
Gabriele Puppis, Tiziano Villa (Eds.): Fourth International
Symposium on Games, Automata, Logics and Formal Verification
EPTCS 119, 2013, pp. 194–207, doi:10.4204/EPTCS.119.17

c© Steen Vester
This work is licensed under the
Creative Commons Attribution License.

Alternating-time temporal logic with finite-memory strate gies

Steen Vester
DTU Compute

Technical University of Denmark

stve@dtu.dk

Model-checking the alternating-time temporal logicsATL andATL∗ with incomplete information
is undecidable for perfect recall semantics. However, whenrestricting to memoryless strategies the
model-checking problem becomes decidable. In this paper weconsider two other types of semantics
based on finite-memory strategies. One where the memory sizeallowed is bounded and one where
the memory size is unbounded (but must be finite). This is motivated by the high complexity of
model-checking with perfect recall semantics and the severe limitations of memoryless strategies.
We show that both types of semantics introduced are different from perfect recall and memoryless
semantics and next focus on the decidability and complexityof model-checking in both complete
and incomplete information games forATL/ATL∗. In particular, we show that the complexity of
model-checking with bounded-memory semantics is∆p

2-complete forATL andPSPACE-complete
for ATL∗ in incomplete information games just as in the memoryless case. We also present a proof
thatATL andATL∗ model-checking is undecidable forn≥ 3 players with finite-memory semantics
in incomplete information games.

1 Introduction

The alternating-time temporal logicsATL and ATL∗ have been studied with perfect recall semantics
and memoryless semantics in both complete and incomplete information concurrent game structures
[2, 3, 12]. The model-checking problems for these logics have applications in verification and synthesis
of computing systems in which different entities interact.The complexity of model-checking with perfect
recall semantics, where players are allowed to use an infinite amount of memory, is very high in some
cases and even undecidable in the case ofATL [3, 8] with incomplete information. On the other hand,
model-checking with memoryless semantics, where players are not allowed to use any memory about
the history of a game, is decidable and has a much lower complexity [12]. The drawback is that there
are many games where winning strategies exist for some coalition, but where no memoryless winning
strategies exist. In this paper, we focus on the tradeoff between complexity and strategic ability with
respect to the memory available to the players. Instead of considering the extreme cases of memoryless
strategies and infinite memory strategies we look at finite-memory strategies as an intermediate case of
the two. The motivation is the possibility to solve more games than with memoryless strategies, but
without the cost that comes with infinite memory.

We introduce two new types of semantics called bounded-memory semantics and finite-memory se-
mantics respectively. For bounded-memory semantics thereis a bound on the amount of memory avail-
able to the players, whereas for finite-memory semantics players can use any finite amount of memory.
We will study the expressiveness of these new types of semantics compared to memoryless and perfect
recall semantics inATLandATL∗ with both complete and incomplete information. Afterwardswe focus
on the complexity and decidability of the model-checking problem for the different cases.

http://dx.doi.org/10.4204/EPTCS.119.17
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


Steen Vester 195

Our approach have similarities with the work done in [12], [5] and [1]. It is a natural extension of the
framework used in [12] where memoryless semantics and perfect recall semantics are considered. In [5]
ATL/ATL∗ with bounded-memory semantics and strategy context is introduced for complete information
games, where bounded-memory strategies are defined essentially in the same way as here. However,
their use of strategy context makes the problems and algorithms considered different from ours. In [1] a
version with bounded-recall is considered where agents canonly remember the lastm states of the play.
This contrasts our approach where the players can decide what to store in the memory about the past.

2 Concurrent game structures

A concurrent game is played on a finite graph by a finite number of players, where the players interact
by moving a token between different states along the edges ofthe graph. The game is played an infinite
number of rounds where each round is played by letting every player independently and concurrently
choose an action. The combination of actions chosen by the players along with the current state uniquely
determines the successor state of the game. More formally,

Definition 1. A concurrent game structure (CGS) with n players

G = (States,Agt,Act,Mov,Tab)

consists of

• States- A finite non-empty set of states

• Agt = {1, ...,n} - A finite non-empty set of players

• Act - A finite non-empty set of actions

• Mov : States×Agt → 2Act \{ /0} - A function specifying the legal actions at a given state of agiven
player

• Tab : States×Actn → States- A transition function defined for each(a1, ...,an) ∈ Actn and state s
such that aj ∈ Mov(s, j) for 1≤ j ≤ n

Unless otherwise noted, we implicitly assume from now on that the players in a game are named
1, ...,n wheren = |Agt|. Note that every player must have at least one legal action ineach state. The
transition function Tab is defined for each state and all legal tuples of actions in that state. We also refer
to such legal tuples of actions as moves. To add meaning to concurrent game structures we introduce the
concept of a concurrent game model which consists of a concurrent game structure as well as a label-
ing of the states in the structure with propositions from some fixed, finite set Prop of proposition symbols.

Definition 2. A concurrent game model (CGM) is a pair(G ,π) whereG is a concurrent game structure
andπ : States→ P(Prop) is a labeling function.

An example of a CGM can be seen in Figure 1, where the states aredrawn as nodes. Transitions are
drawn as edges between nodes such that there is an edge froms to s′ labeled with the move(a1, ...,an) if
Tab(s,(a1, ...,an)) = s′. The states are labelled with propositions from the set Prop= {p,q} in the figure.

We define an incomplete information concurrent game structure as a CGS where each playerj has
an equivalence relation∼ j on the set of states. The intuitive meaning is thats∼ j s′ if player j cannot
distinguish between the statessands′.



