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We consider directed graphs where each edge is labeled wiititeger weight and study the fun-
damental algorithmic question of computing the value of ee&with minimum mean weight. Our
contributions are twofold: (1) First we show that the algfuriic question is reducible i@(n?) time

to the problem of a logarithmic number wiin-plusmatrix multiplications ofn x n-matrices, where
nis the number of vertices of the graph. (2) Second, when thghisare nonnegative, we present
the first(1+ ¢)-approximation algorithm for the problem and the runnimgetiof our algorithm is
O(n®log® (nW/¢) /¢, whereO(n®) is the time required for thelassic nx n-matrix multiplication
andW is the maximum value of the weights.

1 Introduction

Minimum cycle mean problem. We consider a fundamental graph algorithmic problem of agimg
the value of a minimum mean-weight cycle in a finite directedpf. The input to the problem is a
directed graptG = (V, E,w) with a finite setv of n vertices E of medges, and a weight functiomthat
assigns an integer weight to every edge. Given a d@@ctee mean weighti(C) of the cycle is the ratio
of the sum of the weights of the cycle and the number of edg#iseitycle. The algorithmic question
asks to computer = min{u(C) | Cis a cyclg: the minimum cycle mean. The minimum cycle mean
problem is an important problem in combinatorial optimizatand has a long history of algorithmic
study. AnO(nm)-time algorithm for the problem was given by Kafp [17]; ané tturrent best known
algorithm for the problem, which is over two decades old, blyrGand Ahuja requiréd(my/nlog(nW))
time [22], wher@/V is the maximum absolute value of the weights.

Applications. The minimum cycle mean problem is a basic combinatoriahagation problem that has
numerous applications in network flows [2]. In the contextooal analysis of reactive systems, the per-
formance of systems as well as the average resource consarapsystems is modeled as the minimum
cycle mean problem. A reactive system is modeled as a ditgectph, where vertices represent states of
the system, edges represent transitions, and every edggidaad anonnegativénteger representing the
resource consumption (or delay) associated with the ttansiThe computation of a minimum average
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resource consumption behavior (or minimum average regpiime) corresponds to the computation of
the minimum cycle mean. Several recent works model othentgative aspects of system analysis (such
as robustness) also as the mean-weight problem (also kremean-payoff objective, [9].

Results. This work contains the following results.

1. Reduction to min-plus matrix multiplicatioMe show that the minimum cycle mean problem is
reducible inO(n?) time to the problem of a logarithmic number of min-plus mairiultiplications
of n x n-matrices, whera is the number of vertices of the graph. Our result implies #hgorith-
mic improvements for min-plus matrix multiplication wilkay over to the minimum cycle mean
problem with a logarithmic multiplicative factor ar@(n?) additive factor in the running time.

2. Faster approximation algorithmWhen the weights are nonnegative, we present the(firste)-
approximation algorithm for the problem that outpjitsuch thatu < i < (1+ €)u and the run-
ning time of our algorithm i©(n“log®(nW/¢)/¢). As usual, theD-notation is used to “hide” a
polylogarithmic factor, i.e.O(T (n,mW)) = O(T (n,m,W) - polylog(n)), andO(n®) is the time
required for theclassic nx n-matrix multiplication. The current best known bound faris
w < 2.3727. The worst case complexity of the current best knowordhgn for the minimum
cycle mean problem i©(my/nlog (nW)) [22], which could be as bad &(n?°log(nW)). Thus
for (14 €)-approximation our algorithm provides better dependence Note that in applications
related to systems analysis the weights are always norivedgtitey represent resource consump-
tion, delays, etc); and the weights are typically small, kghs the state space of the system is large.
Moreover, due to imprecision in modeling, approximatiomsveights are already introduced dur-
ing the modeling phase. Hen¢g+ g)-approximation of the minimum cycle mean problem with
small weights and large graphs is a very relevant algoritiprnoblem for reactive system analysis,
and we improve the long-standing complexity of the problem.

The key technique that we use to obtain the approximatiooritfon is a combination of the value
iteration algorithm for the minimum cycle mean problem, antechnique used for an approx-
imation algorithm for all-pair shortest path problem foredited graphs. Tablg 1 compares our
algorithm with the asymptotically fastest existing algjoms.

