirfgpm- andtargetstate variables is often the most efficient variable
ordering by terms of nodes required to store the transiwation. Thus, we consider only interleaved
variable ordering in this work. In interleaved variable enidg the correspondinfjom- andtargetstate
variables are next to each other in a BDD.

This paper targets on forward reachability analysis. Th#re image computations are forward
images and the forward image for a set of st@&és defined asimageZ) = {X|3x € Z,(x,X) € R}. In
forward reachability analysis state-space search statighve set of initial stateSy. The set of reachable
states is the minimal set satisfyi?gD> S andZ O Imag€Z) which can be computed through iterated
forward image calculations. The traditional approach fgnisolic state-space generation, which we
also used within this paper, uses breadth-first iteratiBash breadth-first iteration consists of an image
computation with the entire transition relati®of a system. At théth iteration all states with distance
less or equail from the initial states have been explored.

2.4 Symbolic Representations of Transition Relations and &ated Work

A monolithic transition relation of a single BDD is often iattably large. Therefore, the use of parti-
tioned transition relations has been proposed_in [4]. ®argd transition relations consist of conjunc-
tions or disjunctions of a number of pieces of the single BDBese pieces can often be represented by
a small BDD. In this paper we consider asynchronous congusssstems and use disjunctive partitioned

20 Symbolic Model Checking with Isomorphism Exploiting Tr&ie Relations

transition relations. A component-wise disjunctivelytiijamed transition relation for an asynchronous
system withm components is composed of the transition relatiBpnsf the components, and can be
written asR=R; VR, V... V Rn. In this work we consider only systems with transition ldtya{see
sectior 2.11). Our method further reduces the memory reqeaings of the partitioned transition relation
approach through exploiting similarities in the trangitielation of the components. For the use of parti-
tioned transition relations, it's worth mentioning thaba fine granulated transition relation may not be
the best choice. As long as the BDDs don’t become too large pietter to combine several transitions
in one disjunct. In this way, fewer BDD nodes may be neededatswl image calculation can possi-
bly be accelerated. In [19] the authors presented and ige¢st an approach where the partitions of
partitioned transition relations can consist of sevemiditions. Their experimental results confirm that
larger partitions lead to big runtime savings. But they abserved an increase in the number of BDD
nodes for coarser partitioned transition relations. Bystering similarities in the transition relations
of the components our approach allows to build much coarseitipns of transitions. Additionally, in
the presence of large isomorphic subgraphs no strong seiiadhe total number of BDD nodes occurs.
Thus, our approach can reduce the runtime without causimgcasase of the memory requirements.
Transition relations of asynchronous systems often contaany identity patterns. As introduced
in 2.7, if a component executes a transition in a system with transition locatitygn the local states
for all other component$ # i remain unchanged. Therefore, the BDD for the transitioati@h R; of
component contains identity patterns for the local state bits of dflestcomponent$ # i. An example
of an identity pattern can be found in Figlide 1. There ldvebntains a vertex of rom-state and level
k+ 1 a vertex of the correspondirtgrgetstate. According to Figurie 1, if the vertices at lekednd
k+ 1 get assigned different values, then the BDD evaluates fich@t means, if a BDD for a transition
contains an identity pattern for a variable, the variablesth change its value when the transition is
executed. To avoid the memory overhead to store identitee, [14] introduces an approach which
uses reduced matrix diagrams (MxDs)|[13] without identibgles for the transition relation. The authors
of [5] suggested to use a new identity reduction rule for MO to get fully identity reduced MDDs
for the transition relation. These papers just presentagares for identity reduction, but no method
to use similarities in the transition relations of compdsenA technique to exploit sharing in BDDs
for regular circuits that differ only in their support vdsias has been presented |in [9]. Similar to our
approach a remapping of input variables is used there. Bhtauemapping can not be used for BDDs of
transition relations of components in asynchronous coeatisystems. The reason is different positions
of identity patterns in the BDD variable ordering for ditéet components. Additionally, they always
expand a BDD with modified input variables before performan®DD operation. This is very time
consuming and can even be intractable for large transi@l@tions. To solve this problem, we present in
sectior 4 an efficient algorithm for boolean operation dakien with our new BDD type, which avoids
the expansion to a normal BDD.