196 Alternating-time temporal logic with finite-memory strategies

q

s0

p,q

s1

(a,a)
(b,b)

(c,c)
(a,b)
(b,a)

Figure 1: CGMM

Definition 3. A concurrent game structure with incomplete information (iCGS) with n players is a tuple

G = (States,Agt,Act,Mov,Tab,(∼ j)1≤ j≤n)

where

• (States,Agt,Act,Mov,Tab) is a CGS

• ∼ j⊆ States×Statesis an equivalence relation for all1≤ j ≤ n

• If s∼ j s′ thenMov(s, j) = Mov(s′, j) for all s,s′ ∈ Statesand all j∈ Agt

Note that we require the set of actions available to a player in two indistinguishable states to be the
same. We extend the notion to concurrent game models with incomplete information in the natural way.

Definition 4. A concurrent game model with incomplete information (iCGM)is a pair (G ,π) whereG

is an iCGS andπ : States→ 2Prop is a labeling function.

For each playerj, the relation∼ j induces a set[·] j of equivalence classes of states. We denote by[s] j

the class that statesbelongs to for playerj. These classes are refered to as the observation sets of player
j. Since the set of legal actions of playerj is required to be the same in states from the same observation
set, we can define Mov([s] j , j) = Mov(s, j) for all statess. Note that the concepts of iCGS and iCGM
generalize CGS and CGM respectively, since they are the special cases where∼ j is the identity relation
for all players j.

3 Outcomes, histories and strategies

Let G = (States,Agt,Act,Mov,Tab) be a CGS withn players. An outcome (or play) of a concurrent
game is an infinite sequence of states in the game structure that corresponds to an infinite sequence of
legal moves. Formally, the set of outcomes OutG (s) of G from s∈ States is defined as

OutG (s) = {ρ0ρ1... ∈ Statesω | ρ0 = s∧∀ j ≥ 0.∃m∈ Actn.Tab(ρ j ,m) = ρ j+1}

OutG =
⋃

s∈StatesOutG (s) is the set of all outcomes ofG . A history of a concurrent game is a non-
empty, finite prefix of an outcome. The set HistG (s) of histories ofG from s∈ States is defined as

HistG (s) = {ρ0ρ1...ρk ∈ States+ | ρ0 = s∧∃ρ ′ ∈ OutG (s).∀0≤ j ≤ k.ρ j = ρ ′
j}

HistG =
⋃

s∈StatesHistG (s) is the set of all histories ofG . For a (finite or infinite) sequenceρ of states
we write ρ0 for the first state,ρ j for the ( j +1)th state.ρ≤ j is the prefixρ0ρ1...ρ j of ρ andρ≥ j is the



Steen Vester 197

suffix ρ jρ j+1... of ρ . Whenρ = ρ0...ρk is a finite sequence we denote the length ofρ by |ρ | = k and
write last(ρ) = ρk.

For a given CGSG = (States,Agt,Act,Mov,Tab) we define a strategy for playerj as a mapping
σ j : HistG → Act such that for allh∈ HistG we haveσ j(h) ∈ Mov(last(h), j). Thus, a strategy for player
j maps any given history to an action that is legal for playerj in the final state of the history. We will
also refer to these strategies as perfect recall strategiesor infinite-memory strategies, since a player using
such a strategy can use the entire history of a play up to the decision point to choose his next action.
A memoryless (positional, no recall) strategy for playerj is a strategyσ j such that for allh,h′ ∈ HistG
with last(h) = last(h′) we haveσ j(h) = σ j(h′). It is called a memoryless strategy since the player is only
using the last state of the history to decide on his action. Wedenote by StratR

j the set of perfect recall
strategies for playerj and by Stratrj the set of memoryless strategies for playerj. We write OutG (s,σ)
for a strategyσ = (σa)a∈Agt for coalitionA and a states to denote the set of possible outcomes from state
swhen players in coalitionA play according toσ .

Next, we define finite-memory strategies in which a player is only allowed to store a finite amount of
memory of the history of the game. He can then combine his memory with the current state of the game
to choose an action. To model a strategy with finite memory we use a deterministic finite-state transducer
(DFST). A DFST is a 6-tuple(M,m0,Σ,Γ,T,G) whereM is a finite, non-empty set of states,m0 is the
initial state,Σ is the input alphabet,Γ is the output alphabet,T : M ×Σ → M is the transition function
andG : M×Σ → Γ is the output function. The set of states of the DFST are the possible values of the
internal memory of the strategy. We will also call these memory states. The initial state corresponds to
the initial memory value. The input symbols are the states ofthe game and the set of output symbols is
the set of actions of the game. In each round of the game the DFST reads a state of the game. Then it
updates its memory based on the current memory value and the input state and performs an action based
on the current memory value and the input state. More formally, we say that a strategyσ j for player j is
a finite-memory strategy if there exists a DFSTA= (M,m0,States,Act,T,G) such that for allh∈ HistG
we have

σ j(h) = G(T (m0,h≤|h|−1), last(h))

whereT is defined recursively byT (m,ρ) = T(m,ρ0) for any memory statem and any historyρ
with |ρ |= 0 andT (m,ρ) = T(T (m,ρ≤|ρ |−1), last(ρ)) for any memory statem and any historyρ with
|ρ | ≥ 1. Intuitively T is the function that repeatedly applies the transition function T on a sequence of
inputs to calculate the memory state after a given history. We callT the repeated transition function. We
say thatσ j is ak-memory strategy if the number of states of the DFST isk. We also say that the strategy
σ j is represented by the DFSTA. We denote the set of finite-memory strategies for playerj by StratFj
and the set ofk-memory strategies for playerj by StratFk

j . Thus, StratFj =
⋃

k≥1StratFk
j . In addition, we

have that the memoryless strategies are exactly the finite-memory strategies with one memory state, i.e.
StratF1

j = Stratrj .
Next, we generalize the notions of strategies to incompleteinformation games by defining them on

observation histories rather than on histories, since players observe sequences of observation sets during
the play rather than sequences of states. We define the set Hist j

