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Model-checking the alternating-time temporal log&EL and AT L* with incomplete information
is undecidable for perfect recall semantics. However, wiestricting to memoryless strategies the
model-checking problem becomes decidable. In this pap&onsider two other types of semantics
based on finite-memory strategies. One where the memonrgahiaeed is bounded and one where
the memory size is unbounded (but must be finite). This isvated by the high complexity of
model-checking with perfect recall semantics and the selimritations of memoryless strategies.
We show that both types of semantics introduced are diftdrem perfect recall and memoryless
semantics and next focus on the decidability and complefityjodel-checking in both complete
and incomplete information games fA L/ATL*. In particular, we show that the complexity of
model-checking with bounded-memory semanticagscomplete forAT L and PSPACEcomplete
for AT L* in incomplete information games just as in the memoryless.cilVe also present a proof
that AT L andAT L* model-checking is undecidable for> 3 players with finite-memory semantics
in incomplete information games.

1 Introduction

The alternating-time temporal logi@T L and ATL* have been studied with perfect recall semantics
and memoryless semantics in both complete and incomplé&eriation concurrent game structures
[2,13,[12]. The model-checking problems for these logicsehaplications in verification and synthesis
of computing systems in which different entities interddte complexity of model-checking with perfect
recall semantics, where players are allowed to use an mfamtount of memory, is very high in some
cases and even undecidable in the cas&Tdf [3, (8] with incomplete information. On the other hand,
model-checking with memoryless semantics, where playersiat allowed to use any memory about
the history of a game, is decidable and has a much lower coitp[@2]. The drawback is that there
are many games where winning strategies exist for sometiosalbut where no memoryless winning
strategies exist. In this paper, we focus on the tradeoffideth complexity and strategic ability with
respect to the memory available to the players. Insteadrdidering the extreme cases of memoryless
strategies and infinite memory strategies we look at finiegraory strategies as an intermediate case of
the two. The motivation is the possibility to solve more ganttgan with memoryless strategies, but
without the cost that comes with infinite memory.

We introduce two new types of semantics called bounded-mesamantics and finite-memory se-
mantics respectively. For bounded-memory semantics therdound on the amount of memory avail-
able to the players, whereas for finite-memory semantiggepdacan use any finite amount of memory.
We will study the expressiveness of these new types of secsacimpared to memoryless and perfect
recall semantics iAT LandAT L* with both complete and incomplete information. Afterwandsfocus
on the complexity and decidability of the model-checkinglppem for the different cases.
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Our approach have similarities with the work done’in [12],dBd [1]. It is a natural extension of the
framework used in [12] where memoryless semantics and @edeall semantics are considered.[In [5]
AT L/AT L* with bounded-memory semantics and strategy context isdatred for complete information
games, where bounded-memory strategies are defined afigeintithe same way as here. However,
their use of strategy context makes the problems and digasitonsidered different from ours. [d [1] a
version with bounded-recall is considered where agent®ohnremember the lash states of the play.
This contrasts our approach where the players can decidetavbre in the memory about the past.

2 Concurrent game structures

A concurrent game is played on a finite graph by a finite numbetayers, where the players interact
by moving a token between different states along the edgtseajraph. The game is played an infinite
number of rounds where each round is played by letting eviayep independently and concurrently
choose an action. The combination of actions chosen by #yerd along with the current state uniquely
determines the successor state of the game. More formally,

Definition 1. A concurrent game structure (CGS) with n players

¢ = (StatesAgt, Act,Mov, Tab)
consists of

e States- A finite non-empty set of states

Agt={1,...,n} - A finite non-empty set of players

Act - A finite non-empty set of actions

Mov : States< Agt — 22\ {0} - A function specifying the legal actions at a given state gifan
player

Tab : Statesc Act” — States A transition function defined for eadly, ...,a,) € Act” and state s
such that ae Mov(s, j) for 1< j <n

Unless otherwise noted, we implicitly assume from now orn tha players in a game are named
1,...,n wheren = |Agt|. Note that every player must have at least one legal acti@aah state. The
transition function Tab is defined for each state and allllagaes of actions in that state. We also refer
to such legal tuples of actions as moves. To add meaning tuoc@mt game structures we introduce the
concept of a concurrent game model which consists of a coemtugame structure as well as a label-
ing of the states in the structure with propositions from edixed, finite set Prop of proposition symbols.

