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In 2006, Varacca and Völzer proved that on finite graphs,ω-regular large sets coincide withω-
regular sets of probability 1, by using the existence of positional strategies in the related Banach-
Mazur games. Motivated by this result, we try to understand relations between sets of probability 1
and various notions of simple strategies (including those introduced in a recent paper of Grädel and
Leßenich). Then, we introduce a generalisation of the classical Banach-Mazur game and in particular,
a probabilistic version whose goal is to characterise sets of probability 1 (as classical Banach-Mazur
games characterise large sets). We obtain a determinacy result for these games, when the winning set
is a countable intersection of open sets.

1 Introduction

Systems (automatically) controlled by computer programs abound in our everyday life. Clearly enough,
it is of a capital importance to know whether the programs governing these systems arecorrect. Over the
last thirty years, formal methods for verifying computerised systems have been developed for validating
the adequation of the systems against their requirements. Model checking is one such approach: it
consists first in modelling the system under study (for instance by an automaton), and then in applying
algorithms for comparing the behaviours of that model against a specification (modelled for instance
by a logical formula). Model checking has now reached maturity, through the development of efficient
symbolic techniques, state-of-the-art tool support, and numerous successful applications to various areas.

As argued in [9]:‘Sometimes, a model of a concurrent or reactive system does not satisfy a desired
linear-time temporal specification but the runs violating the specification seem to be artificial and rare’.
As a naive example of this phenomenon, consider a coin flippedan infinite number of times. Classical
verification will assure that the property stating“one day, we will observe at least one head”is false,
since there exists a unique execution of the system violating the property. In some situations, for instance
when modeling non-critical systems, one could prefer to know whether the system isfairly correct.
Roughly speaking, a system is fairly correct against a property if the set of executions of the system
violating the property is“very small” ; or equivalently if the set of executions of the system satisfying the
property is“very big” . A first natural notion of fairly correct system is related toprobability: almost-sure
correctness. A system is almost-surely correct against a property if theset of executions of the system
satisfying the property has probability 1. Another interesting notion of fairly correct system is related to
topology: large correctness. A system is largely correct against a property if the set of executions of the
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system satisfying the property islarge (in the topological sense). There exists a lovely characterisation
of large setsby means of theBanach-Mazur games. In [8], it has been shown that a setW is large if and
only if a player has a winning strategy in the related Banach-Mazur game.

Although, the two notions offairly correct systemsdo not coincide in general, in [9], the authors
proved (amongst other results) the following result: when consideringω-regular properties on finite
systems, thealmost-sure correctnessand thelarge correctnesscoincide, for bounded Borel measures.
Motivated by this very nice result, we intend to extend it to alarger class of specifications. The key
ingredient to prove the previously mentioned result of [9] is that when consideringω-regular properties,
positionalstrategies are sufficient in order to win the related Banach-Mazur game [1]. For this reason,
we investigatesimple strategiesin Banach-Mazur games, inspired by the recent work [4] whereinfinite
graphs are studied.

Our contributions. In this paper, we first compare various notions of simple strategies on finite
graphs (includingboundedandmove-countingstrategies), and their relations with the sets of probabil-
ity 1. Given a setW, the existence of a bounded (resp. move-counting) winning strategy in the related
Banach-Mazur game implies thatW is a set of probability 1. However there exist setsW of probabil-
ity 1 for which there is no bounded and no move-counting winning strategy in the related Banach-Mazur
game. Therefore, we introduce a generalisation of the classical Banach-Mazur game and in particular, a
probabilistic version whose goal is to characterise sets ofprobability 1 (as classical Banach-Mazur games
characterise large sets). We obtain the desired characterisation in the case of countable intersections of
open sets. This is the main contribution of the paper. As a byproduct of the latter, we get a determinacy
result for our probabilistic version of the Banach-Mazur game for countable intersections of open sets.

2 Banach-Mazur Games on finite graphs

Let (X,T ) be a topological space. A notion of topological “bigness” isgiven by large sets. A subset
W ⊂ X is said to benowhere denseif the closure ofW has empty interior. A subsetW ⊂ X is said to be
meagreif it can be expressed as the union of countably many nowhere dense sets and a subsetW ⊂ X is
said to be large ifWc is meagre. In particular, we remark that a countable intersection of large sets is still
large and that ifW ⊂ X is large, then any setY ⊃W is large.

If G = (V,E) is a finite directed graph andv0 ∈ V, then the space of infinite paths inG from v0,
denoted Paths(G,v0), can be endowed with the complete metric

d((σn)n≥0,(ρn)n≥0) = 2−k where k= min{n≥ 0 : σn 6= ρn} (2.1)

with the conventions that min /0= ∞ and 2−∞ = 0. In other words, the open sets in Paths(G,v0) en-
dowed with this metric are the countable unions of cylinders, where a cylinder is a set of the form
{ρ ∈ Paths(G,v0) | π is a prefix ofρ} for some finite pathπ in G from v0.

We can therefore study the large subsets of the metric space(Paths(G,v0),d). Banach-Mazur games
allow us to characterise large subsets of this metric space through the existence of winning strategies.

Definition 2.1. A Banach-Mazur gameG on a finite graph is a triplet(G,v0,W) whereG= (V,E) is a
finite directed graph where every vertex has a successor,v0 ∈V is the initial state,W is a subset of the
infinite paths inG starting inv0.

A Banach-Mazur gameG = (G,v0,W) on a finite graph is a two-player game where Pl. 0 and Pl. 1
alternate in choosing a finite path as follows: Pl. 1 begins with choosing a finite1 pathπ1 starting inv0;

1In this paper, we always assume that a finite path is non-empty.
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Pl. 0 then prolongsπ1 by choosing another finite pathπ2 and so on. A play ofG is thus an infinite path
in G and we say that Pl. 0 wins if this path belongs toW, while Pl. 1 wins if this path does not belong to
W. The setW is called the winning condition. It is important to remark that, in general, in the literature,
Pl. 0 moves first in Banach-Mazur games but in this paper, we always assume that Pl. 1 moves first in
order to bring out the notion of large set (rather than meagreset). The main result about Banach-Mazur
games can then be stated as follows:

Theorem 2.2([8]). LetG = (G,v0,W) be a Banach-Mazur game on a finite graph. Pl. 0 has a winning
strategy forG if and only if W is large.