G
of observation histories for playerj in

iCGSG as

Hist j
G
= {[s0] j [s1] j ...[sk] j | s0s1...sk ∈ HistG }

For each player, a given history induces a particular observation history which is observed by the
player. Then, strategies are defined as mappings from observation histories to actions, memoryless



198 Alternating-time temporal logic with finite-memory strategies

strategies are strategies where the same action is chosen for any observation history ending with the
same observation set and finite-memory strategies are represented by DFSTs where the input symbols
are observation sets rather than states of the game. Note that the definitions coincide for complete infor-
mation games.

4 ATL/ATL∗ with finite-memory and bounded-memory semantics

The alternating-time temporal logicsATL andATL∗ generalize the computation tree logicsCTL and
CTL∗ with the strategic operator〈〈A〉〉ϕ which expresses that coalitionA has a strategy to ensure the
propertyϕ . For a fixed, finite set Agt of agents and finite set Prop of proposition symbols theATL∗

formulas are constructed from the following grammar

ϕ ::= p | ¬ϕ1 | ϕ1∨ϕ2 | Xϕ1 | ϕ1Uϕ2 | 〈〈A〉〉ϕ1

wherep∈ Prop,ϕ1,ϕ2 areATL∗ formulas andA⊆ Agt is a coalition of agents. The connectives∧, →,
⇔, G andF are defined in the usual way. The universal path quantifierA of computation tree logic can
be defined as〈〈 /0〉〉. ATL is the subset ofATL∗ defined by the following grammar

ϕ ::= p | ¬ϕ1 | ϕ1∨ϕ2 | 〈〈A〉〉Xϕ1 | 〈〈A〉〉Gϕ1 | 〈〈A〉〉(ϕ1Uϕ2)

wherep∈ Prop,ϕ1,ϕ2 areATL formulas andA⊆ Agt is a coalition of agents.
We distinguish between state formulas and path formulas, which are evaluated on states and paths of

a game respectively. The state formulas are defined as follows

• p is a state formula ifp∈ Prop

• If ϕ1 andϕ2 are state formulas, then¬ϕ1 andϕ1∨ϕ2 are state formulas

• If ϕ1 is anATL∗ formula andA⊆ Agt, then〈〈A〉〉ϕ1 is a state formula

All ATL∗ formulas are path formulas. Note that allATL formulas are state formulas.
In [12] ATL andATL∗ are defined with different semantics based on (1) whether thegame is with

complete or incomplete information (2) whether perfect recall strategies or only memoryless strategies
are allowed. Herei andI are used to denote incomplete and complete information respectively. r andR
are used to denote memoryless and perfect recall strategiesrespectively. We extend this framework by
considering finite-memory semantics where only finite-memory strategies are allowed and denote this
by F . In addition we extend it with an infinite hierarchy of bounded-memory semantics, whereFk for
k≥ 1 denotes that onlyk-memory strategies are allowed. We denote the satisfactionrelations|=XY where
X ∈ {i, I} andY ∈ {r,F1,F2, ...,F,R}. We will also writeATLXY andATL∗XY to denote the logics obtained
with the different types of semantics.

The semantics of formulas in alternating-time temporal logic is given with respect to a fixed CGM
M = (G ,π) where the players that appear in the formulas must appear inG and the propositions present
in the formulas are in Prop. For state formulas we define for all CGMs M = (G ,π), all statess, all
propositionsp∈ Prop, all state formulasϕ1 andϕ2, all path formulasϕ3, all coalitionsA∈ Agt and all
Y ∈ {r,F1,F2, ...,F,R}



Steen Vester 199

M ,s |=IY p if p∈ π(s)
M ,s |=IY ¬ϕ1 if M ,s 6|=IY ϕ1

M ,s |=IY ϕ1∨ϕ2 if M ,s |=IY ϕ1 or M ,s |=IY ϕ2

M ,s |=IY 〈〈A〉〉ϕ3 if there exist strategies(σA)a∈A ∈ ∏a∈AStratYa such that
∀ρ ∈ OutG (s,σA).M ,ρ |=IY ϕ3

For path formulas we define for all CGMsM = (G ,π), all pathsρ , all propositionsp ∈ Prop, all
state formulasϕ1, all path formulasϕ2 andϕ3, all coalitionsA∈ Agt and allY ∈ {r,F1,F2, ...,F,R}

M ,ρ |=IY ϕ1 if M ,ρ0 |=IY ϕ1

M ,ρ |=IY ¬ϕ2 if M ,ρ 6|=IY ϕ2

M ,ρ |=IY ϕ2∨ϕ3 if M ,ρ |=IY ϕ2 or M ,ρ |=IY ϕ3

M ,ρ |=IY Xϕ2 if M ,ρ≥1 |=IY ϕ2

M ,ρ |=IY ϕ2Uϕ3 if ∃k.M ,ρ≥k |=IY ϕ3 and∀ j < k.M ,ρ≥ j |=IY ϕ2

For iCGMs the semantics are defined similarly, but for〈〈A〉〉ϕ to be true in states the coalitionA must
have a strategy to make sureϕ is satisfied in all plays starting in states that are indistinguishable froms
to one of the players inA. Now, for state formulas we define for all iCGMsM = (G ,π), all statess, all
propositionsp∈ Prop, all state formulasϕ1 andϕ2, all path formulasϕ3, all coalitionsA∈ Agt and all
Y ∈ {r,F1,F2, ...,F,R}