3 Transition Locality Exploiting BDDs (TLEBDDS)

In this section we present our new approach to store theitianselation of systems with transition
locality (see section 2.1). It makes use of the circumstadhaé BDDs for subsets of the transition
relation may have a very similar structure, if the transitielation is split component-wise in partitioned
transition relations. To exploit those similarities andréoluce the memory requirements of transition
relations we suggest to ugeansition Locality Exploiting BDDs (TLEBDDs)A TLEBDD consists
of a normal BDD (see sectidn 2.2) and a mapping list. For aegystithm components, the transition

Christian Appold 21

Bits Global Bits Local Variables
Variables Component 1 Component 2 Component m

bg1 e bg(zng) b11 e b1(2n1) b21 es b2(2n2) e bm1... bm(znm)

Figure 1: Example of an identity Figure 2: Variable Ordering Concatenated
pattern

relation of a component can be represented by a BDD with&riables, wher®l = ng+ ™, n;;. In the
rest of the paper we assume that the BDD of a TLEBDD for a coraptiris defined over the variables
X ={x1, X2, ---7X2«(ng+n|i)} and the mapping list is defined over the variaMes {yi,y>,...,y2.n }. We will
denote the variables K as reduced variables and the variable¥ ias actual variables. The mapping
list is necessary to map the reduced variables to the acanalbles of the corresponding characteristic
function xg of R for which the TLEBDD has been built. For a componerthis mapping can be
described with a functiomr: {1,2,..,2- (ng+n;,)} — {1,2,..,2- N} that maps mapping list entries to
variable indices fronY.

Definition 2. A n-mapping list is a list over Y with n elements, that is
Yr(1)s -+ Yr(n) -

According to sectioh 211 the transition relatiBnof a componentin a system with transition locality

is defined ay = {((G,11,-.,Im), (T, 11, W) Vi £ i 1i =1;A((Gi),(T,1{) € R} (see section 21
for the definition ofR;,) and the values off andl/ depend only org andl;. TLEBDDs exploit the
circumstance that for every transition of a compondrldsYj =i : Ij = lj, and no vertices are used in

the transition relation of a componeirfor the local states of an other compongst i.

Definition 3. A TLEBDD for the transition relation of a component i in a gystwith transition locality

is a tuple(G,b), where G is a normal BDD and b is a mapping list. G is a BDD witk 2k (ng+n;,)
reduced variables %= {xi,X, ---7X2-(ng+n|i)}- They are used for the bits of the shared stafegy bits)

of the system and the local state bisif, bits) of the component for which the TLEBDD has been built.
For actual variables of the other-a 1 components a TLEBDD implicitly assumes identity pattefine
mapping list b contains &= {1,2,...,2- (ng+n;) } elements and is used to map the reduced variables of
G to the actual variables. It contains for each positioa ¢1,2,...,2- (ng+n;,) } in the variable ordering

of the BDD G the associated actual variablgq. Thereby it holds for gop € {1,2,...,2- (ng +)}

with o # 0 that Yrq,) # Yr(qp)-

TLEBDDs can be used for the efficient representation of camepotransition relations. A corre-
sponding BDD can be obtained from a TLEBD¥B, b) through substitution of the reduced variables of
the TLEBDD with the corresponding actual variables and tiseition of identity patterns. That means,
the TLEBDD (G, [Yn(1), -+ Yrn)]) @nd the BDDA(G[yry1) /X4, -+, Yr(n) /%n]) represent the same function.

22 Symbolic Model Checking with Isomorphism Exploiting Tr&ie Relations

HereG[y/x| is the substitution of any occurrencefn G with y andA is an operation which inserts
identity patterns for associated pairs of from- and taggate actual variables for which no correspond-
ing reduced variables exist. TLEBDDs use the same reduaiables to represent the local state bits of
different components. In the prominent special case of@symous systems with only one replicated
component type, even all corresponding local state bithexfitcomponents can be mapped to the same
reduced variables. In this way we get isomorphic subgragiishnaren’t isomorphic in BDDs of ordi-
nary partitioned transition relations, because the mositif local state bits of components or of identity
patterns in the variable ordering differs. This enablesousse the common property of BDD packages
like Cudd [20] to store isomorphic subgraphs only once. Ogeemental results in sectién 5 confirm
that this can lead to enormous memory savings. TLEBDDs camde canonical by requiring that
mapping lists are ordered with respect to some strict andetion the actual variables.

Definition 4. A n-mapping list is ordered, ifjyi) < Yri 1), forall 1 <i<n.

Theorem 1. If (G,bg) and(H,by) are two TLEBDDs with mapping lists which are ordered withpesst
to some strict ordering< on the actual variables Y, then for boolean functiornis gf component transi-
tion relations with g represented througfs, by) and h represented througli,bn), g= h holds, if and
only if G=H and lyy = b,.

Proof. Letbg = bh = [Yr(1), -, Ynn)]- BY expansion of the TLEBDDs we ggtxp =

A(G[Yr(1) /X1, -+ Yr(n) /%n]) @ndhexp = A(H Y1) /X1, -+, Yrn) /%n]), whereA is defined as introduced be-

fore. Becaus& = H, we getgexp = hexp and therefore holdg = h.