3 Simple strategies in Banach-Mazur games

In a Banach-Mazur game(G,v0,W) on a finite graph, a strategy for Pl. 0 is given by a functionf defined
on FinPaths(G,v0), the set of finite paths ofG starting fromv0, such that for anyπ ∈ FinPaths(G,v0), we
have f (π) ∈ FinPaths(G, last(π)). However, we can imagine some restrictions on the strategies of Pl. 0:

1. A strategy f is said to bepositional if it only depends on the current vertex, i.ef is a function
defined onV such that for anyv∈V, f (v) ∈ FinPaths(G,v) and a playρ is consistent withf if ρ
is of the form(πi f (last(πi))i≥1.

2. A strategyf is said to befinite-memoryif it only depends on the current vertex and a finite memory
(see [3] for the precise definition of a finite-memory strategy).

3. A strategyf is said to beb-boundedif for any π ∈ FinPaths(G,v0), f (π) has length less thanb
and a strategy is said to beboundedif there isb≥ 1 such thatf is b-bounded.

4. A strategyf is said to bemove-countingif it only depends on the current vertex and the number
of moves already played, i.e.f is a function defined onV ×N such that for anyv∈V, anyn∈ N,
f (v,n) ∈ FinPaths(G,v) and a playρ is consistent withf if ρ is of the form(πi f (last(πi), i))i≥1.

5. A strategyf is said to belength-countingif it only depends on the current vertex and the length of
the prefix already played, i.e.f is a function defined onV ×N such that for anyv∈V, anyn∈N,
f (v,n) ∈ FinPaths(G,v) and a playρ is consistent withf if after a prefixπ, the move of Pl. 0 is
given by f (last(π), |π|).

The notions of positional and finite memory strategies are classical, bounded strategies are present
in [9], move-counting and length-counting strategies havebeen introduced in [4]. We first remark that,
by definition, the existence of a positional winning strategy implies the existence of finite-memory/move-
counting/length-counting winning strategies. Moreover,sinceG is a finite graph, a positional strategy is
always bounded. In [3], it is proved that the existence of a finite-memory winning strategy implies the
existence of a positional winning strategy.

Proposition 3.1([3]). LetG = (G,v0,W) be a Banach-Mazur game. Pl. 0 has a finite-memory winning
strategy if and only if Pl. 0 has a positional winning strategy.

Using the ideas of the proof of the above proposition, we can also show that the existence of a
winning strategy implies the existence of a length-counting winning strategy.

Proposition 3.2. Let G = (G,v0,W) be a Banach-Mazur game on a finite graph. Pl. 0 has a length-
counting winning strategy if and only if Pl. 0 has a winning strategy.
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Proof. Let f be a winning strategy for Pl. 0. SinceG is a finite graph, for anyn≥ 0 and anyv∈V, we can
consider an enumerationπ1, . . . ,πm of finite paths in FinPaths(G,v0) of lengthn such that last(πi) = v.
We then let

h(v,n) = f
(

π1
)

f
(

π2 f (π1)
)

f
(

π3 f (π1) f (π2 f (π1))
)

. . . f
(

πm f (π1) f (π2 f (π1)) · · ·
)

.

If ρ is a play consistent withh, thenρ is a play where the strategyf is applied infinitely often. Thus such
a playρ can be seen as a playσ1τ1σ2τ2 · · · where theτi ’s (resp. theσi ’s) are the moves of Pl. 0 (resp.
Pl. 1.) and wheref (σ1τ1 · · ·σi) = τi . Each play consistent withh can thus be seen as a play consistent
with f , and we deduce that the strategyh is a length-counting winning strategy.

On the other side, the notions of move-counting winning strategies and bounded winning strategies
are incomparable.

Example 3.3(Set with a move-counting winning strategy and without a bounded winning strategy).
We consider the complete graphG0,1 on{0,1}. LetW be the set of any sequences(σn)n≥1 in {0,1}ω with
σ1 = 0 such that(σn)n≥1 contains a finite sequence of 1 strictly longer than the initial finite sequence
of 0. In other words,(σn)n≥1 ∈ W if σ1 = 0 and if there existj ≥ 1 andk ≥ 1 such thatσ j = 1 and
σk+1 = · · · = σk+ j = 1. Let G = (G0,1,0,W). The strategyf (·,n) = 1n is a move-counting winning
strategy for Pl. 0 for the gameG . On the other hand, there does not exist a bounded winning strategy for
Pl. 0 for the gameG . Indeed, if f is ab-bounded strategy of Pl. 0, then Pl. 1 can start by playing 0b and
then, always play 0.

Example 3.4(Set with a bounded winning strategy and without a move-counting winning strategy).
We consider the complete graphG0,1 on {0,1}. Let (πn)n≥0 be an enumeration of FinPaths(G) with
π0 = 0. We letW be the set of any sequences in{0,1}ω starting by 0 except the sequenceρ = π0π1π2 . . . .
Let G = (G0,1,0,W). It is obvious that Pl. 0 has a 1-bounded winning strategy forG but we can also
prove that Pl. 0 has no move-counting winning strategy. Indeed, if h is a move-counting strategy of Pl. 0,
then Pl. 1 can start by playing a prefixπ of ρ so thatπh(last(π),1) is a prefix ofρ . Afterwards, Pl. 1 can
play π ′ such thatπh(last(π),1)π ′h(last(π ′),2) is a prefix ofρ and so on.

