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Recently, we introduced in [1] a model for product adoption in social networks with multiple prod-
ucts, where the agents, influenced by their neighbours, can adopt one out of several alternatives
(products). To analyze these networks we introduce social network games in which product adoption
is obligatory.

We show that when the underlying graph is a simple cycle, there is a polynomial time algorithm
allowing us to determine whether the game has a Nash equilibrium. In contrast, in the arbitrary case
this problem is NP-complete. We also show that the problem ofdetermining whether the game is
weakly acyclic is co-NP hard.

Using these games we analyze various types of paradoxes thatcan arise in the considered net-
works. One of them corresponds to the well-known Braess paradox in congestion games. In partic-
ular, we show that social networks exist with the property that by adding an additional product to
a specific node, the choices of the nodes will unavoidably evolve in such a way that everybody is
strictly worse off.

1 Introduction

Social networks became a huge interdisciplinary research area with important links to sociology, eco-
nomics, epidemiology, computer science, and mathematics.A flurry of numerous articles, notably the
influential [11], and books, e.g., [7, 3], helped to delineate better this area. It deals with many diverse
topics such as epidemics, spread of certain patterns of social behaviour, effects of advertising, and emer-
gence of ‘bubbles’ in financial markets.

Recently, we introduced in [1]social networks with multiple products, in which the agents (players),
influenced by their neighbours, can adopt one out of several alternatives (products). To study the situa-
tion when the product adoption is obligatory we introduce here social network games in which product
adoption is obligatory. An example of a studied situation iswhen a group of people chooses an obliga-
tory ‘product’, for instance, an operating system or a mobile phone provider, by taking into account the
choice of their friends. The resulting games exhibit the following join the crowdproperty:

the payoff of each player weakly increases when more playerschoose his strategy.

that we define more precisely in Subsection 2.3.
The considered games are a modification of the strategic games that we recently introduced in [14]

and more fully in [15], in which the product adoption was optional. The insistence on product selection
leads to a different analysis and different results than theones reported there. In particular, Nash equilib-
ria need not exist already in the case when the underlying graph is a simple cycle. We show that one can
determine in polynomial time whether for such social networks a Nash equilibrium exists. We prove that
for arbitrary networks, determining whether a Nash equilibrium exists is NP-complete. We also show
that for arbitrary networks and for networks whose underlying graph has no source nodes, determining
whether the game is weakly acyclic is co-NP hard.
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The considered social networks allow us to analyze various paradoxes that were identified in the
literature. One example is theparadox of choicefirst formulated in [13]. It has been summarised in [6,
page 38] as follows:

The more options one has, the more possibilities for experiencing conflict arise, and the
more difficult it becomes to compare the options. There is a point where more options,
products, and choices hurt both seller and consumer.

The point is that consumers choices depend on their friends’and acquaintances’ preferences.
Another example is a ‘bubble’ in a financial market, where a decision of a trader to switch to some

new financial product triggers a sequence of transactions, as a result of which all traders involved become
worse off.

Such paradoxes are similar to the renowned Braess paradox which states that in some road networks
the travel time can actually increase when new roads are added, see, e.g., [12, pages 464-465] and a
‘dual’ version of Braess paradox that concerns the removal of road segments, studied in [4, 5]. Both
paradoxes were studied by means of congestion games. However, in contrast to congestion games, Nash
equilibria do not need to exist in the games we consider here.Consequently, one needs to rely on different
arguments. Moreover, there are now two new types of paradoxes that correspond to the situations when
an addition, respectively, removal, of a product can lead toa game with no Nash equilibrium.

For each of these four cases we present a social network that exhibits the corresponding paradox.
These paradoxes were identified first in [2] in the case when the adoption of a product was not obligatory.
In contrast to the case here considered the existence of a strongest paradox within the framework of [2]
remains an open problem.

2 Preliminaries

2.1 Strategic games

A strategic gamefor n> 1 players, written as(S1, . . . ,Sn, p1, . . . , pn), consists of a non-empty setSi of
strategiesand apayoff function pi : S1×·· ·×Sn→R, for each playeri.

Fix a strategic gameG :=(S1, . . . ,Sn, p1, . . . , pn). We denoteS1×·· ·×Sn by S, call each elements∈S
a joint strategy, denote theith element ofsby si , and abbreviate the sequence(sj) j 6=i to s−i. Occasionally
we write(si ,s−i) instead ofs.