Reference Running time Approximation Range
Karp [17] O(mn) exact [—W, W]
Orlin and Ahuja[[22] O(my/nlog (NW)) exact [-W,W]|NZ
Sankowski[[24] (implicit) O(Wrf’log (nW)) exact [-W,W]NZ
Butkovic and Cuninghame-Greéer [6] o(r?) exact {0,1}
This paper O(n®log® (NW/¢) /€) 1+e [O,W]NZ

Table 1: Current fastest asymptotic running times for catingtthe minimum cycle mean

1.1 Related work

The minimum cycle mean problem is basically equivalent toisg a deterministic Markov decision
process (MDP)[31]. The latter can also be seen as a singjepmean-payoff game [10,113,/31]. We
distinguish two types of algorithms: algorithms that ardeipendent of the weights of the graph and
algorithms that depend on the weights in some way. VBwe denote the maximum absolute edge
weight of the graph.
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Algorithms independent of weights. The classic algorithm of Karp [17] uses a dynamic prograngmin
approach to find the minimum cycle mean and runs in td{enn). The main drawback of Karp’s
algorithm is that its best-case and worst-case runningstiane the same. The algorithms of Hartmann
and Orlin [15] and of Dasdan and Gupta [8] address this idsutealso have a worst-case complexity of
O(mn). By solving the more general parametric shortest path propKarp and Orlin[[18] can compute
the minimum cycle mean in tim®(mnlogn). Young, Tarjan, and Orliri [27] improve this running time
to O(mn-+n?logn).

A well known algorithm for solving MDPs is the value iterati@lgorithm. In each iteration this
algorithm spends tim®(m) and in total it performg(nW) iterations. Madani[[20] showed that, for
deterministidVIDPs (i.e., weighted graphs for which we want to find the munimcycle mean), a certain
variant of the value iteration algorithm “converges” to ttimal cycle afte©O(n?) iterations which gives
a running time ofo(mr?) for computing the minimum cycle mean. Using similar ideaslse obtains
a running time ofO(mn). Howard’s policy iteration algorithm is another well-knovalgorithm for
solving MDPs|[[16]. The complexity of this algorithm for dat@nistic MDPs is unresolved. Recently,
Hansen and Zwick [14] provided a class of weighted graphs biclwHoward’s algorithm performs
Q(n?) iterations where each iteration takes ti@@m).

Algorithms depending on weights.If a graph is complete and has only two different edge wejghen
the minimum cycle mean problem problem can be solved in @{ré) because the matrix of its weights
is bivalent [6].

Another approach is to use the connection to the problemtettieg a negative cycle. Lawler [19]
gave a reduction for finding the minimum cycle mean that perfoO(log(nW)) calls to a negative
cycle detection algorithm. The main idea is to perform bjregarch on the minimum cycle mean. In
each search step the negative cycle detection algorithemi®m a graph with modified edge weights.
Orlin and Ahujal[22] extend this idea by the approximate hjreearch techniqué [29]. By combining
approximate binary search with their scaling algorithmtfer assignment problem they can compute the
minimum cycle mean in tim®(m,/nlognW).

Note that in its full generality the single-source shortesths problem (SSSP) also demands the
detection of a negative cycle reachable from the sourcex@rf herefore it is also possible to reduce
the minimum cycle mean problem to SSSP. The best time boum@&S&P are as follows. Goldberg’s
scaling algorithm[[12] solves the SSSP problem (and thezeflso the negative cycle detection problem)
in time O(my/nlogW). McCormick [21] combines approximate binary search witHdBerg’s scaling
algorithm to find the minimum cycle mean in tin@&m,/nlognW), which matches the result of Orlin
and Ahujal[22]. Sankowski's matrix multiplication baseda@iithm [24] solves the SSSP problem in time
6(W r°). By combining binary search with Sankowski's algorithme thinimum cycle mean problem
can be solved in tim&(W n°lognWw)

Approximation of minimum cycle mean. To the best of our knowledge, our algorithm is the first
approximation algorithm specifically for the minimum cycteean problem. There are both additive
and multiplicative fully polynomial-time approximatiorisemes for solving mean-payoff gamies [23, 5],
which is a more general problem. Note that in contrast to figdhe minimum cycle mean it is not
known whether the exact solution to a mean-payoff game cacob®wuted in polynomial time. The
results of [23] and[[5] are obtained by reductions to a psqaalgnomial algorithm for solving mean-
payoff games. In the case of the minimum cycle mean probleeset reductions do not provide an
improvement over the current fastest exact algorithms imeed above.