Definition 2. A concurrent game model (CGM) is a p&i¢, 1) where¥ is a concurrent game structure
andt: States— & (Prop) is a labeling function.

An example of a CGM can be seen in Figlie 1, where the statelram as nodes. Transitions are
drawn as edges between nodes such that there is an edgsetiiehiabeled with the movéay, ..., a,) if
Talb(s, (ay,...,an)) =S. The states are labelled with propositions from the set Prép, g} in the figure.

We define an incomplete information concurrent game stracs a CGS where each playjehas
an equivalence relatiorj on the set of states. The intuitive meaning is that; s if player j cannot
distinguish between the stateands.



196 Alternating-time temporal logic with finite-memory strgies

@a)
(b.b)
(ab)
by (DI eo
So S

Figure 1. CGM.#

Definition 3. A concurrent game structure with incomplete informatiddGiS) with n players is a tuple

¢ = (StatesAgt, Act,Mov, Tah (~j)1<j<n)
where
e (StatesAgt,Act,Mov, Tab) is a CGS
e ~;C States« Stateds an equivalence relation forall < j <n
e If s~ s thenMov(s, j) = Mov(s, j) for all s, € Statesand all j € Agt

Note that we require the set of actions available to a play&wo indistinguishable states to be the
same. We extend the notion to concurrent game models withriptete information in the natural way.

Definition 4. A concurrent game model with incomplete information (iICG3#& pair (¢, 1) where¥
is an iCGS andt: States— 2P"Pis a labeling function.

For each playey, the relation~; induces a seit]; of equivalence classes of states. We denotgspy
the class that statebelongs to for playej. These classes are refered to as the observation sets ef play
j. Since the set of legal actions of playjes required to be the same in states from the same observation
set, we can define M@ls|;, j) = Mov(s, j) for all statess. Note that the concepts of iCGS and iCGM
generalize CGS and CGM respectively, since they are theadmases where-; is the identity relation
for all playersj.

3 Outcomes, histories and strategies

Let ¥4 = (StatesAgt, Act,Mov, Tab) be a CGS wit players. An outcome (or play) of a concurrent
game is an infinite sequence of states in the game structarediresponds to an infinite sequence of
legal moves. Formally, the set of outcomes &g} of ¢ from s € States is defined as

Outy (s) = {pop1... € State§’ | pp = sAVj > 0.3me Act".Tab(p;,m) = pj1}

Outy = UscstaeQUly (S) is the set of all outcomes ¢f. A history of a concurrent game is a non-
empty, finite prefix of an outcome. The set Hi&) of histories of¢ from s € States is defined as
Histy (S) = {pop1...ox € States | po = sA3p’ € Outy(s).VO < j < k.pj = pj}

Histy = UscstatedHiSty () is the set of all histories of. For a (finite or infinite) sequengeof states
we write pg for the first statep; for the (j + 1)th state.p<; is the prefixpgps...pj of p andps; is the
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suffix pjpj+1... of p. Whenp = pg...p is a finite sequence we denote the lengtipddy |p| = k and
write las(p) = px.

For a given CGS¢/ = (StatesAgt,Act,Mov, Tab) we define a strategy for playgras a mapping
o; : Histy — Act such that for alh € Histy we havegj(h) € Mov(last(h), j). Thus, a strategy for player
j maps any given history to an action that is legal for playar the final state of the history. We will
also refer to these strategies as perfect recall strategiafnite-memory strategies, since a player using
such a strategy can use the entire history of a play up to tbiside point to choose his next action.
A memoryless (positional, no recall) strategy for playes a strategyo; such that for alh,iY € Histy
with last(h) = last(h’) we haveo;(h) = oj(l). Itis called a memoryless strategy since the player is only
using the last state of the history to decide on his action.défete by Str&the set of perfect recall
strategies for playej and by Stragt the set of memoryless strategies for playeiVe write Ouk (s, 0)
for a strategyo = (0a)acagt for coalition A and a statsto denote the set of possible outcomes from state
swhen players in coalitio’ play according tao.