We call a strategysi of player i a best responseto a joint strategys−i of his opponents if∀s′i ∈
Si pi(si ,s−i)≥ pi(s′i ,s−i). We call a joint strategysaNash equilibriumif eachsi is a best response tos−i .
Further, we call a strategys′i of playeri abetter responsegiven a joint strategys if pi(s′i ,s−i)> pi(si ,s−i).

By a profitable deviationwe mean a pair(s,s′) of joint strategies such thats′ = (s′i ,s−i) for somes′i
andpi(s′)> pi(s). Following [10], animprovement pathis a maximal sequence of profitable deviations.
Clearly, if an improvement path is finite, then its last element is a Nash equilibrium. A game is called
weakly acyclic(see [16, 9]) if for every joint strategy there exists a finiteimprovement path that starts at
it. In other words, in weakly acyclic games a Nash equilibrium can be reached from every initial joint
strategy by a sequence of unilateral deviations. Given two joint strategiessands′ we write

• s> s′ if for all i, pi(s)> pi(s′).

Whens> s′ holds we say thats′ is strictly worsethans.
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2.2 Social networks

We are interested in strategic games defined over a specific type of social networks introduced in [1] that
we recall first.

Let V = {1, . . . ,n} be a finite set ofagentsandG= (V,E,w) a weighted directed graph withwi j ∈
[0,1] being the weight of the edge(i, j). Given a nodei of G, we denote byN(i) the set of nodes from
which there is an incoming edge toi. We call eachj ∈ N(i) a neighbour of i in G. We assume that
for each nodei such thatN(i) 6= /0, ∑ j∈N(i) w ji ≤ 1. An agenti ∈V is said to be asource nodein G if
N(i) = /0. Given a (to be defined) networkS we denote bysource(S ) the set of source nodes in the
underlying graphG.

By asocial network(from now on, justnetwork) we mean a tupleS = (G,P,P,θ), where

• G is a weighted directed graph,

• P is a finite set of alternatives orproducts,

• P is function that assigns to each agenti a non-empty set of productsP(i) from which it can make
a choice,

• θ is a threshold functionthat for eachi ∈V andt ∈ P(i) yields a valueθ(i, t) ∈ (0,1].

{t4}

0.5
��
1

0.5

##❍
❍❍

❍❍
❍❍

❍❍
{t1,t2,t4}

{t2} 0.4
// 3

0.5
;;✈✈✈✈✈✈✈✈✈{t2,t3}

2
0.5

oo
{t1,t3}

{t3}0.4
oo

Figure 1: A social network

Example 1. Figure 1 shows an example of a network. Let the threshold be 0.3 for all nodes. The set of
productsP is {t1, t2, t3, t4}, the product set of each agent is marked next to the node denoting it and the
weights are labels on the edges. Each source node is represented by the unique product in its product set.
✷

Given two social networksS andS ′ we say thatS ′ is anexpansionof S if it results from adding
a product to the product set of a node inS . We say then also thatS is acontractionof S ′.

2.3 Social network games

Next, introduce the strategic games over the social networks. They form a modification of the games
studied in [14, 15] in that we do not admit a strategy representing the fact that a player abstains from
choosing a product.

Fix a networkS = (G,P,P,θ). With each networkS we associate a strategic gameG (S ). The
idea is that the agents simultaneously choose a product. Subsequently each node assesses his choice by
comparing it with the choices made by his neighbours. Formally, we define the game as follows:

• the players are the agents (i.e., the nodes),

• the set of strategies for playeri is Si := P(i),
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• For i ∈V, t ∈ P(i) and a joint strategys, let N t
i (s) := { j ∈ N(i) | sj = t}, i.e.,N t

i (s) is the set of
neighbours ofi who adopted ins the productt.

The payoff function is defined as follows, wherec0 is some given in advance positive constant:

– for i ∈ source(S ),
pi(s) := c0,

– for i 6∈ source(S ),
pi(s) := ∑

j∈N t
i (s)

w ji −θ(i, t) , wheresi = t andt ∈ P(i).

In the first case we assume that the payoff function for the source nodes is constant only for simplicity.
The second case of the payoff definition is motivated by the following considerations. When agenti is
not a source node, his ‘satisfaction’ from a joint strategy depends positively from the accumulated weight
(read: ‘influence’) of his neighbours who made the same choice as him, and negatively from his threshold
level (read: ‘resistance’) to adopt this product. The assumption thatθ(i, t)> 0 reflects the view that there
is always some resistance to adopt a product.

