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Local fixpoint iteration describes a technique that restricts fixpoint iteration in function spaces to

needed arguments only. It has been studied well for first-order functions in abstract interpretation and

also in model checking. Here we consider the problem for least and greatest fixpoints of arbitrary

type order. We define an abstract algebra of simply typed higher-order functions with fixpoints that

can express fixpoint evaluation problems as they occur routinely in various applications, including

program verification. We present an algorithm that realises local fixpoint iteration for such higher-

order fixpoints, prove its correctness and study its optimisation potential in the context of several

applications.

1 Introduction

Fixpoints are ubiquitous in computer science. They serve to explain the meaning of recursion in pro-

gramming languages [35], database queries [1], formal languages and automata theory [31]; they are

being used as logical quantifiers in descriptive complexity [19] or as specialised operators, for instance

in temporal logics [15], etc.

Fixpoints often link a denotational and an algorithmic view onto computational problems, most

specifically through Kleene’s Fixpoint Iteration Theorem [21]: start with the least, resp. greatest value

of the underlying lattice, and then keep applying the function under consideration until the sequence

becomes stable. This theorem provides the algorithmic foundations for many applications in which fix-

points play an important role. For instance in model checking, fixpoint operators are used to describe

correctness properties [17], and methods based on fixpoint iteration are being used to establish the sat-

isfaction of such properties by models of programs [5]. Fixpoints are used in programming language

semantics to explain the meaning of recursive programs. This extends to static analysis methods. For

instance in the original formulation of abstract interpretation [13], collecting semantics extends program

semantics to powersets of semantic values ordered by subset inclusion [14]. Computing program proper-

ties then amounts to solving fixpoint equations over a number of specific (powerset) domains. Fixpoint

iteration also provides a standard means for the evaluation of recursive database queries [1].

In many applications, the elements of the lattices in which fixpoints are being sought, are functions

themselves. In strictness analyses for functional languages [27, 11] for instance, properties under con-

sideration are sets of functions. Denotational semantics is perhaps the application domain which is most

easily seen to need lattices of functions, possibly of higher order, in order to explain the meaning of,

for example, functional programs of higher order. Certain infinite-state model checking problems, in

particular so-called higher-order model checking [29] are tightly linked to the evaluation of fixpoints in

functions spaces as well [22].
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We are concerned with the problem of finding fixpoints in such a lattice of functions of some higher

order. Kleene fixpoint iteration in its pure form can still be employed here, but in many situations it is

naı̈ve and inefficient for the following reason. Suppose one is not interested in the entire fixpoint f (which

is a function of some type M → N) but only in the value of this f on some particular argument x ∈ M.

Naı̈ve fixpoint iteration would start by approximating this function with the least one f0 := 7→ ⊥N

that maps anything to the least element of the lattice N, and successively compute better approximations

f1, f2, . . . until fi+1 = fi for some i. Then it would return fi(x) which equals f (x).

This procedure has then also computed values f (y) for any y ∈ M. It has been observed that a more

efficient approach would be goal-driven and avoid the computation of f on any unnecessary argument.

Note that, since f is defined recursively, the value f (x) may depend on some but not all values f (y) for

y ∈ M. The term neededness analysis was coined to describe the goal-driven evaluation of fixpoints in

function lattices, avoiding the computation of function values on arguments that do not contribute to the

computation of the one value of interest.

Neededness analysis has been studied well for lattices of first-order functions as they often arise in

abstract interpretation [20]. In groundness analyses for logical programs such as [12], instead of needed-

ness, one rather speaks of a fixpoint computations being local [18], when a solver tries to only compute

the values of as few variables as possible. Neededness analysis has also been studied in the context of

model checking complex program properties which cannot be described in the standard temporal logics

of regular expressivity (CTL, µ-calculus) but in extensions using predicate transformers [2]. This can be

seen as a notion of on-the-fly model checking for fixpoints of order 1. Since “local” is also a synonym for

“on-the-fly” in model checking [8], we stick to the term local fixpoint iteration here rather than the more

cumbersome neededness analysis, when referring to a method to avoid the computation of all arguments

of fixpoints which are functions themselves.

In this paper we consider the applicability of local fixpoint iteration in function lattices to arbitrary

higher orders. To this end, we define a simple abstract and typed higher-order fixpoint algebra in Sect. 2

which can be used to describe evaluation problems involving fixpoints in such lattices. We then give a

generic local algorithm for evaluating fixpoint terms in higher-order lattices in Sect. 3. It optimises the

naı̈ve fixpoint iteration method by localising the evaluation of recursively defined functions at the top

order. A formal proof of its correctness is omitted due to space constraints. In Sect. 4 we present some

computation problems which are special instances of the evaluation of higher-order fixpoints in various

domains and discuss local evaluation’s optimisation potential by comparing numbers of iteration, resp.

argument computation steps on some hand-crafted examples. In Sect. 5 we briefly sketch limitations to

the local approach of fixpoint iteration for higher-order fixpoints, in the form of obstacles to overcome

which do not exist in the first-order case. We conclude in Sect. 6 with an outlook onto further work in

this area.

2 An Abstract Higher-Order Fixpoint Algebra

Types and higher-order lattices. Let � be some base type. Types are derived from the grammar

τ ::= � | τv ×·· ·× τv → τ , v ::=+,−,±

where the annotations v are called variances, and they specify the dependency of the values of a function

of type τv1

1 ×·· ·×τvn
n → τ on their arguments. In particular, if vi =+, then this dependency is monotonic,

if vi =− then it is antitonic, and it vi =± then it is unspecified.
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The order of a type τ is ord(�) := 0 and ord(τv1

1 × ·· ·× τvn
n → τ) := max{ord(τ),ord(τ1)+ 1, . . . ,

ord(τn)+1}

As usual, a function f on a partially ordered set (M,≤) is monotonic if for all x,y ∈ M with x ≤ y we

have f (x) ≤ f (y). It is antitonic if for all such x,y we have f (y) ≤ f (x). A lattice is a partial order in

which suprema and infima, denoted x⊔ y, x⊓ y, resp.
⊔

X and
d

X for any X ⊆ M exist, for as long as X

is finite. A lattice is complete if these also exist for arbitrary X . Complete lattices always contain a least

and a greatest element, usually denoted ⊥ and ⊤ here. A finite lattice is trivially complete.