M ,s |=iY p if p∈ π(s)
M ,s |=iY ¬ϕ1 if M ,s 6|=iY ϕ1

M ,s |=iY ϕ1∨ϕ2 if M ,s |=iY ϕ1 or M ,s |=iY ϕ2

M ,s |=iY 〈〈A〉〉ϕ3 if there exist strategies(σA)a∈A ∈ ∏a∈AStratYa such that
for everya∈ A, everys′ ∼a sand everyρ ∈ OutG (s′,σA)
we haveM ,ρ |=iY ϕ3

For path formulas we define for all iCGMsM = (G ,π), all pathsρ , all propositionsp∈ Prop, all
state formulasϕ1, all path formulasϕ2 andϕ3, all coalitionsA∈ Agt and allY ∈ {r,F1,F2, ...,F,R}

M ,ρ |=iY ϕ1 if M ,ρ0 |=iY ϕ1

M ,ρ |=iY ¬ϕ2 if M ,ρ 6|=iY ϕ2

M ,ρ |=iY ϕ2∨ϕ3 if M ,ρ |=iY ϕ2 or M ,ρ |=iY ϕ3

M ,ρ |=iY Xϕ2 if M ,ρ≥1 |=iY ϕ2

M ,ρ |=iY ϕ2Uϕ3 if ∃k.M ,ρ≥k |=iY ϕ3 and∀ j < k.M ,ρ≥ j |=iY ϕ2

We will occasionally write|=L
XY to emphasize that the semantics is for the logicL, but omit it when

the logic is clear from the context as above.

5 Expressiveness

With the new types of semantics introduced we are interestedin when the new types of semantics are
different and when they are equivalent. For instance, in [12] it was noted that|=Ir and|=IR are equivalent
for ATL, but notATL∗. We do a similar comparison for the different kinds of semantics in order to
understand the capabilities of different amounts of memoryin different games. In addition, since there
is equivalence in some cases this gives us fewer different cases to solve when considering the model-
checking problem. We start by looking only at formulas of theform 〈〈A〉〉ϕ whereA⊆ Agt andϕ is an



200 Alternating-time temporal logic with finite-memory strategies

LTL formula. Denote the fragments ofATL andATL∗ restricted to this kind of formulas byATL0 and
ATL∗0 respectively. A nice property of these fragments is the following proposition, which tells us that to
have equivalence of semantics for two types of memory for eitherATLor ATL∗ it is sufficient to consider
the fragmentsATL0 andATL∗0 respectively.

Proposition 5. For X ∈ {i, I} and Y,Z ∈ {r,F1,F2, ...,F,R} we have

1. |=ATL
XY = |=ATL

XZ if and only if |=ATL0
XY = |=ATL0

XZ

2. |=ATL∗
XY = |=ATL∗

XZ if and only if |=
ATL∗0
XY = |=

ATL∗0
XZ

Proof. We treat both cases simultaneously and letL ∈ {ATL,ATL∗}. (⇒) The first direction is trivial,
since the set ofL0 formulas is included in the set ofL formulas.(⇐) For the second direction suppose
|=L0

XY = |=L0
XZ. Let M = (G ,π) be an (i)CGM over the set Prop of proposition symbols. Letϕ be an

arbitrary formula fromL that containsk strategy quantifiers. Letϕ =ϕ0 andπ = π0. We transformϕ0 and
π0 in k rounds, in each round 1≤ j ≤ k the innermost subformulaϕ ′ of ϕ j−1 with a strategy quantifier
as main connective is replaced by a new proposionp j 6∈ Prop to obtainϕ j . The labeling function is
extended such that for all statesswe have

π j(s) =

{

π j−1(s)∪{p j} if (G ,π j−1),s |=
L0
XY ϕ ′

π j−1(s) otherwise

Note that because of our initial assumption we have(G ,π j−1),s|=XY ϕ ′ if and only if (G ,π j−1),s|=XZ

ϕ ′ sinceϕ ′ is anL0 formula. Therefore, for eachj and all pathsρ we also have

(G ,π j−1),ρ |=XY ϕ j−1 if and only if (G ,π j),ρ |=XY ϕ j and

(G ,π j−1),ρ |=XZ ϕ j−1 if and only if (G ,π j),ρ |=XZ ϕ j

In particular,ϕk is anLTL formula and therefore for allρ we have(G ,πk),ρ |=XY ϕk if and only if
(G ,πk),ρ |=XZ ϕk. Together with the above we get for allρ that

(G ,π0),ρ |=XY ϕ0 iff (G ,π1),ρ |=XY ϕ1 iff ... iff (G ,πk),ρ |=XY ϕk iff

(G ,πk),ρ |=XZ ϕk iff ... iff (G ,π1),ρ |=XZ ϕ1 iff (G ,π0),ρ |=XZ ϕ0

Thus,|=L
XY = |=L

XZ sinceϕ andM was chosen arbitrarily.

The relations between different types of semantics presented in Figure 2 provide insights about the
need of memory for winning strategies in games with various amounts of information and types ofLTL
objectives that can be specified inATL0/ATL∗0. In addition, according to Proposition 5 the cases of
equivalence in Figure 2 are exactly the cases of equivalencefor the full ATL/ATL∗. We will use the rest
of this section to prove the results of this table.