We call these gamessocial network games with obligatory product selection, in short,social net-
work games.

Example 2. Consider the network given in Example 1 and the joint strategy s where each source node
chooses the unique product in its product set and nodes 1, 2 and 3 chooset2, t3 andt2 respectively. The
payoffs are then given as follows:

• for the source nodes, the payoff is the fixed constantc0,

• p1(s) = 0.5−0.3= 0.2,

• p2(s) = 0.4−0.3= 0.1,

• p3(s) = 0.4−0.3= 0.1.

Let s′ be the joint strategy in which player 3 choosest3 and the remaining players make the same
choice as given ins. Then(s,s′) is a profitable deviation sincep3(s′) > p3(s). In what follows, we
represent each profitable deviation by a node and a strategy it switches to, e.g., 3 :t3. Starting ats, the
sequence of profitable deviations 3 :t3,1 : t4 is an improvement path which results in the joint strategy
in which nodes 1, 2 and 3 chooset4, t3 andt3 respectively and, as before, each source node chooses the
unique product in its product set. ✷

By definition, the payoff of each player depends only on the strategies chosen by his neighbours, so
the social network games are related to graphical games of [8]. However, the underlying dependence
structure of a social network game is a directed graph. Further, note that these games satisfy thejoin the
crowdproperty that we define as follows:

Each payoff functionpi depends only on the strategy chosen by playeri and the set of players
who also chose his strategy. Moreover, the dependence on this set is monotonic.

The last qualification is exactly opposite to the definition of congestion games with player-specific
payoff functions of [9] in which the dependence on the above set is antimonotonic. That is, when more
players choose the strategy of playeri, then his payoff weakly decreases.

3 Nash equilibria

The first natural question we address is whether the social network games have a Nash equilibrium.
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3.1 Simple cycles

In contrast to the case of games studied in [14] the answer is negative already for the case when the
underlying graph is a simple cycle.

Example 3. Consider the network given in Figure 2, where the product setof each agent is marked next
to the node denoting it and the weights are all equal and put aslabels on the edges.
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Figure 2: A simple cycle no Nash equilibrium

Let the thresholds be defined as follows:θ(1, t1) = θ(2, t2) = θ(3, t3) = r1 andθ(1, t2) = θ(2, t3) =
θ(3, t1) = r2 wherer1 > r2. We also assume thatw> r1− r2. Hence for alls2 ands3

p1(t1,s2, t1)> p1(t2,s2,s3)> p1(t1,s2, t3)

and similarly for the payoff functionsp2 andp3. So it is more profitable for playeri to adopt strategyti
provided its neighbour also adoptsti .

It is easy to check that the game associated with this networkhas no Nash equilibrium. Indeed, here
is the list of all the joint strategies, where we underline the strategy that is not a best response to the
choice of other players:(t1, t2, t1), (t1, t2, t3), (t1, t3, t1), (t1, t3, t3), (t2, t2, t1), (t2, t2, t3), (t2, t3, t1), (t2, t3, t3).
✷

This example can be easily generalized to the case of an arbitrary simple cycle. Below,i⊕1 andi⊖1
stand for addition and subtraction defined cyclically over the set{1, . . . ,n}. Son⊕1= 1 and 1⊖1= n.
Indeed, consider a social network withn nodes that form a simple cycle and assume that each playeri
has strategiesti andti⊕1. Choose for each playeri the weightswi⊖1 i and the threshold functionθ(i, t) so
that

wi⊖1 i −θ(i, ti)>−θ(i, ti⊕1)>−θ(i, ti),

so that (we put on first two positions, respectively, the strategies of playersi ⊖ 1 andi, while the last
argument is a joint strategy of the remainingn−2 players)

pi(ti , ti ,s)> pi(t
′
, ti⊕1,s

′)> pi(ti⊖1, ti ,s
′′),

wheret ′,s,s′ ands′′ are arbitrary. It is easy to check then that the resulting social network game has no
Nash equilibrium.

A natural question is what is the complexity of determining whether a Nash equilibrium exists. First
we consider this question for the special case when the underlying graph is a simple cycle.

Theorem 4. Consider a networkS whose underlying graph is a simple cycle. It takes O(n· |P|4) time
to decide whether the gameG (S ) has a Nash equilibrium.