Next, we define finite-memory strategies in which a playeniy allowed to store a finite amount of
memory of the history of the game. He can then combine his mgmith the current state of the game
to choose an action. To model a strategy with finite memory seeaudeterministic finite-state transducer
(DFST). A DFST is a 6-tupléM,mp, 2, I, T,G) whereM is a finite, non-empty set of statesy is the
initial state,Z is the input alphabef; is the output alphabel, : M x ~Z — M is the transition function
andG: M x X — T is the output function. The set of states of the DFST are tlssiple values of the
internal memory of the strategy. We will also call these mgnstates. The initial state corresponds to
the initial memory value. The input symbols are the statab®iyame and the set of output symbols is
the set of actions of the game. In each round of the game thd Dé&kls a state of the game. Then it
updates its memory based on the current memory value andghbestate and performs an action based
on the current memory value and the input state. More fogmait say that a strategy; for playerj is
a finite-memory strategy if there exists a DFAE (M, my, StatesAct, T, G) such that for alh € Histy
we have

gj(h) = G(.7 (mo,h< | _1),last(h))

where .7 is defined recursively by (m,p) = T(m, pp) for any memory staten and any historyp
with |p| =0 and7 (m,p) = T(.7 (M, p<|p-1),last(p)) for any memory staten and any historyp with
|p| > 1. Intuitively .7 is the function that repeatedly applies the transition fiancT on a sequence of
inputs to calculate the memory state after a given histoy.cell .7 the repeated transition function. We
say thato; is ak-memory strategy if the number of states of the DFSK. ié/e also say that the strategy
oj is represented by the DFSA. We denote the set of finite-memory strategies for playey Straf

and the set ok-memory strategies for playgrby Straf*. Thus, Strdt = (-, Straf*. In addition, we
have that the memoryless strategies are exactly the fireteary strategies with one memory state, i.e.
Straf* = Straf.

Next, we generalize the notions of strategies to incompigtegmation games by defining them on
observation histories rather than on histories, sincegptagbserve sequences of observation sets during
the play rather than sequences of states. We define the $§tdﬂisbservation histories for playgrin
iICGS¥ as

Hist, = {[so]j[s1];---[¢]; | SoS1---S € Histy}

For each player, a given history induces a particular olagierv history which is observed by the
player. Then, strategies are defined as mappings from @ismTvhistories to actions, memoryless
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strategies are strategies where the same action is chosamyf@bservation history ending with the

same observation set and finite-memory strategies areseezl by DFSTs where the input symbols
are observation sets rather than states of the game. Notdéhdefinitions coincide for complete infor-

mation games.

4 ATL/ATL" with finite-memory and bounded-memory semantics

The alternating-time temporal logiéT L and AT L* generalize the computation tree logic§ L and
CTL* with the strategic operatafA)¢ which expresses that coalitioh has a strategy to ensure the
property ¢. For a fixed, finite set Agt of agents and finite set Prop of psdjmm symbols theAT L*
formulas are constructed from the following grammar

¢ =p|=d1| 1V 2| X1 | p1Ud2 | (A) 1

wherep € Prop,¢1, ¢, are AT L* formulas andA C Agt is a coalition of agents. The connectives—,
<, G andF are defined in the usual way. The universal path quan#fief computation tree logic can
be defined ag0)). AT Lis the subset oAT L* defined by the following grammar

¢ =p| @] 91V 2| (A)XP1| (A)Gh1| (A)($1Ug2)

wherep € Prop,¢1, ¢, are AT Lformulas andA C Agt is a coalition of agents.
We distinguish between state formulas and path formulashndre evaluated on states and paths of
a game respectively. The state formulas are defined as ®llow

e pis a state formula ip € Prop
o If ¢1 and¢, are state formulas, thenp, and¢, Vv ¢, are state formulas

o If ¢1is anATL* formula andA C Agt, then((A) ¢ is a state formula

All ATL* formulas are path formulas. Note that All L formulas are state formulas.

In [12] ATL andATL* are defined with different semantics based on (1) whethegainee is with
complete or incomplete information (2) whether perfecabestrategies or only memoryless strategies
are allowed. Heréandl are used to denote incomplete and complete informatiorectisply. r andR
are used to denote memoryless and perfect recall strateggipsctively. We extend this framework by
considering finite-memory semantics where only finite-mgnstrategies are allowed and denote this
by F. In addition we extend it with an infinite hierarchy of bouddmemory semantics, wheFg for
k > 1 denotes that onlg-memaory strategies are allowed. We denote the satisfatlations=yxy where
Xe{i,I}andY € {r,F,F,...,F,R}. We will also writeAT Lxy andAT L to denote the logics obtained
with the different types of semantics.