We remark that the setsW considered in these examples areopensets, i.e. sets on a low level of the
Borel hierarchy. Moreover, by Proposition 3.2, there also exist length-counting winning strategies for
these two examples. The relations between the simple strategies are thus completely characterised and
are summarised in Figure 1. This Figure also contains other simple strategies which will be discussed
later.

4 Link with the sets of probability 1

Let G = (V,E) be a finite directed graph. We can easily define a probability measureP, on the set
of infinite paths inG, by giving a weightwe > 0 at each edgee ∈ E and by considering that for
any v,v′ ∈ V, pw(v,v′) = 0 if (v,v′) 6∈ E and pw(v,v′) =

w(v,v′)

∑e′ enabled from vwe′
else, wherepw(v,v′) denotes

the probability of taking edge(v,v′) from statev. Given v1 · · ·vn ∈ FinPaths(G,v1), we recall that
we denote by Cyl(v1 · · ·vn) the cylinder generated byv1 · · ·vn and defined as Cyl(v1 · · ·vn) = {ρ ∈
Paths(G,v1) | v1 · · ·vn is a prefix ofρ}.

Definition 4.1. Let G= (V,E) be a finite directed graph andw= (we)e∈E a family of positive weights.
We define the probability measurePw by the relation

Pw(Cyl(v1 · · ·vn)) = pw(v1,v2) · · · · · pw(vn−1,vn) (4.1)
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and we say that such a probability measure isreasonable.

We are interested in characterising the setsW of probability 1 and their links with the different notions
of simple winning strategies. We remark that, in general, Banach-Mazur games do not characterise sets
of probability 1. In other words, the notions of large sets and sets of probability 1 do not coincide in
general on finite graphs. Indeed, there exist some large setsof probability 0. We present here an example
of such sets:

Example 4.2(Large set of probability 0). We consider the complete graphG0,1,2 on {0,1,2} and the
setW = {(wiwR

i )i≥0 ∈ Paths(G0,1,2,2) : wi ∈ {0,1,2}∗}, where for any finite wordσ ∈ {0,1,2}∗ given
by σ = σ(1) · · ·σ(n) with σ(i) ∈ {0,1,2}, we letσR = σ(n) · · ·σ(1). In other words,W is the set of
runsρ starting from 2 that we can divide into a consecutive sequence of finite words and their reverse. It
is obvious that Pl. 0 has a winning strategy for the Banach-Mazur game(G0,1,2,2,W) and thus thatW is
large. On the other hand, ifP is the reasonable probability measure given by the weightswe = 1 for any
e∈ E, then we can verify thatP(W) = 0. Indeed, we have

P(W)≤
∞

∑
n=1

P({w0wR
0(wiw

R
i )i≥1 ∈W : |w0|= n})

=
∞

∑
n=1

P({w0wR
0w∈ Paths(G0,1,2,2) : |w0|= n}) ·P(W)

≤
∞

∑
n=1

P(W)

3n =
1
2

P(W).

For certain families of sets, we can however have an equivalence between the notion of large set and
the notion of set of probability 1. It is the case for the family of setsW representingω-regular properties
on finite graphs (see [9]). In order to prove this equivalencefor ω-regular sets, Varacca and Völzer have
in fact used the fact that for these sets, the Banach-Mazur game is positionally determined ([1]) and that
the existence of a positional winning strategy for Pl. 0 implies P(W) = 1. This latter assertion follows
from the fact that every positional strategy is bounded and that, by the Borel-Cantelli lemma, the set of
plays consistent with a bounded strategy is a set of probability 1. Nevertheless, ifW does not represent
anω-regular properties, it is possible thatW is a large set of probability 1 and that there is no positional
winning strategy for Pl. 0 and even no bounded or move-counting winning strategy.

Example 4.3 (Large set of probability 1 without a positional/ bounded/ move-counting winning
strategy). We consider the complete graphG0,1 on {0,1} and the reasonable probability measureP
given bywe = 1 for anye∈ E. Let an = ∑n

k=1 k. We letW = {(σk)k≥1 ∈ {0,1}ω : σ1 = 0 andσan =
1 for somen> 1} andG = (G0,1,0,W). Since Pl. 0 has a winning strategy forG , we deduce thatW is a
large set. We can also compute thatP(W) = 1 because if we denote byAn, n> 1, the set

An := {(σk)k≥1 ∈ {0,1}ω : σan = 1 andσam = 0 for anym< n},

we have:

W =
˙⋃

n>1
An and P(An) =

1
2n−1 .

On the other hand, there does not exist any positional (resp.bounded) winning strategyf for Pl. 0.
Indeed, if f is a positional (resp. bounded) strategy for Pl. 0 such thatf (0) (resp. f (π) for any π) has
length less thann, then Pl. 1 has just to start by playingan zeros so that Pl. 1 does not reach the index
an+1 and afterwards to complete the sequence by a finite number of zeros to reach the next indexak, and
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so on. Moreover, there does not exist any move-counting winning strategyh for Pl. 0 because Pl. 1 can
start by playingan zeros so that|h(0,1)| ≤ n and because, at each stepk, Pl. 1 can complete the sequence
by a finite number of zeros to reach a new indexan such that|h(0,k)| ≤ n.

On the other hand, we can show that the existence of a move-counting winning strategy for Pl. 0
impliesP(W) = 1. The key idea is to realise that given a move-counting winning strategyh, the strategy
h(·,n) is positional.

Proposition 4.4. Let G = (G,v0,W) be a Banach-Mazur game on a finite graph and P a reasonable
probability measure. If Pl. 0 has a move-counting winning strategy forG , then P(W) = 1.

