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In 2006, Varacca and Vdlzer proved that on finite grapghsegular large sets coincide wiity-
regular sets of probability 1, by using the existence of fimsal strategies in the related Banach-
Mazur games. Motivated by this result, we try to understahations between sets of probability 1
and various notions of simple strategies (including thos®duced in a recent paper of Gradel and
LeRenich). Then, we introduce a generalisation of the idaBanach-Mazur game and in particular,
a probabilistic version whose goal is to characterise dgisabability 1 (as classical Banach-Mazur
games characterise large sets). We obtain a determinadyf@these games, when the winning set
is a countable intersection of open sets.

1 Introduction

Systems (automatically) controlled by computer progralrmiad in our everyday life. Clearly enough,
it is of a capital importance to know whether the programsegowg these systems arerrect Over the
last thirty years, formal methods for verifying computedssystems have been developed for validating
the adequation of the systems against their requirementsdeMchecking is one such approach: it
consists first in modelling the system under study (for ims¢aby an automaton), and then in applying
algorithms for comparing the behaviours of that model agjainspecification (modelled for instance
by a logical formula). Model checking has now reached matuttirough the development of efficient
symbolic techniques, state-of-the-art tool support, amderous successful applications to various areas.
As argued in[[9]:'Sometimes, a model of a concurrent or reactive system daoesatisfy a desired
linear-time temporal specification but the runs violatifig tspecification seem to be artificial and rare’
As a naive example of this phenomenon, consider a coin fligpeidfinite number of times. Classical
verification will assure that the property statitwne day, we will observe at least one heaid’ false,
since there exists a unique execution of the system vigjdlia property. In some situations, for instance
when modeling non-critical systems, one could prefer tovkmehether the system i&irly correct
Roughly speaking, a system is fairly correct against a gtggpethe set of executions of the system
violating the property iSvery small”; or equivalently if the set of executions of the system $atig the
property is‘very big” . A first natural notion of fairly correct system is relatectobability: almost-sure
correctness A system is almost-surely correct against a property ifsteof executions of the system
satisfying the property has probability 1. Another intéires notion of fairly correct system is related to
topology: large correctnessA system is largely correct against a property if the setxetations of the

*This work has been partly supported by a grant from the NatiBank of Belgium, the ARC project (number AUWB-
2010-10/15-UMONS-3), and the FRFC project (number 2.461)5.
TThe second author is supported by a grant of FRIA.

Gabriele Puppis, Tiziano Villa (Eds.): Fourth Internatibn © Thomas Brihaye & Quentin Menet
Symposium on Games, Automata, Logics and Formal Verifinatio This work is licensed under the
EPTCS 119, 2013, pp. 21334, doi:10.4204/EPTCS.119.5 Creative Commoris Attribution License.


http://dx.doi.org/10.4204/EPTCS.119.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

22 Simple strategies for Banach-Mazur games and fairly cogystems

system satisfying the property large (in the topological sense). There exists a lovely charaetion
of large setdby means of th8anach-Mazur gamesn [8], it has been shown that a $&tis large if and
only if a player has a winning strategy in the related Banlslelzur game.

Although, the two notions ofairly correct systemslo not coincide in general, inl[9], the authors
proved (amongst other results) the following result: whensideringcw-regular properties on finite
systems, th@lmost-sure correctnesand thelarge correctnesgoincide, for bounded Borel measures.
Motivated by this very nice result, we intend to extend it tamager class of specifications. The key
ingredient to prove the previously mentioned result of §fhat when considering-regular properties,
positional strategies are sufficient in order to win the related Bardalaur gamel[l1]. For this reason,
we investigatesimple strategiein Banach-Mazur games, inspired by the recent wiark [4] wivdirite
graphs are studied.

Our contributions. In this paper, we first compare various notions of simpletatfias on finite
graphs (includingoboundedand move-countingtrategies), and their relations with the sets of probabil-
ity 1. Given a seW, the existence of a bounded (resp. move-counting) winrtiregeg)y in the related
Banach-Mazur game implies thét is a set of probability 1. However there exist sé&tsof probabil-
ity 1 for which there is no bounded and no move-counting wigrstrategy in the related Banach-Mazur
game. Therefore, we introduce a generalisation of theiciEd83anach-Mazur game and in particular, a
probabilistic version whose goal is to characterise sepsaifability 1 (as classical Banach-Mazur games
characterise large sets). We obtain the desired charsatieri in the case of countable intersections of
open sets. This is the main contribution of the paper. As aduyrt of the latter, we get a determinacy
result for our probabilistic version of the Banach-Mazumgeafor countable intersections of open sets.

2 Banach-Mazur Games on finite graphs

Let (X,.7) be a topological space. A notion of topological “bignessyiien by large sets. A subset
W C X is said to benowhere densi# the closure oW has empty interior. A subs#¥ C X is said to be
meagreif it can be expressed as the union of countably many nowhamsalsets and a sub¥étC X is
said to be large ¥V° is meagre. In particular, we remark that a countable int¢ie® of large sets is still
large and that itV C X is large, then any s&t D W is large.

If G= (V,E) is a finite directed graph ang € V, then the space of infinite paths @ from vp,
denoted Path{&, vp), can be endowed with the complete metric

d((Gn)n=0, (Pn)n=0) =2 where k=min{n>0:0,# pn} (2.1)

with the conventions that min® o and 2 = 0. In other words, the open sets in P&ths/p) en-
dowed with this metric are the countable unions of cylindeveere a cylinder is a set of the form
{p € Path$G,vp) | rris a prefix ofp} for some finite pathrin G from vo.

