Domenico Cantone (Dept. of Mathematics and Computer Science, University of Catania, Italy) |
Alfio Giarlotta (Dept of Economics and Business, University of Catania, Italy) |
Stephen Watson (Dept. of Mathematics and Statistics, York University, Toronto, Canada) |

Given a set U of alternatives, a choice (correspondence) on U is a contractive map c defined on a family Omega of nonempty subsets of U. Semantically, a choice c associates to each menu A in Omega a nonempty subset c(A) of A comprising all elements of A that are deemed selectable by an agent. A choice on U is total if its domain is the powerset of U minus the empty set, and partial otherwise. According to the theory of revealed preferences, a choice is rationalizable if it can be retrieved from a binary relation on U by taking all maximal elements of each menu. It is well-known that rationalizable choices are characterized by the satisfaction of suitable axioms of consistency, which codify logical rules of selection within menus. For instance, WARP (Weak Axiom of Revealed Preference) characterizes choices rationalizable by a transitive relation. Here we study the satisfiability problem for unquantified formulae of an elementary fragment of set theory involving a choice function symbol c, the Boolean set operators and the singleton, the equality and inclusion predicates, and the propositional connectives. In particular, we consider the cases in which the interpretation of c satisfies any combination of two specific axioms of consistency, whose conjunction is equivalent to WARP. In two cases we prove that the related satisfiability problem is NP-complete, whereas in the remaining cases we obtain NP-completeness under the additional assumption that the number of choice terms is constant. |

Published: 6th September 2017.

ArXived at: http://dx.doi.org/10.4204/EPTCS.256.5 | bibtex | |

Comments and questions to: eptcs@eptcs.org |

For website issues: webmaster@eptcs.org |