Be nowg = h. Because the mapping lists have to be strictly ordered anddme actual variables have
to be mapped to reduced variables, there is only one unigiexet mapping list. Thusy = by, holds. If

G # H would hold, then the TLEBDD&G, by), and(H, bn) respectively, have to have different mapping
lists by andby, thatg = h can be valid. Therefore al€6= H holds. O

A TLEBDD can be built for a componemnthrough encoding of the relatidR,, by using the reduced
variables instead of the actual variables. Additionally thapping of the 2(ng + n;;) reduced variables
to the N = 2- (ng+ 3", n;;) actual variables has to be stored in the mapping list. Taet@lthe truth
value of a particular assignment of values to the variakdlesic. EBDD, its BDD has to be traversed from
the root vertex to a terminal vertex similar to a BDD. Additadly, during its traversal the information
which has been stored in the mapping list has to be considerethp the reduced variables to their
corresponding actual variables and to take into accounibsing identity patterns.

To use TLEBDDs and ordinary BDDs for model checking, it's essary that they can be combined
through boolean operations. An approach that allows th@iie traditional BDD algorithms to com-
bine a TLEBDD and a BDD is to adapt the TLEBDD variable ordgria the variable ordering of the
BDD and to insert simultaneously the omitted identity patte Though this works, here the uncom-
pressed BDD has to be built for a TLEBDD. This would cause atitihal runtime overhead, which
can sometimes be very large. Also, if this BDD is huge a lot efmory may be required. In the worst
case this can lead to an abort of the subsequent forward ioadgdation and therewith the model check-
ing run. Therefore, we developed an effective algorithmtiercalculation of boolean operations which
avoids to generate normal BDDs for TLEBDDs entirely. In thigy the vertices of a corresponding
BDD for a TLEBDD are not needed at all, and we achieve the maximossible memory reduction.

Christian Appold 23

4 Efficient Algorithm for Boolean Operation Calculation

Here, we exemplify an efficient algorithm to compute the ANDadolLEBDD and a BDD. The AND
of two BDDs is a very important step in forward image compotgtbecause in every forward image
computation the AND of the BDD with states which still havebtexplored and the transition relation
has to be calculated. Listifg 1 sketches our new algorithmstwddlows to build the AND of a TLEBDD
and a BDD without building the corresponding normal BDD foe fTLEBDD at all. Prior to the exe-
cution of the algorithm the variable ordering of the redugadables of the TLEBDD has to be adapted
according to the variable ordering of the BDD .

Listing 1: Recursively compute the AND of a TLEBDD and a notfBRD

1 ANDRecursive(TLEBDDVertex TLEroot, BDDVertex BDDroot, int actualVarTLE){
2 BDDVertex result = TERMINAL_CASE(TLEroot ,BDDroot ,actualVarTLE);

3 if (result != NULL)A{

4 return result;} //terminal case found

5 result = COMPUTED_TABLE_HAS_ENTRY (AND,TLEroot ,BDDroot ,actualVarTLE);
6 if (result != NULL)A{

7 return result;} //result has already been calculated before

8

9 if (BDDroot .variable < actualVarTLE){

10 vV = BDDroot.variable;

11 T = ANDRecursive(TLEroot ,BDDrooty,actualVarTLE);

12 E = ANDRecursive(TLEroot ,BDDrooty,actualVarTLE);}

13 elsed{

14 V = actualVarTLE;

15 W = TLEroot.variable;

16 TLErooty = getNextVertex(TLEroot ,TLErooty,actualVarTLE);

17 actualVarNewy = getNextVertexVar (TLEroot ,TLErooty,actualVarTLE);
18 TLErootywy = getNextVertex(TLEroot ,TLErooty,actualVarTLE);

19 actualVarNewy = getNextVertexVar (TLEroot ,TLErooty,actualVarTLE);
20 T=ANDRecursive (TLErooty,BDDrooty,actualVarNewy);

21 E=ANDRecursive (TLErootw,BDDrooty,actualVarNewy) ;}

22

23 if (T == E) return T;