We can therefore study the large subsets of the metric §faths$G, v),d). Banach-Mazur games
allow us to characterise large subsets of this metric sgaoedh the existence of winning strategies.

Definition 2.1. A Banach-Mazur gam& on a finite graph is a triplefG, vo,W) whereG = (V,E) is a
finite directed graph where every vertex has a succeggarV is the initial stateW is a subset of the
infinite paths inG starting invg.

A Banach-Mazur gam& = (G, vp,W) on a finite graph is a two-player g@me where Pl. 0 and PI. 1
alternate in choosing a finite path as follows: Pl. 1 begirth whoosing a finite path . starting invg;

1in this paper, we always assume that a finite path is non-empty
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PI. 0 then prolongsn by choosing another finite patis and so on. A play o is thus an infinite path
in G and we say that PI. 0 wins if this path belong&Nowhile PI. 1 wins if this path does not belong to
W. The seWV is called the winning condition. It is important to remarkathin general, in the literature,
PIl. 0 moves first in Banach-Mazur games but in this paper, waya assume that Pl. 1 moves first in
order to bring out the notion of large set (rather than meagte The main result about Banach-Mazur
games can then be stated as follows:

Theorem 2.2([8]). Let¥ = (G,vp,W) be a Banach-Mazur game on a finite graph. PI. 0 has a winning
strategy for¢ if and only if W is large.

3 Simple strategies in Banach-Mazur games

In a Banach-Mazur gam&, vp, W) on a finite graph, a strategy for PI. 0 is given by a functfatefined
on FinPath&G, vp), the set of finite paths db starting fromvp, such that for anyt € FinPath$G, vp), we
have f (1) € FinPath$G, last(1)). However, we can imagine some restrictions on the strategjiel. O:

1. A strategyf is said to bepositional if it only depends on the current vertex, ifeis a function
defined orV such that for any € V, f(v) € FinPath$G,v) and a playp is consistent withf if p
is of the form (75 f (last(7%) )i>1.

2. Astrategyf is said to bdinite-memoryf it only depends on the current vertex and a finite memory
(see[3] for the precise definition of a finite-memory stradeg

3. A strategyf is said to beb-boundedif for any 1T € FinPath$G,vp), f(71) has length less tham
and a strategy is said to leundedf there isb > 1 such thatf is b-bounded.

4. A strategyf is said to bemove-countingf it only depends on the current vertex and the number
of moves already played, i.d.is a function defined o x N such that for any € V, anyn € N,
f(v,n) € FinPath$G,Vv) and a playp is consistent withf if p is of the form (7% f (last(7%),1) )i>1.

5. A strategyf is said to bdength-countingf it only depends on the current vertex and the length of
the prefix already played, i.d.is a function defined oW x N such that forany €V, anyn € N,
f(v,n) € FinPath$G,v) and a playp is consistent withf if after a prefix, the move of PI. O is

given by f (last(m), | r1}).

The notions of positional and finite memory strategies amssital, bounded strategies are present
in [9], move-counting and length-counting strategies Hasen introduced i [4]. We first remark that,
by definition, the existence of a positional winning strgtegplies the existence of finite-memory/move-
counting/length-counting winning strategies. MoreogaiceG is a finite graph, a positional strategy is
always bounded. Iri_[3], it is proved that the existence of gefimemory winning strategy implies the
existence of a positional winning strategy.

Proposition 3.1([3]). Let¥ = (G,vo,W) be a Banach-Mazur game. PI. 0 has a finite-memory winning
strategy if and only if Pl. 0 has a positional winning strageg

Using the ideas of the proof of the above proposition, we dao show that the existence of a
winning strategy implies the existence of a length-continnning strategy.

Proposition 3.2. Let¥ = (G,vp,W) be a Banach-Mazur game on a finite graph. Pl. 0 has a length-
counting winning strategy if and only if Pl. 0 has a winningagtgy.
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Proof. Let f be awinning strategy for PI. 0. SinGis a finite graph, for anp > 0 and any € V, we can
consider an enumeratiam, ... ., Tiy Of finite paths in FinPati{&, vo) of lengthn such that lagtg) = v.
We then let

h(v,n) = f(m) f (mf(m)) f (msf(m) f(mf(m))) ... f(mf(m)f(mf(m)) ).

If pis a play consistent with, thenp is a play where the stratedyis applied infinitely often. Thus such

a playp can be seen as a play 110,72 -- where ther;’s (resp. theoi’s) are the moves of PI. O (resp.
Pl. 1.) and wherd (0111 --- 0;) = T;. Each play consistent with can thus be seen as a play consistent
with f, and we deduce that the stratdyis a length-counting winning strategy. O

On the other side, the notions of move-counting winningtsgias and bounded winning strategies
are incomparable.

Example 3.3(Set with a move-counting winning strategy and without a bouded winning strategy).
We consider the complete gra@g 1 on{0,1}. LetW be the set of any sequendes,)n>1 in {0, 1}* with
o1 = 0 such that(op)n>1 contains a finite sequence of 1 strictly longer than theahftnite sequence
of 0. In other words{on)n>1 € W if 01 = 0 and if there exisf > 1 andk > 1 such thaio; = 1 and
Okt1 = = Ok j = 1. Let¥ = (Gg1,0,W). The strategyf(-,n) = 1" is a move-counting winning
strategy for PI. O for the ganig. On the other hand, there does not exist a bounded winniatggyr for
PI. 0 for the gamé/. Indeed, iff is ab-bounded strategy of PI. 0, then PI. 1 can start by playthgr@l
then, always play 0.