°Remember that, for example, Dijkstra’s algorithm for cotimy single-source shortest paths requires non-negatige e
weights which excludes the possibility of negative cycles.
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Min-plus matrix multiplication. Our approach reduces the problem of finding the minimum cycle
mean to computing the (approximate) min-plus product ofriced. The naive algorithm for computing
the min-plus product of two matrices runs in tirfn®). To date, no algorithm is known that runs
in time O(n-?) for somea > 0, so-calledtruly subcubictime. This is in contrast to classic matrix
multiplication that can be done in tinf@(n®) where the current best bound anis w < 2.3727 [25].
Moreover, Williams and Williams_ [26] showed that computifig min-plus product is computationally
equivalent to a series of problems including all-pairs sgimpaths and negative triangle detection. This
provides evidence for the hardness of these problems, t&#lrunning time ofO(n) for the min-plus
product can be improved by logarithmic factors and by assgremall integer entries.

Fredmanl[11] gave an algorithm for computing the min-plupict with a slightly subcubic running
time of O(n3(loglogn)¥/3/(logn)¥/3). This algorithm is “purely combinatorial”, i.e., it doestrrely on
fast algorithms for classic matrix multiplication. Afted@ng line of improvements, the current fastest
such algorithm by Chan[7] runs in tin@(n(loglogn)3/(logn)?).

A different approach for computing the min-plus product wbtinteger matrix is to reduce the
problem to classic matrix multiplication [28]. In this wake min-plus product can be computed in time
O(Mn®logM) which is pseudo-polynomial sindd is the maximum absolute integer entry [3]. This
observation was used by Alon, Galil, and Margalit [3] and @30] to obtain faster all-pairs shortest
paths algorithms in directed graphs for the case of smadgert edge weights. Zwick also combines
this min-plus matrix multiplication algorithm with an ada scaling technique that allows to compute
(1+ €)-approximate all-pairs shortest paths in graphs with negative edge weights. Our approach of
finding the minimum cycle mean extensively uses this teakiq

2 Definitions

Throughout this paper we 1& = (V,E,w) be a weighted directed graph with a finite set of verti¢es
and a set of edgds such that every vertex has at least one outgoing edge. Thyifanctionw assigns
a nonnegative integer weight to every edge. We denote th number of vertices & and bym the
number of edges db. Note thatm > n because every vertex has at least one outgoing edge.

A pathis a finite sequence of edgPs= (ey,...,€) such that for all consecutive edges= (x,V;)
ande .1 = (Xi+1,Yi+1) of Pwe havey; = x.1. Note that edges may be repeated on a patijavgotonly
consider simple paths. gycleis a path in which the start vertex and the end vertex are tmesdahe
length of a path Rs the number of edges & Theweight of a path P= (ey,...,e), denoted by(P) is
the sum of its edge weights, i.@(P) = 51« W(e&).

Theminimum cycle meaaf G is the minimum mean weight of any cycle @ For every vertex
we denote byu(x) the value of the minimum mean-weight cycle reachable froffihe minimum cycle
mean ofG is simply the minimumu(x) over all vertice. For every vertex and every integetr > 1 we
denote by (x) the minimum weight of all paths starting ;athat have length, i.e., consist of exactly
edges. For all pairs of verticesandy and every integetr > 1 we denote by (x,y) the minimum weight
of all paths of length from x toy. If no such path exists we sét(x,y) = co.

For every matrixA we denote byAfi, j] the entry at the-th row and thej-th column ofA. We only
considem x n matrices with integer entries, whemes the size of the graph. We assume that the vertices
of G are numbered consecutively from 1rpwhich allows us to us@[x,y] to refer to the entry ofA
belonging to verticex andy. Theweight matrix D of Gis the matrix containing the weights &. For
all pairs of verticesx andy we setD[x,y] = w(X,y) if the graph contains the eddr,y) andDIx,y] = o
otherwise.
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We denote thenin-plus producf two matricesA andB by A® B. The min-plus product is defined
as follows. IfC = A® B, then for all indices K i, j < nwe haveCl|i, j| = mini<k<n(Afi,k] + Bk, j]). We
denote byA! thet-th power of the matriA. Formally, we seA! = A andA™l = A@ Al fort > 1. We
denote byw the exponent of classic matrix multiplication, i.e., theguct of twon x n matrices can be
computed in timéO(n®). The current best bound anis w < 2.3727 [25].