Steen Vester 201

Logic Expressiveness

ATL0 w. complete info |=ATL0
Ir = |=ATL0

IF2
= |=ATL0

IF3
= ... = |=ATL0

IF = |=ATL0
IR

ATL0 w. incomplete info |=ATL0
ir ⊂ |=ATL0

iF2
⊂ |=ATL0

iF3
⊂ ... ⊂ |=ATL0

iF ⊂ |=ATL0
iR

ATL∗0 w. complete info |=
ATL∗0
Ir ⊂ |=

ATL∗0
IF2

⊂ |=
ATL∗0
IF3

⊂ ... ⊂ |=
ATL∗0
IF = |=

ATL∗0
IR

ATL∗0 w. incomplete info |=
ATL∗0
ir ⊂ |=

ATL∗0
iF2

⊂ |=
ATL∗0
iF3

⊂ ... ⊂ |=
ATL∗0
iF ⊂ |=

ATL∗0
iR

Figure 2: Relations between the different types of semantics

5.1 Complete information games

For complete information games, the question of whether a (memoryless/finite-memory/perfect recall)
winning strategy exists for a coalitionA can be reduced to the question of whether a (memoryless/finite-
memory/perfect recall) winning strategy exists for player1 in a two-player turn-based game. The idea is
to let player 1 control coalitionA and let player 2 control coalition Agt\A and give player 2 information
about the action of player 1 before he has to choose in each round of the game in order to make it turn-
based. SinceATL0 can only be used to express reachability (〈〈A〉〉ϕ1Uϕ2), safety (〈〈A〉〉Gϕ1) and 1-step
reachability (〈〈A〉〉Xϕ1) objectives where no memory is needed for winning strategies [9], it follows that
all types of semantics considered are equal inATL with complete information as noted in [12]. Since
ATL∗0 can only be used to expressLTL objectives, it follows that|=ATL∗

IF = |=ATL∗
IR since only finite

memory is needed for winning strategies in such games [11].

5.2 The bounded-memory hierarchy

The bounded-memory hierarchy is increasing forATL0/ATL∗0 because when a coalition has ak-memory
winning strategy, then it also has ak+1-memory winning strategy which can be obtained by adding a
disconnected memory-state to the DFST representing the strategy. ForATL∗0 with complete information
the hierarchy is strict. This can be seen since the familyϕk = 〈〈{1}〉〉Xkp of formulas fork ≥ 1 has the
property thatM ,s0 |=IFk ϕk andM ,s0 6|=IFk−1 ϕk for k ≥ 2 for the one-player CGMM illustrated in
Figure 3. Here player 1 wins if he choosesw (wait) the firstk−1 rounds and then choosesg (go) in the
kth round.

s0

p

s1 s2

g w,g
w g,w

Figure 3: CGMM

The reason that the propertyXkp cannot be forced by player 1 using a(k−1)-memory strategy is that
the DFST representing the strategy would have to output the action w in the firstk−1 rounds followed
by an output of the actiong when reading the same inputs0 in every round. This is not possible, because
after k− 1 rounds there must have been at least one repeated memory-state and from such a repeated
state, the DFST would keep repeating its behavior. Therefore, it will either outputw forever or output



202 Alternating-time temporal logic with finite-memory strategies

g before thekth round, making it unable to enforceXkp. ForATL0/ATL∗0 with incomplete information,
we can show the same result for the formulaψ = 〈〈{1}〉〉Fp for the familyMk of iCGMs illustrated in
Figure 4 wherek≥ 1. In this game all states excepts0 are in the same observation set for player 1. Here
we haveMk,s0 |=iFk ψ andMk,s0 6|=iFk−1 ψ .

s0 s1

...

sk−1 sk

slose pswin

...

w w w w

g g g
w g

g,w g,w

Figure 4: iCGMMk

Player 1 wins exactly if he choosesw for the firstk rounds and theng, which is not possible for a
(k−1)-memory strategy when it receives the same input symbol in every round after the initial round as
in the previous example.

The reason why the bounded-memory hierarchies are not increasing forATL/ATL∗ in general is the
possibility of using negation of strategically quantified formulas. For instance, given anATL0 formula
ϕ , an iCGMM and a states such thatM ,s |=iFk ϕ andM ,s 6|=iFk−1 ϕ for somek, then for theATL
formula¬ϕ we haveM ,s 6|=iFk ¬ϕ andM ,s |=iFk−1 ¬ϕ .

5.3 Infinite memory is needed

Finally, infinite memory is actually needed in some cases forATL0/ATL∗0 with incomplete information.
This is shown in a slightly different framework in [4] where an example of a game is given with initial
states0 such thatM ,s0 |=iR 〈〈{1,2}〉〉G¬p andM ,s0 6|=iF 〈〈{1,2}〉〉G¬p for a propositionp. We will
not repeat the example here, but in the undecidability proofin Section 6.3 an example of such a game
is given. This means that|=L

iF 6= |=L
iR for L ∈ {ATL0,ATL∗0}. We have|=L

iF ⊆ |=L
iR since all finite-

memory strategies are perfect recall strategies and therefore |=L
iF ⊂ |=L

iR which concludes the last result
of Figure 2.

6 Model-checking

In this section we look at the decidability and complexity ofmodel-checkingATL/ATL∗ with the new
semantics introduced and compare with the results for memoryless and perfect recall semantics. We
adopt the same way of measuring input size as in [2, 3, 12, 10] where the input is measured as the size of
the game structure and the size of the formula to be checked. In the case of bounded-memory semantics,
we also include in the input size the size of the memory-boundk encoded in unary. Our results can be
seen in Figure 5 along with known results for memoryless and perfect recall semantics.