Example 3.4(Set with a bounded winning strategy and without a move-counhg winning strategy).
We consider the complete grafy1 on {0,1}. Let (7h)n=0 be an enumeration of FinPafl@&) with
M = 0. We letW be the set of any sequences i 1} starting by 0 except the sequenze- HTHTS. ...
Let¥ = (Go1,0,W). It is obvious that PIl. 0 has a 1-bounded winning strategy“dsut we can also
prove that Pl. 0 has no move-counting winning strategy. éddéd h is a move-counting strategy of PI. 0,
then PI. 1 can start by playing a prefivof p so thatrth(last(17),1) is a prefix ofp. Afterwards, PI. 1 can
play i such thatth(last(m), 1) h(last(17'), 2) is a prefix ofp and so on.

We remark that the seWy considered in these examples apensets, i.e. sets on a low level of the
Borel hierarchy. Moreover, by Propositibn 8.2, there alsistdength-counting winning strategies for
these two examples. The relations between the simple gigatare thus completely characterised and
are summarised in Figufeé 1. This Figure also contains othgrle strategies which will be discussed
later.

4 Link with the sets of probability 1

Let G = (V,E) be a finite directed graph. We can easily define a probabiliéasureP, on the set
of infinite paths inG, by giving a weightw, > 0 at each edge € E and by considering that for
anyv,V €V, py(v,V) =0 if (vV) ¢ E and py(v,V) = ze/ermbvvl(!% else, wherep,(v,V') denotes
the probability of taking edgév,V') from statev. Givenv;---v, € FinPath$G,v;), we recall that
we denote by Cyl;---vn) the cylinder generated by; ---v,, and defined as Ci---v,,) = {p €
PathgG,v1) | v1---Vv, is a prefix ofp}.

Definition 4.1. Let G = (V,E) be a finite directed graph amd= (we)ece @ family of positive weights.
We define the probability measuRg by the relation

Pu(Cyl(v1---Vn)) = pw(Vi,V2) -+ Pw(Vn-1,Vn) (4.1)
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and we say that such a probability measune#sonable

We are interested in characterising the ¥étsf probability 1 and their links with the different notions
of simple winning strategies. We remark that, in generahd@f-Mazur games do not characterise sets
of probability 1. In other words, the notions of large setd apts of probability 1 do not coincide in
general on finite graphs. Indeed, there exist some larg@Eptebability 0. We present here an example
of such sets:

Example 4.2(Large set of probability 0). We consider the complete grafy 12 on {0,1,2} and the
setW = {(wwR)i>o € Path$Go12,2) : w; € {0,1,2}*}, where for any finite wordr € {0,1,2}* given
by 0 = a(1)---a(n) with a(i) € {0,1,2}, we letoR = g(n)---g(1). In other wordsW is the set of
runsp starting from 2 that we can divide into a consecutive seqai@hdinite words and their reverse. It
is obvious that PI. 0 has a winning strategy for the BanacltMaameGo 1 2,2,W) and thus thatV is
large. On the other hand, K is the reasonable probability measure given by the weights 1 for any

e € E, then we can verify tha®(W) = 0. Indeed, we have
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For certain families of sets, we can however have an equigalbetween the notion of large set and
the notion of set of probability 1. It is the case for the fanaf setsW representingo-regular properties
on finite graphs (se€|[9]). In order to prove this equivaldiocev-regular sets, Varacca and Volzer have
in fact used the fact that for these sets, the Banach-Mazuegspositionally determined ([1]) and that
the existence of a positional winning strategy for PI. O iepP(W) = 1. This latter assertion follows
from the fact that every positional strategy is bounded &t by the Borel-Cantelli lemma, the set of
plays consistent with a bounded strategy is a set of prabalil Nevertheless, ¥V does not represent
an w-regular properties, it is possible thatis a large set of probability 1 and that there is no positional
winning strategy for Pl. 0 and even no bounded or move-cogntiinning strategy.

Example 4.3 (Large set of probability 1 without a positional/ bounded/ move-counting winning
strategy). We consider the complete grag@y i on {0,1} and the reasonable probability measere
given bywe = 1 for anye€ E. Leta, = Y3 k. We letW = {(0k)k>1 € {0,1}? : 01 = 0 and gy, =
1 for somen > 1} and¥ = (Gg 1,0,W). Since PI. 0 has a winning strategy f6r we deduce that/ is a
large set. We can also compute tR4¥V) = 1 because if we denote i, n > 1, the set

An = {(0k)k>1 € {0,1}* : 05, = 1 ando,,, = 0 for anym < n},

we have: _ 1

W — Un>1An and P(An) — F
On the other hand, there does not exist any positional (réspinded) winning strategy for PI. O.
Indeed, iff is a positional (resp. bounded) strategy for PI. O such i@t (resp. f () for any i) has
length less tham, then PI. 1 has just to start by playiag zeros so that Pl. 1 does not reach the index
an.1 and afterwards to complete the sequence by a finite numberas 2o reach the next indey, and
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so on. Moreover, there does not exist any move-counting imgnstrategyh for PI. 0 because PI. 1 can
start by playinga, zeros so thah(0,1)| < nand because, at each stefl. 1 can complete the sequence
by a finite number of zeros to reach a new indgxsuch thath(0,k)| < n.