Let M = (M,≤) and Mi = (Mi,≤i) for some i = 1, . . . ,n be complete lattices. Remember the

following constructions on lattices:

Inverse: M− := (M,≥) where x ≥ y iff y ≤ x. For notational convenience we also let M+ := M .

It should be clear that these two operations not only preserve the property of being a lattice but also

completeness.

Flattening: M± := (M,=), where = denotes equality as usual. Note that M± is in general not a

lattice anymore, let alone a complete one.

Product: ∏n
i=1 Mi := (M1 × ·· · × Mn,⊑) where (x1, . . . ,xn) ⊑ (y1, . . . ,yn) iff xi ≤i yi for all i =

1, . . . ,n. The product lattice is complete if all its components are complete.

Higher-order: M1 → M2 := ({ f : M1 → M2 | f is monotonic },⊑) where f ⊑ g if f (x) ≤2 g(x) for

all x ∈ M1. The lattice of componentwise ordered monotonic functions from M1 to M2 is complete if M2

is complete. Completeness of M1 is not required, not even the property of being a lattice since ≤1 is not

used in the definition of ⊑.

We can use these constructions to associate, with each type τ , a complete lattice Mτ , given a com-

plete lattice M interpreting the ground type �:

J�KM := M , Jτv1

1 ×·· ·× τvn
n → τKM :=

( n

∏
i=1

(JτiKM )vi
)
→ JτKM

Note that each JτKM is indeed a complete lattice given the remarks above, as the flattening operation that

breaks the lattice property is only used on the argument side of the function operator. Moreover, if M is

finite, then so is JτKM for all τ .

Abstract higher-order fixpoint algebra. Let M be a complete lattice and Func= { f : τ f , g : τg, . . .}
be a set of computable and typed functions on M , possibly of higher-order. Note that if τ f = �, then f

is not really a function but rather a constant. For simplicity we speak of functions in this case as well.

Let Var := {x : τx,y : τy, . . .} be a set of typed variables. We write τx, resp. τ f for the uniquely

determined type of variable x, resp. function f . We will also simply write x ∈ Var instead of (x,τx)∈ Var

and likewise for the members of Func.

Terms of the abstract higher-order fixpoint algebra over Func, µHO(Func) or simply µHO when

Func is clear from the context, are built via

ϕ ,ϕ1, . . . ,ϕn ::= x | f | ϕ(ϕ1, . . . ,ϕn) | λx
v1

1 , . . . ,xvn
n .ϕ | µx.ϕ | νx.ϕ

where x1, . . . ,xn ∈ Var, f ∈ Func and v1, . . . ,vn ∈ {+,−,±}.

A term ϕ is closed if it contains no free variables, where an occurrence of a variable x is free if it

is not under the scope of some λ . . .x . . . or µx or νx in the syntax tree of ϕ . In the following, we are

mainly interested in closed terms; others will usually only occur as subterms of these. Hence, we will

often simply speak of terms when in fact we mean closed terms at syntactic top-level.
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Γ ⊢ f : τ f

Γ ⊢ ϕ : τv1

1 ×·· ·× τvn
n → τ Γv1 ⊢ ϕ1 : τ1 . . . Γvn ⊢ ϕn : τn

Γ ⊢ ϕ(ϕ1, . . . ,ϕn) : τ

v ∈ {+,±}

{xv, . . .} ⊢ x : τx

Γ[xvi

i | i = 1, . . . ,n] ⊢ ϕ : τ

Γ ⊢ λx
v1

1 , . . . ,xvn
n .ϕ : τv1

x1
×·· ·× τvn

xn
→ τ

Γ[x+] ⊢ ϕ : τx

Γ ⊢ σx.ϕ : τx

Figure 1: The typing rules for abstract higher-order fixpoint algebra.

We assume terms to be well-named, i.e. each variable is bound at most once. Clearly, any term can

always be made well-named by renaming bound variables.

For better readability, we simply write σx(yv1

1 , . . . ,yvn
n ).ϕ instead of σx.λy

v1

1 , . . . ,yvn
n .ϕ , for σ ∈

{µ ,ν}.

In order to give terms a well-defined semantics via the Knaster-Tarski Theorem, each ϕ in a term

µx.ϕ or νx.ϕ needs to denote a function that is monotone in its argument x. Monotonicity is guaranteed

for well-typed terms, to be explained next, and then formally stated as Lemma 2.1 below. Note that the

variances are used to track information about the monotonicity or antitonicity of functions in particular

arguments, and that a monotonic function can be built for instance by composing two antitonic ones.

A typing statement is a triple Γ ⊢ ϕ : τ where ϕ is a term, τ is a type, and Γ is a typing context

consisting of typing hypotheses of the form xv for x ∈ Var and v being a variance. For a typing context Γ,

let Γ+ := Γ; let Γ− result from Γ by replacing in it every x+ by x− and vice-versa; and let Γ± = Γ+∩Γ−,

i.e. the context which only contains typing hypotheses of the form x± from Γ. The typing context Γ[xv]
is obtained by removing xv′ from Γ for any v′, and adding xv instead.

A term ϕ has type τ if the typing statement /0 ⊢ ϕ : τ is derivable using the typing rules given in

Fig. 1. The rules are standard; they state, for instance, that in function application ϕ(ϕ1, . . . ,ϕn), ϕ must

have a function type with n arguments which are the types of the respective argument terms. Moreover,

the arguments themselves have to be typbale in the respective derived typing contexts. For example, if ϕ

is antitonic in its first argument, then ϕ1 has to be typable in the typing context Γ−, where Γ is the context

used to type the whole application. This reflects the fact that an antitonic function from some lattice is a

monotonic function from the inverse of this lattice (cf. the lattice definitions above and the definition of

the semantics below). The rules for fixpoint formulas σxτ .ϕ require the term ϕ to be of the same type as

x, since being a fixpoint intuitively means x = ϕ(x), and at the same time ensure that ϕ is monotonic in

x. A term is well-typed, if it is of some type.

Variance annotations are only used to guarantee well-typedness (and therefore the existence of fix-

points). We will always assume that terms are well-typed, and therefore often drop typing annotations

for better readability. Note that for closed terms, a unique type for each subterm can easily be recovered.

The semantics of terms. Let M be a complete lattice, and suppose that all base functions Func =
{ f : τ f , . . .} have an interpretation f M in the family of higher-order lattices over M according to their

types. A term ϕ of µHO(Func) over Func = { f : τ f , . . .} and a set of typed variables Var = {x : τx, . . .}
gets interpreted in this family of lattices. In order to explain the value inductively, we need variable in-

terpretations η which assign values in lattices over M to any variable with free occurrences in subterms:

for each x : τx ∈ Var we have η(x) ∈ JτxKM . The value of ϕ over M and under η is denoted JϕKM
η and
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is defined inductively as follows.

