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Probabilistic program analysis aims to quantify the probability that a given program satisfies a re-

quired property. It has many potential applications, from program understanding and debugging

to computing program reliability, compiler optimizations and quantitative information flow analysis

for security. In these situations, it is usually more relevant to quantify the probability of satisfy-

ing/violating a given property than to just assess the possibility of such events to occur.

In this work, we introduce an approach for probabilistic analysis of open programs (i.e. pro-

grams with undefined identifiers) based on game semantics and model counting. We use a symbolic

representation of algorithmic game semantics to collect the symbolic constraints on the input data

(context) that lead to the occurrence of the target events (e.g. satisfaction/violation of a given prop-

erty). The constraints are then analyzed to quantify how likely is an input to satisfy them. We use

model counting techniques to count the number of solutions (from a bounded integer domain) that

satisfy given constraints. These counts are then used to assign probabilities to program executions

and to assess the probability for the target event to occur at the desired level of confidence. Finally,

we present the results of applying our approach to several interesting examples and illustrate the

benefits they may offer.

1 Introduction

In order to understand program behaviour better, apart from finding out whether a behaviour (execution)

can successfully terminate or not, we often need to know how likely a behaviour is to occur. In particular,

we want to distinguish between what is possible behaviour (even with extremely low probability) and

what is likely behaviour (possible with higher probability). In this work, we show how to calculate the

probability of behaviours and estimate the reliability of programs by using a combination of (symbolic)

game semantics and model counting.

Game semantics [1, 17] is a technique for building models of programs that are fully abstract, i.e.

sound and complete with respect to observational equivalence. The notion of observational equivalence

relies on comparing the outcomes of placing programs in all possible syntactic contexts (environments).

Its algorithmic subarea [15, 8, 7, 18] aims to apply game semantics models to software verification by

providing concrete automata-based representations for them. The key characteristics of game semantics

models are the following. They provide precise and compact summaries of observable (input and output)

program behaviour, without showing the explicit reference to a state (state manipulations are hidden).

There is a model for any open program with free (undefined) identifiers such as calls to library functions.

Finally, the models are generated inductively (compositionally) on the structure of programs, which is

often essential for the modular analysis of larger programs. Symbolic representation of game semantics

models [10] extends the (standard) regular-language representation [15] by using symbolic data values

instead of concrete ones for the inputs. This allows us to obtain compact models of programs by using

finite-state symbolic automata. Each complete symbolic play (accepting word) in the model corresponds

http://dx.doi.org/10.4204/EPTCS.256.1
http://creativecommons.org
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to a program execution (path), and it is guarded by a conjunction of constraints on the symbols, known

as play condition, which indicate under what conditions this play (word, execution) is feasible. If the

play condition is satisfied by some concrete values for symbols, then they represent input values that will

allow the execution to follow the specific path through the code. For the generation of symbolic game

models where each play is associated with a play condition we use the SYMBOLIC GAMECHECKER
1

tool [10]. Model counting is the problem of determining the number of solutions of a given constraint

(formula). The LATTE 2 tool [20] implements state-of-the-art algorithms for computing volumes, both

real and integral, of convex polytopes as well as integrating functions over those polytopes. In particular,

we use model counting techniques and the LATTE tool to estimate algorithmically the exact number of

points of a bounded (possibly very large) discrete domain that satisfy given linear constraints.

In this paper, we describe a method based on symbolic game models and model counting for per-

forming a specific type of quantitative analysis – the calculation of play probabilities and the program

reliability. Calculating the probability of a symbolic play (path) involves counting the number of solu-

tions to the play condition (by using model counting), and dividing it by the total space of values of the

inputs (context). We assume that the input values are uniformly distributed within their finite discrete

domain. We label each (complete) symbolic play with either success or failure depending on whether a

designated abort command is executed or not. Since the set of play conditions produced by the symbolic

game model is a complete partition of the given finite input domain, we can compute the reliability of

the program as the probability of satisfying any of the successful play conditions. To account for cycles

(infinite behaviours) in the model, we use bounded analysis. For a “while” command, a bound is set

for the exploration depth (i.e. the number of re-visited states). For an undefined (first-order) function,

we restrict the number of times the function can call its arguments when placed in the given bounded

context, thus obtaining a finite input domain.

The main contributions of this work are: (1) A demonstration of how to add path probabilities us-

ing (symbolic) algorithmic game semantics and model counting; (2) An application of our approach

to calculate the reliability of open programs; (3) A prototype implementation as part of SYMBOLIC

GAMECHECKER.

2 Programming Language

The use of meta-languages is very common in the semantics community. The semantic model is defined

for a meta-language, and a real programming language (C, ML, etc.) can be studied by translating it into

this meta-language and using the induced model. Here we consider Idealized Algol (IA), a well studied

meta-language introduced by Reynolds [22]. IA enables functional (typed call-by-name λ -calculus)

and imperative programming. For the purpose of obtaining an automata-based representation of game

semantics, we shall consider its second-order recursion-free fragment (IA2 for short). Its types are:

D ::= int | bool B ::= expD | com | varD T ::= B | B → T

where D, B, and T stand for data types, base types, and first-order function types, respectively. The

syntax of the language is:

M ::=x |v |skip |diverge |M opM | M;M | ifM thenM elseM |whileM doM

| M := M | !M | newD x :=v inM |mkvarDMM |λ x.M | MM

1https://aleksdimovski.github.io/symbolicgc.html .
2http://www.math.ucdavis.edu/~latte. UC Davis, Mathematics.