3 Reduction of minimum cycle mean to min-plus matrix multiplication

In the following we explain the main idea of our approach wtigto use min-plus matrix multiplication
to find the minimum cycle mean. The well-known value itenatidgorithm uses a dynamic programming
approach to compute in each iteration a value for every xerfeom the values of the previous iteration.
After t iterations, the value computed by the value iteration dtigr for vertexx is equal tod (x), the
minimum weight of all paths with lengthstarting atx. We are actually interested jm(x), the value
of the minimum mean-weight cycle reachable framit is well known that lim_,. & (x)/t = p(x) and
that the value ofu(x) can be computed fror (x) if t is large enouglft = O(n3W)) 3118 Thus, one
possibility to determingu(x) is the following: first, compute} (x) for t large enough with the value
iteration algorithm and then computgx) from & (x). However, using the value iteration algorithm for
computingd (X) is expensive because its running time is linearamd thus pseudo-polynomial.

Our idea is to computé (x) for a large value of by using fast matrix multiplication instead of the
value iteration algorithm. We will compute the matiX, thet-th power of the weight matrix (using
min-plus matrix multiplication). The matri®' contains the value of the minimum-weight path of length
exactlyt for all pairs of vertices. GiveB!, we can determine the valdgx) for every vertex by finding
the minimum entry in the row db' corresponding te.

Proposition 1. For every t> 1 and all vertices x and y we have (ij)(®,y) = D'[x,y] and (i) &(X) =
minyey DY[x,Y].

Proof. We give the proof for the sake of completeness. The cldifr,y) = D![x,y] follows from a
simple induction ort. If t = 1, then clearly the minimal-weight path of length 1 frorto y is the edge
from x toy if it exists, otherwisek (x,y) = . If t > 1, then a minimal-weight path of lengttirom xtoy
(if it exists) consists of some outgoing edgeeot (X, z) as its first edge and then a minimal-weight path
of lengtht — 1 fromztoy. We therefore havek (x,y) = miny ,cg W(X,2) +di—1(zy). By the definition
of the weight matrix and the induction hypothesis wedjét,y) = min,y D[x,Z + D'~1[zy]. Therefore
the matrixD ® D'~1 = D! contains the value ak(x,y) for every pair of vertices andy.

For the second claim(x) = minyey D'[x,y], observe that by the definition @(x) we obviously
haved (x) = minyey d(X,y) because the minimal-weight path of lengtarting aix hassomenodey as
its end point. O

Using this approach, the main question is how fast the matrigan be computed. The most im-
portant observation is th&' (and therefore alsé(x)) can be computed by repeated squaring with only
O(logt) min-plus matrix multiplications. This is different fromehvalue iteration algorithm, whete
iterations are necessary to compatex).

Proposition 2. For every t> 1 we have B' = D' ® D!. Therefore the matrix Dcan be computed with
O(logt) many min-plus matrix multiplications.

3Specifically, fort = 4n3W the unique number i6& (x)/t — 1/[2n(n— 1)], & (x)/t +1/[2n(n— 1)]) N Q that has a denomi-
nator of at mosh is equal tou(x) [31].
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Proof. We give the proof for the sake of completeness. It can easilyeified that the min-plus matrix
product is associativé[1] and therefddé = D'  D'. Therefore, it is a power of two, we can compute
D! with logt min-plus matrix multiplications. If is not a power of two, we can decompd3kinto D' =
D" ®...® D% where eacly <t (for 1 <i <K) is a power of two and < [logt]. By storing intermediate
results, we can compuf@? for every 0< i < [logt] with [logt] min-plus matrix multiplications. Using
the decomposition above, we have to multiply at masgt] such matrices to obtaid!. Therefore the
total number of min-plus matrix multiplications needed domputingD! is O(logt). O

The running time of this algorithm depends on the time neédedomputing the min-plus product
of two integer matrices. This running time will usually dedeon the two parametersand M where
n is the size of then x n matrices to be multiplied (in our case this is equal to the lnemnof vertices
of the graph) and the parameter denotes the maximum absolute integer entry in the matrwdse t
multiplied. When we multiply the matri® by itself to obtainD?, we haveM = W, whereW is the
maximum absolute edge weight. HoweWdrjncreases with every multiplication and in general, we can
bound the maximum absolute integer entry of the madfionly by M = tW. Note thatO(n?) operations
are necessary to extract the minimum cycle mgéx) for all verticesx from the matrixD!.