Proof. Let h be a move-counting winning strategy ofPl. 0. We denote byfn the strategyh(·,n). Each
set

Mn := {ρ ∈ Paths(G,v0) : ρ is a play consistent withfn}

has probability 1 sincefn is a positional winning strategy for the Banach-Mazur game(G,v0,Mn). More-
over, if ρ is a play consistent withfn for eachn≥ 1, thenρ is a play consistent withh. In other words,
sinceh is a winning strategy, we get

⋂

n Mn ⊂ W. Therefore, asP(Mn) = 1 for all n, we know that
P(

⋂

n Mn) = 1 and we conclude thatP(W) = 1.

Let us notice that the converse of Proposition 4.4 is false ingeneral. Indeed, Example 4.3 exhibit a
large setW of probability 1 such that Pl. 0 has no move-counting winningstrategy. However, ifW is
a countable intersection ofω-regular sets, then the existence of a winning strategy for Pl. 0 implies the
existence of a move-counting winning strategy for Pl. 0.

Proposition 4.5. LetG = (G,v0,W) be a Banach-Mazur game on a finite graph where W is a countable
intersection ofω-regular sets Wn. Pl. 0 has a winning strategy if and only if Pl. 0 has a move-counting
winning strategy.

Proof. Let W =
⋂

n≥1Wn whereWn is anω-regular set andf a winning strategy of Pl. 0 forG . For any
n ≥ 1, the strategyf is a winning strategy for the Banach-Mazur game(G,v0,Wn). Thanks to [1], we
therefore know that for anyn≥ 1, there exists a positional winning strategyf̃n of Pl. 0 for (G,v0,Wn).

Let φ : N→ N such that for anyk≥ 1, {n∈ N : φ(n) = k} is an infinite2 set. We consider the move-
counting strategyh(v,n) = f̃φ(n)(v). This strategy is winning because each playρ consistent withh is a
play consistent with̃fn for anyn and thus

{ρ ∈ Paths(G,v0) : ρ is a play consistent withh}

⊆
⋂

n

{ρ ∈ Paths(G,v0) : ρ is a play consistent with̃fn}

⊆
⋂

n

Wn =W.

Remark4.6. We cannot extend this result to countable unions ofω-regular sets because the set of count-
able unions ofω-regular sets contains the open sets and Example 3.4 exhibited a Banach-Mazur game
whereW is an open set and Pl. 0 has a winning strategy but no move-counting winning strategy.

2Such a mapφ exists because one could build a surjectionψ :N→N×N and then letφ =ψ1 whereψ(n) = (ψ1(n),ψ2(n)).
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Remark4.7. We also notice that ifW is a countable intersection ofω-regular sets, thenW is large if and
only if W is a set of probability 1. Indeed, the notions of large sets and sets of probability 1 are stable by
countable intersection and we know that aω-regular set is large if and only if it is of probability 1 [9].

As a consequence of Remark 4.7, we have that ifW is aωS-regular sets, as defined in [2], the setW
is large if and only ifW is a set of probability 1. Indeed, it is shown in [6, 7] thatωS-regular sets are
countable intersection ofω-regular sets. Nevertheless, the following example shows that, unlike the case
of ω-regular sets, positional strategies are not sufficient forωS-regular sets.
Example 4.8 (ωS-regular set with a move-counting winning strategy and without a positional/
bounded winning strategy). We consider the complete graphG0,1 on{0,1} and the setW correspond-
ing to theωS-regular expression((0∗1)∗0S1)ω , which corresponds to the language of words where the
number of consecutive 0 is unbounded. The move-counting strategy which consists in playingn consec-
utive 0’s at thenth step is winning for Pl. 0. However, clearly enough Pl. 0 does not have a positional
(nor bounded) winning strategy forW.

Example 4.2 shows that Remark 4.7 does not extend toω-context-free sets. Another notion of
simple strategies, natural inspired by Example 4.2, is the notion of last-move strategy. A strategyf
for Pl. 0 is said to belast-moveif it only depends on the last move of Pl. 1, i.e. for anyv ∈ V, for
any π ∈ FinPaths(G,v), f (π) ∈ FinPaths(G, last(π)) and a playρ is consistent withf if it is of the
form (πi f (πi))i≥1. It is obvious that there exists a last-move winning strategy for Pl. 0 in the game
described in Example 4.2. In particular, we deduce that the existence of a last-move winning strategy
for W does not imply thatW has probability 1. Example 4.2 allows also us to see that the existence of a
last-move winning strategy does not imply in general the existence of a move-counting winning strategy
or a bounded winning strategy. Indeed, letW be the set{(wiwR

i )i ∈ Paths(G0,1,2,2) : wi ∈ {0,1,2}∗}.
SinceP(W) = 0 (and thusP(W) 6= 1), we know that Pl. 0 has no move-counting winning strategy by
Proposition 4.4 and no bounded winning strategy.

The notion of last-move winning strategy is in fact incomparable with the notion of move-counting
winning strategy and the notion of bounded winning strategy. Indeed, on the complete graphG0,1 on
{0,1}, if we denote byW the set of runs inG0,1 such that for anyn≥ 1, the word 1n appears, then Pl. 0
has a move-counting winning strategy for the game(G0,1,0,W) but no last-move winning strategy. In
the same way, if we denote byW the set of aperiodic runs onG0,1 then Pl. 0 has a 1-bounded winning
strategy for the game(G0,1,0,W) but no last-move winning strategy (it suffices for Pl. 1 to play at each
time the same word).