24 R = FIND_OR_GENERATE_AND_ADD_UNIQUE_TABLE (v,T,E);

25 INSERT_COMPUTED_TABLE ((AND, TLEroot ,BDDroot ,actualVarTLE) ,R);

26 return R;}

One main difference of the algorithm in Listif@) 1 to the us@&ID algorithm is the use of a variable
actualVarTLEfor the current actual variable of a TLEBDD vertex. This ahle is necessary to achieve
that only those TLEBDD and BDD vertices are evaluated tagyettihat would also be evaluated together if
the AND would be done between two ordinary BDDs. In line 2 ef#ifigorithm it is detected if a terminal
case of the recursive computation has been reached. If antdraertex is reached in a normal BDD,
then its value is the value of the represented function fevtriable assignment that led to this terminal
vertex. In our algorithm a terminal vertex of a TLEBDD is fga terminal vertex, if its value is 0. If
its value is 1, possibly missing identity patterns have t@vmuated before the terminal vertex is valid.
This problem can be solved by using the valuedfualVarTLEto decide the validity of such terminal
vertices during the detection of terminal cases. The vafugctualVarTLEalso has to be considered
during computed table accesses (see lines 5 and 25). Thie hagione because different partial results
of the AND operation can occur with the same TLEBDD and BDDiges. By considering the value of

24 Symbolic Model Checking with Isomorphism Exploiting Tr&ie Relations

actualVarTLEthese partial results can be differentiated.

Listing 2: Compute a successor vertex of the current TLEmatTLEBDD

getNextVertex (TLEBDDVertex TLEroot , TLEBDDVertex TLErootgyc,int actualVarTLE){
TLEBDDVertex TLErootpew = TLErootsycc;

if (isTerminalVertex (TLEroot) ||
(actualVarTLE < mappinglList [TLEroot.variable])){
TLErootnpew = TLEroot;}

CO~NO O~ WNPE

return TLErootnew;}

Line 9 decides which of the two decision diagrams has the éo@ble in the used variable ordering at
a step of the recursion. AdjustmentsactualVarTLEandTLErootfor recursive calls of ANDRecursive
have to be done only éctualVarTLEis the current top variable. Otherwise, its value is kepiabse
the current root of the TLEBDD corresponds to an actual éiavhich has to be evaluated later. In
the elsepath the new values @fctualVarTLE(actualVarNew;, andactualVarNew;) as well asTLEroot
(TLEroot, andTLErooty) have to be determined according to the current valuechfalVarTLEand the
mapping of the reduced variables of the TLEBDD vertices theoBDD variable ordering. Thereby the
values of the neW LEroots are calculated with the functigetNextVertex(jsee lines 16 and 18) and the
new values ofictualVarTLEare calculated with the functiogetNextVertexVar(fsee lines 17 and 19).
In the functiongetNextVertex(Jsee Listind R)TLEroot has to keep its value, if it is already a terminal
node, or if the value octualVarTLEis before the actual variable that corresponds to the rebvae-
able of TLEroot in the variable ordering. This is necesshegause of the missing identity patterns in
a TLEBDD, andTLEroot has to be evaluated later in the variable ordering. OthergésNextVertex()
returns the successdt_Eroot,cc as the new root of the TLEBDD. The new valueaaftualVarTLEis
calculated by the functiogetNextVertexVar(jsee Listind B). If the successor verfEXErootcis a ter-
minal vertex with value 0, then the terminal vertex can béuatad immediately andctualVarTLEgets
the value for a terminal vertex (see line 6). Otherwise, thecfionidentityPatternBeforeSuccVertex()
detects if there is an actual variable for an identity pattertweeractualVarTLEand the corresponding
actual variable offLErootin the variable ordering. If there is such an actual variathle functionget-
NextActualldentityPatternCurrVar(@alculates the next occurring actual variable of an idemqtittern
for a from-state andctualVarNewis set to this value.

These calculations can be done with the help of the mappataitid the parameter values of the
functions identityPatternBefore TLEroot()and getNextActualldentityPatternCurrVarfespectively. If
no actual variable for an identity pattern exists in theafale ordering before the corresponding actual
variable of TLEroot actualVarNewcan be set to a value for a terminal vertex lfErootis a terminal
vertex. WhenTLErootis no terminal vertexactualVarNewis set to the value of an actual variable for
an identity pattern befor€LEroot,,ccor to the actual variable that corresponds to the formahieiof
TLEroot,, By setting the value adictualVarNewo the first variable of every occurring identity pattern,
we achieve that the recursion definitely holds at each sudhbla. The impact of the missing identity
patterns then can be considered at these recursion steps.