Theorem 3. If the min-plus product of two r n matrices with entries if—M,...,—1,0,1,... M, 0}
can be computed in time(m, M), then the minimum cycle mean problem can be solved in timgW ) logt
where t= O(mw) [

Unfortunately, the approach outlined above does not imatelyi improve the running time for the
minimum cycle mean problem because min-plus matrix midtgion currently cannot be done fast
enough. However, our approach is still useful for solving thinimum cycle mean problelpproxi-
matelybecause approximate min-plus matrix multiplication caddree faster than its exact counterpart.

4 Approximation algorithm

In this section we design an algorithm that computes an appation of the minimum cycle mean in
graphs with nonnegative integer edge weights. It follovesdapproach of reducing the minimum cycle
mean problem to min-plus matrix multiplication outlinedSectior[ 8. The key to our algorithm is a fast
procedure for computing the min-plus product of two intagatrices approximately. We will proceed as
follows. First, we explain how to compute an approximatioof pt, thet-th power of the weight matrix
D. From this we easily get, for every vertgxan approximatior (x) of & (x), the minimum-weight of
all paths of length starting atx. We then argue that fdrlarge enough (in particular= O(nPW/¢)),
the value& (x)/t is an approximation ofi(x), the minimum cycle mean of cycles reachable franBy
combining both approximations we can show thdk)/t is an approximation ofi(x). Thus, the main
idea of our algorithm is to compute an approximatiorDbfor a large enough.

4.1 Computing an approximation of D

Our first goal is to compute an approximation of the mabix thet-th power of the weight matriD,
givent > 1. Zwick provides the following algorithm for approximatémplus matrix multiplication.

Theorem 4 (Zwick [30]). Let A and B be two x n matrices with integer entries ifd,M] and let
C:=A®B. Let R> logn be a power of two. The algorithapprox-min-plugA, B,M,R) computes the

“Note that necessarilj (n,M) = Q(n?) because the result matrix ha&entries that have to be written.
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approximate min-plus produ@ of A and B in time O(n®Rlog(M)log?(R)log(n)) such that for every
1<i,j <nitholds thatdi, j] <CJi, j] < (1+4/R)C]i, j].

We now give a modification (see AlgoritHm 1) of Zwick’s algbr for approximate shortest paths|[30]
such that the algorithm computeg B+ ¢)-approximationF of Dt whent is a power of two such that
for 1 <i,j < nwe haveD![i, j] <FJi,j] < (1+¢&)D'[i, j]. Just as we can compul® exactly with log
min-plus matrix multiplications, the algorithm computé® {1+ ¢)-approximation ofD! in logt iter-
ations. However, in each iteration only an approximate plirs product is computed. L& be the
approximation oDs := DZ’. In thes-th iteration we use approx-min-pli;_1,Fs—1,tW,R) to calculate
Fs with R chosen beforehand such that the desired error bound isa@éah- = Fogt.

Algorithm 1: Approximation ofD!

input :weight matrixD, error bounck, t (a power of 2)
output : (1+ &)-approximation oD

F«D
r < 4logt/In(1+¢)
R« 2[logr]
for logt timesdo
F « approx-min-plusF, F, 2(W, R)
end
return F

Lemma 5. Given an0 < € < 1 and a power of two & 1, Algorithm[1 computes €L+ £)-approximation
F of D' in time

o) (nw- @ -log (tW) log? <%> Iog(n)) e <n‘*’- @ -log (tW)>

&
such that Dfi, j] <F[i,j] < (1+¢€)D'i,j] forall 1<i,j<n.

Proof. The basic idea is as follows. The running time of approx-plirs depends linearly oR and
logarithmically onM, the maximum entry of the input matrices. Algorithin 1 cafipeox-min-plus log
times. Each call increases the error by a factoflof 4/R). However, as only logapproximate matrix
multiplications are used, settifigjto the smallest power of 2 that is larger than 419gIn(1+ ¢€) suffices
to bound the approximation error §§ + €). We will show that 2V is an upper bound on the entries
in the input matrices for approx-min-plus. The stated ragrtime follows directly from these two facts
and Theoreril4.