Proof. SupposeS = (G,P,P,θ). When the underlying graph ofS is a simple cycle, the concept of a
best response of playeri ⊕1 to a strategy of playeri is well-defined. Let

Ri := {(ti , ti⊕1) | ti ∈ P(i), ti⊕1 ∈ P(i ⊕1), ti⊕1 is a best response toti},
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I := {(t, t) | t ∈ P},

and let◦ stand for the composition of binary relations.
The question whetherG (S ) has a Nash equilibrium is then equivalent to the problem whether there

exists a sequencea1, ...,an such that(a1,a2) ∈ R1, ...,(an−1,an) ∈ Rn−1,(an,a1) ∈ Rn. In other words, is
(R1◦ · · · ◦Rn)∩ I non-empty?

To answer this question we first construct successivelyn−1 compositionsR1◦R2, (R1◦R2)◦R3, . . . ,
(. . . (R1◦R2) · · · ◦Rn−1)◦Rn.

Each composition construction can be carried out in|P|4 steps. Indeed, given two relationsA,B⊆P×
P, to compute their compositionA◦B requires for each pair(a,b) ∈ A to find all pairs(c,d) ∈ B such
thatb= c. Finally, to check whether the intersection ofR1◦ · · · ◦Rn with I is non-empty requires at most
|P| steps.

So to answer the original question takesO(n· |P|4) time.

Note that this proof applies to any strategic game in which there is a reordering of playersπ(1), . . . ,π(n)
such that the payoff of playerπ(i) depends only on his strategy and the strategy chosen by player π(i⊖ i).

It is worthwhile to note that for the case of simple cycles, the existence of Nash equilibrium in the
associated social network game does not imply that the game is weakly acyclic.
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Figure 3: A simple cycle and an infinite improvement path

Example 5. Consider the network in Figure 3(a) which is a modification ofthe network in Figure 2.
We add a new productt4 to the product set of all the nodesi with θ(i, t4) > r1. We also assume that
w−θ(i, t4)>−r2. Then the joint strategy(t4, t4, t4) is a Nash equilibrium. However, Figure 3(b) shows
the unique improvement path starting in(t1, t3, t1) which is infinite. For each joint strategy in the figure,
we underline the strategy that is not a best response. This shows that the game is not weakly acyclic.✷

In Section 4 we shall study the complexity of checking whether a social network game is weakly
acyclic.

3.2 Arbitrary social networks

In this section we establish two results which show that deciding whether a social network has a Nash
equilibrium is computationally hard.

Theorem 6. Deciding whether for a social networkS the gameG (S ) has a Nash equilibrium is NP-
complete.

To prove the result we first construct another example of a social network game with no Nash equi-
librium and then use it to determine the complexity of the existence of Nash equilibria.

Example 7. Consider the network given in Figure 4, where the product setof each agent is marked next
to the node denoting it and the weights are labels on the edges. Nodes with a unique product in the
product set is simply represented by the product.
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Figure 4: A network with no Nash equilibrium

We assume that each threshold is a constantθ , whereθ < w1 < w2. So it is more profitable to a
player residing on a triangle to adopt the product adopted byhis neighbour residing on a triangle than by
the other neighbour.

The game associated with this network has no Nash equilibrium. It suffices to analyze the joint
strategies involving nodes 1, 2 and 3 since the other nodes have exactly one product in their product
sets. Here we provide a listing of all such joint strategies,where we underline the strategy that is not a
best response to the choice of other players:(t1, t1, t2), (t1, t1, t3), (t1, t3, t2), (t1, t3, t3), (t2, t1, t2), (t2, t1, t3),
(t2, t3, t2), (t2, t3, t3). In contrast, what will be of relevance in a moment, if we replace{t1} by {t ′1}, then
the corresponding game has a Nash equilibrium, namely the joint strategy corresponding to the triple
(t2, t3, t3). ✷

Proof of Theorem 6:As in [1], to show NP-hardness, we use a reduction from the NP-complete PAR-
TITION problem, which is: givenn positive rational numbers(a1, . . . ,an), is there a setS such that
∑i∈Sai = ∑i 6∈Sai? Consider an instanceI of PARTITION. Without loss of generality, suppose we have
normalised the numbers so that∑n

i=1 ai = 1. Then the problem instance sounds: is there a setSsuch that
∑i∈Sai = ∑i 6∈Sai =

1
2?