5 Generalised Banach-Mazur games

Let G = (G,v0,W) be a Banach-Mazur game on a finite graph. We know that the existence of a bounded
winning strategy or a move-counting winning strategy of Pl.0 for G implies thatP(W) = 1 for every
reasonable probability measureP. Nevertheless, it is possible thatP(W) = 1 and Pl. 0 has no bounded
winning strategy and no move-counting winning strategy (Example 4.3). We therefore search a new
notion of strategy such that the existence of such a winning strategy impliesP(W) = 1 and the existence
of a bounded winning strategy or a move-counting winning strategy imply the existence of such a winning
strategy. To this end, we introduce a new type of Banach-Mazur games:
Definition 5.1. A generalised Banach-Mazur gameG on a finite graph is a tuple(G,v0,φ0,φ1,W) where
G = (V,E) is a finite directed graph where every vertex has a successor,v0 ∈ V is the initial state,
W ⊂ Paths(G,v0), andφi is a map on FinPaths(G,v0) such that for anyπ ∈ FinPaths(G,v0),

φi(π)⊂ P
(

FinPaths(G, last(π))
)

\{ /0} and φi(π) 6= /0.
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A generalised3 Banach-Mazur gameG = (G,v0,φ0,φ1,W) on a finite graph is a two-player game
where Pl. 0 and Pl. 1 alternate in choosingsets of finite pathsas follows: Pl. 1 begins with choosing
a set of finite pathsΠ1 ∈ φ1(v0); Pl. 0 selects a finite pathπ1 ∈ Π1 and chooses a set of finite paths
Π2 ∈ φ0(π1); Pl 1. then selectsπ2 ∈ Π2 and proposes a setΠ3 ∈ φ1(π1π2) and so on. A play ofG is thus
an infinite pathπ1π2π3 . . . in G and we say that Pl. 0 wins if this path belongs toW, while Pl. 1 wins if
this path does not belong toW.

We remark that if we letφball(π) := {{π ′} : π ′ ∈ FinPaths(G, last(π))} for anyπ ∈ FinPaths(G,v0),
then the generalised Banach-Mazur game given by(G,v0,φball,φball,W) coincides with the classical
Banach-Mazur game(G,v0,W). We also obtain a game similar to the classical Banach-Mazurgame
if we consider the functionφ(π) = P(FinPaths(G, last(π))). On the other hand, if we considerφ(π) :=
{{π ′} : π ′ ∈ FinPaths(G, last(π)), |π ′| = 1}, we obtain the classical games on graphs such as the ones
studied in [5].

We are interested in defining a mapφ0 such that Pl. 0 has a winning strategy for(G,v0,φ0,φball,W)
if and only if P(W) = 1. To this end, we notice that we can restrict actions of Pl. 0 by forcing each set
in φ0(π) to be “big” in some sense. The idea to characteriseP(W) = 1 is therefore to force Pl. 0 to play
with finite sets of finite paths of conditional probability bigger thanα for someα > 0.

Definition 5.2. LetG = (G,v0,W) be a Banach-Mazur game on a finite graph,P a reasonable probability
measure andα > 0. An α-strategyof Pl. 0 forG is a strategy of Pl. 0 for the generalised Banach-Mazur
gameGα = (G,v0,φα ,φball,W) where

φα(π) =
{

Π ⊂ FinPaths(G, last(π)) : P
(

⋃

π ′∈Π
Cyl(ππ ′)

∣

∣

∣
Cyl(π)

)

≥ α andΠ is finite
}

.

We recall that, given two eventsA,B with P(B) > 0, the conditional probabilityP(A|B) is defined by
P(A|B) := P(A∩B)/P(B).

We notice that every bounded strategy can be seen as anα-strategy for someα > 0, since for any
N ≥ 1, there existsα > 0 such that for anyπ of length less thanN, we haveP({π}) ≥ α . We can also
show that the existence of a move-counting winning strategyfor Pl. 0 implies the existence of a winning
α-strategy for Pl. 0 for every 0< α < 1.

Proposition 5.3. Let G = (G,v0,W) be a Banach-Mazur game on a finite graph. If Pl. 0 has a move-
counting winning strategy, then Pl. 0 has a winningα-strategy for every0< α < 1.

Proof. Let P be a reasonable probability measure,h a move-counting winning strategy for Pl. 0 and
0< α < 1. We denote bygn the positional strategy defined by

gn(v) = h(v,1) h
(

last(h(v,1)),2
)

· · · h
(

last(h(v,1) h(last(h(v,1)),2) · · · ),n
)

.

Let us notice that the definition of thegn’s implies that for any increasing sequence(nk), a play of the
form

π1 gn1(last(π1)) π2 gn2(last(π2)) · · · πk gnk(last(πk)) · · · (5.1)

is consistent withh. Sincegn is a positional strategy, we know that each set

Mn := {ρ ∈ Paths(G,v0) : ρ is a play consistent withgn}

3We only present here a generalisation of Banach-Mazur gameson finite graphs but this generalisation could be extended
to Banach-Mazur games on topological spaces by asking that for any non-empty open setO, φi(O) is a collection of non-empty
open subsets ofO.
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has probability 1. In particular, for anyπ0 ∈ FinPaths(G,v0), we deduce thatP(Mn|Cyl(π0)) = 1. Since

Mn∩Cyl(π0)⊆
⋃

π∈FinPaths(G,last(π0))

Cyl
(

π0πgn(last(π))
)

,

we have
P
(

⋃

π∈FinPaths(G,last(π0))

Cyl
(

π0πgn(last(π))
)

∣

∣

∣
Cyl(π0)

)

= 1

and since FinPaths(G, last(π0)) is countable, we deduce that for anyn ≥ 1, anyπ0 ∈ FinPaths(G,v0),
there exists a finite subsetΠn(π0)⊂ FinPaths(G, last(π0)) such that

P
(

⋃

π∈Πn(π0)

Cyl
(

π0πgn(last(π))
)

∣

∣

∣
Cyl(π0)

)

≥ α .

We denote byΠ′
n(π0) the set{πgn(last(π)) : π ∈ Πn(π0)} and we let

f (π0) := Π′
|π0|

(π0).

The above-defined strategyf is therefore a winningα-strategy for Pl. 0 since each play consistent with
f is of the form (5.1) for some sequence(nk) and thus consistent withh.

Moreover, the existence of a winningα-strategy for someα > 0 still impliesP(W) = 1.

Theorem 5.4. LetG = (G,v0,W) be a Banach-Mazur game on a finite graph and P a reasonable prob-
ability measure. If Pl. 0 has a winningα-strategy for someα > 0, then P(W) = 1.