Let Fs be the approximation dbs := DZ° computed by the algorithm after iteratien Recall that
25W is an upper bound on the maximum entrylg. As we will show, all entries i are at most
(1+ ¢)-times the entries iDs. Since we assume < 1, we have ¢ < 2. Thus 2+1W is an upper
bound on the entries iRs. Hence W is an upper bound on the entrieskfwith 1 < s< logt, i.e., for
all input matrices of approx-min-plus in our algorithm.

5The running time of approx-min-plus is given (n®logM) times the time needed to multiply two(Rlogn)-bit
integers. With the Schénhage-Strassen algorithm for lartgger multiplication, twok-bit integers can be multiplied in
O(klogkloglogk) time, which gives a running time @(n“Rlog(M)log(n) log(Rlogn)log log(Rlogn)). This can be bounded
by the running time given in Theoreloh 4R> logn, which will always be the case in the following.
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This results in an overall running time of

O (n“Rlog(tW)log(R)loglog(R) log(n) - log(t))

o o, 10g () log(t)
_O<n Tog(it &) log (tW) log? < g(1+5)>log(n)>

o
:o< ne. '9() 10g (tW)log? ( ()>Iog( ))

The last equation follows from the inequality lh(1+€) < (1+¢€)/¢€ for € > 0. Sincee < 1 it follows
that 1/log(1+€) = O(1/¢).
To show the claimed approximation guarantee, we will prénag the inequality

Dl il <Rl i) < (14 ) i

holds after thesth iteration of Algorithm[l by induction os. Note that the(1+ €)-approximation
follows from this inequality because the paramdRds chosen such that after tiilogt)-th iteration of
the algorithm it holds that

logt logt
R logt

Fors= 0 we havel; = Dg and the inequality holds trivially. Assume the inequalitlds fors. We
will show that it also holds fos+ 1.

First we prove the lower bound d®,1[i, j]. LetCs, 1 be the exact min-plus product Bf with itself,
i.e.,Csi1 = Fs®Fs. Letk; be the minimizing index such th&t, 1[i, j] = mini<k<n(Fs[i, k] + Fs[k, j]) =
Fsli, ko] + Fslke, j]. By the definition of the min-plus product

Dstali, j] = mig (Ds[i, k] + D[k, j]) < Dsi, ke] + Dslke, ] - 1)

1<k<n
By the induction hypothesis and the definitionkgive have
Dsli,ke] + Dslke, j] < Ffi, ke] + Fslke, j] = Csali, ] )
By Theoreni 4 the values &, 1 can only be larger than the valuesGg, 1, i.e.,
Csall, J] < Fsyali, ] 3)
Combining Equations {1).12), and (3) yields the claimeddolound,
Dsiali, j] < Fsiali, J]-

Next we prove the upper bound &g,1]i, j|]. Letky be the minimizing index such th8ts1]i, j] =
Dsli, kg] + Ds[kq, j]. Theoreni# gives the error from one call of approx-min-piues, the error in the
entries off, 1 compared to the entries 6§, 1. We have

Fonti ] < (145 ) Coual] @
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By the definition of the min-plus product we know that

By the induction hypothesis and the definitionkgfwe can reformulate the error obtained in the fast
iterations of Algorithni 1l as follows:

Rk + ko) < (143 ) Ddkal+ (14 ) Dae]

- <1+ %)S(Ds[i,kd] + Dglkd; j])

_ @g) Desali.j]- (6)

Combining Equationg {4).{5), and (6) yields the upper bound

4 s+1
Fofi] < (1+8) Desalil] 0

Once we have computed an approximation of the maddtixwe extract from it the minimal entry
of each row to obtain an approximation @fx). Here we use the equivalence between the minimum
entry of rowx of D' and & (x) established in Propositidd 1. Remember théx) /t approacheg:(x) for
t large enough and later on we want to use the approximati@n(f to obtain an approximation of the
minimum cycle meam(Xx).

Lemma 6. The value&(x) := minyey F[x,y] approximatesy (x) with & (x) < &(x) < (14 &)&(x).