On the other hand, we can show that the existence of a mowdiaguvinning strategy for PL. O
impliesP(W) = 1. The key idea is to realise that given a move-counting wigistrategyh, the strategy
h(-,n) is positional.

Proposition 4.4. Let¥ = (G,vp,W) be a Banach-Mazur game on a finite graph and P a reasonable
probability measure. If Pl. 0 has a move-counting winnirmgtegy for¢, then RW) = 1.

Proof. Let h be a move-counting winning strategy Bf. 0. We denote byf, the strategyh(-,n). Each
set

Mp := {p € Path$G,vp) : p is a play consistent witffi, }

has probability 1 sincé, is a positional winning strategy for the Banach-Mazur g&@®e/p, My). More-
over, if p is a play consistent witti, for eachn > 1, thenp is a play consistent with. In other words,
sinceh is a winning strategy, we g¢f,M, C W. Therefore, a®(M,) = 1 for all n, we know that
P(NyMn) = 1 and we conclude th&(W) = 1. O

Let us notice that the converse of Proposifion 4.4 is falsgeimeral. Indeed, Examdle 4.3 exhibit a
large seW of probability 1 such that Pl. 0 has no move-counting winrstigitegy. However, ¥V is
a countable intersection oé-regular sets, then the existence of a winning strategy dd Pnplies the
existence of a move-counting winning strategy for PlI. O.

Proposition 4.5. Let¥ = (G,vp,W) be a Banach-Mazur game on a finite graph where W is a countable
intersection ofw-regular sets W. Pl. 0 has a winning strategy if and only if Pl. 0 has a moventg
winning strategy.

Proof. LetW = ~1Wh whereW, is anw-regular set and a winning strategy of PI. O fo¥. For any

n> 1, the strategyf is a winning strategy for the Banach-Mazur gaf@vo,W,). Thanks tol[1], we

therefore know that for any > 1, there exists a positional winning stratefjyof PI. 0 for (G, Vo, Wh).
Let@: N — Nsuch that for ank > 1, {n € N: ¢(n) =k} is an infinité set. We consider the move-

counting strategyl(vln) = fom) (V). This strategy is winning because each ptagonsistent witth is a
play consistent wittf, for anyn and thus

{p € Path$G,vp) : p is a play consistent with}
- ﬂ{p € PathgG,vp) : pis a play consistent Witrﬁn}

n
CWa =W.
n

O

Remark4.6. We cannot extend this result to countable unioneeakgular sets because the set of count-
able unions ofw-regular sets contains the open sets and Example 3.4 eedhibiBanach-Mazur game
whereW is an open set and PI. 0 has a winning strategy but no moveinguminning strategy.

2Such a mag exists because one could build a surjectiorlN — N x N and then letp= g wherew(n) = (1(n), 2(n)).
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Remark4.7. We also notice that NV is a countable intersection of-regular sets, thew is large if and
only if W is a set of probability 1. Indeed, the notions of large setssats of probability 1 are stable by
countable intersection and we know thabaegular set is large if and only if it is of probability AI[9].

As a consequence of Remark]4.7, we have that i§ awSregular sets, as defined [ [2], the ¥ét
is large if and only ifW is a set of probability 1. Indeed, it is shown ir [6, 7] tha&regular sets are
countable intersection @b-regular sets. Nevertheless, the following example shbas tinlike the case
of w-regular sets, positional strategies are not sufficientdregular sets.

Example 4.8 (wSregular set with a move-counting winning strategy and witlout a positional/
bounded winning strategy). We consider the complete gra ; on {0,1} and the setV correspond-

ing to thewS-regular expression(0*1)*051)“, which corresponds to the language of words where the
number of consecutive 0 is unbounded. The move-countiagesty which consists in playingconsec-
utive O’s at thenth step is winning for Pl. 0. However, clearly enough PI. Oglnet have a positional
(nor bounded) winning strategy fav.

Example[4.2 shows that Remdrk14.7 does not extend-ttontext-free sets. Another notion of
simple strategies, natural inspired by Exanipld 4.2, is tht@n of last-move strategy. A stratedy
for PI. 0 is said to bdast-moveif it only depends on the last move of Pl. 1, i.e. for ang V, for
any 11 € FinPath$G,v), f(m) € FinPath$G,last(rr)) and a playp is consistent withf if it is of the
form (15 f(7%))i>1. It is obvious that there exists a last-move winning stratiy Pl. O in the game
described in Example_4.2. In particular, we deduce that #istence of a last-move winning strategy
for W does not imply thatVv has probability 1. Example 4.2 allows also us to see thatxttstemce of a
last-move winning strategy does not imply in general thetexice of a move-counting winning strategy
or a bounded winning strategy. Indeed, \létbe the set{ (wwR); € Path$Go12,2) : Wi € {0,1,2}*}.
SinceP(W) = 0 (and thusP(W) # 1), we know that PIl. 0 has no move-counting winning strategy b
Propositio 4.4 and no bounded winning strategy.