https://aleksdimovski.github.io/symbolicgc.html
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where x ranges over a countable set of identifiers, and v ranges over constants of type D, which includes

integers (n) and booleans (tt, ff ). The standard arithmetic-logic operations op are employed, as well as

the usual imperative constructs: sequential composition (; ), conditional (if), iteration (while), assignment

(:=), de-referencing operator (!) which is used for reading the value stored in a variable, a “do-nothing”

command (skip), and a divergence command (diverge). Block-allocated local variables are introduced

by a new construct, which initializes a variable and makes it local to a given block. They are also called

“good” (storage) variables since what is read from a variable is the last value written into it. The construct

mkvar is used for creating so-called “bad” variables, which do not behave like genuine storage variables

[16]. There are also standard functional constructs for function definition and application. Well-typed

terms are given by typing judgements of the form Γ ⊢ M : T , where Γ = x1 : T1, . . . ,xk : Tk is a type

context consisting of a finite number of typed free identifiers. Typing rules are given in [1, 22].

The operational semantics is defined by a big-step reduction relation:

Γ ⊢ M,s =⇒ V,s′

where Γ ⊢ M : T is a term in which all free identifiers from Γ are variables, i.e. Γ = x1 : varD1, . . . ,xk :

varDk, and s, s′ represent the state before and after reduction. The state is a function assigning data values

to the variables in Γ. Canonical forms (values) are defined by V ::= x | v | λ x.M | skip | mkvarDMN.

Reduction rules are standard (see [1, 22] for details). Given a closed term ⊢ M : com, which has no free

identifiers, we say that M terminates if ⊢ M, /0 =⇒ skip, /0. We define a program context C[−] : com to

be a term with zero or more holes [−] in it, such that if Γ ⊢ M : T is a term of the same type as the hole

then C[M] is a well-typed closed term of type com, i.e. ⊢ C[M] : com. We say that a term Γ ⊢ M : T is an

approximate of a term Γ ⊢ N : T , written Γ ⊢ M⊏
∼ N, if and only if for all contexts C[−] : com, such that

⊢ C[M] : com and ⊢ C[N] : com, if C[M] terminates then C[N] terminates. If two terms approximate each

other they are considered observationally-equivalent, denoted by Γ ⊢ M ∼= N. In general, observational

equivalence is very difficult to reason about due to the universal quantification over all syntactic contexts

C[−] in which the terms can be placed.

3 Symbolic Game Models

We now give a brief overview of symbolic representation of the algorithmic game semantics for IA2

[10]. Let Sym be a countable set of symbolic names, ranged over by X, Y , Z. For any finite W ⊆ Sym,

the function new(W) returns a minimal symbolic name which does not occur in W , and sets W := W ∪
{new(W)}. A minimal symbolic name not in W is the one which occurs earliest in a fixed enumeration of

all possible symbolic names. Let Exp be a set of expressions, ranged over by e, generated by data values

(v ∈ D), symbols (X ∈ Sym), and arithmetic-logic operations (op). We use a to range over arithmetic

expressions (AExp) and b over boolean expressions (BExp).

Let A be an alphabet of letters. We define a symbolic alphabet A
sym induced by A as follows:

A
sym = A ∪{?X,e | X ∈ Sym,e ∈ Exp}

The letters of the form ?X are called input symbols. They represent a mechanism for dynamically gen-

erating new symbolic names. More specifically, ?X creates a stream of fresh symbolic names, binding

X to the next symbol from its stream, new(W), whenever ?X is evaluated (met). We use α to range over

A
sym. Next we define a guarded alphabet A

gu induced by A as the set of pairs of boolean conditions

and symbolic letters:

A
gu = {[b,α〉 | b ∈ BExp,α ∈ A

sym}
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A guarded letter [b,α〉 is α only if b evaluates to true otherwise it is the constant /0 (the language of /0 is

/0), i.e. if (b = tt) thenα else /0. We use β to range over A
gu. We will often write only α for the guarded

letter [tt,α〉. A word [b1,α1〉 · [b2,α2〉 . . . [bn,αn〉 over A
gu can be represented as a pair [b,w〉, where

b = b1 ∧ b2 ∧ . . . ∧ bn is a boolean condition and w = α1 ·α2 . . .αn is a word of symbolic letters.

We now describe how IA2 terms can be translated into symbolic regular languages and symbolic

automata. Each type T is interpreted by an alphabet of moves A[[T]] defined as follows:

A[[expD]] = {q}∪A[[D]], A[[com]] = {run,done}, A[[varD]] = {write(a),read,ok,a | a ∈ A[[D]]}

A
gu

[[B
〈1〉
1 →...→B

〈k〉
k →B]]

= ∑
1≤i≤k

A
gu〈i〉
[[Bi]]

+A
gu

[[B]]

where A[[int]] = Z, A[[bool]] = {tt, ff}, and + denotes a disjoint union of alphabets. Function types are

tagged by a superscript 〈i〉 to keep record from which type, i.e. which component of the disjoint union,

each move comes from. The letters in the alphabet A[[T]] represent the moves, i.e. observable actions that

a term of type T can perform. Each move is either a question (a demand for information) or an answer (a

supply of information). For expressions in A[[expD]], there is a question move q to ask for the value of the

expression, and values from A[[D]] to answer the question. For commands, there is a question move run

to initiate a command, and an answer move done to signal successful termination of a command. For

variables, there are question moves for writing to the variable, write(a), which are acknowledged by the

answer move ok; and there is a question move read for reading from the variable, which is answered by

a value from A[[D]].