Proof. Letys andyy be the indices where theth rows of F andD! obtain their minimal values, respec-
tively, i.e.,
yf :=argminF[x,y] and yg:=argminD'[x,y].
yev yev

By these definitions and Lemrha 5 we have
&(x) = D'xya] < D'[xys] < Flx,yf] = &(X)

and

A

&(X) = F[xys] <F[x,yq] < (14 £)D'[x,yq]. O

4.2 Approximating the minimum cycle mean

We now add the next building block to our algorithm. So far, @@ obtain an approximatiofi(x)

of &(x) for anyt that is a power of two. We now show th&t(x)/t is itself an approximation of the
minimum cycle mearnu(x) for t large enough. Then we argue tl&tx) /t approximates the minimum
cycle mearu(x) for t large enough. This value o6bounds the number of iterations of our algorithm. A
similar technique was also used|in [31] to bound the numbéeiations of the value iteration algorithm
for the two-player mean-payoff game.

We start by showing thak (x)/t differs from p1(x) by at mosnW/t for any t Then we will turn this
additive error into a multiplicative error by choosing agarenough value df A multiplicative error
implies that we have to compute the solution exactlydgx) = 0. We will use a separate procedure
to identify all verticesx with p(x) = 0 and compute the approximation only for the remaining vesti
Note thatu(x) > 0 impliespu(x) > 1/n because all edge weights are integers.
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Lemma 7. For every xc V and every integer t 1 it holds that
t-u(X) —nW < &(x) <t-p(x)+nW.

Proof. We first show the lower bound ak(x). Let P be a path of lengthstarting atx with weight & (x).
Consider the cycles iR and letE’ be the multiset of the edges Ithat are in a cycle oP. There can
be at mosh edges that are not in a cycle Bf thus there are at least max- n,0) edges inE’. Since

K (X) is the minimum mean weight of any cycle reachable feqrthe sum of the weight of the edges in
E’ can be bounded below ky(x) times the number of edges . Furthermore, the value @f(x) can
be at mosWV. As we only allow nonnegative edge weights, the sum of thgisiof the edges i&’ is

a lower bound o& (x). Thus we have

&) = S we) > (t—nu(x) >t -pu(x) —n-p(x) =t-p(x) —nWw.

eckE’

Next we prove the upper bound d(x). Let| be the length of the shortest path fromo a vertexy
in a minimum mean-weight cyclé reachable fronx (such that only is both in the shortest path and in
C). Letc be the length o€. Let the pathQ be a path of length that consists of the shortest path from
xtoy, [(t—1)/c| rounds orC, andt — | —c|(t —I)/c| additional edges i€. By the definition ofd (x),
we haved (x) < w(Q). The sum of the length of the shortest path fraro y and the number of the
remaining edges dp not in a complete round dd can be at mogt because in a graph with nonnegative
weights no shortest path has a cycle and no verticE€sarcepty are contained in the shortest path from
xtoy. Each of these edges has a weight of at iésThe mean weight df is p(x), thus the sum of the
weight of the edges in all complete rounds®@is u(x) - c| (t —1)/c] < u(x)-t. Hence we have

a() <W(Q) <t-p(x)+nW. O

In the next step we show that we can use the factd@{a}/t is an approximation oft(x) to obtain a
(1+ €)-approximationfi(x) of u(x) even if we only have an approximati@q(x) of & (x) with (1+ €)-
error. We exclude the caggx) = 0 for the moment.

Lemma 8. Assume we have an approximatiamx) of & (x) such thatd (x) < &(x) < (1+¢&)&(x) for
O<e<l/2 If i
&(x)

t>—, ux > 1—et’

, and [(x):=

2
Sl

then
p(x) < [(x) < (1+7e)p(x).

Proof. We first show thafi(x) is at least as large agx). From Lemma&l7 we havé (x) >t - p(x) — nW.
Ast is chosen large enough,
A (%) nwW

A2 > a0 - 52 = p0 — = 2 10— en(X) = (1-)H(x).
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For the upper bound ofi(x) we use the inequalityx (x) <t- p(x) + nW from Lemma¥. Ag is
chosen large enough,
A (x) nwW

A <p+ 5 S H S < (L)),

With &(x) < (14 €)&(x) this gives

S 2
(%) = (f_(xs))t < <(11+_ ‘2) H(x).

It can be verified by simple arithmetic that fer- 0 the inequalitye < 1/2 is equivalent to

(1+¢)
(1-¢)

As alast ingredient to our approximation algorithm, we gesi procedure that deals with the special
case that the minimum cycle mean is 0. Since our goal is amigdgowith multiplicative error, we have
to be able to compute the solution exactly in that case. Taisle done in linear time because the
edge-weights are nonnegative.