The semantics of formulas in alternating-time temporaldag given with respect to a fixed CGM
M = (¢, m) where the players that appear in the formulas must app&arimd the propositions present
in the formulas are in Prop. For state formulas we define fo€@Ms .# = (¢, m), all statess, all
propositionsp € Prop, all state formulag, and ¢,, all path formulasps, all coalitionsA € Agt and all
Y e {I’, Fi,F,...,F, R}
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M, SEY P if pe (s

M, Sy 1 if A,sy ¢1

M Sty 91V 2 i A Sty dror A SEY §2

A sk (A) g3 if there exist strategie€on)aca € [Taca Straf such that
Vp € Outy (s, 0n).. 4, p =iy §3

For path formulas we define for all CGM# = (¢, n), all pathsp, all propositionsp € Prop, all
state formulag4, all path formulasp, and ¢s, all coalitionsA € Agt and allY € {r,F,F,....F,R}

M P iy 91 if A ,p0 =1y 1

M P FEiy o2 if #,p iy ¢2

ML Py 92V O3 i A ,p =y p200 P iy 93

M P FEiy X2 if A ,p>1F~ 92

AP Ery 92U if KA, pok Eiy Pz andVj <K, p=j =y 92

For iCGMs the semantics are defined similarly, but{éy) ¢ to be true in statsthe coalitionA must
have a strategy to make supeis satisfied in all plays starting in states that are indigtishable frons
to one of the players iA. Now, for state formulas we define for all ICGM#& = (¥, m), all statess, all
propositionsp € Prop, all state formula$; and¢,, all path formulasps, all coalitionsA € Agt and all
Y e {I’, Fi,F,...,F, R}

M SEw P it pe (s

M S FEiy ~91 if ,s v ¢1

M Sy 01V @2 it M Sl pror A Sy 2

A, Sy (A) s  if there exist strategiefon)aca € [aca Stratl such that
for everya € A, everys ~, sand everyp € Outy (S, 0a)
we haves,p Fiv ¢3

For path formulas we define for all ICGM# = (¢, m), all pathsp, all propositionsp € Prop, all
state formulag4, all path formulasp, and ¢s, all coalitionsA € Agt and allY € {r,F,F,....F,R}

M ,P Fiy P1 if A, p0 Fiv ¢1

M P Eiy 2 if #,p iy ¢2

AP Eiy 92V 3 i A, p Fiy d20r A ,p Fiv ¢3

AP Eiy X2 if A,p>1 i 92

M,P iy 92U if Ik, pok iy ¢z andVj <k.Z,psj iy §2

We will occasionally write=Y., to emphasize that the semantics is for the ldgibut omit it when
the logic is clear from the context as above.

5 EXxpressiveness

With the new types of semantics introduced we are interdstechen the new types of semantics are
different and when they are equivalent. For instance, ififMas noted thal=,; and}=r are equivalent
for ATL, but notATL*. We do a similar comparison for the different kinds of sertanin order to
understand the capabilities of different amounts of menmoifferent games. In addition, since there
is equivalence in some cases this gives us fewer differesgscto solve when considering the model-
checking problem. We start by looking only at formulas of tben (A)¢ whereA C Agt and ¢ is an
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LTL formula. Denote the fragments &T L and AT L* restricted to this kind of formulas b&T Ly and
AT L respectively. A nice property of these fragments is thefaihg proposition, which tells us that to
have equivalence of semantics for two types of memory ftieeAT Lor AT L* it is sufficient to consider
the fragmentAT Ly andAT L respectively.

Proposition 5. For X € {i,I} and Y,Z € {r,F,F,,...,F,R} we have

1. AT = 4T ifand only if AT = (AT
2. =RV = E=R5E ifand only if FQLLO = Q;LO

Proof. We treat both cases simultaneously and.let {AT L, ATL*}. (=) The first direction is trivial,
since the set ofg formulas is included in the set afformulas. (<) For the second direction suppose
)L& = >L<°Z. Let.# = (¢, m) be an ())\CGM over the set Prop of proposition symbols. gdie an
arbitrary formula froni that containk strategy quantifiers. L&t = ¢ andr= rp. We transformpg and
o in k rounds, in each round 4 j < k the innermost subformul@’ of ¢;_1 with a strategy quantifier
as main connective is replaced by a new propogipt Prop to obtaing;. The labeling function is

extended such that for all statew/e have

o [ meaeu{p}t i (4, ),s 5 ¢
nj(s)_{ - 7-1(9) otherwise

Note that because of our initial assumption we h@fer;_1),s|=xy ¢’ ifand only if (¢, 11_1),S|=xz
¢’ since@’ is anLq formula. Therefore, for eachand all pathg we also have