For any term, we define a (symbolic) regular-language which represents its game semantics, i.e.

its set of complete symbolic plays. A play is a sequence of moves played by two players in turns:

P (Player) which represents the term being modeled, and O (Opponent) which represents its context.

Every (complete) symbolic play represents the observable effects of a completed execution (path) of the

given term. It is given as a guarded word [b,w〉, where b is also called the play condition. Assumptions

about a symbolic play to be feasible are recorded in its play condition. For infeasible plays, the play

condition is unsatisfiable, thus no assignment of concrete values to symbolic names exists that makes the

play condition true. The regular expression for Γ ⊢ M : T , denoted as [[Γ ⊢ M : T]], is defined over the

guarded alphabet:

A
gu

[[Γ⊢T]] =
(

∑
x:T ′∈Γ

A
gu〈x〉
[[T ′]]

)

+A
gu

[[T]]

where moves corresponding to types of free identifiers are tagged with their names to indicate the origin

of moves. Hence, [[Γ ⊢ M : T]] contains only observable moves associated with types of free identifiers

from Γ (suitably tagged) as well as moves of the top-level type T .

The representation of constants is standard:

[[Γ⊢v :expD]]=q · v [[Γ⊢ skip :com]]=run ·done [[Γ⊢diverge :com]]= /0

For example, an integer or boolean constant v is modeled by a play where the initial question q (“what is

the value of this expression?”) is answered by the value of that constant v.

Free identifiers are represented by the so-called copy-cat regular expressions, which contain all pos-

sible behaviours of terms of that type, thus providing the most general context for an open term. Thus,

[[Γ,x : expD
〈x,1〉
1 → . . .expD

〈x,k〉
k → expD〈x〉⊢x : expD

〈1〉
1 → . . .expD

〈k〉
k → expD]]

= q ·q〈x〉 ·
(

∑
1≤i≤k

q〈x,i〉 ·q〈i〉·?Z
〈i〉
i ·Z

〈x,i〉
i

)∗
·?X〈x〉 ·X (1)
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[[op : expD
〈1〉
1 × expD

〈2〉
2 → expD]] = q ·q〈1〉·?Z〈1〉 ·q〈2〉·?Z′〈2〉 · (Z opZ′)

[[; : com〈1〉× com〈2〉 → com]] = run · run〈1〉 ·done〈1〉 · run〈2〉 ·done〈2〉 ·done

[[if : expbool〈1〉× com〈2〉× com〈3〉 → com]] = [tt,run〉 · [tt,q〈1〉〉 · [tt,?Z〈1〉〉·
(

[Z,run〈2〉〉 · [tt,done〈2〉〉+[¬Z,run〈3〉〉 · [tt,done〈3〉〉
)

· [tt,done〉

[[while : expbool〈1〉× com〈2〉 → com]] = [tt,run〉 · [tt,q〈1〉〉 · [tt,?Z〈1〉〉·
(

[Z,run〈2〉〉 · [tt,done〈2〉〉 · [tt,q〈1〉〉 · [tt,?Z〈1〉〉
)∗

· [¬Z,done〉

[[:= : varD〈1〉× expD〈2〉 → com]] = run ·q〈2〉·?Z〈2〉 ·write(Z)〈1〉 ·ok〈1〉 ·done

[[! : varD〈1〉 → expD]] = q · read〈1〉·?Z〈1〉 ·Z

cell
〈x〉
v = ([?X=v,read〈x〉〉 ·X〈x〉)∗ ·

(

write(?X)〈x〉 ·ok〈x〉 · (read〈x〉 ·X〈x〉)∗
)∗

Table 1: Symbolic representations of some language constructs

When a call-by-name non-local function x with k arguments is called, it may evaluate any of its argu-

ments, zero or more times, in an arbitrary order (hence, the Kleene closure *) and then it returns any

allowable answer X from its result type. Recall that the input symbol ?Z creates a stream of fresh sym-

bolic names for each instantiation of ?Z. Thus, whenever ?Z is met in a play, the mechanism for fresh

symbol generation is used to dynamically instantiate it with a new fresh symbolic name from its stream,

which binds all occurrences of Z that follow in the play until a new ?Z is met which overrides the previ-

ous symbolic name with the next symbolic name taken from its stream. For example, consider the term

f : expint〈f ,1〉 → expint〈f ,2〉 → expint〈f 〉 ⊢ f : expint〈1〉 → expint〈2〉 → expint, where f is an undefined

function with two arguments. Its symbolic model is:

q ·q〈f 〉 ·
(

q〈f ,1〉 ·q〈1〉·?Z
〈1〉
1 ·Z

〈f ,1〉
1 +q〈f ,2〉 ·q〈2〉·?Z

〈2〉
2 ·Z

〈f ,2〉
2

)∗
·?X〈f 〉 ·X (2)

The play corresponding to function “f ” which evaluates its first argument two times, after instantiating

its input symbols ?Z1 and ?X is given as: q ·q〈f 〉 ·q〈f ,1〉 ·q〈1〉 ·Z
〈1〉
1,1 ·Z

〈f ,1〉
1,1 ·q〈f ,1〉 ·q〈1〉 ·Z

〈1〉
1,2 ·Z

〈f ,1〉
1,2 ·X〈f 〉 ·X,

where Z1,1 and Z1,2 are two different symbolic names used to denote values of the first argument when it

is evaluated the first and the second time, respectively. Therefore, we are using the streaming symbol ?Z1

to create different symbolic names so that we can produce distinct values (independent from one another)

if ?Z1 is evaluated multiple times during the execution. Note that letters tagged with 〈f 〉 represent the

actions of calling and returning from the function f , while letters tagged with 〈f ,1〉 (resp. 〈f ,2〉) are the

actions caused by evaluating the first (resp. second) argument of f .