The notion of last-move winning strategy is in fact incongide with the notion of move-counting
winning strategy and the notion of bounded winning strateggleed, on the complete gragy on
{0,1}, if we denote byW the set of runs iy 1 such that for any > 1, the word I appears, then PI. 0
has a move-counting winning strategy for the gaig,0,W) but no last-move winning strategy. In
the same way, if we denote B the set of aperiodic runs 0B ;1 then PIl. 0 has a 1-bounded winning
strategy for the gam@Gg 1,0,W) but no last-move winning strategy (it suffices for PI. 1 toypdd each
time the same word).

5 Generalised Banach-Mazur games

Let¥ = (G,vo,W) be a Banach-Mazur game on a finite graph. We know that theeexistof a bounded
winning strategy or a move-counting winning strategy of@Pfor ¢ implies thatP(W) = 1 for every
reasonable probability measuPe Nevertheless, it is possible thafW) = 1 and PI. 0 has no bounded
winning strategy and no move-counting winning strategyafiiple[4.8). We therefore search a new
notion of strategy such that the existence of such a winrtiregeg)y impliesP(W) = 1 and the existence
of a bounded winning strategy or a move-counting winningtetfy imply the existence of such a winning
strategy. To this end, we introduce a new type of Banach-kgames:

Definition 5.1. A generalised Banach-Mazur gareon a finite graph is a tuples, vo, @, @1, W) where

G = (V,E) is a finite directed graph where every vertex has a succegsarV is the initial state,
W C Path$G, vp), and@ is a map on FinPatki&, vo) such that for anyt € FinPath$G, vo),

@(m) C 2 (FinPath$G, last(m))) \ {0} and @(m) # 0.
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A generalisdﬁ Banach-Mazur gam& = (G,vp, @, @, W) on a finite graph is a two-player game
where PI. 0 and PI. 1 alternate in choossgjs of finite pathas follows: Pl. 1 begins with choosing
a set of finite path$1; € @ (vp); PI. 0 selects a finite patg € M, and chooses a set of finite paths
M, € @(m); Pl 1. then selects, € M, and proposes a sBt; € @ (%) and so on. A play o is thus
an infinite pathmm 7e78%. .. in G and we say that PI. 0 wins if this path belongdowhile PI. 1 wins if
this path does not belong W.

We remark that if we letpa(m) := {{m'} : ™ € FinPath$G, last(m))} for any 7 € FinPath$G, vo),
then the generalised Banach-Mazur game given ®yo, @hal, @ai, W) coincides with the classical
Banach-Mazur gaméG,vo,W). We also obtain a game similar to the classical Banach-Mgauore
if we consider the functiop(m) = & (FinPath$G, last(r))). On the other hand, if we conside( ) :=
{{m'} : ' € FinPath$G, last(m)), || = 1}, we obtain the classical games on graphs such as the ones
studied in[[5].

We are interested in defining a mggp such that PI. O has a winning strategy {@, Vo, @, @ai, W)
if and only if P(W) = 1. To this end, we notice that we can restrict actions of Ply fobcing each set
in @ (1) to be “big” in some sense. The idea to charactei§4') = 1 is therefore to force PI. O to play
with finite sets of finite paths of conditional probabilitygigier thana for somea > 0.

Definition 5.2. Let¥ = (G, vp, W) be a Banach-Mazur game on a finite grapla,reasonable probability
measure and > 0. An a-strategyof Pl. O for¥ is a strategy of PI. O for the generalised Banach-Mazur
gamega = (67V07 (pav%allvw) where

@ (1) = {I‘I C FinPath$G, last(m)) : P( U CyI(nn’)‘CyI(n)) > o andllis finite}.
el

We recall that, given two eveni, B with P(B) > 0, the conditional probability?(A|B) is defined by
P(A|B) := P(ANB)/P(B).

We notice that every bounded strategy can be seen asstrategy for some > 0, since for any
N > 1, there exist& > 0 such that for anyt of length less thaiN, we haveP({r}) > a. We can also
show that the existence of a move-counting winning strateg#l. 0 implies the existence of a winning
a-strategy for PI. O for every & a < 1.

Proposition 5.3. Let¥ = (G,vp,W) be a Banach-Mazur game on a finite graph. If Pl. 0 has a move-
counting winning strategy, then PI. 0 has a winnimestrategy for everg < a < 1.

Proof. Let P be a reasonable probability measunea move-counting winning strategy for PI. 0 and
0 < a < 1. We denote by, the positional strategy defined by

on(V) = h(v,1) h(lasth(v,1)),2) --- h(lasth(v,1) h(lasth(v,1)),2)---),n).

Let us notice that the definition of thgy’s implies that for any increasing sequener), a play of the
form

T4 On, (last(7m)) T& gn,(last(7g)) --- 7k On, (last(7k)) - (5.1)

is consistent withh. Sinceg, is a positional strategy, we know that each set

Mp = {p € Path$G,vp) : pis a play consistent withg, }

SWe only present here a generalisation of Banach-Mazur gamésite graphs but this generalisation could be extended
to Banach-Mazur games on topological spaces by askingdghatf non-empty open sé; @ (O) is a collection of non-empty
open subsets d@.
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has probability 1. In particular, for any € FinPath$G, vp), we deduce tha®(M,|Cyl(mp)) = 1. Since

Mn N Cyl(T) € U Cyl(momgs(last(m))),
reFinPath$G,last(p))

we have
P( U Cy'(fbngnUast(n)))(Cyl(r@)) =1

nieFinPath$G,last(mp))

and since FinPatli, last1p)) is countable, we deduce that for any> 1, any p € FinPath$G, Vo),
there exists a finite subsB, () C FinPath$G, last(1p)) such that

F’( U Cy'(’bﬂgn(laslin)))(cyl(m))za.