(9,m_1),p E=xy ¢j—1ifand only if (¢, 1), p =xv ¢; and
(9,1_1),p Exz ¢j-1 if and only if (¢,15), p =xz 9

In particular, ¢y is anLT L formula and therefore for app we have(¥4, 1i), p [=xy @k if and only if
(9,1%), p Exz ¢k- Together with the above we get for alithat

(9.10),p Fxy o iff (4,m),plxy @1 iff .. iff (9,7%),pFxy ¢ Iiff

(9. 1%),p=xz ¢ iff .. iff (9,m),pExz¢1 iff (9,m),0 Fxz do

Thus,E=%, = %2 sinceg and.# was chosen arbitrarily.
O

The relations between different types of semantics predentFigurd 2 provide insights about the
need of memory for winning strategies in games with variousuants of information and types aff L
objectives that can be specified AT Lo/AT L. In addition, according to Propositién 5 the cases of
equivalence in Figurlel 2 are exactly the cases of equivalfemdbe full AT L/AT L*. We will use the rest
of this section to prove the results of this table.
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Logic Expressiveness
ATLow. completeinfo | =™ = EE*° = EHE° = .. = Ef° = ER°
ATLow. incomplete info| =™ < g ¢ ER® C c &P c QR
AT L w. complete info ﬁTLé C FfFTZL‘*J C HAFTSL‘*’ C C fFTLé = =N s
AT L w. incomplete info _ﬁTLa C Hg% C Hg% C C _iAFTLa C QTLS

Figure 2: Relations between the different types of semantic

5.1 Complete information games

For complete information games, the question of whetherar(anyless/finite-memory/perfect recall)
winning strategy exists for a coalitiohcan be reduced to the question of whether a (memorylessffinit
memory/perfect recall) winning strategy exists for playén a two-player turn-based game. The idea is
to let player 1 control coalitiod and let player 2 control coalition A§tA and give player 2 information
about the action of player 1 before he has to choose in eactd rofuthe game in order to make it turn-
based. Sincé&T Ly can only be used to express reachabilithf ¢1U¢,), safety ((A)G¢;) and 1-step
reachability ((A))X¢1) objectives where no memory is needed for winning stragef@g it follows that

all types of semantics considered are equahTi. with complete information as noted in]12]. Since
AT L} can only be used to expre&d L objectives, it follows that=ff'* = =" since only finite
memory is needed for winning strategies in such games [11].

5.2 The bounded-memory hierarchy

The bounded-memory hierarchy is increasingAdiy /AT L because when a coalition ha&-enemory
winning strategy, then it also haska- 1-memory winning strategy which can be obtained by adding a
disconnected memory-state to the DFST representing gyt FOIAT Ly with complete information
the hierarchy is strict. This can be seen since the fagily= ({1} )X*p of formulas fork > 1 has the
property that#,s =iF, ¢k and .#, s [~Air, , ¢k for k> 2 for the one-player CGM# illustrated in
Figure[3. Here player 1 wins if he choosggwait) the firstk — 1 rounds and then choosgggo) in the

kth round.
Or o=
w p g>W
=@ s g
$1 S

So

Figure 3: CGM.#

The reason that the propeif p cannot be forced by player 1 usingka— 1)-memory strategy is that
the DFST representing the strategy would have to outputdtieraw in the firstk — 1 rounds followed
by an output of the actiog when reading the same inp&tin every round. This is not possible, because
after k — 1 rounds there must have been at least one repeated meratryastl from such a repeated
state, the DFST would keep repeating its behavior. Thezefowill either outputw forever or output
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g before thekth round, making it unable to enforé€p. For AT Lo/AT L§ with incomplete information,
we can show the same result for the formyla= ({1}))Fp for the family .y of iICGMs illustrated in
Figure[4 wherék > 1. In this game all states excegtare in the same observation set for player 1. Here

we have #k, o =i, Y and. i, % e, Y-

Figure 4: iCGM.#

Player 1 wins exactly if he choosesfor the firstk rounds and theig, which is not possible for a
(k—1)-memory strategy when it receives the same input symbolényawund after the initial round as
in the previous example.