To construct the appropriate network we employ the networksgiven in Figure 4 and in Figure 5,
where for each nodei ∈ {1, . . . ,n} we setwia = wib = ai , and assume that the thresholds of the nodesa
andb are constant and equal1

2.
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Figure 5: A network related to the PARTITION problem

To finalize the construction we use two copies of the network given in Figure 4, one unchanged and
the other in which the productt1 is replaced everywhere byt ′1, and construct the desired networkS by
identifying with the node marked by{t1} in the network from Figure 4, the nodea of the network from
Figure 5 and with the node marked by{t ′1} in the modified version of the network from Figure 4 the node
b.

Suppose that a solution to the considered instance of the PARTITION problem exists, i.e., for some
set S⊆ {1, . . . ,n} we have∑i∈Sai = ∑i 6∈Sai =

1
2. Consider the gameG (S ) and the joint strategys

formed by the following strategies:

• t1 assigned to each nodei ∈ S in the network from Figure 5,

• t ′1 assigned to each nodei ∈ {1, . . . ,n}\S in the network from Figure 5,
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• t ′1 assigned to the nodesa andt1 to the nodeb,

• t2 assigned to node 1 andt3 assigned to the nodes 2, 3 in both versions of the networks from
Figure 4,

• t2 andt3 assigned respectively to the nodes marked by{t2} and{t3}.

We claim thats is a Nash equilibrium. Consider first the player (i.e., node)a. The accumulated
weight of its neighbours who chose strategyt ′1 is 1

2. Therefore, the payoff fora in the joint strategys is
0. The accumulated weight of its neighbours who chose strategy t1 is 1

2, as well. Thereforet ′1 is indeed
a best response for playera as both strategies yield the same payoff. For the same reason, t1 is a best
response for playerb. The analysis for the other nodes is straightforward.

Conversely, suppose that a strategy profiles is a Nash equilibrium inG (S ). From Example 7 it
follows thatsa = t ′1 andsb = t1. This implies thatt ′1 is a best response of nodea to s−a and therefore
∑i∈{1,...,n}|si=t ′1

wia ≥ ∑i∈{1,...,n}|si=t1 wia. By a similar reasoning, for nodeb we have∑i∈{1,...,n}|si=t1 wib ≥

∑i∈{1,...,n}|si=t ′1
wib. Since∑n

i=1 ai = 1 and fori ∈ {1, . . . ,n}, wia = wib = ai , andsi ∈ {t1, t ′1} we have for
S:= {i ∈ {1, . . . ,n} | si = t1}, ∑i∈Sai = ∑i 6∈Sai . In other words, there exists a solution to the considered
instance of the partition problem. ✷

Theorem 8. For a networkS whose underlying graph has no source nodes, deciding whether the game
G (S ) has a Nash equilibrium is NP-complete.

Proof. The proof extends the proof of the above theorem. Given an instance of the PARTITION problem
we use the following modification of the network. We ‘twin’ each nodei ∈ {1, . . . ,n} in Figure 5 with a
new nodei′ with the product set{t1, t ′1}, by adding the edges(i, i′) and(i′, i). We also ‘twin’ nodes marked
{t2} and{t3} in Figure 4 with new nodes with the product set{t2} and{t3} respectively. Additionally,
we choose the weights on the new edgeswii ′ , wi′i and the corresponding thresholds so that wheni and
i′ adopt a common product, their payoff is positive. Then the underlying graph of the resulting network
does not have any source nodes and the above proof remains valid for this new network.

4 Weakly acyclic games

In this section we study the complexity of checking whether asocial network game is weakly acyclic.
We establish two results that are analogous to the ones established in [15] for the case of social networks
in which the nodes may decide not to choose any product. The proofs are based on similar arguments
though the details are different.

Theorem 9. For an arbitrary networkS , deciding whether the gameG (S ) is weakly acyclic is co-NP
hard.

Proof. We again use an instance of the PARTITION problem in the form of n positive rational numbers
(a1, . . .,an) such that∑n

i=1ai = 1. Consider the network given in Figure 6. For each nodei ∈ {1, . . .,n}
we setP(i) = {t1, t2}. The product set for the other nodes are marked in the figure. As before, we set
wia = wib = ai .

Since for alli ∈ {1, . . . ,n}, ai is rational, it has the formai =
li
r i

. Let τ = 1
2·r1·...·rn

. The following
property holds.