JxKM
η := η(x) Jϕ(ϕ1, . . . ,ϕn)KM

η := JϕKM
η (Jϕ1KM

η , . . . ,JϕnKM
η )

J f KM
η := f M Jλx

v1

1 , . . . ,xvn
n .ϕKM

η := ( f1, . . . , fn) 7→ JϕKM

η [x1 7→ f1,...,xn 7→ fn]

Jµx.ϕKM
η :=

⊔

{ f ∈ JτxKM | JϕKM

η [x7→ f ] ⊑ f} Jνx.ϕKM
η :=

l
{ f ∈ JτxKM | f ⊑ JϕKM

η [x7→ f ]}

The fourth clause, in particular its right-hand side, denotes the function that maps a tuple ( f1, . . . , fn) of

objects from Jτx1
KM ×·· ·×Jτxn

KM to the value JϕKM

η [x1 7→ f1,...,xn 7→ fn]
where the subscript index denotes the

variable environment that results from η by replacing its bindings for x1, . . . ,xn accordingly. For the last

two clauses, note that the values on the right-hand side are well-defined according to the Knaster-Tarski

Theorem [32] since each JτxKM is a complete lattice. Note that the semantics of µHO are easily seen to

be invariant under β -reduction.

Lemma 2.1. Let M be a lattice, ϕ be a term of type τ ′ under the typing assumptions Γ,xv. If v = +,

then JϕKM
η is monotone in η(x); if v =− then JϕKM

η is antitone in η(x).

Proof. By a straightforward induction on the syntax tree of ϕ .

Remark 2.2. Over finite lattices, each of the type lattices is finite as well. According to Kleene’s Fixpoint

Theorem, the least and greatest fixpoints of a term σx.ϕ in µHO under a variable interpretation η can

be computed by a sequence of approximations as follows: x0
η = ⊤τx

if σ = ν , x0
η = ⊥τx

if σ = µ , and

xi+1
η = JϕKM

η [x7→xi
η ]

. Then, for each finite lattice M there is n ∈ N such that Jσx.ϕKM
η = xn

η . Moreover,

these approximations are definable in µHO, independently of η : σ̂ is defined by x0
η = σx.x, and xi+1

η is

defined by the substitution instance ϕ [xi
η/x].

Evaluation problems. We consider the following generic evaluation problem: given a (closed) term

ϕ of µHO(Func) with symbols in Func interpreted in the higher-order lattices over a finite M , compute

JϕKM .

This problem is clearly decidable when all basic functions in Func are computable. A naı̈ve algorithm

will simply compute the value of each subterm in a bottom-up fashion using Kleene iteration to evaluate

fixpoint expressions, and possibly storing function values as tables. Note that if M is finite, so is JτKM

for any τ , but the size and height of JτKM are k-fold exponential in the size, resp. height of M when

k = ord(τ).

Even for low orders, such a naı̈ve algorithm may perform far too many unnecessary computation

steps. Consider the following special local variant of the evaluation problem: given a finite complete

lattice M , a closed term ϕ0 := µx.ϕ of type τv → � (which is then necessarily the same as τx) for some

v,τ ,ϕ , and a term ψ of type τ , compute Jϕ0(ψ)KM .

Note how this problem formulation describes a situation in which naı̈ve fixpoint iteration obviously

performs too many evaluation steps in general: it computes Jϕ0KM using Kleene iteration which results

in a function of type τv →�. Depending on the order of τ , this function is huge in terms of its arguments

but still finite. We would then also compute JψKM . Then we obtain the value Jϕ0(ψ)KM by application,

for instance through a simple look-up in the table representing Jϕ0KM , where JψKM occurs as some

argument. Clearly, the value of Jϕ0KM on all other arguments is irrelevant, and the reason for their

computation is questionable.
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0 1 2 3 4 5 6 7

F0: ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

F1: ⊤ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

F2: ⊤ ⊥ ⊥ ⊥ ⊥ ⊤ ⊥ ⊥

F3: ⊤ ⊥ ⊥ ⊥ ⊥ ⊤ ⊥ ⊥

5 0

F0: ⊥ ⊥

F1: ⊥ ⊤

F2: ⊤ ⊤

F3: ⊤

3 2 1 4

F0: ⊥ ⊥ ⊥ ⊥

F1: ⊥ ⊥ ⊥ ⊥

F2: ⊥ ⊥ ⊥

F3: ⊥ ⊥

F4: ⊥

Figure 2: Global (left) vs. local fixpoint iteration for a first-order function F .

A (first-order) example. Consider the Boolean lattice B= {⊤,⊥} and the normal Boolean functions

Funcbool = {∧,∨ : �+×�+ → �,¬ : �− → �,0,1: �} interpreted in the standard way. Let n > 0 and

ϕn := µF(x0, . . . ,xn−1
︸ ︷︷ ︸

~x

). null(~x)∨
(
even(~x)∧F(half(~x))

)

∨
(
¬even(~x)∧F(add(add(~x,dbl(~x)),(1,0, . . . ,0)))

)
.

over Var = {x0, . . . ,xn−1 : �,F : (�±)n → �} where, for~x = (x0, . . . ,xn−1) and~y = (y0, . . . ,yn−1),

• null(~x) returns ⊤ iff~x encodes the numerical value 0, for instance null(~x) =
∧n−1

i=0 ¬xi;

• even(~x) returns ⊤ iff~x encodes an even number, for instance even(~x) = ¬x0;

• half and dbl represent the operations “÷2” and “·2” on bit strings;

• add(~x,~y) yields a bit string representing the addition of the two values modulo 2n.

It is not difficult to find Boolean functions realising these operations.

Intuitively, ϕn defines a search procedure. Note that any value of ~x encodes a number in the range

[2n] = {0, . . . ,2n −1} which we will simply denote~x as well. For any value~x, define a sequence (~xk)k≥0

via~x0 =~x,~xk+1 =~xk/2 if~x is even, and~xk+1 = 3 ·~xk +1 if~x is odd. Hence, suppose~b ∈ {0,1}n encodes

such a number, then ϕn(~b) is true iff this sequence eventually hits the value 0.