TeMn(To)
We denote by1/,(m) the set{ g, (last(m)) : me My(m)} and we let

The above-defined stratedyis therefore a winningr-strategy for Pl. 0 since each play consistent with
f is of the form [5.1) for some sequeng@®) and thus consistent wit O

Moreover, the existence of a winnimg strategy for somer > 0 still impliesP(W) = 1.

Theorem 5.4. Let¥ = (G,vp,W) be a Banach-Mazur game on a finite graph and P a reasonable prob
ability measure. If Pl. 0 has a winning-strategy for somer > 0, then RW) = 1.

Proof. Let f be a winninga-strategy. We consider an increasing seque@g®,>1 such that for any
n> 1, anymof lengtha,, eachrt’ € f(m) has length less tham,, ; — an; this is possible because for any
m, f(m) is a finite set by definition ofr-strategy. Without loss of generalitywe can even assume that
for anyn > 1, anym of lengtha,, eachrt’ € f(m) has exactly length,,; — a,. We therefore let

A= {(0k)k=1 € Path§G, Vo) : #{Nn: (Ok)a,+1<k<an; € F((Ok)1<k<a,)} = @}

In other words( ok)k>1 € Aif (0k) can be seen as a play wheréas been played on an infinite number
of indicesa,. Sincef is a winning strategyAis included inW and it thus suffices to prove thfA) = 1.
We first notice that for anypn > 1, anyn > m, if we let

Bmn = {(Ok)i=1 € Path$G, Vo) : (0k)aj+1<k<aj, & F((0k)1<k<a;), YM< j < n},

thenP(Bmp) < (1—a)™1 Masf is ana-strategy. We therefore deduce that for amy 1,

P( N Brn) =0

and sinceA® = U1 N Bmn, We conclude thalP(A) = 1. U
m>11 In=m

4Let 1 be a finite path and,; > max{|7| such thatr € f(71)}. One can defind (1) as the set of finite paths of lengthnj;
such thatr is a prefix ofa, for somer € (). Given a playp, one can show that is consistent withf if and only if p is
consistent withf .
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If W is a countable intersection of open sets, we can prove theecsmof Theoremn 5.4 and so obtain
a characterisation of sets of probability 1.

Theorem 5.5. Let¥ = (G,vp,W) be a Banach-Mazur game on a finite graph where W is a countable
intersection of open sets and P a reasonable probabilitysuea Then the following assertions are
equivalent:

1. P(W)=1,
2. PL. 0 has a winningr-strategy for somer > 0,
3. Pl. 0 has a winningr-strategy for all0 < a < 1.

Proof. We have already proved 2> 1., and 3 =- 2. is obvious.

1. =3 LetO<a <1l LetW=_1W, whereWy’s are open sets. Sind®W) = 1, we deduce
that for anyn > 1, P(W,) = 1. We can therefore define a winningstrategyf of PI. 0 as follows:

if Cyl (1) C N_1Wk and Cyl11) ¢ Wh, we let f (1) be a finite sefl C FinPath$G, last(r7)) such that

P(Un’el‘l CyI(nn’)|CyI(n)> > a and for anyrt € M, Cyl(rr') € Wh. Such a finite seffl exists because

W, has probability 1 and\, is an open set, i.e. a countable union of cylinders. This lcoles the
proof. O

Remark5.6. We cannot hope to generalise the latter result to anWsd¥lore precisely, there exist sets
of probability 1 for which no winninga-strategy exists. Indeed, given a ¥¢f on the one hand, the
existence of a winningr-strategy folW implies the existence of a winning strategy W and thus in
particular such &V is large. On the other hand, we know that there exists somgnaéia particular not
large) set of probability 1 (see Examplel4.2). However, ane ask whether the existence of a winning
a-strategy is equivalent to the fact th&tis a large set of probability 1.

WhenW is a countable intersection of open sets, we remark thatgherglised Banach-Mazur game
Gy = (G,Vo, @, @a, W) is in fact determined.

Theorem 5.7. Let%, be the generalised Banach-Mazur game give&hy-= (G, Vo, @y , ®hai, W) where
G is a finite graph, W is a countable intersection of open setsRa reasonable probability measure.
Then the following assertions are equivalent:

1. (W) <1,
2. Pl. 1 has a winning strategy f&f, for somea > 0,
3. Pl. 1 has a winning strategy f&f, forall 0 < a < 1.

Proof. We deduce from Theoreim 5.5 that2 1. becaus¢/, is a zero-sum game, and-3- 2. is obvious.
1 = 3. LetW = ny_;W, with P(W) < 1 andW, open. We know that there exists> 1 such that
P(W,) < 1. It then suffices to prove that Pl. 1 has a winning strategytfe generalised Banach-Mazur
game(G, Vo, @, hal, W) for all 0 < o < 1. Without loss of generality, we can thus assume\Was an
open set. We recall thaV is open if and only if it is a countable union of cylinders. &rany strategy
of PI. 1 is winning ifW = 0, we also suppose thét = 0.