The representations of some language constructs “c” are given in Table 1. Observe that letter condi-

tions different than tt occur only in plays corresponding to “if” and “while” constructs. In the case of “if”

construct, when the value of the first argument given by the symbol Z is true then its second argument is

run, otherwise if ¬Z is true then its third argument is run. A composite term c(M1, . . . ,Mk) built out of a

language construct “c” and subterms M1, . . . ,Mk is interpreted by composing the regular expressions for

M1, . . . ,Mk and the regular expression for “c”. For example, we have:

[[Γ ⊢ if B thenM elseM′ : com]] = [[Γ ⊢ B : expbool〈1〉]] o
9 [[Γ ⊢ M : com〈2〉]] o

9 [[Γ ⊢ M′ : com〈3〉]] o
9 [[if]]

where [[if : expbool〈1〉 × com〈2〉 × com〈3〉 → com]] is defined in Table 1. Composition of regular ex-

pressions (o
9) is defined as “parallel composition followed by hiding” in CSP style [1]. The parallel

composition is matching (synchronizing) of the moves in the shared types, whereas hiding is deleting

of all moves from the shared types. Conditions of the shared (interacting) moves (guarded letters) in

the composition are conjoined, along with the condition that their symbolic letters are equal [10]. The
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cell
〈x〉
v regular expression in Table 1 is used to impose the good variable behaviour on a local variable x

introduced using newD x := v inM. Note that v is the initial value of x, and X is a symbol used to track

the current value of x. The cell
〈x〉
v behaves as a storage cell and plays the most recently written value in

x in response to read, or if no value has been written yet then answers read with the initial value v. The

model [[newD x :=v inM]] is obtained by constraining the model of M, [[varD x ⊢ M]], only to those plays

where x exhibits good variable behaviour described by cell
〈x〉
v , and then by deleting (hiding) all moves

associated with x since x is local and so not visible outside of the term [10].

The following formal results are proved before [10]. We define an effective alphabet of a regular

expression to be the set of all letters that appear in the language denoted by that regular expression. The

effective alphabet of a regular expression representing any term Γ ⊢ M : T contains only a finite subset

of letters from A
gu

[[Γ⊢T]], which includes all constants, symbols, and expressions used for interpreting free

identifiers, constructs, and local variables in M.

Proposition 1 For any IA2 term, the set [[Γ ⊢ M : T]] is a (symbolic) regular-language without infinite

summations defined over its effective finite alphabet. Moreover, a finite-state symbolic automata A [[Γ ⊢
M : T]] which recognizes it is effectively constructible.

Suppose that there is a special free identifier abort of type com. We say that a term Γ ⊢ M is safe 3

iff Γ ⊢ M[skip/abort]⊏∼ M[diverge/abort]; otherwise we say that a term is unsafe. We say that one play

is safe if it does not contain moves from A
〈abort〉
[[com]]

; otherwise we say that the play is unsafe.

Proposition 2 A term Γ ⊢ M : T is safe iff all plays in [[Γ⊢M :T]] are safe.

For example, [[abort : com〈abort〉 ⊢ skip ; abort : com]] = run · run〈abort〉 · done〈abort〉 · done, so this term

is unsafe since its model contains an unsafe play.

Example 3 Consider the term M:

n : expintn,abort : comabort ⊢ newint x := 0 in while(!x < n) do x :=!x+1;

if (!x > 1) then abort : com

The model for this term is given in Fig. 1 4. The dashed edges indicate moves of the environment (O)

and solid edges moves of the term (P). They serve only as a visual aid to the reader. Accepting states

are designated by an interior circle. Observe that the term communicates with its environment using

non-local identifiers n and abort. So in the model will only be represented actions associated with n and

abort as well as with the top-level type com. The input symbol ?X is used to keep track of the current

value of the local variable x (note that X occurs only in conditional part of plays). Each time the term

(P) asks for a value of n with the move qn, the environment (O) provides a new fresh symbol ?N for it.

Note that we consider all possible environments (contexts) in which a term can be placed. Therefore, the

undefined expression n may obtain different value at each call in the above term [15]. At this point, the

term (P) has three possible options depending on the current values of symbols N and X: it can terminate

successfully with done; it can execute abort and terminate; or it can run the assignment x:=x+ 1 and

ask for a new value of n.

3M[N/x] denotes the capture-free substitution of N for x in M.
4For simplicity, in examples we omit to write angle brackets 〈,〉 in superscript tags of moves.
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start

d

[?X=0,run〉 ?Nn doneabort?Nn
qn

[X<N∧?X=X+1,qn〉

[X≥N∧X>1,runabort〉

[X≥N∧X≤1,done〉

done

Figure 1: The symbolic game model for M.

4 Calculating Success and Failure Probabilities

In this section, we define the success and failure probability of terms, and show how they can be auto-

matically calculated using symbolic game models and model counting. We also show how to cope with

cases that introduce infinite behaviours.

4.1 Definition

We define the success probability as the probability that a term terminates successfully without hitting

any failure, such as running the abort command. On the other hand, the failure probability is the prob-

ability that a term hits a failure during its execution. The resulting symbolic game model is a set of

symbolic plays (words), each with a play condition. Some of these plays are unsafe (i.e. lead to a failure,

abortion); whereas some of them are safe (i.e. lead to a successful termination without abortion). The

plays are therefore classified in two sets: Ps which contains safe plays, and Pf which contains unsafe

plays.