Let n = 3. The graph on the right depicts the sequence on all values in [23]. Assuming

0

1
2

3

4

5
6

7

that the Boolean function ∧ only evaluates its second argument when the first one is

not ⊥, this graph suggests how local fixpoint iteration of this first-order function F

can be more efficient when the value of the fixpoint F is only needed on one particular

argument. The effect of global fixpoint iteration is depicted in Fig. 2 (left). Here, the

iteration starts with the least function F0 : 7→ ⊥, and it terminates when the current

approximation equals the last one.

Local fixpoint iteration on the other hand only adds the arguments successively to those tables. Con-

sider the case of evaluating ϕ3(1,0,1) which means iterating the numerical series beginning at 5. First we

only tabulate the approximant F0 on the value under consideration, i.e. 5. In order to compute F1(5) we

need F0(0), so 0 gets added as a new argument and receives the initial value ⊥ there. Then we compute

F2(5) and F1(0), and so on. The iteration stabilises when no change is being recorded anymore, thus

computing values as they are shown in the table of Fig. 2 (middle).

The effect of computing ϕ3(1,1,0), i.e. beginning the numerical series at 3 is similar. Here, however,

0 is never reached. Hence, all values encountered are ⊥, and the iteration stabilises when no further

arguments are needed, as shown in Fig. 2 (right).

Even though the local iteration computes a value of F4 while the global one only reaches F3, it

should be clear that local evaluation performs fewer computation steps in general.
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Remark 2.3. It is well-known that fixpoint iteration does not need to record the entire history of its

computation but, for each variable, merely the value of the last iteration. In the left table (with only one

fixpoint variable) in Fig. 2, this corresponds to two successive rows: the upper for the last approximate

value of a function, and the lower for the current value. In the two tables on the right using local iteration,

this corresponds to diagonals, but the picture is more complicated in general, for instance for fixpoint

terms in which the fixpoint variable has multiple occurrences.

The tables shown in Fig. 2 not only give an idea of how local fixpoint iteration works, their width and

height are also good measures for the space, resp. time needed to compute such a higher-order fixpoint.

3 Local Fixpoint Evaluation for Full µHO

The algorithm. Procedure EVAL in Alg. 1 solves the evaluation problem for µHO terms of arbitrary

higher order and finite lattices using local fixpoint iteration. It takes four parameters: (1) a term ϕ ∈
µHO(Func) over some Func. It is not necessarily of type �, but the algorithm is assumed to be started

with a full list of arguments (see below) in order to realise local fixpoint iteration. (2) A finite, and, hence,

complete lattice M with an interpretation of any f : τ f ∈ Func as an object in Jτ f KM . (3) A list T1, . . . ,Tk

of arguments to ϕ . The following invariant is maintained: if the type1 of ϕ is τ1 → ··· → τk → �, then

Ti ∈ JτiKM for all 1 ≤ i ≤ k. (4) A global variable ENV that is used to interpret free variables. Values

of λ -bound variables are stored as full functions2 , values of fixpoint variables may be stored as partial

approximations as described at the end of the previous section.

In order to bridge the gap between a variable assignment η , which assigns a value to each variable

which is defined at every argument, and the global variable ENV which only stores partial approximations

for fixpoint-bound variables, consider the following definition. It turns a state of ENV into a well-defined

variable assignment:

ηENV(x)(T1, . . . ,Tk) =







ENV(x)(T1, . . . ,Tk) , if x is λ -bound

ENV(x)(T1, . . . ,Tk) , if x is fixpoint-bound and ENV(x)(T1, . . . ,Tk) is defined

σ̂x , otherwise

Here, σ̂x is ⊥�, resp. ⊤� for variables that are bound to a least, resp. greatest fixpoint.

Note that, due to the invariants, a state of Alg. 1, i.e. a call of EVAL(ϕ ,T1, . . . ,Tk) with a value of ENV

and over some higher-order lattice M , can be thought of as computing the object JϕKM
ηENV

(T1, . . . ,Tk),

which is always a member of J�KM . The algorithm computes this value recursively by descending

through the syntax tree of ϕ . Fixpoints are resolved by Kleene iteration until the semantics computed

stabilises, but the value is only computed at the arguments indicated plus all those arguments that are

discovered as necessary to obtain the value for the original argument.

We explain the algorithm’s functionality by considering the different cases for its argument ϕ . Upon

reaching a basic function symbol, EVAL simply applies the semantics of this basic function to the argu-

ments in the argument list. When EVAL reaches a variable x and the value of that variable at argument

(T1, . . . ,Tk) is defined, then its value is returned. Otherwise, the variable must be fixpoint-bound, and

EVAL has discovered a new tuple of arguments at which the value of this fixpoint is needed. This value

is initialised as σ̂x, which also registers (T1, . . . ,Tk) in ENV. In this case the initial value is returned.

1Variances are not important in this section. In order to reduce clutter, we do not display them.
2This might appear wasteful at first, but λ -bound variables are never of the highest type (by order) that occurs in the term to

be evaluated except in pathological cases, which can be eliminated by β -reduction before calling EVAL.
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Algorithm 1 Neededness-based evaluation for abstract higher-order fixpoint algebra.

procedure EVAL(ϕ ,T1, . . . ,Tk): ⊲ global (partial) ENV : Var→
⋃

x∈VarJτxKM

switchϕ :

case f : return f (T1, . . . ,Tk)
case x: if ENV(x)(T1, . . . ,Tk) = undef then ENV(x) := ENV(x)[(T1, . . . ,Tk) 7→ σ̂x]

return ENV(x)(T1, . . . ,Tk)
case λx1, . . . ,xn.ϕ

′: ENV(x1) := T1; . . . ; ENV(xn) := Tn

return EVAL(ϕ ′,Tn+1, . . . ,Tk)
case ϕ ′ (ϕ1, . . . ,ϕn): for i = 1, . . . ,n do

let τ1 → ··· → τk′ → �= type(ϕi)
fi := {(T ′

1 , . . . ,T
′

k′) 7→ EVAL(ϕi,T
′

1 , . . . ,T
′

k′) | T ′
i ∈ JτiKM , i = 1, . . . ,n}

return EVAL(ϕ ′, f1, . . . , fn,T1, . . . ,Tk)
case σx.ϕ ′: ENV(x) := {(T1, . . . ,Tk) 7→ σ̂x}

repeat

f := ENV(x)
for all (T ′

1 , . . . ,T
′

k) ∈ dom(ENV(x)) do

ENV(x) := ENV(x)[(T ′
1 , . . . ,T

′
k ) 7→ EVAL(ϕ ′,T ′

1, . . . ,T
′

k )]
until f = ENV(x)
return ENV(x)(T1, . . . ,Tk)

At a λ -abstraction, a number of arguments corresponding to the abstracted variables are trans-

ferred from the argument list to ENV, i.e. they are now treated as bound variables. In an application

ϕ(ϕ1, . . . ,ϕk), EVAL computes, for each argument, its full semantics by a number of recursive calls to

EVAL
3. The obtained values (as functions) are then added to the list of arguments.