Christian Appold 25

Listing 3: Compute a new value factualVarTLE

1 getNextVertexVar (TLEBDDVertex TLEroot , TLEBDDVertex TLErootsyc, int actualVarTLE){
2 int actualVarNew;

3

4 if ((TLErootsycc. index==CONST_INDEX) && (TLErootgyc.value==0)){

5 {//a terminal vertex with value O can be evaluated immediately

6 actualVarNew = CONST_INDEX;}

7 elsed{

8 //dectde if there is an identity pattern before TLEroot

9 //that has to be evaluated

10 if (identityPatternBeforeTLEroot (TLEroot ,actualVarTLE)==TRUE){

11 actualVarNew =

12 getNextActualldentityPatternCurrVar (TLEroot ,actualVarTLE);}
13 else{

14 if (TLEroot .index==CONST_INDEX){

15 actualVarNew = CONST_INDEX;}

16 elsed{

17 if (identityPatternBeforeTLEroot (TLErootgyc, actualVarTLE)==TRUE){
18 actualVarNew =

19 getNextActualIldentityPatternCurrVar (TLErootsyc, actualVarTLE) ;}
20 else{

21 actualVarNew = mappingList [TLErootsyc. variable];}}}}}

22

23 return actualVarNew;}

If a step of the recursion has finished, the calculated spbge andE have to be combined and the
result has to be returned. The return value is determinethés [23 and 24 of Listing]l1. If the top
variable of the recursion step isn’'t a variable for an idgrattern, the return value can be calculated as
it is done in the algorithm for the AND between two normal BDI®¢hen the top variable is a variable
for an identity pattern, the recursion definitely holds as ttecursion step and the variable is a from-
state variable of the identity pattern. Here the impact ef ithissing identity patterns to the result of
an AND operation is taken into account. Figlte 3 illustrateseffect of identity patterns on the result
calculation. In principle three different cases have to twesalered. They are marked with a, b, and
c, andx is the top and also from-state variable of an identity pattéfor each case the Figure shows
in the left the result of the recursion at this step if the AN&utbeen calculated with identity patterns.
On the right side the result which our algorithm returns fwuEBDDs is shown. Except for the first
case (a), two subgraphs are shown as solutions for our @dgori There are two different subgraphs
because of different optimizations that we used. Generaftgr forward image calculations first the
from-state variables are existentially abstracted aret #fat the target-state variables are shifted to their
corresponding from-state variables. This is done with tiffeint functions calls. Beneath the image
calculation itself, these functions often need a lot of imet If TLEBDDs are used the abstraction of
the from-state variables can be done easily and with lititgime overhead for variables for identity
patterns. To do this there have to be inserted no verticethéofrom-state level but only the correct
remaining subgraph without the from-state vertex has towk. bTherefore we developed a version
where from-state variables for identity patterns are abstd away immediately. The outcome of the
result combination with this immediate abstraction aretioapd with exist abst. in Figure[3. Also
we observed that the shift to the from-state variables ofieeds a lot of runtime. We developed a
second method for result combination, where the targét-stariables are immediately shifted to their
corresponding from-state variables. This can be doneyefasilidentity patterns. For the verification
experiments we implemented the immediate shift for allalalgs. For non identity variables there is

26 Symbolic Model Checking with Isomorphism Exploiting Tr&ie Relations

with identity our with identity our with identity our
pattern algorithm pattern algorithm pattern algorithm
exist abst. exist abst.

exist abst.+
shift imm.

Figure 3: Handling of identity patterns during combinatafrthe subgraph3$ andE

more work to do to get the correct subgraphs. As our expetmhegsults show, the immediate shift leads
to very large runtime and memory improvements. Thus irdedd variable ordering is very efficient in
combination with the immediate shift to the from-state abkes. In the first case (a) the target-state
vertices at levek + 1 have as one successor the same subgFaprhis corresponds to the case where
T andE are equal in our algorithm (see line 23 in Listing 1). WHeequalskg, the subgrapf can be
returned regardless if an immediate abstraction of the fstate variables or an immediate shift to the
from-state variables was done. TfandE are not equal, the result is calculated in line 24. Here two
different cases can occur in the presence of identity pettefhe one is numbered with (b) in Figure
and there different subgraphisandE exist for the identity paths. After abstraction of the fratate
variables the subgraph with root variabdg ; is the correct result. If an immediate shift is done, the
result is the subgraph with romt. In the last case (c) only a system state exists for the vahfexd for

the current variable assignment (the same behavior camr egttuvalue 0 forxc). Here our algorithm
also returns the subgraph with rogt_; or X, in dependency of the chosen result combination strategy.
After the result has been calculated for a recursion stap,itserted into the computed table (see line
25) and returned.