Our discussion focusses on the case of computing probabilities for terms that have finite input do-

mains for all their plays (executions). This is achieved by constraining all identifiers from Γ to be of types

in which only finite sets of basic data values D are used. For example, we may consider only the basic

types over bool and intk = [0,k) = {0, . . . ,k−1} for any k > 0. We also need to bound the input domain

when undefined (first-order) functions are used. This case is handled separately in Section 4.2. Finally,

we restrict our attention on play conditions expressed as linear integer arithmetic (LIA) constraints over

symbols whose values are uniformly distributed over their finite input domain.

Given a symbolic play p ∈ [[Γ ⊢ M : T]], let IDp be the total space of possible values in its finite input

domain and let pcp be its play condition (constraint). We now show how to calculate the probability of p

occurring, denoted Pr(p). We use the LATTE tool to compute the number of elements of IDp that satisfy

pcp, denoted #(pcp). The size of IDp, denoted #(IDp), is the product of domain’s sizes of all symbols

instantiated in p, which correspond to all calls of free identifiers of types in which data values D are

used. Thus, we have: #(IDp) = ∏Z∈p |dom(Z) | and Pr(p) = #(pcp)/#(IDp), where |dom(Z) |= k if Z

is a symbol that represents a value from the finite domain intk. Note that the size of the input domain

(context) IDp for each play p can be different, and depends on how many symbols have been instantiated

in p that correspond to the data type D. The play conditions associated with plays from Ps and Pf define

disjoint input sets and cover the whole finite input domain, thus defining a complete partition of the finite

input domain. Finally, we define the success probability (resp., failure probability) as the probability of

evaluating the term Γ ⊢ M : T within a context (input) that enables all safe (resp., unsafe) plays:

Prs(Γ⊢M :T) = ∑p∈Ps
#(pcp)
#(IDp)

, Prf (Γ ⊢ M : T) = ∑p∈Pf
#(pcp)
#(IDp)

(3)
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Note that Prs(Γ ⊢ M : T)+Prf (Γ ⊢ M : T) = 1.

Example 4 Consider the term M′:

n : expintn
10,abort : comabort ⊢ if (n ≥ 5) then skip else abort: com

Its symbolic game model is:

run ·qn·?Nn ·
(

[N≥5,done〉+[N<5,runabort〉 ·doneabort ·done
)

Suppose that n ∈ [0,10) and that the possible values for n are independently and uniformly distributed

across this range. Thus, after instantiation of the input symbol ?N, there are one safe play (run · qn ·
Nn · [N ≥5,done〉) and one unsafe play (run ·qn ·Nn · [N <5,runabort〉 ·doneabort ·done). The safe (resp.,

unsafe) play condition is: N ≥ 5 (resp., N < 5). Thus, we obtain Prs(M′) = 5/10(50%) and Prf (M′) =
5/10(50%).

We use model counting and the LATTE tool [20] to determine the number of solutions of a given

constraint. LATTE accepts LIA constraints expressed as a system of linear inequalities each of which

defines a hyperplane encoded as the matrix inequality: Ax ≤ B, where A is an m×n matrix of coefficients

and B is an n×1 column vector of constants. Most LIA constraints can easily be converted into the form:

a1x1 + . . .+anxn ≤ b. For example, ≥ and > can be flipped by multiplying both sides by −1, and strict

inequalities < can be converted by decrementing the constant b. In LATTE equalities = can be expressed

directly. If we have disequalities 6=, they can be handled by counting a set of constraints that encode all

possible solutions. For example, the constraint α ∧ (x1 6= x2) is handled by finding the sum of solutions

for α ∧ (x1 ≤ x2 −1) and α ∧ (x1 ≥ x2 +1). For a system Ax ≤ B, where A is an m×n matrix and B is

an n×1 column vector, the input LATTE file is:

m n+1

B −A

For example, the constraint “N < 5” from Example 4 results in the following (hyperplane) H-

representation for LATTE:

3 2

9 −1

0 1

4 −1

where the first line indicates the matrix size: the number of inequalities by the number of variables plus

one. The next two inequalities encode the max and min values for the symbol N based on its data type.

The last inequality expresses the constraint: N ≤ 4 (i.e. N < 5). LATTE reports that there are exactly 5

points that satisfy the above inequalities (N ≤ 9 ∧ N ≥ 0 ∧ N < 5).

4.2 Bounded Analysis

The presence of “while” command and free identifiers of function type (i.e. undefined functions) intro-

duce infinite behaviors, a cycle, in our model. Hence, convenient analysis strategies are required for

handling them in order to compute the success and failure probabilities. In the case of the “while” com-

mand, the source of infinite behaviour is the term being modeled, but the context is still finite. On the

other hand, in the case of undefined (first-order) functions, the source of infinite behaviour is the context

in which that function can be placed (e.g. the function may call its arguments infinitely many times), so

the context is unbounded in this case. This is the reason why we have two different strategies to cope

with “while” and undefined functions.
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The while command. The solution is based on bounded exploration: a (user-defined) bound d ∈ N is

set for the search depth (i.e. the number of times a state can be re-visited). When the bound is reached

the search backtracks. Intuitively, the bound d ∈ N represents the number of iterations of the while-loop

and so we have the following bounded definition for while (instead of the one in Table 1):