As can be seen in the figure, we obtain the same complexity for bounded-memory semantics as for
memoryless semantics in all the cases which is positive, since we can solve many more games while



Steen Vester 203

ATL ATL∗

|=Ir PTIME [3] PSPACE[12]
|=IFk PTIME PSPACE
|=IF PTIME 2EXPTIME
|=IR PTIME [3] 2EXPTIME [3]

ATL ATL∗

|=ir ∆p
2 [12, 10] PSPACE[12]

|=iFk ∆p
2 PSPACE

|=iF Undecidable Undecidable
|=iR Undecidable [3, 8] Undecidable [3, 8]

Figure 5: Model-checking complexity forATL,ATL∗. All complexity results are completeness results.

staying in the same complexity class. We also obtain the samecomplexity for finite-memory semantics
as perfect recall semantics, including undecidability forincomplete information games, which is disap-
pointing. We will use the rest of the section to prove these results. In many cases this is done by using
known results and techniques and modifying them slightly aswell as using the results from Section 5.

6.1 Using expressiveness results

In section 5 it was shown that|=ATL
Ir = |=ATL

IF2
= |=ATL

IF3
= ... = |=ATL

IF which means that the model-
checking problem is the same for these cases. Since|=ATL

Ir is known to bePTIME-complete [3] the
result is the same for finite-memory semantics and bounded-memory semantics. It was also shown
that |=ATL∗

IF = |=ATL∗
IR . Since model-checkingATL∗IR is 2EXPTIME-complete [3] so is model-checking

ATL∗IF since it is the same problem.

6.2 Bounded-memory semantics

For model-checkingATLiFk,ATL∗IFk
andATL∗iFk

we employ some of the same ideas as in [12] for mem-
oryless semantics, but extend them to deal with bounded-memory strategies. We first consider model-
checkingATL∗0 formulas with iFk semantics. Model-checking anATL∗0 formula 〈〈A〉〉ϕ in an iCGM
M = (G ,π) with G = (States,Agt,Act,Mov,Tab,(∼ j)1≤ j≤n) and initial states0 can be done using non-
determinism as follows. First, assume without loss of generality that A = {1, ..., r} with r ≤ n. Use
non-determinism to guess ak-memory strategyσ = (σ j)1≤ j≤r for each of the players inA represented
by DFSTsA j = (M j ,mj0, [] j ,Act,Tj ,G j) for j ∈ A. Check that this strategy enforcesϕ by creating a
labelled and initialized transition systemT(s′0,σ) = (Q,R,L,q0) for all s′0 ∼ j s0 for some 1≤ j ≤ r in
which the set of paths corresponds to theσ -outcomes froms′0 in G . The setQ of states, the transition
relationR⊆ Q×Q, the labeling functionL : Q∈ 2Prop and the initial stateq0 are constructed as follows.

• Q= States×∏r
j=1M j

• ([s,(m1, ...,mr)], [s′,(m′
1, ...,m

′
r )]) ∈ R if and only if there existsar+1, ...,an ∈ Act so

– Tab(s,(G1(m1, [s]1), ...,Gr (mr , [s]r ),ar+1, ...,an)) = s′ and
– Tj(mj , [s] j) = m′

j for 1≤ j ≤ r

• L(s,(m1, ...,mr)) = π(s) for all (s,(m1, ...,mr)) ∈ Q



204 Alternating-time temporal logic with finite-memory strategies

• q0 = (s′0,(m10, ...,mr0))

Intuitively, each state in the transition system corresponds to a state of the game as well as pos-
sible combinations of memory values for players inA. It can then be shown thatρ = ρ0ρ1... is a
σ -outcome inG from ρ0 = s′0 if and only if there exists(m1 j , ...,mr j ) ∈ ∏r

j=1Mr for j ≥ 0 such that
ρ ′ = (ρ0,(m10, ...,mr0))(ρ1,(m11, ...,mr1))... is a path inT(s′0,σ). This means thatσ is a witness that
M ,s0 |=iFk 〈〈A〉〉ϕ if and only if T(s′0,σ),q0 |=CTL∗ Aϕ for all s′0 ∼ j s0 for some 1≤ j ≤ r. Note that
the size of the transition systems are polynomial in the sizeof the input because|Q|= kr , the numbern
of agents is fixed andr ≤ n. In addition, the transition systemsT(s1,σ) andT(s2,σ) are equal for any
s1,s2 ∈ States except for the initial state of the transition systems. Thus, we can use the same transition
system to do the check for the different initial states. We can perform this check of a strategyσ in
PSPACEsinceCTL∗ model-checking can be done inPSPACE[7]. Moreover, when〈〈A〉〉ϕ is anATL0

formula, the check can be done inPTIME sinceCTLmodel-checking can be done inPTIME [6]. Thus,
we can do model-checking ofATL0 andATL∗0 with iFk semantics inNPandPSPACErespectively.

We extend the above algorithm to fullATL andATL∗ by evaluating the strategically quantified sub-
formulas in a bottom up fashion, starting with the innermostformula and moving outwards resembling
the technique typically used inCTL∗ model-checking [7]. In both cases we need to make a linear amount
of calls to theATL0/ATL∗0 algorithm in the size of the formula to be checked. This givesus a∆p

2 = PNP

algorithm and aPSPACEalgorithm inATL andATL∗ respectively. SinceATL∗ with IFk semantics is
a special case, thePSPACEalgorithm also works here. ThePSPACE-hardness forATL∗iFk

andATL∗IFk

follows from PSPACE-hardness ofATL∗Ir [12] since this is a special case of the two. In the same way
∆p

2-hardness ofATLiFk follows from ∆p
2 hardness ofATLir [10].