Property 1. Given an instance(a1, . . . ,an) of the PARTITION problem andτ defined as above, for all
S⊆ {1, . . . ,n}
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Figure 6: A network related to weakly acyclic games

(i) if ∑i∈Sai <
1
2, then∑i∈Sai ≤

1
2 − τ ,

(ii) if ∑i∈Sai >
1
2, then∑i∈Sai ≥

1
2 + τ .

Proof. By definition, eachai and 1
2 is a multiple ofτ . Thus∑i∈Sai = x·τ and 1

2 = y·τ wherex andy are
integers.
(i) If x· τ < y· τ , thenx· τ ≤ (y−1) · τ . Therefore∑i∈Sai ≤

1
2 − τ .

The proof of(ii) is analogous.

Note that given(a1, . . . ,an), τ can be defined in polynomial time. Let the thresholds be defined as
follows: θ(a, t1) = θ(b, t2) = 1

2 and 0< θ(a, t4) = θ(b, t5) < τ . The threshold for nodesc,d ande is a
constantθ1 such thatθ1 <w1 < w2. Thus, like in the network in Figure 4, it is more profitable toa player
residing on a triangle to adopt the product adopted by his neighbour residing on a triangle than by the
other neighbour.

Suppose that a solution to the considered instance of the PARTITION problem exists. That is, for
some setS⊆{1, . . .,n} we have∑i∈Sai = ∑i 6∈Sai =

1
2. In the gameG (S ), take the joint strategys formed

by the following strategies:

• t1 assigned to each nodei ∈ Sand the nodesa andc,

• t2 assigned to each nodei ∈ {1, . . .,n}\Sand the nodesb andd,

• t3 assigned to the nodese andg.

Any improvement path that starts in this joint strategy willnot change the strategies assigned to the
nodesa,b andg. So if such an improvement path terminates, it produces a Nash equilibrium in the game
associated with the network given in Figure 4 of Example 7. But we argued that this game does not have
a Nash equilibrium. Consequently, there is no finite improvement path in the gameG (S ) that starts in
the above joint strategy and thereforeG (S ) is not weakly acyclic.

Now suppose that the considered instance of the PARTITION problem does not have a solution.
Then we show that the gameG (S ) is weakly acyclic. To this end, we order the nodes ofS as follows
(note the positions of the nodesc,d ande): 1,2, . . .,n,g,a,b,c,e,d. Given a joint strategy, consider an
improvement path in which at each step the first node in the above list that did not select a best response
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switches to a best response. After at mostn steps the nodes 1,2, . . .,n all selected a productt1 or t2. Let
sbe the resulting joint strategy.

First suppose that∑i∈{1,. . .,n}|si=t1 wia >
1
2. This implies that∑i∈{1,. . .,n}|si=t2 wib <

1
2. By Property 1,

∑i∈{1,. . .,n}|si=t2 wib ≤ 1
2 − τ . The payoff of the nodeb depends only on the choices made by the source

nodes 1,2, . . . ,n, so we havepb(t2,s−b) ≤ −τ . Sinceθ(b, t5) < τ , we also havepb(t5,s−b) > −τ and
thereforet5 is a best response for nodeb. Let sb be the resulting strategy in which nodeb selectst5.
Consider the prefix ofξ starting atsb (call it ξ b). We argue that inξ b, t2 is never a better response for
noded. Suppose thatsb

d = t3. We have the following two cases:

• sb
e = t3: thenpd(sb) = w2−θ1 and sot3 is the best response for noded.

• sb
e = t1: then pd(sb) = −θ1 and if noded switches tot2 then pd(t2,sb

−b) = −θ1 (sincesb
b = t5).

Thust2 is not a better response.

Using the above observation, we conclude that there exists asuffix of ξ b (call it ξ d) such that noded
never choosest2. This means that inξ d the unique best response for nodec is t1 and for nodee is t1. This
shows thatξ d is finite and henceξ is finite, as well.

The case when∑i∈{1,. . .,n}|si=t2 wib >
1
2 is analogous with all improvement paths terminating in a joint

strategy where nodea choosest4 and nodec choosest2.

Theorem 10. For a networkS whose underlying graph has no source nodes, deciding whether the
gameG (S ) is weakly acyclic is co-NP hard.