Proof. Let f be a winningα-strategy. We consider an increasing sequence(an)n≥1 such that for any
n≥ 1, anyπ of lengthan, eachπ ′ ∈ f (π) has length less thanan+1−an; this is possible because for any
π, f (π) is a finite set by definition ofα-strategy. Without loss of generality4, we can even assume that
for anyn≥ 1, anyπ of lengthan, eachπ ′ ∈ f (π) has exactly lengthan+1−an. We therefore let

A := {(σk)k≥1 ∈ Paths(G,v0) : #{n : (σk)an+1≤k≤an+1 ∈ f ((σk)1≤k≤an)}= ∞}.

In other words,(σk)k≥1 ∈ A if (σk) can be seen as a play wheref has been played on an infinite number
of indicesan. Sincef is a winning strategy,A is included inW and it thus suffices to prove thatP(A) = 1.

We first notice that for anym≥ 1, anyn≥ m, if we let

Bm,n = {(σk)k≥1 ∈ Paths(G,v0) : (σk)aj+1≤k≤aj+1 /∈ f ((σk)1≤k≤aj ), ∀m≤ j ≤ n},

thenP(Bm,n)≤ (1−α)n+1−m as f is anα-strategy. We therefore deduce that for anym≥ 1,

P
(

∞
⋂

n=m

Bm,n

)

= 0

and sinceAc =
⋃

m≥1
⋂∞

n=mBm,n, we conclude thatP(A) = 1.

4Let π be a finite path andnπ ≥ max{|τ| such thatτ ∈ f (π)}. One can definẽf (π) as the set of finite pathsσ of lengthnπ
such thatτ is a prefix ofσ , for someτ ∈ f (π). Given a playρ, one can show thatρ is consistent withf if and only if ρ is
consistent withf̃ .
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If W is a countable intersection of open sets, we can prove the converse of Theorem 5.4 and so obtain
a characterisation of sets of probability 1.

Theorem 5.5. Let G = (G,v0,W) be a Banach-Mazur game on a finite graph where W is a countable
intersection of open sets and P a reasonable probability measure. Then the following assertions are
equivalent:

1. P(W) = 1,

2. Pl. 0 has a winningα-strategy for someα > 0,

3. Pl. 0 has a winningα-strategy for all0< α < 1.

Proof. We have already proved 2.⇒ 1., and 3.⇒ 2. is obvious.
1. ⇒ 3. Let 0< α < 1. Let W =

⋂∞
n=1Wn whereWn’s are open sets. SinceP(W) = 1, we deduce

that for anyn ≥ 1, P(Wn) = 1. We can therefore define a winningα-strategy f of Pl. 0 as follows:
if Cyl (π) ⊂

⋂n−1
k=1Wk and Cyl(π) 6⊂ Wn, we let f (π) be a finite setΠ ⊂ FinPaths(G, last(π)) such that

P
(

⋃

π ′∈Π Cyl(ππ ′)|Cyl(π)
)

≥ α and for anyπ ′ ∈ Π, Cyl(ππ ′)⊂Wn. Such a finite setΠ exists because

Wn has probability 1 andWn is an open set, i.e. a countable union of cylinders. This concludes the
proof.

Remark5.6. We cannot hope to generalise the latter result to any setW. More precisely, there exist sets
of probability 1 for which no winningα-strategy exists. Indeed, given a setW, on the one hand, the
existence of a winningα-strategy forW implies the existence of a winning strategy forW, and thus in
particular such aW is large. On the other hand, we know that there exists some meagre (in particular not
large) set of probability 1 (see Example 4.2). However, one can ask whether the existence of a winning
α-strategy is equivalent to the fact thatW is a large set of probability 1.

WhenW is a countable intersection of open sets, we remark that the generalised Banach-Mazur game
Gα = (G,v0,φα ,φball,W) is in fact determined.

Theorem 5.7. LetGα be the generalised Banach-Mazur game given byGα = (G,v0,φα ,φball,W) where
G is a finite graph, W is a countable intersection of open sets and P a reasonable probability measure.
Then the following assertions are equivalent:

1. P(W)< 1,

2. Pl. 1 has a winning strategy forGα for someα > 0,

3. Pl. 1 has a winning strategy forGα for all 0< α < 1.

Proof. We deduce from Theorem 5.5 that 2.⇒ 1. becauseGα is a zero-sum game, and 3.⇒ 2. is obvious.
1. ⇒ 3. Let W = ∩∞

n=1Wn with P(W) < 1 andWn open. We know that there existsn ≥ 1 such that
P(Wn) < 1. It then suffices to prove that Pl. 1 has a winning strategy for the generalised Banach-Mazur
game(G,v0,φα ,φball,Wn) for all 0< α < 1. Without loss of generality, we can thus assume thatW is an
open set. We recall thatW is open if and only if it is a countable union of cylinders. Since any strategy
of Pl. 1 is winning ifW = /0, we also suppose thatW 6= /0.

Let 0< α < 1. We first show that there exists a finite pathπ1 ∈ FinPaths(G,v0) such that any set
Π2 ∈ φα(π1) contains a finite pathπ2 satisfying

P(W|Cyl(π1π2))≤ P(W)< 1. (5.2)

Let
IW := inf{P(W|Cyl(π)) : π ∈ FinPaths(G,v0)}. (5.3)
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SinceW is a non-empty union of cylinders, there existsσ ∈ FinPaths(G,v0) such thatP(W|Cyl(σ)) = 1.
We remark thatP(W) = ∑π:|π|=|σ | P(W|Cyl(π))P(Cyl(π)) and ∑π:|π|=|σ | P(Cyl(π)) = 1. Therefore,
sinceP(W|Cyl(σ)) > P(W), we deduce that there existsπ ∈ FinPaths(G,v0) with |π| = |σ | such that
P(W|Cyl(π))< P(W). We conclude thatIW < P(W) and thus, by definition ofIW, there existsπ1 ∈
FinPaths(G,v0) such that