The reason why the bounded-memory hierarchies are notisiage forAT L/AT L* in general is the
possibility of using negation of strategically quantifiedrhulas. For instance, given &T Lo formula
¢, an iCGM.# and a states such that#,s |=ir, ¢ and.Z,s (i, ¢ for somek, then for theATL
formula—¢ we have7Z s &g, ¢ and.Z,s =g, —9.

5.3 Infinite memory is needed

Finally, infinite memory is actually needed in some case\oky /AT L with incomplete information.
This is shown in a slightly different framework inl[4] whera axample of a game is given with initial
statesy such that#, s Fir ({1,2})G-p and.#,s ~ir ({1,2}))G—p for a propositionp. We will

not repeat the example here, but in the undecidability pim&ection 6.8 an example of such a game
is given. This means thaty # =k for L € {ATLo, ATLy}. We have=k C =k since all finite-
memory strategies are perfect recall strategies and tveref= < [, which concludes the last result
of Figurel2.

6 Model-checking

In this section we look at the decidability and complexityneddel-checkingAT L/AT L* with the new
semantics introduced and compare with the results for mgess and perfect recall semantics. We
adopt the same way of measuring input size aslinl[2,13, 12, h@fevthe input is measured as the size of
the game structure and the size of the formula to be checkdtielcase of bounded-memory semantics,
we also include in the input size the size of the memory-bduadcoded in unary. Our results can be
seen in Figuré]5 along with known results for memoryless attept recall semantics.

As can be seen in the figure, we obtain the same complexitydandled-memory semantics as for
memoryless semantics in all the cases which is positiveesive can solve many more games while
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ATL ATL*

= [ PTIME[3] PSPACH1Z]

=R || PTIME PSPACE

=i || PTIME 2EXPTIME

Er || PTIME[3] 2EXPTIME[3]
ATL ATL*

Eir | A5 [12,[10] PSPACH12]

iR, || A PSPACE

Eir Undecidable Undecidable

Eir | Undecidablel[3,18] Undecidable([3, 8]

Figure 5: Model-checking complexity f&T L, AT L*. All complexity results are completeness results.

staying in the same complexity class. We also obtain the samglexity for finite-memory semantics
as perfect recall semantics, including undecidabilityifmomplete information games, which is disap-
pointing. We will use the rest of the section to prove theselts. In many cases this is done by using
known results and techniques and modifying them slightiwels as using the results from Sectioh 5.

6.1 Using expressiveness results

In sectior{® it was shown thati™- = I = =t = = 't which means that the model-
checking problem is the same for these cases. S]#ﬁ% is known to bePTIME-complete [[3] the

result is the same for finite-memory semantics and boundamery semantics. It was also shown
that =Y = [=/dL. Since model-checkingT Lj; is 2EXPT IME-complete([3] so is model-checking

AT Lj since it is the same problem.

6.2 Bounded-memory semantics

For model-checkind\T Lig,, AT i, andAT L, we employ some of the same ideas as in [12] for mem-
oryless semantics, but extend them to deal with boundedenestrategies. We first consider model-
checking AT L formulas withiF, semantics. Model-checking ahT L formula (A)¢ in an iCGM

A = (¢, n) with ¢ = (StatesAgt, Act, Mov, Tah (~j)1<j<n) and initial states; can be done using non-
determinism as follows. First, assume without loss of galitgrthat A= {1,....r} with r <n. Use
non-determinism to guesskamemory strategy = (0j)1<j<r for each of the players iA represented
by DFSTs«; = (Mj, mjo, Hj,ACt,Tj,Gj) for j € A. Check that this strategy enforcesby creating a
labelled and initialized transition systef(s,, o) = (Q,R,L,qp) for all g~ s for some 1< j <r in
which the set of paths corresponds to th@utcomes frong, in ¢. The setQ of states, the transition
relationR C Q x Q, the labeling functiori. : Q € 2P and the initial statejp are constructed as follows.

e Q= States< [j_; M;
o ([s,(my,....m)],[s, (M, ...,m)]) € Rif and only if there exist®y 1, ...,a, € Act so