5 Experimental Results

In this section we present the results of our verificationeexpents. The experiments run on an Intel
Pentium Core 2 CPU with 2.4 GHz and 3 GB main memory by usingglssicore. The verification ex-
periments have been done with an adapted version of the $igrnfoadel checker Svis§ [21], which uses
the Cudd BDD package [20]. For our experiments we have chibeemariable ordering concatenated
for the bits of the components in the BDDs, because it is efficfor asynchronous systems. Figufe 2
presents this variable ordering. The first bits in this Valgeordering aredg; to by,n). They denote
the from-state and target-state bits for the shared vasabi a system state. The big denote thejth

bit of component. All experiments have been done with partitioned transitielations with identi-
cal sets of transitions in every partition for the differénainsition relation types. All testcases describe
asynchronous systems with replicated components. In flewiag tables the number of replicated
components can be found in the colufroblemafter the name of the verification benchmalumber

of BDD Nodess the largest number of live BDD nodes that appeared durweyification experiment.

Christian Appold 27

This is the memory bottleneck of a verification experimertcduse the model checker has to store
this number of BDD nodes to finish verification successfuli@][Timeis the runtime of a verification
experiment, where s, m and h are abbreviations for seconidsites and hours. In Tablé 1 we show
experimental results for forward reachability analysixp&imental results for a standard partitioned
transition relation, a TLEBDD as transition relation (frestate variables are abstracted immediately for
identity patterns here (see sectidn 4)) and a TLEBDD asitranselation where we immediately shift
the target-state variables to its corresponding fronestatiables are presented there. With the imme-
diate shift we achieve significant runtime improvements tredmemory gain can be maximized. One
reason for the memory gain is that vertices which can be sewadTLEBDD are not needed for the
intermediate result BDD before the shift to the from-staadables. For the experiments in Table 1 we
used a timeout of 24 hours.

Table 1: Verification results for forward reachability ayss$

Ordinary Partitioned Transition Relation Transition Relation
Transition Relation with TLEBDDs with TLEBDDs and
shift to target-state
immediately
Problem Number of Time Number of Time Number of | Time
BDD Nodes BDD Nodes BDD Nodes
MutexLocal 5 252,176 34s 176,577 29s 140,808 3s
MutexLocal 7 6,618,487 47:59m 4,977,342| 44.05m| 4,090,041 5:37m
MutexLocal 8 41,448,929 7:45h 31,092,345/ 7:10h| 25,704,013| 51:37m
Peterson 5 1,470,096| 6:32m 720,661| 5:28m 577,274 49s
Peterson 6 11,051,785/ 3:20h 8,562,251| 3:20h| 6,344,196| 24:40m
Peterson 7 >100,000,000, >24h| >100,000,000, >24h| 89,401,785 10:46h
CCP5 205,449| 1:02m 172,964 57s 117,875 4s
CCP 8 9,840,064 4:4%9h 9,118,465| 4:35h| 5,855,155| 16:23m
CCP 10 >75,000,000f >24h| >75,000,000f >24h| 67,822,819 12:32h
DP 15 309,329| 3:55m 294,403 3:50m 193,402 16s
DP 20 3,614,204, 2:27h 3,539,148 2:27h| 2,267,828 8:41m
DP 22 9,595,403 9:06h 9,446,319| 9:11h| 6,018,632 32:34m

The first benchmark in Tablg 1 is an extended simple MutualuSi@n Algorithm. There, a critical
section exists which can be reached by a component if a skar@dble points to it. This benchmark has
also other shared variables. They store for every contaté sif the components the number of compo-
nents currently being in this control state. Additionaktlyery component has one local variable which
stores the number of components currently being in the newacstate when a component moves its
control state. Our experimental results show that big mgrmoprovements can be achieved by using
our TLEBDD to store the transition relations and we also $igatsuntime improvements. The runtime
improvements occur with TLEBDDs because we don't have tkwalough edges of identity patterns
in the recursion by using our new algorithm ANDRecursivewd additionally shift the state variables
immediately to the corresponding from-state variablesevean get further memory reductions and also
large runtime improvements. The second testcase in Talsli¢hk iPeterson Mutual Exclusion Protocol
[15]. It is a protocol where entry to the critical section igirged by a single process via a series of
n— 1 competitions. There is at least one loser for each congoetind the protocol satisfies the mutual

28 Symbolic Model Checking with Isomorphism Exploiting Tr&ie Relations

exclusion condition, since at most one process can win tla dimmpetition. Tablé]1 shows that we
achieve significant memory gains by just using TLEBDDs assiteon relation. If we additionally shift
the state variables immediately, we can further reduce ¢a pumber of live nodes and we get very
large runtime improvements. Talilé 1 also shows experirheesalts for the CCP Cache Coherence
Protocol. It refers to a cache coherence protocol develfioed S. German (see for example [17]). As
our experimental results show, we can slightly reduce thmomng requirements by using a TLEBDD.
When we shift the state variables immediately, we get sicamfi additional memory and runtime im-
provements. The last testcase in Tdble 1 is the Dining Riplusrs Problem (mentioned DP in Table
). Our implementation is an imitation of the monitors si@ntfrom [1]. The experimental results show
that the memory requirements can not be reduced very muckibyg GLEBDDs. Also a little runtime
increase can be observed for 22 components. This runtinmease can presumably be eliminated by
optimizing the cache utilization. Nevertheless, signiitaaemory and runtime savings can be observed
again when we shift the state variables immediately.