6.3 Undecidability of finite-memory semantics

In [8] it was proven that model-checkingATL andATL∗ with iR semantics is undecidable, even for as
simple a formula as〈〈A〉〉G¬p for n ≥ 3 players. We provide a proof sketch for the same result foriF
semantics inspired by a technique from [4] which also illustrates that infinite memory is needed in some
games. The idea is to reduce the problem of whether a deterministic Turing machine with a semi-infinite
tape that never writes the blank symbol repeats some configuration twice when started with an empty
input tape, with the convention that the Turing machine willkeep looping in a halting configuration
forever if a halting state is reached. This problem is undecidable since the halting problem can be
reduced to it. From a given Turing machineT = (Q,q0,Σ,δ ,B,F) of this type whereQ is the set of
states,q0 is the initial state,Σ is the tape alphabet,δ : Q× (Σ∪{B}) → Q×Σ×{L,R} is the transition
function,B is the blank symbol andF is the set of accepting states, we generate a three-player concurrent
game modelMT = (GT ,πT) with a states0 such thatMT ,s0 |=iF 〈〈{1,2}〉〉G¬p if and only if T repeats
some configuration twice.

Consider the three-player gameMT in Figure 6. To make the figure more simple, we only write
the actions of player 1 and 2 along edges and let player 3 choose a successor state, given the choices of
player 1 and 2. If player 1 and 2 choose an action tuple that is not present on an edge from the current
state of the game, the play goes to a sink state wherep is true. In all other statesp is false. Both player
1 and 2 have three observation sets, which are denoted 0,· and I (though, they are not equal for the two
players). In the figure we writex | y in a state if the state is in observation setx for player 1 andy for
player 2. The play starts ins0 which is the only state in observation set 0 for both player 1 and 2. The
rules of the game are such that player 3 can choose when to let player 1 receive observation I. He can
also choose to either let player 2 receive observation I at the same time as player 1 or let him receive it



Steen Vester 205

in the immediately following state of the game. Both player 1and 2 can observe I at most once during
the game. It can be seen from the game graph that both player 1 and 2 must play actiona until they
receive observation I in order not to lose. We design the gameso they must play thevth configuration of
the Turing machineT when receiving observation I afterv rounds in a winning strategy for allv≥ 1. To
do this we let the tape alphabet and the set of control states of T be legal actions for player 1 and 2. By
playing a configuration, we mean playing the contents of the non-blank part of the tape ofT one symbol
at a time from left to right and playing the control state immediately before the content of the cell that
the tape head points to.

0 | 0

s0

I | I · | ·

· | ·

· | ·

I | I

I | · · | I
Player 1 and 2 must play configs
C1 andC2 such thatC1 ⊢T C2

M1

M2

M3

(a,a)

(a,a)

(q0,q0)
(∗,∗)

(∗,∗)(a,a)

(a,a)

(a,a)

(∗,∗)

(a,a)

Figure 6: iCGMMT

We designMT with three modulesM1,M2 andM3 as shown in Figure 6. They are designed with
the following properties

• M1 is designed such that when player 1 and 2 both observe I after the first round, then in a winning
strategy they must both play the initial configuration (i.e.q0) in order to maintain¬p. If they don’t,
then player 3 has a counter-strategy that takes the play toM1.

• M2 is designed such that when player 1 and 2 both observe I at the same time, then in a winning
strategy they must both play the same sequence of symbols after observing I (∗ stands for any
action and(∗,∗) means any action pair where the two actions are equal). If there is a numberr > 1
so they don’t comply with this when observing I after roundr, then player 3 has a counter-strategy
that takes the play toM2 after roundr.

• M3 is designed such that if player 1 observes I in the round before player 2 does, then in a winning
strategy they must player configurationsC1 andC2 respectively such thatC1 ⊢T C2 where⊢T is
the successor relation for configurations ofT. Due to space limitations, the specific design of this
module is omitted here.

Now, supposeT has a repeated configuration. Then player 1 and 2 have a winning strategyσ that
consists in both players playing thejth configuration of the run ofT when observing I after thejth
round. This strategy is winning because no matter if player 3chooses to go to moduleM1,M2,M3 or
none of them, then¬p will always hold given how they are designed when player 1 and2 play according



206 Alternating-time temporal logic with finite-memory strategies

to σ . Next, the sequence of configurations in the run ofT is of the formπ · τω whereπ andτ are finite
sequences of configurations sinceT has a repeated configuration. Then, player 1 and 2 only need finite
memory to play according toσ since they only need to remember a finite number of configurations and
how far on the periodic pathπ · τω the play is. Thus, they have a finite-memory winning strategy.

Suppose on the other hand thatT does not have a repeated configuration and assume for contradiction
that player 1 and 2 have ak-memory winning strategyσ for somek. Since player 1 and 2 cannot
see whether the play is inM1,M2 or M3 player 1 must, when playing according toσ , play the first
configurationD1 of the run ofT when observing I after the first round. Otherwise, player 3 has a counter-
strategy taking the play toM1 after the first round. Then, player 2 must play the second configuration
D2 of the run ofT when observing I after the second round. Otherwise, player 3has a counter-strategy
taking the play toM3 after the first round since player 1 must playD1 when observing I after the first
round and player 2 must play a successor configuration of whatplayer 1 plays. Next, when usingσ ,
player 1 must playD2 when observing I after the second round. Otherwise, player 3has a counter-
strategy that takes the play toM2 after the second round since player 2 playsD2 when observing I after
the second round. Repeating this argument, it can be seen that σ must consist of player 1 and 2 playing
the jth configuration of the run ofT when observing I after thejth round for all j ≥ 1. However, this is
not possible for ak-memory strategy when the run ofT does not have a repeated configuration. This is
because the current memory value of the DFST representing the strategy at the point when I is observed
determines which sequence of symbols the strategy will play(since it will receive the same input symbol
for the rest of the game). Thus, it is not capable of playing more thank different configurations. And
since for anyk a winning strategy must be able to play more thank different configurations there is a
contradiction and a finite-memory winning strategy therefore cannot exist.