- Tab(s (Gl(mlﬂ[s] ) Gl’(m [ ]l')7af+17"'7an)) = s and
= Tj(mj,[gj) =mjfor1<j<r

o L(s (my,...,m))=rs) forall (s,(my,...,m)) €Q



204 Alternating-time temporal logic with finite-memory strgies

* Qo = (Sp; (Mo, -, Mr0))

Intuitively, each state in the transition system corresigoto a state of the game as well as pos-
sible combinations of memory values for playersAn It can then be shown thad = pgp;... is a
o-outcome inZ from py = g, if and only if there exist{my;,....myj) € |‘|5:1 M, for j > 0 such that
P’ = (po, (Mo, -..,Mo))(P1, (M1, ...,M1))... is a path inT(s,,0). This means thatr is a witness that
M, F=ir, (A)@ if and only if T(sy,0),00 =cTr A@ for all y ~j sp for some 1< j <r. Note that
the size of the transition systems are polynomial in the sfzbe input becausf)| = k', the numben
of agents is fixed and < n. In addition, the transition systeniqs;,0) andT (s, 0) are equal for any
s1,S € States except for the initial state of the transition systeihus, we can use the same transition
system to do the check for the different initial states. We parform this check of a strategy in
PSPACEsinceCT L* model-checking can be done RSPACE[7]. Moreover, when(A)¢ is anAT Ly
formula, the check can be doneRT IME sinceCT L model-checking can be doneRT IME [6]. Thus,
we can do model-checking &T Lo andAT L with iF, semantics ilNP andPSPACErespectively.

We extend the above algorithm to flliT L and AT L* by evaluating the strategically quantified sub-
formulas in a bottom up fashion, starting with the innernfostnula and moving outwards resembling
the technique typically used @T L* model-checking [7]. In both cases we need to make a lineauamo
of calls to theAT Lo/AT L algorithm in the size of the formula to be checked. This giveaA) = PNP
algorithm and @SPACEalgorithm inATL and AT L* respectively. Sinc&T L* with IF, semantics is
a special case, theSPACEalgorithm also works here. THeSPACEhardness foAT L, and AT L,
follows from PSPACEhardness oAT Ly, [12] since this is a special case of the two. In the same way
AS-hardness oAT Lig, follows from A hardness oAT L, [10].

6.3 Undecidability of finite-memory semantics

In [8] it was proven that model-checkingT L and AT L* with iR semantics is undecidable, even for as
simple a formula agA)G—p for n > 3 players. We provide a proof sketch for the same resuliFor
semantics inspired by a technique from [4] which also ittaists that infinite memory is needed in some
games. The idea is to reduce the problem of whether a detistimifiuring machine with a semi-infinite
tape that never writes the blank symbol repeats some coafigartwice when started with an empty
input tape, with the convention that the Turing machine wékp looping in a halting configuration
forever if a halting state is reached. This problem is urdigde since the halting problem can be
reduced to it. From a given Turing machiiie= (Q,do,Z,d,B,F) of this type whereQ is the set of
statesfp is the initial stateX is the tape alphabed : Q x (XU {B}) — Q x Z x {L,R} is the transition
function, B is the blank symbol anH is the set of accepting states, we generate a three-plageucent
game modelZt = (%, i) with a statesy such that#7,s |=ie ({1,2}))G—pif and only if T repeats
some configuration twice.

Consider the three-player gam#&s in Figure[6. To make the figure more simple, we only write
the actions of player 1 and 2 along edges and let player 3 efmasiccessor state, given the choices of
player 1 and 2. If player 1 and 2 choose an action tuple thattipresent on an edge from the current
state of the game, the play goes to a sink state whésdrue. In all other statep is false. Both player
1 and 2 have three observation sets, which are denotean@, | (though, they are not equal for the two
players). In the figure we write | y in a state if the state is in observation gdor player 1 andy for
player 2. The play starts is which is the only state in observation set 0 for both playend 2. The
rules of the game are such that player 3 can choose when ttaletrfl receive observation |. He can
also choose to either let player 2 receive observation leaséfime time as player 1 or let him receive it
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in the immediately following state of the game. Both playeantl 2 can observe | at most once during
the game. It can be seen from the game graph that both played 2 aust play actiom until they
receive observation | in order not to lose. We design the geothey must play theth configuration of
the Turing machind when receiving observation | afterounds in a winning strategy for all> 1. To

do this we let the tape alphabet and the set of control stdt€sbe legal actions for player 1 and 2. By
playing a configuration, we mean playing the contents of threllank part of the tape af one symbol

at a time from left to right and playing the control state indiag¢ely before the content of the cell that
the tape head points to.