[[while : expbool〈1〉× com〈2〉 → com]] = [tt,run〉 · [tt,q〈1〉〉 · [tt,?Z〈1〉〉·

∑d
k=0

(

[Z,run〈2〉〉 · [tt,done〈2〉〉 · [tt,q〈1〉〉 · [tt,?Z〈1〉〉
)k
· [¬Z,done〉

In this setting the search is no longer complete, and besides safe and unsafe plays, a new set of plays

is collected for traces interrupted before completing the search. We call this set of plays grey and label it

as Pg. We can define Prg(Γ ⊢ M : T) analogously to the other sets as shown in Eqn. (3). The three sets

of play conditions associated with plays in Ps, Pf , and Pg are disjoint and constitute a complete partition

of the entire finite input domain. Hence, Prs(Γ ⊢ M : T)+Prf (Γ ⊢ M : T)+Prg(Γ ⊢ M : T) = 1. The

intuitive meaning of Prg(Γ ⊢ M : T) is to quantify the plays of [[Γ ⊢ M : T]] for which neither safety

nor unsafety have been revealed at the current exploration depth. This information is a measure of the

confidence we can put on our success (resp., failure) estimation obtained within the given exploration

bound: Confidence = 1−Prg(P). Confidence = 1 means that the search is complete, i.e. for each input

we can state if it leads to a safe or an unsafe execution. Increasing the exploration depth, the confidence

grows revealing more accurate safe (resp., unsafe) predictions.

Example 5 Let us reconsider the term M from Example 3. Suppose that n is of type expint10. We

will now calculate the values of Prs, Prf , Prg, and Confidence, for different exploration depths d. Let

d = 0. This means the state d© from its symbolic model given in Fig. 1 can be visited only once (i.e. d©

cannot be re-visited). Let N be the symbol name instantiated for ?N. In this case, there is one unsafe

play: [X=0,run〉 · qn ·Nn · [X≥N ∧X>1,runabort〉 · doneabort · done, and one safe play: [X=0,run〉 · qn ·
Nn · [X ≥N ∧X≤1,done〉. The condition of the unsafe play is unsatisfiable (note X=0∧X>1) and so

Prf (M) = 0; whereas the condition of the safe play is satisfiable with only one solution for N = 0 and

so Prs(M) = 1/10(10%). For N ∈ [1,10), the state d© needs to be re-explored so Prg(M) = 9/10 and

Confidence = 1/10(10%).
Let d = 1. This means the state d© in Fig. 1 can be re-visited once. Let N1 and N2 be the symbol

names instantiated when ?N is evaluated the first and the second time, respectively. In this case, there

are two unsatisfiable unsafe plays and two safe plays. The first safe play is from the previous iteration

corresponding to N1 = 0 with probability 1/10. The second safe play is: run · qn ·Nn
1 · qn ·Nn

2 · done,

with the condition: X1 = 0 ∧ X1 <N1 ∧ X2 =X1+1 ∧ X2 ≥N2 ∧ X2 ≤ 1, which has 18 solutions: for

N1 ∈ [1,10) and N2 ∈ [0,2). Thus, Prs(M) = 1/10 + (9/10) · (2/10) = 28/100(28%); Prf (M) = 0;

Prg(M) = 72/100; and Confidence = 28/100(28%).
Let d = 2 and let N1, N2, N3 be the symbol names instantiated the first, the second, and the third

time when ?N is met, respectively. We obtain unsafe plays when N1 ∈ [1,10), N2 ∈ [2,10), and N3 ∈
[0,3), and so we have Prf (M)=(9/10) · (8/10) · (3/10)=21.6%, Prs(M)=28%, Prg(M)=50.4%, and

Confidence = 49.6%. For d = 3, we have Prf (M)= 41.76%, Prs(M)= 28%, Prg(M)= 30.24%, and

Confidence=69.76%.

Undefined functions. Recall the definition of undefined functions in Eqn. (1). The ‘generic behaviour’

of a call-by-name function is, when called by its context, to perform some sequence of calls to its ar-

guments, and then to return a result. Since the number of times the function’s arguments are called can

be arbitrary (even infinite, see the Kleene closure in Eqn. (1)), the corresponding input domain is not

finite. One solution is to place numeric bounds on the number of times an undefined function can call
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its arguments. For any integer d > 0, we define Γ ⊢d M : T as a term which can be placed into contexts

where any of its first-order free identifiers from Γ can call its arguments at most d−1 times.

For example, the interpretation of f : expint〈f ,1〉→ expint〈f ,2〉 → expint〈f 〉 ⊢ f : expint〈1〉→ expint〈2〉→
expint now becomes:

q ·q〈f 〉 ·∑d−1
k=0

(

q〈f ,1〉 ·q〈1〉·?Z
〈1〉
1 ·Z

〈f ,1〉
1 +q〈f ,2〉 ·q〈2〉·?Z

〈2〉
2 ·Z

〈f ,2〉
2

)k
·?X〈f 〉 ·X (4)

Thus, we now use the bound d instead of the Kleene closure *, which is used in the general case given

in Eqn. (2). Let us calculate the sizes of input domains corresponding to individual plays from the

above model in Eqn. (4). Assume that we work with the finite integer domain int10 = [0,10). The

play p0 = q · q〈f 〉 ·X〈f 〉 ·X corresponds to a function “f ” which does not evaluate its arguments at all (a

non-strict function), and so there are 10 different instantiations of p0 since X ∈ [0,10). Note that if the

play condition is true, which means that all instantiations of p0 are feasible then #(truep0
) = 10. If

“f ” evaluates its arguments once, then we have two plays: p1,1 = q ·q〈f 〉 ·q〈f ,1〉 ·q〈1〉 ·Z
〈1〉
1 ·Z

〈f ,1〉
1 ·X〈f 〉 ·X

(“f ” evaluates its first argument) with 102 different instantiations corresponding to Z1,X ∈ [0,10), and

p1,2 = q · q〈f 〉 · q〈f ,2〉 · q〈2〉 · Z
〈2〉
2 · Z

〈f ,2〉
2 · X〈f 〉 · X (“f ” evaluates its second argument) with 102 different

instantiations corresponding to Z2,X ∈ [0,10). For a function “f ” that calls its arguments d − 1 times

in any order, we have 2d−1 plays each of which with 10d different instantiations. The total number of

symbolic plays is 1+21 +22 + . . .+2d−1 = 2d −1.