Table 2: Experimental results for building only the traiositrelation

Ordinary Partitioned | Transition Relation | Transition
Transition Relation | only identity reduced Relation with
TLEBDDs

Problem Number of BDD Number of BDD Number of BDD

Nodes Nodes Nodes
MutexLocal 75 115,735,537 10,105,558 141,623
MutexLocal 255 mem ov 77,576,543 320,755
MutexLocal 2047 mem ov mem ov 3,414,118
Peterson 8 110,560,066 47,415,495 17,403,225
Peterson 9 mem ov 115,675,330 40,089,105
Peterson 10 mem ov mem ov 90,597,275
CCP 18 74,758,155 74,728,268 9,840,393
CCP 19 mem ov mem ov 19,671,729
CCP21 mem ov mem ov 78,656,120

Table[2 shows experimental results about the maximum nuofbemponents for which the tran-
sition relation can be built alone with different transiticelation types. We there present experimental
results for a standard partitioned transition relationadifioned transition relation which is only identity
reduced and for a transition relation with TLEBDDs. As oupesimental results show, the number of
components for which the transition relation can be buitt akvays be enlarged by using TLEBDDs. If
we use only identity reduction, we can not increase the nuwft@dmponents as large as with TLEBDDs
and we even don'’t get an increase in the number of componenthd CCP testcase. This shows the
efficiency of our TLEBDD approach. We omitted the experinaémésults for the dining philosophers
testcase here, because it only has a small transitionaelttat can already be build with an ordinary
partitioned transition relation for more than 1000 compuse

6 Conclusion and Outlook

In this paper we presented a new approach to store the teemtation of asynchronous systems. Our
approach exploits the common property of BDD packages te ssomorphic subgraphs only once. The

Christian Appold 29

presented experimental results confirm that our approacheea to big memory savings. This allows

the verification of larger systems. Additionally, our medtuan enlarge the parts of the transition relation
which can be stored in a single partition of a partitioneddition relation. In this way fewer nodes may

be needed and verification can possibly be accelerated.tigwigily, we presented a new algorithm to

combine BDDs and TLEBDDs efficiently. As our experimentaulks confirm, an immediate shift to the

from-state variables leads to very large runtime and memeahyctions for interleaved variable orderings
by using this new algorithm.

In the future we intend to investigate the usage of TLEBDDsstoring the transition relation with

other state-space exploration algorithms than the twaitibreadth-first algorithm. By using other al-

gorithms, like e.g. breadth-first generation with chaining the saturation algorithm, possibly even
greater memory savings may occur. To investigate the paence of the use of TLEBDDs with other

verification benchmarks and state-space exploration ithgas we intend to implement their usage for
the symbolic model checker NuSMVI[6]. Also, we will try to iestigate the consequences of different
TLEBDD variable orderings on the memory requirements ardsérification runtime.

References

[1]

(2]

[3]

[4]

[5]

M. Ben-Ari (2006): Principles of Concurrent and Distributed Programming (2Edition) (Prentice-Hall
International Series in Computer Sciencedddison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

M. Ben-Ari, Z. Manna & A. Pnueli (1981)The temporal logic of branching timé: POPL '81: Proceedings
of the 8th ACM SIGPLAN-SIGACT symposium on Principles of gramming language#\CM, pp. 164—
176, d0i10.1145/567532.567551.

R. E. Bryant (1986):Graph-Based Algorithms for Boolean Function Manipulatid&BEE Transactions on
Computer$5, pp. 677-691, dain.1109/TC.1986.1676819.

J. R. Burch, E. M. Clarke & D. E. Long (1991)Symbolic Model Checking with Partitioned Transition
Relations North-Holland, pp. 49-58.

G. Ciardo & A. J. Yu (2005) Saturation-based symbolic reachability analysis usingjgoctive and disjunc-
tive partitioning In: Proc. CHARME, LNCS 3725Springer-Verlag, pp. 146—-161.

[6] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, NPistore, M. Roveri, R. Sebastiani & A. Tacchella

[7]

(8]

(2002): NuSMV Version 2: An OpenSource Tool for Symbolic Model Ghgckin: Proc. International
Conference on Computer-Aided Verification (CAV 2002NCS 2404, Springer, Copenhagen, Denmark.