In conclusionMT ,s0 |=iF 〈〈{1,2}〉〉G¬p if and only if T repeats some configuration twice, which
means that the model-checking problem is undecidable forATLandATL∗ with iF semantics. This game
also illustrates that infinite memory is needed in some games, since player 1 and 2 can win the game with
perfect recall strategies whenT does not have a repeated configuration. This is simply done byplaying
the sequence of configurations of the run ofT.

7 Concluding Remarks

We have motivated the extension of the alternating-time temporal logicsATL/ATL∗ with bounded-
memory and finite-memory semantics and have explored the expressiveness for both complete and
incomplete information games. Both finite-memory semantics and the infinite hierarchy of bounded-
memory semantics were shown to be different from memorylessand perfect recall semantics. We
have also obtained complexity and decidability results forthe model-checking problems that emerged
from the newly introduced semantics. In particular, the model-checking results for bounded-memory
semantics were positive with as low a complexity as for memoryless semantics forATL/ATL∗ and com-
plete/incomplete information games. Unfortunately model-checking with finite-memory semantics was
shown to be as hard as with perfect recall semantics in the cases considered, even though it was shown
to be a different problem.

References

[1] ThomasÅgotnes & Dirk Walther (2009):A Logic of Strategic Ability Under Bounded Memory. Journal of
Logic, Language and Information18(1), pp. 55–77, doi:10.1007/s10849-008-9075-4.

http://dx.doi.org/10.1007/s10849-008-9075-4


Steen Vester 207

[2] Rajeev Alur, Thomas A. Henzinger & Orna Kupferman (1997): Alternating-time Temporal Logic. In: FOCS,
pp. 100–109, doi:10.1109/SFCS.1997.646098.

[3] Rajeev Alur, Thomas A. Henzinger & Orna Kupferman (2002): Alternating-time temporal logic. J. ACM
49(5), pp. 672–713, doi:10.1145/585265.585270.

[4] Dietmar Berwanger & Lukasz Kaiser (2010):Information Tracking in Games on Graphs. Journal of Logic,
Language and Information19(4), pp. 395–412, doi:10.1007/s10849-009-9115-8.

[5] Thomas Brihaye, Arnaud Da Costa Lopes, François Laroussinie & Nicolas Markey (2009):ATL with Strategy
Contexts and Bounded Memory. In: LFCS, pp. 92–106, doi:10.1007/978-3-540-92687-0_7.

[6] Edmund M. Clarke & E. Allen Emerson (1981):Design and Synthesis of Synchronization Skeletons Using
Branching-Time Temporal Logic. In: Logic of Programs, pp. 52–71, doi:10.1007/BFb0025774.

[7] Edmund M. Clarke, E. Allen Emerson & A. Prasad Sistla (1986): Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic Specifications. ACM Trans. Program. Lang. Syst.8(2), pp. 244–
263. Available athttp://doi.acm.org/10.1145/5397.5399.

[8] Catalin Dima & Ferucio Laurentiu Tiplea (2011):Model-checking ATL under Imperfect Information and
Perfect Recall Semantics is Undecidable. CoRRabs/1102.4225. Available athttp://arxiv.org/abs/
1102.4225.

[9] E. Allen Emerson & Charanjit S. Jutla (1991):Tree Automata, Mu-Calculus and Determinacy (Extended
Abstract). In: FOCS, pp. 368–377, doi:10.1109/SFCS.1991.185392.

[10] Wojciech Jamroga & Jürgen Dix (2008):Model Checking Abilities of Agents: A Closer Look. Theory
Comput. Syst.42(3), pp. 366–410, doi:10.1007/s00224-007-9080-z.

[11] Amir Pnueli & Roni Rosner (1989):On the Synthesis of a Reactive Module. In: POPL, pp. 179–190, doi:10.
1145/75277.75293.

[12] Pierre-Yves Schobbens (2004):Alternating-time logic with imperfect recall. Electr. Notes Theor. Comput.
Sci.85(2), pp. 82–93, doi:10.1016/S1571-0661(05)82604-0.

http://dx.doi.org/10.1109/SFCS.1997.646098
http://dx.doi.org/10.1145/585265.585270
http://dx.doi.org/10.1007/s10849-009-9115-8
http://dx.doi.org/10.1007/978-3-540-92687-0_7
http://dx.doi.org/10.1007/BFb0025774
http://doi.acm.org/10.1145/5397.5399
http://arxiv.org/abs/1102.4225
http://arxiv.org/abs/1102.4225
http://dx.doi.org/10.1109/SFCS.1991.185392
http://dx.doi.org/10.1007/s00224-007-9080-z
http://dx.doi.org/10.1145/75277.75293
http://dx.doi.org/10.1145/75277.75293
http://dx.doi.org/10.1016/S1571-0661(05)82604-0

	1 Introduction
	2 Concurrent game structures
	3 Outcomes, histories and strategies
	4 ATL/ATL* with finite-memory and bounded-memory semantics
	5 Expressiveness
	5.1 Complete information games
	5.2 The bounded-memory hierarchy
	5.3 Infinite memory is needed

	6 Model-checking
	6.1 Using expressiveness results
	6.2 Bounded-memory semantics
	6.3 Undecidability of finite-memory semantics

	7 Concluding Remarks