<(1+7¢). O

Proposition 9. Given a graph with nonnegative integer edge weights, we odrofit all vertices x such
that (x) = 0in time Q'm).

Proof. Note that in the case of nonnegative edge weights we péxe> 0. Furthermore, a cycle can
only have mean weight O if all edges on this cycle have weightlfus, it will be sufficient to detect
cycles in the graph that only contain edges that have weight O

We proceed as follows. First, we compute the strongly caegecomponents of, the original
graph. Each strongly connected compor@niwhere 1< i < k) is a subgraph of with a set of vertices
V; and a set of edgds;. For every 1< i < kwe IetGi0 = (Eio,\/i) denote the subgraph &; that only
contains edges of weight 0, i.&% = {e < Ej|w(e) = 0}. As argued aboveS; contains a zero-mean cycle
if and only if Gi0 contains a cycle. We can check WhetBQrcontains a cycle by computing the strongly
connected components QO: GiO contains a cycle if and only if it has a strongly connected ponent
of size at least 2 (we can assume w.l.0.g. that there are fioepk). LetZ be the set of all vertices in
strongly connected components®@fthat contain a zero-mean cycle. The verticeZ iare not the only
vertices that can reach a zero-mean cycle. We can identifedices that can reach a zero-mean cycle
by performing a linear-time graph traversal to identify\attices that can reach

Since all steps take linear time, the total running time &f #gorithm isO(m). O

Finally, we wrap up all arguments to obtain our algorithm &m@proximating the minimum cycle
mean. This algorithms performs lbg@pproximate min-plus matrix multiplications to compute et
proximation ofD! and & (x). LemmaB tells us that= nPW /¢ is just the right number to guarantee that
our approximation of(x) can be used to obtain an approximationugk). The value of is relatively
large but the running time of our algorithm dependd only in a logarithmic way.

Theorem 10. Given a graph with nonnegative integer edge weights, we oampate an approximation
[1(x) of the minimum cycle mean for every vertex x such thay < [i(x) < (1+¢&)u(x) for0<e <1

in time
0 (g log® (%V> log? (%) Iog(n)) =0 (g log® (g)) .
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Proof. First we find all verticesc with pi(x) = 0. By Propositio P this takes tin@(n?) for m= O(n?).
For the remaining verticeswe approximateu(x) as follows.

Let &' :=¢/7. If we execute Algorithni]1 with weight matri®, error bounds’ andt such that is
the smallest power of two with> nW/¢’, we obtain a1+ £’)-approximationF x,y] of D[x,y] for all
verticesx andy (Lemma5). By calculating for everythe minimum entry of-[x,y] over ally we have a
(1+ &’)-approximation of (x) (Lemmé&®). By Lemma&lgi(x) := &(x)/((1— €')t) is for this choice of
t an approximation ofi(x) such thatu(x) < fi(x) < (1+ 7¢’)u(x). By substitutinge’ with £/7 we get
H(x) < f(x) < (14 ¢&)p(x) i.e., a(l+ &)-approximation ofu(x).

By Lemma5 the running time of Algorithf 1 for= 2/109™W/€)1 — O(nW /¢) is

n® /MW n2W2 , [ 109 (nzTW>
0] ?Iog (T) Iog( - >Iog — log(n)
With log(nW) < log((nW)?) = O(log(nW)) we get that Algorithniil runs in time
n® 5/nW\, , (log(2)
O<?Iog (T) log (f log(n) | . (7D)

5 Open problems

We hope that this work draws attention to the problem of agprating the minimum cycle mean. It
would be interesting to study whether there is a faster aqqmiation algorithm for the minimum cycle
mean problem, maybe at the cost of a worse approximation.rdnng time of our algorithm imme-
diately improves if faster algorithms for classic matrix Itiplication, min-plus matrix multiplication
or approximate min-plus multiplication are found. Howe\edifferent approach might lead to better
results and might shed new light on how well the problem caafdproximated. Therefore it would be
interesting to remove the dependence on fast matrix migifgbn and develop a so-called combinatorial
algorithm.

Another obvious extension is to allow negative edge weighthe input graph. Furthermore, we
only consider the minimum cycle mean problem, while it milghtinteresting to actually output a cycle
with approximately optimal mean weight.
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