IW +
1
α
(P(W|Cyl(π1))− IW)< P(W). (5.4)

Let Π2 ∈ φα(π1). We considerτ1, . . . ,τn ∈ Π2 andσ1, . . . ,σm∈ FinPaths(G, last(π1)) such that cylinders
Cyl(τi), Cyl(σ j) are pairwise disjoint,

⋃

π∈Π2
Cyl(π)⊂

⋃n
i=1 Cyl(τi) and

Paths(G, last(π1)) =
n
⋃

i=1

Cyl(τi)∪
m
⋃

j=1

Cyl(σ j). (5.5)

Assume that for all 1≤ i ≤ n, we have

P(W|Cyl(π1τi))> P(W). (5.6)

Then, we get

P(W|Cyl(π1))

=
n

∑
i=1

P(W∩Cyl(π1τi)|Cyl(π1))+
m

∑
j=1

P(W∩Cyl(π1σ j)|Cyl(π1)) by disjointness and (5.5)

=
n

∑
i=1

P(W|Cyl(π1τi))P(Cyl(π1τi)|Cyl(π1))+
m

∑
j=1

P(W|Cyl(π1σ j))P(Cyl(π1σ j)|Cyl(π1))

≥ P(W)
n

∑
i=1

P(Cyl(π1τi)|Cyl(π1))+ IW
m

∑
j=1

P(Cyl(π1σ j)|Cyl(π1)) by (5.6) and (5.3)

≥ P(W)
n

∑
i=1

P(Cyl(π1τi)|Cyl(π1))+ IW
(

1−
n

∑
i=1

P(Cyl(π1τi)|Cyl(π1))
)

by (5.5)

≥ P(W)P
(

⋃

π∈Π2

Cyl(π1π)|Cyl(π1)
)

+ IW
(

1−P
(

⋃

π∈Π2

Cyl(π1π)|Cyl(π1)
))

by properties ofτi ’s

≥ P(W)α + IW(1−α) (becauseΠ2 ∈ φα(π1) andP(W)> IW)

and thusP(W) ≤ IW + 1
α (P(W|Cyl(π1))− IW) which is a contradiction with (5.4). We conclude that if

π1 is given by (5.4), then any setΠ2 ∈ φα(π1) contains a finite pathπ2 satisfying (5.2).
We can now exhibit a winning strategy for Pl. 1. We assume thatPl. 1 begins with playing a finite

pathπ1 satisfying (5.4). Letf be anα-strategy. We know that Pl. 1 can select a finite pathπ2 ∈ f (π1)
satisfying (5.2), i.e.P(W|Cyl(π1π2))≤P(W). By repeating the above method fromπ1π2, we also deduce
the existence of a finite pathπ3 such that any setΠ4 ∈ φα(π1π2π3) contains a finite pathπ4 satisfying
P(W|Cyl(π1π2π3π4))≤ P(W). We can thus assume that Pl. 1 plays such a finite pathπ3 and then selects
π4 ∈ f (π1π2π3) such thatP(W|Cyl(π1π2π3π4)) ≤ P(W). This strategy is a winning strategy for Pl. 1.
Indeed, asW is an open set and thus a countable union of cylinders, ifP(W|Cyl(π1 · · ·π2n))≤ P(W)< 1
for anyn, thenπ1π2π3 · · · /∈W.

Corollary 5.8. Let 0< α < 1. The generalised Banach-Mazur gameGα = (G,v0,φα ,φball,W) is deter-
mined when W is a countable intersection of open sets. More precisely, Pl. 0 has a winning strategy for
Gα if and only if P(W) = 1, and Pl. 1 has a winning strategy forGα if and only if P(W)< 1.
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Since the existence of a bounded winning strategy for Pl. 0 implies the existence of a winningα-
strategy for Pl. 0 and the existence of a move-counting winning strategy for Pl. 0 implies the existence
of a winningα-strategy for Pl. 0, we deduce from Example 3.3 and Example 3.4 that in general, the
existence of a winningα-strategy for Pl. 0 does not imply the existence of a move-counting winning
strategy Pl. 0 and the existence of a bounded winning strategy for Pl. 0. On the other hand, we know
that there exists a Banach-Mazur game for which Pl. 0 has a bounded winning strategy and no last-move
winning strategy. The existence of a winningα-strategy thus does not imply in general the existence of a
last-move winning strategy. Conversely, if we consider thegame(G0,1,0,W) described in Example 4.2,
Pl. 0 has a last-move winning strategy but no winningα-strategy (asP(W) = 0). The notion ofα-strategy
is thus incomparable with the notion of last-move strategy.

6 More on simple strategies

We finish this paper by considering the crossings between thedifferent notions of simple strategies and
the notion of bounded strategy i.e. the bounded length-counting strategies, the bounded move-counting
strategies and the bounded last-move strategies. Obviously, the existence of a bounded length-counting
winning strategy for Pl. 0 implies the existence of a length-counting winning strategy for Pl. 0, and we
have this implication for each notion of bounded strategiesand their no bounded counterpart. We start by
noticing that the existence of a bounded move-counting winning strategy is equivalent to the existence
of a positional winning strategy.

Proposition 6.1. Let G = (G,v0,W) be a Banach-Mazur game on a finite graph. Pl. 0 has a bounded
move-counting winning strategy if and only if Pl. 0 has a positional winning strategy.

Proof. Let h be a bounded move-counting winning strategy for Pl. 0. We denote byC1, . . . ,CN the bottom
strongly connected components (BSCC) ofG. Let 1≤ i ≤ N. Sinceh is a bounded strategy andG is
finite, there exist some finite pathsw(i)

1 , . . . ,w(i)
ki

⊂Ci such that for anyv∈Ci , for anyn≥ 1,

h(v,n) ∈ {w(i)
1 , . . . ,w(i)

ki
}.