Proof. The proof extends the proof of the above theorem. Given an instance of the PARTITION problem
we use the following modification of the network given in Figure 6. We ‘twin’ each nodei ∈ {1, . . .,n}
with a new nodei′, also with the product set{t1, t2}, by adding the edges(i, i′) and(i′, i). We also ‘twin’
the nodeg with a new nodeg′, also with the product set{t3}, by adding the edges(g,g′) and (g′,g).
Additionally, we choose the weightswii ′ andwi′i and the corresponding thresholds so that wheni andi′

adopt a common product, their payoff is positive.
Suppose that a solution to the considered instance of the PARTITION problem exists. Then we

extend the joint strategy considered in the proof of Theorem9 by additionally assigningt1 to each node
i′ such thati ∈ S, t2 to each nodei′ such thati ∈ {1, . . .,n}\Sandt3 to the nodeg′. Then, as before, there
is no finite improvement path starting in this joint strategy, soG (S ) is not weakly acyclic.

Suppose now that no solution to the considered instance of the PARTITION problem exists. Take the
following order of the nodes ofS :

1,1′,2,2′, . . .,n,n′,g,g′,a,b,c,e,d,

and as in the previous proof, given a joint strategy, we consider an improvement pathξ in which at each
step the first node in the above list that did not select a best response switches to a best response.

Note that each node from the list 1,1′,2,2′, . . .,n,n′,g,g′ is scheduled at most once. So there exists a
suffix of ξ in which only the nodesa,b,c,e,d are scheduled. Using now the argument given in the proof
of Theorem 9 we conclude that there exists a suffix ofξ that is finite. This proves thatG (S ) is weakly
acyclic.

5 Paradoxes

In [2] we identified various paradoxes in social networks with multiple products and studied them using
the social network games introduced in [14]. Here we carry out an analogous analysis for the case when
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the product selection is obligatory. This qualification, just like in the case of social network games,
substantially changes the analysis. We focus on the main four paradoxes that we successively introduce
and analyze.

5.1 Vulnerable networks

The first one is the following. We say that a social networkS is vulnerableif for some Nash equilibrium
s in G (S ), an expansionS ′ of S exists such that each improvement path inG (S ′) leads froms to
a joint strategys′ which is a Nash equilibrium both inG (S ′) and G (S ) such thats> s′. So the
newly added product triggers a sequence of changes that unavoidably move the players from one Nash
equilibrium to another one that is strictly worse for everybody.

The following example shows that vulnerable networks exist. Here and elsewhere the relevant ex-
pansion is depicted by means of a product and the dotted arrowpointing to the relevant node.
Example 11. Consider the directed graph given in Figure 7, in which the product set of each node is
marked next to it.

1
{t1,t3,t4}

��

**
2jj
{t1,t4}

t2oo

3
{t2,t3} **

4jj
{t2,t3}

OO

Figure 7: A directed graph

We complete it to the desired social network below. Let ‘_’ stand for an arbitrary strategy of the
relevant player. We stipulate that

p2(_, t2,_, t2)> p2(t1, t1,_,_),
p1(t3, t2,_,_)> p1(t1, t2,_,_)> p1(t4, t2,_,_),
p3(t3,_, t3,_)> p3(_,_, t2, t2),
p4(_,_, t3, t3)> p4(_,_, t3, t2),
p2(_, t4,_,_)> p2(_, t2,_, t3),
p1(t4, t4,_,_)> p1(t3,_,_,_)> p1(t1, t4,_,_),

so that 2 :t2,1 : t3,3 : t3,4 : t3,2 : t4,1 : t4 is a unique improvement path that starts in(t1, t1, t2, t2) and ends
in (t4, t4, t3, t3).

Additionally we stipulate that

p1(t1, t1,_,_)> p1(t4, t4,_,_),
p2(t1, t1,_,_)> p2(t4, t4,_,_),
p3(_,_, t2, t2)> p3(_,_, t3, t3),
p4(_,_, t2, t2)> p4(_,_, t3, t3),

so that(t1, t1, t2, t2)>s (t4, t4, t3, t3).
These requirements entail constraints on the weights and thresholds that are for instance realized by
w12 = 0, w21 = 0.2, w42 = 0.3, w13 = 0.2, w34 = 0.2, w43 = 0,

and
θ(1, t1) = 0.2, θ(1, t3) = 0.1, θ(1, t4) = 0.3, θ(2, t1) = 0.1, θ(2, t2) = 0.3,
θ(2, t4) = 0.2, θ(3, t2) = 0.1, θ(3, t3) = 0.2, θ(4, t2) = 0.1, θ(4, t3) = 0.2. ✷



Krzysztof R. Apt & Sunil Simon 191

It is useful to note that in the setup of [2], in which for each player the ‘abstain’ strategy is allowed, it
remains an open problem whether vulnerable networks (called there because of various other alternatives
∀s-vulnerable networks) exist.