Upon reaching a fixpoint binder for variable x, EVAL (re-)sets ENV(x) to the singleton definition that

initialises the value of the fixpoint at (T1, . . . ,Tk) to the default value of σ̂x. Then, for each argument tuple

that is already discovered as necessary for the value at (T1, . . . ,Tk), the algorithm computes a new value.

Note that, during this process EVAL can reach the variable case and discover new argument tuples. This

procedure of updating the value at all known argument tuples is repeated until both no new arguments

are discovered for one round, and the value of the fixpoint at each of the tuples agrees with that of the

last round. If this has happened, the value of the last iteration at (T1, . . . ,Tk) is returned.

Correctness. The formal correctness proof for Alg. 1 uses the following lemma which formalises the

converse of Lemma 2.1. Take a term ϕ that is typed with hypotheses Γ,xv. Not only is it monotone (if

v = +), respectively antitone (if v = −) in the value of x. If the value of ϕ also differs genuinely under

two variable interpretations that only differ in x, then x must occur freely in ϕ and there are arguments to

the value of x on which this difference manifests itself. We write x ⊏ y to denote that x ⊑ y but x 6= y.

Lemma 3.1. Let M be a finite, and hence, complete lattice, η be a variable interpretation, f1, f2 ∈ Jτ ′K
with τ ′ = τ ′

1 → ··· → τ ′
k → � for some τ ′

1, . . . ,τ
′
k, let T1, . . . ,Tn be values with Ti ∈ JτiK for i = 1, . . . ,n,

v ∈ {+,−}, and ϕ be a µHO term such that Γ,xv : τ ′ ⊢ ϕ : τv1

1 → ··· → τvn
n → �. If

JϕKM

η [x7→ f1]
(T1, . . . ,Tn)⊏� JϕKM

η [x7→ f2]
(T1, . . . ,Tn)

3This can be done lazily, in case the argument is not needed or has been already computed. We omit the details for this in

order to keep the presentation simple.
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then x appears freely in ϕ , and there are T ′
1 , . . . ,T

′
n such that

f1 (T
′

1 , . . . ,T
′

n)≷ f2 (T
′

1 , . . . ,T
′

n)

with ≷=⊏� if v =+ and ≷=⊐� if v =−.

Proof. By induction on the structure of ϕ . Details are omitted.

Next we state correctness of Alg. 1. It is not hard to imagine local fixpoint iteration to be sound (for

least fixpoints, resp. complete for greatest ones) since it clearly only performs part of a global fixpoint

iteration that is sound and complete according to Kleene’s Theorem. For completeness one has to see

that the value of a fixpoint function on some argument is determined solely by the value of that function

on its dependent arguments. Hence, it suffices to iterate on these until stability is reached.

We write EVALη(ϕ , [T1, . . . ,Tk]) for the result of the call of Alg. 1 on M with arguments ϕ and

[T1, . . . ,Tk] such that ENV satisfies η = ηENV.

Theorem 3.2. Let M be a finite, and, hence, complete lattice, η be a variable interpretation, ϕ be a

term of type τ1 → ···→ τk →�, let T1, . . . ,Tk be values with Ti ∈ JτiKM , and ENV be such that η = ηENV.

Then EVALη(ϕ , [T1, . . . ,Tk]) = JϕKM
η (T1, . . . ,Tk).

Proof. The proof is, again, by induction on the structure of ϕ . Details are omitted.

A natural question that arises is the one after the time and space complexity of local higher-order

fixpoint iteration. Two aspects need to be considered here. First of all, it should be obvious that local

evaluation cannot improve the worst-case. It is in fact not hard to construct examples which a fixpoint

term of higher-order such that its evaluation causes all argument values to be explored. Consider the

(order-1) term
(
νF(x).F((x∧♦¬x)∨ (¬x∧�x))

)
(ff) with ∧,∨,¬,♦,� interpreted in the usual way

known from modal logic, over the powerset lattice induced by the Kripke structure

n−1 . . . 2 1 0

Even though the term evaluates to {0, . . . ,n−1}, local fixpoint iteration will successively discover all 2n

arguments to the first-order function F before termination. It is also possible to extend this example to

an arbitrary higher order.

Second, the question after the space and time complexity of Alg. 1 cannot be answered without

making assumptions on the representation of the lattice and the complexity of evaluating base functions.

So far, no assumptions have been made explicitly, even though it is clear that such functions should at

least be computable for otherwise Alg. 1 would not be well-defined. A reasonable assumption is that

each base function of order k can be evaluated in time and space that is at most (k−1)-fold exponential

in the size of the underlying lattice, with 0-fold meaning polynomial and (−1)-fold meaning logarithmic.

Logarithmic bounds may seem highly restrictive at first glance, but they make sense in cases where the

underlying lattice is obtained as the powerset lattice of some other structure, see the example above. If

this assumption is met, then it is not too hard to see that Alg. 1 runs in time and space that is at most

k-fold exponential with k being the order of the input term. This also assumes that the lattice is given in

a logarithmically sized representation. Otherwise, the complexity drops by one exponential.
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Figure 3: Directed graph Gn with n > 1 (left) for the language-constrained reachability problem example

and corresponding base lattice (right).

4 Applications

We present four applications of fixpoint evaluation in higher-order lattices using local fixpoint evaluation,

and estimate how many computation steps can be saved compared to a naı̈ve bottom-up and global

fixpoint iteration.

Constrained reachability problems. Reachability problems – to decide whether some node is reach-

able from another in a directed graph – are ubiquitous in computer science. In some applications, simple

reachability is too coarse; instead one wants to put constraints on the form of path under which the

target node can be reached from the source, for instance in terms of distance, weight, shape or allowed

sequence of edges. The latter can easily be formalised as a reachability problem constrained by some for-

mal language. This has been investigated thoroughly for regular [6] and context-free languages [7, 3, 24]

for applications in database theory, model checking, or in static program analysis for heap-manipulating

programs [25, 16]. Little has been done for larger classes of languages.