Let v∈V. If v∈Ci, we let f (v) = σ0w(i)
1 σ1w(i)

2 σ2 . . .w
(i)
ki

whereσl are finite paths inCi such thatf (v) is
a finite path inCi starting fromv. If v /∈

⋃

i Ci, we let f (v) = σv whereσv starts fromv and leads into a
BSCC ofG. The positional strategyf is therefore winning as each playρ consistent withf can be seen
as a play consistent withh.

The other notions of bounded strategies are not equivalent to any other notion of simple strategy.

Example 6.2(Set with a bounded length-counting winning strategy and without a positional win-
ning strategy). Let G0,1 be the complete graph on{0,1}, (ρn) an enumeration of finite words in{0,1}
andρtarget= 0ρ1ρ2 · · · . We consider the setW = {σ ∈ {0,1}ω : #{i ≥ 1 : σ(i) = ρtarget(i)} = ∞}. It is
evident that Pl. 0 has a bounded length-counting winning strategy for the game(G0,1,0,W). However,
Pl. 0 has no positional winning strategy. Indeed, iff is a positional strategy such thatf (0) = a(1) · · ·a(k),
then Pl. 1 can play according to the strategyh defined byh(σ(1) · · ·σ(n)) =σ(n+1) · · ·σ(N) 0 such that
for anyn+1≤ i ≤ N, σ(i) 6= ρtarget(i), ρtarget(N+1) 6= 0 and for any 1≤ i ≤ k, a(i) 6= ρtarget(N+ i+1).

Example 6.3 (Set with a bounded last-move winning strategy and without a positional winning
strategy). Let G0,1,2 be the complete graph on{0,1,2}. For anyφ : {0,1,2}∗ → {0,1}, if we consider
the setW := {(πiφ(πi))i≥1 : πi ∈ {0,1,2}∗}, then Pl. 0 has a 1-bounded last-move winning strategy given
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by φ for the game(G0,1,2,2,W). On the other hand, we can chooseφ such that Pl. 0 has no positional
winning strategy. Indeed, it suffices to chooseφ : {0,1,2}∗ →{0,1} such that for anyπ ∈ {0,1,2}∗, any
n≥ 1, anyσ(1), . . . ,σ(n)∈{0,1,2}, there existsk≥ 1 such thatφ(π2k) 6=σ(1) and for any 1≤ i ≤ n−1,
φ(π2kσ(1) · · ·σ(i)) 6= σ(i+1). Such a function exists because the set{0,1,2}∗ is countable. Therefore,
Pl. 0 has no positional winning strategy for the game(G0,1,2,2,W) because, iff is a positional strategy
and f (2) = σ(1) . . .σ(n), then Pl. 1 can play consistent with the strategyh defined byh(π) = 2k such
thatφ(π2k) 6= σ(1) and for any 1≤ i ≤ n−1, φ(π2kσ(1) · · ·σ(i)) 6= σ(i+1). Pl. 0 has thus a 1-bounded
last-move winning strategy and no positional winning strategy for the game(G0,1,2,2,W).

Example 6.4(Set with a bounded winning strategy and without a bounded length-counting win-
ning strategy). Let G0,1,2,3 be the complete graph on{0,1,2,3}. For anyφ : {0,1,2,3}∗ → {0,1},
if we denote byW the set of runsρ such that #{n≥ 1 : φ(ρ(1) . . .ρ(n)) = ρ(n+1)}= ∞, then Pl. 0
has a 1-bounded winning strategy given byφ for the game(G0,1,2,3,2,W). We now show how we
can defineφ so that Pl. 0 has no bounded length-counting winning strategy. Let nk = ∑k

i=1 3i. We
chooseφ : {0,1,2,3}∗ →{0,1} such that for anyk ≥ 1, any π ∈ {0,1,2,3}∗ of length nk and any
σ(1), . . . ,σ(k) ∈ {0,1,2,3}, there existsτ ∈ {2,3}∗ of length 2k such thatφ(πτ 2) 6= σ(1) and for any
1≤ i ≤ k−1, φ(πτ 2σ(1) · · ·σ(i)) 6= σ(i+1). Such a function exists because the cardinality of{2,3}2k

is equal to the cardinality of{0,1,2,3}k and the length ofπτ 2σ(1) · · ·σ(k)< nk+1. Therefore, Pl. 0 has
no bounded length-counting winning strategy because iff is ak-bounded length-counting strategy (for
somek∈ N) and f (2,nk +k+1) = σ , then Pl. 1 can start by playing 2nkτ 2, whereτ ∈ {2,3}∗ of length
2k such thatφ(πτ 2) 6= σ(1) and for any 1≤ i ≤ k−1, φ(πτ 2σ(1) · · ·σ(i)) 6= σ(i+1), and if Pl. 1 keep
playing with same philosophy, then Pl. 1 wins the play. Pl. 0 has thus a 1-bounded winning strategy and
no bounded length-counting winning strategy for the game(G0,1,2,2,W).

The relations between the different notions of simple strategies on a finite graph can be summarised as
depicted in Figure 1. We draw attention to the fact that the situation is very different in the case of infinite
graphs. For example, a positional strategy can be unbounded, the notion of length-counting winning
strategy is not equivalent to the notion of winning strategy(except if the graph is finitely branching),
and the notion of bounded move-counting winning strategy for Pl. 0 is not equivalent to the notion of
positional winning strategy.

Example 6.5(Set on an infinite graph with a bounded move-counting winningstrategy and without
a positional winning strategy). We consider the complete graphGN onN and the gameG = (GN,0,W)
whereW = {(σk) ∈N

ω : ∀ n≥ 1, ∃ k≥ 1, (σk,σk+1) = (n,n+1)}. Pl. 0 has a bounded move-counting
winning strategy given byh(v,n) = n n+1 but no positional winning strategy.
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