77777777777777777777777777

f“\ Player 1 and 2 must play configs
NG C; andC, such thaC; 1 C,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 6: iCGM.#+

We design#+ with three modules#1,.#, and.#3 as shown in Figurel6. They are designed with
the following properties

e /1 is designed such that when player 1 and 2 both observe | bédirst round, then in a winning
strategy they must both play the initial configuration (gg).in order to maintain-p. If they don't,
then player 3 has a counter-strategy that takes the plagito

e /> is designed such that when player 1 and 2 both observe | aathe 8me, then in a winning
strategy they must both play the same sequence of symbelsdfserving | £ stands for any
action andx, ) means any action pair where the two actions are equal). i ke number > 1
so they don’t comply with this when observing | after rounthen player 3 has a counter-strategy
that takes the play to#, after roundr.

e /3 is designed such that if player 1 observes | in the round bedtatyer 2 does, then in a winning
strategy they must player configuratios andC, respectively such th&; Fr C, wheret is
the successor relation for configurationsTofDue to space limitations, the specific design of this
module is omitted here.

Now, supposél has a repeated configuration. Then player 1 and 2 have a wishiategyo that
consists in both players playing théh configuration of the run o when observing | after théth
round. This strategy is winning because no matter if playeh@ses to go to module?s, .#5, /3 or
none of them, themp will always hold given how they are designed when player 12pthy according
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to . Next, the sequence of configurations in the rud a$ of the formm- 7 whererrandT are finite
sequences of configurations sintdias a repeated configuration. Then, player 1 and 2 only neiéel fin
memory to play according to since they only need to remember a finite number of configuratand
how far on the periodic patit- T the play is. Thus, they have a finite-memory winning strategy

Suppose on the other hand tiatioes not have a repeated configuration and assume for ciotitrad
that player 1 and 2 have lamemory winning strategy for somek. Since player 1 and 2 cannot
see whether the play is in71,.#> or .43 player 1 must, when playing according dq play the first
configurationD of the run ofT when observing | after the first round. Otherwise, playerSdeounter-
strategy taking the play to7; after the first round. Then, player 2 must play the second gorgtion
D, of the run of T when observing | after the second round. Otherwise, playes3a counter-strategy
taking the play ta#3 after the first round since player 1 must play when observing | after the first
round and player 2 must play a successor configuration of plager 1 plays. Next, when using,
player 1 must playD, when observing | after the second round. Otherwise, playleas3a counter-
strategy that takes the play 145 after the second round since player 2 pl®gswhen observing | after
the second round. Repeating this argument, it can be seea thast consist of player 1 and 2 playing
the jth configuration of the run of when observing | after th@gh round for allj > 1. However, this is
not possible for &-memory strategy when the run dfdoes not have a repeated configuration. This is
because the current memory value of the DFST representinstthtegy at the point when | is observed
determines which sequence of symbols the strategy will (deage it will receive the same input symbol
for the rest of the game). Thus, it is not capable of playingertbank different configurations. And
since for anyk a winning strategy must be able to play more tladifferent configurations there is a
contradiction and a finite-memory winning strategy themefannot exist.

In conclusion.Z7,% =i ({1,2}))G—p if and only if T repeats some configuration twice, which
means that the model-checking problem is undecidablATdrandAT L* with iF semantics. This game
also illustrates that infinite memory is needed in some gasiese player 1 and 2 can win the game with
perfect recall strategies whdndoes not have a repeated configuration. This is simply donsdyng
the sequence of configurations of the runrof

7 Concluding Remarks

We have motivated the extension of the alternating-timeptaad logics AT L/ATL* with bounded-
memory and finite-memory semantics and have explored theessigeness for both complete and
incomplete information games. Both finite-memory semanéind the infinite hierarchy of bounded-
memory semantics were shown to be different from memorydass perfect recall semantics. We
have also obtained complexity and decidability resultstli@ model-checking problems that emerged
from the newly introduced semantics. In particular, the elaghecking results for bounded-memory
semantics were positive with as low a complexity as for mefiess semantics fokT L/AT L* and com-
plete/incomplete information games. Unfortunately meaxedcking with finite-memory semantics was
shown to be as hard as with perfect recall semantics in thesamsidered, even though it was shown
to be a different problem.
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