We consider the context-sensitive language Labc := {anbncn | n ≥ 1} over the alphabet Σ := {a,b,c},

and the problem whether for some given nodes s, t of a directed, edge-labelled graph G = (V,E) there

is a path from s to t whose edge labels form a word in Labc. Reachability problems can be interpreted

in powerset lattices (2V ,⊆) as they can be seen as least fixpoints of functions from sets of nodes to sets

of nodes. However, if G is backwards-deterministic, i.e. for all v,u,w ∈ V , a ∈ Σ we have (v,a,u) ∈
E ∧ (w,a,u) ∈ E ⇒ v = w, it is possible to formalise such problems over a smaller lattice.

Consider the graph Gn depicted in Fig. 3 on the left. It contains a central state 0 and around this three

loops: an a-loop with n−1 states, a b-loop with n states and a c-loop with n+1 states. It is backwards-

deterministic. Let � be interpreted by the lattice shown in Fig. 3 on the right. Intuitively, ⊥ can be read

as “a path from source to the target has not been found yet”, and ⊤ signals that such a path has been

found.

We use base functions F := {0: �, a,b,c : �+ → �, ite : �±×�+ → �} as follows. The constant

0 denotes the state 0. For any v ∈V , a(v) is the a-predecessor of v; likewise for b and c. The value is ⊥
if no such predecessor exists, in particular when applied to ⊥. The value on ⊤ is ⊤ itself. For instance,

c(0) = 3n, c(2n) = 0, c(v) = v−1 if 2n < v ≤ 3n, c(⊤) =⊤ and c(v) =⊥ otherwise.

In the powerset lattice (2V ,⊆), ite could simply be interpreted as set union. However, here we
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P → b ·B(S)

S → | ·S

B(I)→ ε

| I ·c ·B(I)

| I ·b ·B(S · I)

b

c

b

c

c

c

0 1

⊤

⊥

n· · ·

Figure 4: Higher-order grammar Gind (left); example word (middle); lattice Mw (right).

interpret it as an if-then-else in the following way. Note that it is only monotonic in its second argument.

ite(x,y) :=

{

⊤ , if x = 0

y , otherwise

Now let Var = { f ,g : �+ → �, x : �, F : (�+ → �)±× (�+ → �)±×�± → �} and consider the term

ϕreach :=
(

µF( f ,g,x). ite
(

f (g(x)),F(a◦ f ,b◦g,c(x))
))(

a,b,c(0)
)

where ψ ◦χ := λx.ψ(χ(x)).

Using fixpoint unfolding and β -reduction one can see that the value of ϕreach becomes ⊤ when

a(b(c(0)) = 0 or a(a(b(b(c(c(0)))))) = 0 or a3(b3(c3(0))) = 0 and so on. Hence, evaluating ϕreach

solves the reachability question “is there a path from 0 to 0 under some word in Labc?”

We analyse how much computation power is being saved when computing the answer to the question

of whether there is an Labc-path from 0 to 0 in Gn. We compare four situations arising from the use of the

standard powerset lattice vs. the optimised flat lattice of Fig. 3, as well as local vs. global enumeration

of all arguments to higher-order functions.

Note that the three cycles in Gn have lengths n, n+ 1 and n+ 2 respectively, which are always co-

prime for each n ≥ 2. Hence, the shortest Labc-path from 0 to 0 is the one that performs (n+ 1)(n+ 2)
many rounds on the a-cycle, then n(n+2) rounds on the b-cycle and then n(n+1) rounds on the c-cycle.

The following table shows the computational effort needed to evaluate ϕreach in terms of the number

of arguments, resp. width of the table representing the function F . It also shows the space that is needed

in order to represent one argument, i.e. a triple ( f ,g,x) where f ,g are first-order functions and x is a

lattice element. Finally, in all cases the height of the table, i.e. the number of fixpoint iterations needed

until F stabilises, is in O(n3).

powerset lattice flat lattice

evaluation global local global local

width of table for F 22O(n)
O(n3) 2O(n·log n) O(n3)

size of arguments 2O(n) O(n log n)

Parsing of programming languages with indentation. Some programming languages like HASKELL

or PYTHON use indentation as a syntax element. Such an effect can be described conveniently by the

higher-order grammar Gind shown in Fig. 4 (left), over the terminal alphabet Σ = {b,c, } (for “block”,
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“code” and “space”). We refrain from defining higher-order grammars [26, 34] formally, since the tech-

nicalities needed for this small example are quite intuitive: B(I) generates a block of code at indentation

level I. The block can either be empty, contain one line followed by the rest of this block at the same

indentation level, or start a new block at a greater indentation level. The symbol S is used to generate a

sequence of space characters ‘ ’. Finally, P generates a program as a block at some initial indentation

level. An example word, generated from this grammar and formatted in order to visualise indentation

best, is shown in the middle of Fig. 4.

Suppose a word w = a0 . . .an−1 ∈ Σ∗ is given. This gives rise to an interpretation of the symbols in

the grammar above as follows. Let Mw be the lattice shown in Fig. 4 on the right. We use the following

base functions, derived from the terminal symbols and the constructors in the higher-order grammar.

Funcind = {b,c, ,ε : �±×�± → �
︸ ︷︷ ︸

τ

, ·, | : τ+× τ+ → τ , start,end : �}

Intuitively, b, c, and ε are used to mark sections of the word in which the corresponding symbols

(resp. the empty word) occur. The top and bottom element of the lattice are used to signal true/false. The

interpretation of these functions is therefore simply

ε(i, j) =

{

⊤ , if i = j

⊥ , otherwise
and a(i, j) =

{

⊤ , if i+1 = j and ai = a

⊥ , otherwise

for a ∈ Σ. The two constructors | and · denoting disjunctive choice and concatenation in the higher-order

grammar are interpreted as follows.

( f |g)(i, j) =

{

⊤ , if f (i, j) =⊤ or g(i, j) =⊤

⊥ , otherwise

and

( f ·g)(i, j) =

{

⊤ , if there is h s.t. f (i,h) =⊤= g(h, j)

⊥ , otherwise

Finally, we need two constants start and end which are interpreted as 0 and n, respectively.