5.2 Fragile networks

Next, we consider the following notion. We say that a social networkS is fragile if G (S ) has a Nash
equilibrium while for some expansionS ′ of S , G (S ′) does not. The following example shows that
fragile networks exist.

Example 12. Consider the networkS given in Figure 8, where the product set of each node is marked
next to it.

1

w

��❃
❃❃

❃❃
❃❃

❃❃
{t2} t1oo❴ ❴ ❴ ❴

3

w

@@✁✁✁✁✁✁✁✁✁{t3,t1}

2w
oo

{t2,t3}

Figure 8: A fragile network

Let the thresholds be defined as follows:θ(2, t2)= θ(3, t3)= r1 andθ(1, t2) = θ(2, t3)= θ(3, t1)= r2

wherer1 > r2. We also assume thatw> r1− r2.
Consider the joint strategys, in which nodes 1, 2 and 3 chooset2, t2 andt1 respectively. It can be

verified thats is a Nash equilibrium inG (S ). Now consider the expansionS ′ of S in which productt1
is added to the product set of node 1 and letθ(1, t1) = r1. ThenS ′ is the network in Example 3 which,
as we saw, does not have a Nash equilibrium. ✷

5.3 Inefficient networks

We say that a social networkS is inefficient if for some Nash equilibriums in G (S ), a contractionS ′

of S exists such that each improvement path inG (S ′) starting ins leads to a joint strategys′ which is
a Nash equilibrium both inG (S ′) andG (S ) such thats′ > s. We note here that if the contraction was
created by removing a product from the product set of nodei, we impose that any improvement path in
G (S ′), given a starting joint strategy fromG (S ), begins by having nodei making a choice (we allow
any choice from his remaining set of products as an improvement move). Otherwise the initial payoff of
nodei in G (S ′) is not well-defined.

Example 13. We exhibit in Figure 9 an example of an inefficient network. The weight of each edge is
assumed to bew, and we also have the same product-independent threshold,θ , for all nodes, withw> θ .

Consider as the initial Nash equilibrium the joint strategys= (t2, t2, t1, t1). It is easy to check that this
is indeed a Nash equilibrium, with the payoff equal tow−θ for all nodes. Suppose now that we remove
productt1 from the product set of node 3. We claim that the unique improvement path then leads to the
Nash equilibrium in which all nodes adoptt2.

To see this, note that node 3 moves first in any improvement path and it has a unique choice,t2. Then
node 4 moves and necessarily switches tot2. This yields a Nash equilibrium in which each node selected
t2 with the payoff of 2w−θ , which is strictly better than the payoff ins. ✷
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Figure 9: An example of an inefficient network

5.4 Unsafe networks

Finally, we analyze the following notion. We call a social network S unsafe if G (S ) has a Nash
equilibrium, while for some contractionS ′ of S , G (S ′) does not. The following example shows that
unsafe networks exist.

Example 14. Let S1 be the modification of the networkS given in Figure 2 where node 1 has the
product set{t1, t2, t4}, whereθ(1, t4) < r2. Then the joint strategy(t4, t3, t3) is a Nash equilibrium in
G (S1). Now consider the contractionS ′

1 of S1 where productt4 is removed from node 1. ThenS ′
1 is

the networkS , which as we saw in Example 3 has no Nash equilibrium. ✷

6 Conclusions

In this paper we studied dynamic aspects of social networks with multiple products using the basic
concepts of game theory. We used the model of social networks, originally introduced in [1] that we
subsequently studied using game theory in [14], [15] and [2].

However, in contrast to these three references the product adoption in this paper is obligatory. This
led to some differences. For example, in contrast to the caseof [14], a Nash equilibrium does not need
to exist when the underlying graph is a simple cycle. Further, in contrast to the setup of [2], we were
able to construct a social network that exhibits the strongest form of the paradox of choice. On the other
hand, some complexity results, namely the ones concerning weakly acyclic games, remain the same as
in [14], though the proofs had to be appropriately modified.
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