Let 0< a < 1. We first show that there exists a finite pathe FinPath$G, vp) such that any set
M, € @y (@) contains a finite patiy satisfying

P(W|Cyl(mm)) <P(W) < 1. (5.2)

Let
lw := inf{P(W|CyI(m)) : T € FinPath$G, vp)}. (5.3)
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SinceW is a non-empty union of cylinders, there exists FinPath$G, vp) such thaP(W|Cyl(0o)) = 1.

We remark thaP(W) = 3 /-0 P(W|CyI(1))P(CyI(11)) and ¥ r|n—|o| P(Cyl(1)) = 1. Therefore,
sinceP(W|Cyl(g)) > P(W), we deduce that there existsc FinPath$G,vp) with |11] = |g| such that
P(W|Cyl(m)) < P(W). We conclude thaty < P(W) and thus, by definition ofy, there existsg €

FinPath$G, vp) such that

-+ (POWICYI(78)) — ) < P(W). (5.4)

LetMN; € @ (mm). We considery, ..., T, € My andoy, ..., 0n € FinPath$G, last 1)) such that cylinders
Cyl(ti), Cyl(o;) are pairwise disjoint ., Cyl(1) UL, Cyl(;) and

Path$G, last(rs)) = LnJCyI(ri) U Lmj Cyl(gj). (5.5)
i—1 =1

Assume that for all K i < n, we have
P(W|Cyl(raT)) > P(W). (5.6)
Then, we get

P(WI|Cyl(m))

= iP(WﬂCyl(nlri)]Cyl(nl)) + g P(WNCyl(rmoj)|Cyl(rm)) by disjointness and (5.5)
i= =1

= 3 PWICI() PCYI(RT)[CyI() + 5 POWIC(750,) P(Cy ) Cy(73)
i= =1

> P(W) _iP(Cyl(nlri)]Cyl(nl)) + lw i P(Cyl(mno;)|Cyl(mm)) by (5.6) and((5.8)
i= =

> P(W) _ZlP(Cyl(ﬂﬂi)lel(ﬂl)) +iw (1~ _ZP(Cyl(Hﬂi)ICyl(m))) by (5.5)

>PW)P( | Cyl(mm)|Cyl(r)) +lw(1—P( | Cyl(ram)|Cyl(m))) by properties ofii's

melly nell;

>PW)a+Iw(l—a) (becausdl, € @, (mm) andP(W) > lw)

and thusP(W) < Iw + 2 (P(W|Cyl(ms)) — lw) which is a contradiction wit(514). We conclude that if
mq is given by [5.4), then any sél, € @, () contains a finite pathe satisfying [(5.2).

We can now exhibit a winning strategy for Pl. 1. We assume Rthat begins with playing a finite
pathm satisfying [(5.4). Letf be ana-strategy. We know that PI. 1 can select a finite patte f(m)
satisfying [5.2), i.eP(W|Cyl(mn 1)) < P(W). By repeating the above method fronve, we also deduce
the existence of a finite patts such that any sdil; € @, (Ta7%78) contains a finite pathy satisfying
P(W|Cyl(mmersm)) < P(W). We can thus assume that PI. 1 plays such a finite ga#éimd then selects
m € f(mmrms) such thatP(W|Cyl(raersm)) < P(W). This strategy is a winning strategy for PI. 1.
Indeed, a$V is an open set and thus a countable union of cylindePM |Cyl(z - -- TBn)) < P(W) < 1
for anyn, thenmgerg--- ¢ W. O

Corollary 5.8. Let0 < a < 1. The generalised Banach-Mazur ga#ie= (G, Vo, @ , @ai, W) is deter-
mined when W is a countable intersection of open sets. Ma@galy, Pl. 0 has a winning strategy for
4, if and only if AW) = 1, and PI. 1 has a winning strategy féf, if and only if AW) < 1.



32 Simple strategies for Banach-Mazur games and fairly cogystems

Since the existence of a bounded winning strategy for Pl. flié®s the existence of a winning-
strategy for Pl. 0 and the existence of a move-counting wipsirategy for PIl. O implies the existence
of a winning a-strategy for Pl. 0, we deduce from Examplel3.3 and Examgldtfat in general, the
existence of a winningr-strategy for Pl. 0 does not imply the existence of a moveaiting winning
strategy Pl. 0 and the existence of a bounded winning sirdtegPl. 0. On the other hand, we know
that there exists a Banach-Mazur game for which PI. 0 has adembwinning strategy and no last-move
winning strategy. The existence of a winniagstrategy thus does not imply in general the existence of a
last-move winning strategy. Conversely, if we considergame(Gp 1,0,W) described in Example 4.2,
Pl. 0 has a last-move winning strategy but no winningtrategy (a®(W) = 0). The notion ofx-strategy
is thus incomparable with the notion of last-move strategy.

6 More on simple strategies

We finish this paper by considering the crossings betweediffeent notions of simple strategies and

the notion of bounded strategy i.e. the bounded lengthiomyistrategies, the bounded move-counting
strategies and the bounded last-move strategies. Obyijdhslexistence of a bounded length-counting
winning strategy for PI. 0 implies the existence of a lengblmnting winning strategy for Pl. 0, and we

have this implication for each notion of bounded strategre$their no bounded counterpart. We start by
noticing that the existence of a bounded move-counting iwstrategy is equivalent to the existence
of a positional winning strategy.

Proposition 6.1. Let¥ = (G,vo,W) be a Banach-Mazur game on a finite graph. PIl. 0 has a bounded
move-counting winning strategy if and only if PI. 0 has a posal winning strategy.