E. M. Clarke & E. A. Emerson (1982Design and Synthesis of Synchronization Skeletons UsegcBng-
Time Temporal Logicln: Logic of Programs, Workshg@pringer-Verlag, London, UK, pp. 52—71, dai.
1007/BFb0025774

E. M. Clarke, O. Grumberg & D. A. Peled (200todel checkingMIT Press.

[9] A. Goel, G. Hasteer & R. Bryant (2003)Symbolic representation with ordered function templatés:

[10]

[11]

[12]

Proceedings of the 40th annual Design Automation ConfexédsC '03, ACM, New York, NY, USA, pp.
431-435,doit0.1145/775832.775946.

Alexander Kaiser, Daniel Kroening & Thomas Wahl (2610@ynamic Cutoff Detection in Parameterized
Concurrent Programsin: Computer-Aided Verification (CAY)d0i:10.1007/978-3-642-14295-6_55.

T. Kam, T. Villa, R. Brayton & A. Sangiovanni-Vincente{1998): Multi-valued decision diagrams: theory
and applications Multiple-Valued Logic4(1-2), pp. 9—62.

K. L. McMillan (1993): Symbolic Model Checkindluwer Academic Publishers, Norwell, MA, USA.

http://dx.doi.org/10.1145/567532.567551
http://dx.doi.org/10.1109/TC.1986.1676819
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1145/775832.775946
http://dx.doi.org/10.1007/978-3-642-14295-6_55

30 Symbolic Model Checking with Isomorphism Exploiting Tr&ie Relations

[13] A. S. Miner (2001):Efficient solution of GSPNs using Canonical Matrix Diagrants Proceedings of the

9th International Workshop on Petri Nets and Performancdé#plEEE Comp. Soc. Press, pp. 101-110,
doi;10.1109/PNPM.2001.953360.

[14] A. S. Miner (2004): Saturation for a General Class of Modeldn: QEST '04: Proceedings of the The

Quantitative Evaluation of Systems, First Internationahterence|EEE Computer Society, Washington,
DC, USA, pp. 282-291, ddi0.1109/QEST.2004.38.

[15] G. L. Peterson (1981 WMyths About the Mutual Exclusion Problernf. Process. Lettl2(3), pp. 115-116,
doi:10.1016/0020-0190(81)90106-X.

[16] A. Pnueli (1981)A temporal logic of concurrent program§heoretical Computer Sciend8, pp. 45—-60.

[17] A. Pnueli, S. Ruah & L. Zuck (2001)Automatic Deductive Verification with Invisible InvarianSpringer,
pp. 82-97.

[18] J.-P. Queille & J. Sifakis (1982Bpecification and verification of concurrent systems in GE3#& DesPro-
ceedings of the 5th Colloquium on International SymposiumPoogrammingSpringer-Verlag, London,
UK, pp. 337-351, doi:0.1007/3-540-11494-7_22.

[19] R. K. Ranjan, A. Aziz, R. K. Brayton, B. Plessier & C. Riyl (1995): Efficient BDD algorithms for FSM

synthesis and verificationn: In IEEE/ACM Proceedings International Workshop on Logiai®esis, Lake
Tahoe (NV

[20] F. Somenzi (2009)CUDD: CU Decision Diagram Package, Release 2.4Jaiversity of Colorado at Boul-
der, http://visi.colorado.edu/ fabio/CUDD!/.

[21] T. Wahl, N. Blanc & A. Emerson (2008Bviss: Symbolic Verification of Symmetric SystelmsTools and
Algorithms for the Construction and Analysis of Systems CBS).

[22] B. Yang, R. E. Bryant, D. R. O’Hallaron, A. Biere, O. Caarti G. Janssen, R. K. Ranjan & F. Somenzi
(1998): A Performance Study of BDD-Based Model Checkilmg Proceedings of the Second International

Conference on Formal Methods in Computer-Aided DestgvhCAD '98, Springer-Verlag, London, UK, pp.
255-289.

http://dx.doi.org/10.1109/PNPM.2001.953360
http://dx.doi.org/10.1109/QEST.2004.38
http://dx.doi.org/10.1016/0020-0190(81)90106-X
http://dx.doi.org/10.1007/3-540-11494-7_22

	1 Introduction
	2 Background
	2.1 Asynchronous Concurrent Systems
	2.2 Binary Decision Diagram (BDD)
	2.3 Symbolic State-Space Generation
	2.4 Symbolic Representations of Transition Relations and Related Work

	3 Transition Locality Exploiting BDDs (TLEBDDs)
	4 Efficient Algorithm for Boolean Operation Calculation
	5 Experimental Results
	6 Conclusion and Outlook