In general, for a play p ∈ [[Γ ⊢d M : T]] where M contains m ≥ 0 calls to an undefined function with

n arguments, we have:

#(IDp) = (1+n+n2 + . . .+nd−1)m ·∏Z∈p |dom(Z) |, #(pcp)≤ ∏Z∈p |dom(Z) | (5)

Note that if the undefined function has 1 argument, then the total number of symbolic plays is 1+ 12 +
. . .+1d−1 = d. When the play condition is true, then #(truep) = ∏Z∈p |dom(Z) |.

Example 6 Consider the term:

f : comf ,1 → expint
f
10,abort : comabort ⊢5 newint x := 0 in

if (f (x :=!x+1)+!x > 3) then skip else abort : com

where we bound the size of context on definitions of “f ” which can call its argument at most 4 times.

Note that “f ” has 1 argument and is called once in the above term. The symbolic model of the above

term is:

[?X=0,run〉 ·qf ·∑4
k=0

(

[?X=X+1,runf ,1〉 ·donef ,1
)k
·?Zf ·

(

[Z+X>3,done〉+[Z+X≤3,runabort〉 ·doneabort ·done
)

For the contexts corresponding to “f ” which does not call its argument at all (X = 0), the unsafe be-

haviour is exercised when the value returned from f is Z ∈ [0,4), i.e. the failure probability is (1/5) ·
(4/10). When the function “f ” calls its argument once, the variable x is incremented once (X = 1)

and so the failure probability is (1/5) · (3/10). For the contexts when “f ” calls its argument twice

(X = 2), abort is run with the likelihood (1/5) · (2/10); when “f ” calls its argument three times (X = 3)

the failure probability is (1/5) · (1/10); whereas when “f ” calls its argument four times (X = 4),

the failure probability is 0% (Z +X ≤ 3 is unsatisfiable). Therefore, for d = 5, the failure probabil-

ity is (4/50)+ (3/50)+ (2/50)+ (1/50)+ (0/50) = 10/50(20%); whereas the success probability is

40/50(80%).
When d = 6, the failure probability is 10/60(16.7%), and the success is 83.3%. For d = 10, the

failure is 10/100(10%), and the success is 90%.
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doneabort
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[?P = Y∧ I < k, readx[I]〉[?P = Y∧ I ≥ k,done〉

[P 6= Z∧?I= I+1∧I≥k,done〉
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k,

re
ad

x[
I] 〉

Figure 2: The model for the linear search term.

5 Implementation

We have extended the SYMBOLIC GAMECHECKER tool [10] to implement our approach for performing

probabilistic analysis of open terms. The basic tool [10] converts any IA2 term into a symbolic automaton

representing its game semantics, and then explores the automaton for unsafe traces (plays). It calls

an external SMT solver, Yices [12], to determine satisfiability of play conditions. The extended tool

performs a bounded probabilistic analysis on the obtained symbolic automaton in order to determine the

success and failure probabilities of the input term. Instead of an SMT solver, the extended tool calls a

model counter, LATTE [20], to determine the number of solutions to play conditions. We now illustrate

our tool with an example. The tool, further examples and reports on how they execute are available from:

https://aleksdimovski.github.io/symbolicgc.html (version for probabilistic analysis).

Consider the following version of the linear search algorithm:

x[k] : varint
x[−]
n , y : expinty

n, abort : comabort ⊢
newint i :=0 in

newint p :=y in

while(i < k)do{
if (x[i] = p)then abort;

i := i+1;

} : com

The meta variable k > 0 represents the size of array x, and n > 0 represents the domain size of input

expressions y and x[0], . . . ,x[k − 1]. Both k and n will be replaced by several different values. In the

above term, first the input expression y is copied into the local variable p. Then the non-local array x is

searched for an occurrence of the value stored in p. If the search succeeds, abort is executed. We assume

that y and all elements of the array x can take one uniform value from the range [0,n), i.e. their type is

expint10.

The symbolic model for this term is given in Fig. 2. The array x[k] is given a symbolic representation

[10], where the array size k and the index of the array elements represent symbols. We use symbols I and

P to track the current values of local variables i and p, respectively. The symbol I is used to represent

the index of an array element that needs to be de-referenced or assigned to. If the value Y read from the

environment O for the expression y is equal to the value Z read from the environment O for some array

element X[I], where 0 ≤ I < k, i.e. the constraint (P = Y)∧ (P = Z) holds, then an unsafe behaviour is
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k
# traces

# states
Analysis Time

unsafe safe n = 10 n = 256 n = 65,536

1 1 2 35 0.83 0.87 0.99

3 11 4 162 6.43 6.55 6.83

5 57 6 756 52.50 55.52 56.55

6 120 7 1677 166.58 169.02 175.32

7 247 8 3758 607.40 611.35 619.14

Table 2: Performance of the probabilistic analysis of the linear search term for different values of the

array size k and the domain size n. Time is in seconds (s).

exercised.