The nonterminals in the higher-order grammar can be seen as (fixpoint) variables, hence we have

Var = {P,S, I : τ ,B : τ+ → τ}. Then Gind immediately becomes a second-order term of µHO over

Funcind and Var, since recursion in grammars is captured by least fixpoints. The problem of evaluat-

ing P(start,end) over Mw is then equivalent to parsing w w.r.t. Gind.

Clearly, the space and time needed to evaluate P(start,end) is dominated by the fixpoint iteration for

B as the only second-order variable. The number of possible arguments to it is 2O(n2). Local fixpoint

iteration only discovers a fraction of these, though. Note that B is initially evaluated on S, and – when

the recursive is called on argument I – it needs the values of B on I itself as well as on S · I. Hence, it

only ever discovers S,S2,S3, . . .. Moreover, it is not hard to see that Sk maps two positions (i, j) of an

underlying word w = a0 . . .an−1 to ⊤, if j−1− i ≥ k and ah = for h = i, . . . , j−1. Hence, the number

of possible arguments to B discovered in this way is bounded by n−1 and so, again, local higher-order

fixpoint iteration realises an exponential reduction in space complexity in this example.

Model checking Higher-Order Fixpoint Logic. Fixpoints play a fundamental role in model checking,

where properties of the runtime behaviour of programs are typically expressed in temporal logics, the
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most prominent of which are LTL and CTL. Fixpoints are used there to express limit behaviour as in

reachability, safety and fairness [17]. The true power of fixpoints is unleashed in logics that extend

modal logic by extremal fixpoint quantifiers like the well-known modal µ-calculus [23]. A lesser known

extension of this is Higher-Order Fixpoint Logic (HFL) [33], a highly expressive specification logic that

mixes modal logic, a typed λ -calculus and fixpoint quantifiers. Its model checking problem is decidable

over finite transition systems, albeit k-fold exponential in the order of involved function types [4, 10].

We refer to the literature for a self-contained definition of HFL [33]. With the preliminary work on

abstract higher-order fixpoint algebra in Sect. 2 we can simply present HFL as a special instantiation of

this algebra. The base type � is interpreted as the powerset lattice (2S ,⊆) of the state set of a transition

system with edge labels from some set A and propositional labels from some set P . This gives rise to

an interpretation of all higher-order types as functions on sets of states; a function of type �+ → � for

instance is known as a (monotonic) predicate transformer.

The set of ground functions then is F := {∧,∨ : �+×�+ →�, ¬ : �− → �}∪{〈a〉, [a] : �+ → � |
a ∈A }∪{p : � | p ∈ P} reflecting the Boolean, modal and propositional parts of the logic. Well-typed

terms of the higher-order fixpoint algebra over this F are exactly the formulas of HFL; and the standard

semantics is the same as the one derived from the generic semantics in Sect. 2 for this set of terms.

Consider the following formula describing the property ϕ = “there is an infinite b-path such that the

i-th node on this path is the start of an a-path of length 2i ending in a p-node, for any i ≥ 0”, as well as

the family of transition systems Tn on the right.

ϕ :=
(
νF.λ f .( f p)∧〈b〉(F( f ◦ f ))

)
(λx.〈a〉x)

0

p

1 2 · · · n−1

a

b a,b

a

a

b

a

a

a

a

b

where ϕ ◦ψ := λx.ϕ (ψ x), over Var = {x : �, f : �+ → �, F : (�+ → �)+ → �}. We use F in the

following to abbreviate the subformula νF.λ f .( f p)∧〈b〉(F ( f ◦ f )).
Only state 1 satisfies ϕ . Now note that F is a second-order fixpoint taking as arguments a term

interpreted as a first-order function of the kind 2[n] → 2[n]. Hence, even for n = 2, there already are 256

of them, and naı̈ve fixpoint iteration would tabulate all of them first before computing the values of F

on them. On the other hand, all that is needed is F’s value on functions 〈〈a〉〉2i

where 〈〈a〉〉(S) = {t ∈
[n] | ∃t ∈ [n] s.t. s

a−→ t}. The following puts the number of such different functions which are being

discovered by local fixpoint iteration in relation to the number of otherwise possible function argument.

n 2 3 4 5 6 7 . . .

possible arguments to F 256 1.6 ·106 1.8 ·1019 1.5 ·1048 3.9 ·10115 . . . . . . . . .

discovered in local iteration 2 2 2 3 3 4 . . .

The numbers can be verified either through manual computation of the functions 〈〈a〉〉2i

for i = 0,1, . . .
on each Tn or using the implementation of Alg. 1 mentioned in the conclusion below.

Abstract interpretation of functional languages. Strictness analysis for (lazy) functional languages

tries to figure out whether an argument to a function must always be evaluated. In this case compilers

may force the evaluation of the argument thus saving space and time to create closures and allowing

for parallelisation. Strictness analysis may be formulated as an abstract interpretation as e.g. in [11]. A

function f : D×D×·· ·×D → D is strict in its i-th argument, when f (d1,d2, . . . ,di−1,⊥D,di+1, . . .dk) =
⊥D for a concrete base domain D. As this may be uncomputable, in [11], functions are interpreted

abstractly over the domain 2 := {0,1} (with 0 ⊑ 1), where 0 means definitely undefined, and where 1

means might be defined. Examples of abstract interpretations of common base values are (for x,y,z ∈ 2),
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• constants of base domains such as integers or boolean values are abstracted to 1 (not undefined);

• first-order functions such as addition are strict in all arguments, e.g., x+ y = 0 unless x = y = 1;

• if-then-else: ite(x,y,z) = x∧ (y∨ z), where elements of 2 are read as boolean values. If-then-else

might only be defined if both the condition and at least one of the then-else arguments might be

defined. Otherwise it is definitely undefined. Note that, in this example, we use ite in the traditional

sense of functional programming.

As an example of the application of EVAL to the abstract interpretation of functional languages, we

choose F := {ite : �+×�+×�+ → �} and Var = {x : �, f : �+ → �, p : �+ → �, I : (�+ → �)+×
(�+ → �)+×�+ → �}. Consider the term ϕ := µI( f , p,x). ite(p(x), I( f , p, f (x)),x). It essentially

describes an iterated application of some function f until a predicate p holds. In order to show that

ϕ is strict in x for given functions f0 and p0, one needs to evaluate ϕ( f0, p0,0) by fixpoint unfolding

and β -reduction. If p0(0) = 0, that is, the termination predicate is itself strict, then EVAL terminates in

one step proving strictness of ϕ in its third argument. If p0(0) = 1, that is, p is essentially a constant

true or constant false predicate, we need to evaluate 1∧ (ϕ( f0, p0, f0(0))∨0) = ϕ( f0, p0, f0(0)) next. If

f0(0) = 0, that is, f0 is strict itself, we have reached a fixpoint and can conclude strictness in x as well.