Proof. Leth be a bounded move-counting winning strategy for PIl. 0. WetkebyC,, ... ,Cy the bottom
strongly connected components (BSCC)&fLet 1<i < N. Sinceh is a bounded strategy ar@lis
finite, there exist some finite patb\ép, ey E) C G such that for any € G;, for anyn > 1,

h(v,n) € {W:(Li),...,Wl((:)}.

Letve V. Ifve G, we letf(v) = oow(l')alw(zwog...wlg) wheregj are finite paths it€; such thatf (v) is
a finite path inC; starting fromv. If v ¢ |J;C;, we let f(v) = g, whereg, starts fromv and leads into a
BSCC ofG. The positional strategy is therefore winning as each playconsistent withf can be seen
as a play consistent with O

The other notions of bounded strategies are not equivadeantyt other notion of simple strategy.

Example 6.2(Set with a bounded length-counting winning strategy and witout a positional win-

ning strategy). Let Gg1 be the complete graph di®, 1}, (p,) an enumeration of finite words 0, 1}

and prarget= 0p102---. We consider the s&W = {0 € {0,1}“ : #{i > 1: 0(i) = prargei)} = }. Itis
evident that PI. 0 has a bounded length-counting winnirategy for the gaméGg 1,0,W). However,

PI. 0 has no positional winning strategy. Indeed, i§ a positional strategy such thif0) =a(1) - - - a(k),

then PI. 1 can play according to the stratégiefined byh(o(1)---o(n)) = o(n+1)--- g(N) 0 such that
foranyn+1<i <N, g(i) # prargef(i), Prarge N + 1) # 0 and for any i <k, a(i) # prargef N+i+1).
Example 6.3 (Set with a bounded last-move winning strategy and without a psitional winning
strategy). Let Go12 be the complete graph di), 1,2}. For anyg: {0,1,2}* — {0,1}, if we consider

the seW := {(15@(7%))i>1: 15 € {0,1,2}*}, then PI. 0 has a 1-bounded last-move winning strategy given
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by @ for the gamegGo12,2,W). On the other hand, we can choageuch that PI. 0 has no positional
winning strategy. Indeed, it suffices to cho@se{0,1,2}* — {0,1} such that for anyt € {0,1,2}*, any
n>1,anyo(1),...,0(n) € {0,1,2}, there existk > 1 such thatp(12¥) # (1) and for any I<i < n—1,
o(m2*a(1)---a(i)) # o(i+1). Such a function exists because the{€efl, 2}* is countable. Therefore,
Pl. 0 has no positional winning strategy for the gaf@g12,2,W) because, iff is a positional strategy
and f(2) = a(1)...a(n), then PI. 1 can play consistent with the stratégyefined byh(r) = 2X such
thatg(m2¥) # (1) and for any 1<i <n—1, ¢(m2*a(1)--- (i) # a(i+1). PI. 0 has thus a 1-bounded
last-move winning strategy and no positional winning siggtfor the game¢Go 1 2,2,W).

Example 6.4(Set with a bounded winning strategy and without a bounded legth-counting win-
ning strategy). Let Go123 be the complete graph of0,1,2,3}. For any¢: {0,1,2,3}* — {0,1},

if we denote byW the set of rung such that #n > 1:¢(p(1)...p(n)) =p(n+1)} =, then PI. 0
has a 1-bounded winning strategy given gyfor the game(Gp123,2,W). We now show how we
can definep so that Pl. 0 has no bounded length-counting winning styateget n, = zik:l?,i. We
choose@: {0,1,2,3}* — {0,1} such that for anyk > 1, any r € {0,1,2,3}* of length ng and any
o(1),...,0(k) € {0,1,2,3}, there existg € {2,3}* of length X such thatp(rr 2) # o(1) and for any
1<i<k—1,¢(mr20(1)---a(i)) # a(i+1). Such a function exists because the cardinality8}%

is equal to the cardinality of0, 1,2, 3} and the length oftt 20(1) - - - g (k) < n,1. Therefore, PI. 0 has
no bounded length-counting winning strategy becaudgeisfak-bounded length-counting strategy (for
somek € N) and f(2,n¢ + k+ 1) = g, then PI. 1 can start by playind“2 2, wherert € {2,3}* of length
2k such thatp(rrr 2) # o(1) and forany I<i <k—1,¢9(rmr20(1)---a(i)) # a(i+1), and if Pl. 1 keep
playing with same philosophy, then PI. 1 wins the play. Pla thus a 1-bounded winning strategy and
no bounded length-counting winning strategy for the géa@e; 2, 2,W).

The relations between the different notions of simple sgiats on a finite graph can be summarised as
depicted in Figurgl1l. We draw attention to the fact that theasion is very different in the case of infinite
graphs. For example, a positional strategy can be unbounidecotion of length-counting winning
strategy is not equivalent to the notion of winning stratégycept if the graph is finitely branching),
and the notion of bounded move-counting winning strategyPio 0 is not equivalent to the notion of
positional winning strategy.

Example 6.5(Set on an infinite graph with a bounded move-counting winningstrategy and without

a positional winning strategy). We consider the complete gra@h onN and the gam& = (Gy,0,W)
whereW = {(0gx) e N®:¥n>1 3k>1, (0o 0kr1) = (n,n+1)}. Pl. 0 has a bounded move-counting
winning strategy given bf(v,n) = n n+ 1 but no positional winning strategy.
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