We now present the probabilistic analysis of the above term for n = 10 and for various concrete

values of k. The exploration bound is d = k−1. For k = 1, abort is run only when the values Y ∈ [0,10)
and Z ∈ [0,10) read from the environment for y and x[0], respectively, are equal. Hence, the failure

probability is 10%, and the success probability is 90%. For k = 2, we obtain only one feasible safe trace

when Y 6= Z1 and Y 6= Z2 for the values Y,Z1,Z2 ∈ [0,10) read from the environment for y, x[0] and x[1],
respectively. Therefore, the success probability is (9 · 9)/(10 · 10) = 81%, and the failure probability is

19%. For k = 3, we obtain that the success probability is 72.9% and the failure probability is 27.1%. For

k = 5, we have Prs = 59.05% and Prf = 40.95%. For k = 10 and d = 9, the success probability is 40.7%

and the failure probability is 59.3%. We notice that as the array size k grows, the likelihood of running

abort grows as well since there are more array elements in this case and the probability that some of

them is equal to the input expression y is bigger.

We now report experimental results for performing the probabilistic analysis of the linear search term

for different values of k (size of array) and n (domain size of undefined expressions). We ran our tool

on a 64-bit IntelrCoreTM i5 CPU and 8 GB memory. The performance numbers reported constitute the

average runtime of five independent executions.

The symbolic model has 9 states and the total time needed to generate the model is 0.24 sec. Note

that the model size and the time needed to generate it are the same for all values of k and n. The results

from running probabilistic analysis for this term are shown in Table 2. For different values of k we list:

the number of generated unsafe and safe traces, the total number of visited (re-explored) states during the

analysis, and the execution time in seconds needed to perform the analysis (search) when n= 10, n= 256

(1 byte) and n = 65,536 (2 bytes). We perform three sets of experiments, the first when the domain size

of undefined expressions is n = 10, the second when the domain size is n = 256, and the third when

n = 65,536. We only show the different analysis times corresponding to various values of n, since the

first three parameters are the same in all cases. We observe that we obtain similar time performance

results for n = 10, n = 256, and n = 65,536, mostly due to the fact that LATTE is largely insensitive to

those values in terms of time. On the other hand, the analysis time increases for bigger values of k. In

those cases, we have more traces to analyze and more complex constraints, which lead to more calls to

LATTE.
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6 Related work

Traditional formal approaches for probabilistic analysis based on probabilistic model checking [19] re-

quire a high-level design of the software. However, such models are difficult to maintain and may abstract

important details that impact the chance of property satisfaction in the system. The ultimate goal is to

perform probabilistic analysis directly on implementations, not on high-level models. Recent approaches

[14, 13, 2] have proposed to use symbolic execution to support probabilistic analysis on the source code.

In this work, we define probabilistic analysis in the settings of game semantics. This brings several dis-

tinctive features to our approach, such as: very precise models, compositional modelling, models of open

second order imperative programs with free identifiers which take into account all possible contexts in

which the programs can be considered. In contrast, the works in [14, 13, 2] consider imperative programs

that only have some undefined global variables.

Game semantics for full Idealized Algol has been defined before [1]. The applications to software

model checking were first proposed in [15], where game semantics models for second-order IA with finite

data types were represented as finite automata. By using symbols instead of concrete data for inputs, it

was shown [5, 10] how to generate finite symbolic automata for second-order IA with infinite data types.

We have shown how to extend symbolic automata in order to represent program families implemented

using #ifdef annotations [11]. Specifically designed model checking algorithms are then employed to

verify safety of all variants of the family at once, and report those variants that are unsafe (resp., safe).

Algorithmic game semantics also provides a method [6, 9] for ensuring secure information flow of open

programs, i.e. for verifying security properties such as timing leaks, non-interference, and termination

leaks. A fully abstract game semantics models for Probabilistic Idealized Algol (PA) has been formally

defined in [3]. PA extends IA by allowing (fair) coin-tossing as a valid expression. Algorithmic proba-

bilistic game semantics for PA have been studied as well [21, 18]. In particular, probabilistic equivalence

and refinement have been explored in the context of game semantics. Intuitively, two probabilistic pro-

grams are equivalent if for each input they give rise to identical probabilistic distributions on the set of

possible outputs. An automated equivalence checker for PA is also developed which takes a program as

input and returns a probabilistic automaton capturing the game semantics of the program. An interesting

direction for future work would be to calculate path probabilities and program reliability for PA terms.

7 Conclusion

In this work, we show how game semantics and model counting can be used to give a specific quantitative

analysis of open programs – calculation of program path probabilities. We also apply the obtained

analysis results for predicting program reliability.

Our analysis used the IA2 language in order to stay focused, but a similar approach can be extended

to any language for which an algorithmic game semantics exists. The model considered here contains

only convergent behaviours of terms, and so it is suitable for verifying safety properties. If we want to

take into account liveness properties as well, then the model should be enriched to contain all possible

divergent behaviors of terms [16, 4]. For such models, we can calculate probabilities for convergence

and divergence of terms similarly as we did here for success and failure.
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[20] Jesús A. De Loera, Raymond Hemmecke, Jeremiah Tauzer & Ruriko Yoshida (2004): Effective

lattice point counting in rational convex polytopes. J. Symb. Comput. 38(4), pp. 1273–1302,

doi:10.1016/j.jsc.2003.04.003.
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