If, however, f0(0) = 1, we obtain an overall result of 1, not showing strictness in x. This is plausible

for constant functions f and p. Using local iteration this is in fact the only computation that takes

place, whereas a naı̈ve global fixpoint computation would start by tabulating all possible triples of type

(�+ → �)+× (�+ → �)+×�+, which, for the lattice 2, amounts to 4 ·4 ·2 = 32 table columns.

5 Limitations of Neededness Analysis and Optimisation

As mentioned in the introduction to Sect. 3, Algorithm EVAL does not use local evaluation on operand-

side subterms but rather computes their value fully. If such an operand has a function type, its value on all

its arguments might not be needed either. Consider the first example from Sect. 4 about formal-language

constrained reachability problems. Clearly, the values of the order-1-functions stored in the parameters

f and g are not needed at most arguments. Hence, computing their value fully appears to be wasteful.

Algorithm EVAL computes values of operand-side subterms fully due to the termination criterion

for the computation of fixpoint terms: iteration stops when both no new argument tuples have been

discovered during a round of the repeat-loop computing the semantics, and the value of the fixpoint

in question is stable on all existing tuples. This, of course, requires some way of deciding whether a

discovered argument is actually new. Going back to the example in Sect. 4, Algorithm EVAL successively

discovers the argument tuples [a,b,c(0)], [a2 ,b2,c2(0)], . . . Eventually, these argument tuples begin to

repeat, which is when the loop terminates. However, deciding whether e.g. [ai,bi,ci(0)] is the same

argument tuple as [a j,b j,c j(0)] requires knowing the value of the function type arguments at all their

arguments. One could assume that it is enough to know just their value on arguments actually needed

in the iteration, but this approach fails readily: already for [a,b,c(0)] and [a2,b2,c2(0)], for n ≥ 2, we

see that ci(0) = 3n− (i+ 1) for i ∈ {1,2}, whence ai(bi(ci(0))) = ⊥ for either i, and, in fact, all i ≤
n(n− 1)(n− 2), since these differ on hitherto undiscovered arguments. Hence, any algorithm that tests

equality of function type arguments only on tuples already identified as necessary for the computation

must fail here. Moreover, since the base functions a,b,c are actually interpreted, instead of e.g. tree

constructors as in the case of higher-order model checking, a simple flow analysis (e.g. 0-CFA) fails to

detect which functions are duplicates unless one also inspects the behavior of the base functions. Hence,

safe approach to avoid the error sketched above is to compute values of argument-side functions – which

are necessarily not of the highest type order occurring in the term under consideration – in full.
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However, this does not mean that this is always necessary. In the example from Sect. 4, one can

readily see that the value of e.g. f will always be ⊥ on all arguments that are not in {0, . . . ,n−1}, since

f only contains powers of a. This kind of domain-specific approach, together with e.g. flow analysis and

the choice of an appropriate lattice, could be used to cut down the amount of computations necessary.

6 Conclusion

We have lifted the notion of local fixpoint iteration, resp. neededness analysis, for the evaluation of

first-order fixpoint functions to fixpoint functions at arbitrary higher order. For generality purposes we

have defined an abstract algebra µHO combining a simply typed λ -calculus over (possibly higher-order)

base functions with fixpoints at arbitrary type orders. The examples in Sect. 4 show that this can vastly

reduce the number of values that are being computed in fixpoint iterations, compared to the naı̈ve global

approach.

A conceptual implementation of µHO and Alg. 1 is available.4 It does not compete with specialised

tools like higher-order model checkers but rather focuses on displaying the effect that local fixpoint

iteration has in comparison to global iteration for higher-order fixpoints.

Work on fixpoint iteration for higher-order functions can be continued in several directions. The most

pressing issue is an extension to fully local fixpoint iteration, which would also employ local evaluation

at orders beneath the top one, bearing in mind the obstacles to overcome which have been discussed in

Sect. 5. Significant progress on this front likely requires giving up the full genericity of the algorithm. For

example, many intersection-type based HORS model checkers (e.g. [9, 30]) require backwards reasoning

alongside the base functions. For example, acceptance of an automaton in a node of a tree depends on its

children, i.e. the arguments to the tree constructor in question, and the relationship is readily available.

Conversely, in the present form, our algorithm makes no assumptions on the (behavior of) the base

functions, whence it can not infer which values of a given argument might yield a desired function value.

The acute reader may have wondered why µHO does not feature operators ⊔,⊓ for suprema and

infima at arbitrary types. It would in fact be possible to add these, and algorithm EVAL can be extended

accordingly to handle them just like other base functions are being handled. They are not included in the

syntax of µHO here for the following reason: when ⊔,⊓ are present in the syntax one would expect the

distributivity laws like ϕ ⊔ (ψ ⊓ χ)≡ (ϕ ⊓ψ)⊔ (ϕ ⊓ χ) to hold. But in arbitrary lattices, such laws do

not necessarily hold; they only do in distributive latttices. In order not to confuse the issue or make false

assumptions we therefore prefer to introduce ⊔,⊓ as base functions when necessary and appropriate.

This prevents us from restricting the semantics of µHO terms to distributive lattices only. Note that the

lattices depicted in Figs. 3 and 4 are not distributive.

Algorithm EVAL makes no assumptions on the order in which needed arguments are evaluated. In

data flow analyses, giving precedence to the arguments in the form of heuristics has turned out to be

beneficial for efficiency purposes, c.f. [28, Chp. 6]. It remains to be seen whether such heuristics can be

extended to higher orders as well.

Most static program analyses in abstract interpretation work with rather rich lattices as base domains

which cannot be cast into the scheme of a simply typed λ -calculus over a single base type � as it is used

here. We remark, though, that an extension to a many-sorted logic over several base types is straight-

forward, not only regarding the type system but, most importantly, algorithm EVAL. The same holds for

product types on the right of function arrows. It then remains to be seen how far the type system can be

enriched without seriously interfering with the ability to evaluate higher-order fixpoints locally.

4https://github.com/muldvarp/LocalHOFPIter

https://github.com/muldvarp/LocalHOFPIter
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