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We prove the existence and computability of optimal strategies in weighted limit games, zero-sum
infinite-duration games with a Büchi-style winning condition requiring to produce infinitely many
play prefixes that satisfy a given regular specification. Quality of plays is measured in the maximal
weight of infixes between successive play prefixes that satisfy the specification.

1 Introduction

Reactive synthesis is an ambitious approach to the problem of producing correct controllers for reac-
tive systems, e.g., systems continuously interacting with their environment over an infinite time horizon.
Instead of an engineer coding the controller and then checking it for correctness against a formal speci-
fication, one automatically computes a correct-by-construction controller from the specification.

The basic case of the problem, formalized as Church’s problem [16], has been solved by the seminal
Büchi-Landweber Theorem [8]. Here, the problem is recast as a game-theoretic one: Given a finite graph
describing the interaction between the desired controller and its environment, and a winning condition
representing the controller’s specification, determine whether the “controller player” has a winning strat-
egy for this game. If yes, Büchi and Landweber proved that she has a finite-state winning strategy, e.g.,
one that can be implemented by a finite automaton with output. Such a strategy can be seen as a con-
troller that satisfies the specification. We refer to these lecture notes [21] and the references therein for a
contemporary overview of reactive synthesis.

Ever since the seminal work of Büchi and Landweber, their result has been extended in various
directions, e.g., more expressive winning conditions, infinite state spaces, stochastic settings, settings
with imperfect information, etc. All these are motivated by the quest to model ever more aspects of
relevant application domains.

Recently, another aspect has received considerable attention: Oftentimes, specifications are qualita-
tive but some controllers are more desirable than others. Consider, for example, a controller that has to
bring a system into a desirable state. Then, it is often desired, although not formally specified, that the
state is reached as quickly as possible or with the minimal amount of resource consumption. Much effort
has been put into computing controllers that satisfy such “nonfunctional” requirements.

But not every specification is a reachability property. As another example, assume we need to gener-
ate an arbiter that controls access to some shared resource. A typical specification here is to require that
every request to the resource is eventually granted [34]. Again, we typically prefer controllers that grant
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requests as quickly as possible. Note that this specification is not a simple reachability property that
requires to reach a certain set of states, but a recurrence property that requires to infinitely often reach a
state in which no request is pending. The optimization criterion then asks to minimize the maximal time
between visits to such states.

Formally, recurrence properties are captured by Büchi games (see, e.g., [23]), i.e., games whose
underlying graphs come with a set of desirable vertices that need to be visited infinitely often for the
controller player to win. In this work, we consider a slightly different approach: We equip the graph
describing the interaction with labels on vertices (think of the set of atomic propositions holding true
in this state) and the edges with nonnegative weights (capturing the cost or time it takes to make this
transition). The winning condition is induced by a deterministic finite automaton processing finite label
sequences and is satisfied by an infinite play if it has infinitely many prefixes whose label sequence is
accepted by the automaton.1 Now, the quality of a play is measured as the maximal weight of an infix
between two successive prefixes whose label sequences are accepted by the automaton. Finally, the
quality of a strategy is obtained by maximizing over the values of the plays that are consistent with it.

By separating the graph modeling the interaction and the specification automaton, we obtain a fine-
grained analysis of the complexity of computing controllers and the complexity of implementing con-
trollers (measured in their number of states). In detail, our contributions are as follows:

1. We show that every such game has an optimal strategy for the controller player. To prove the
strategy optimal, we also show that the player representing the environment always has an optimal
strategy as well, i.e., a strategy that maximizes the weight between prefixes that have a label
sequence that is accepted by the automaton. Both strategies are obtained by a nested fixed-point
characterization that generalizes the classical algorithm for solving Büchi games (see, e.g., [14]).
The inner fixed point is a characterization of optimal strategies in reachability games, which we
use as blackbox in the outer fixed point characterization for recurrence conditions.

2. The fixed point (and the optimal strategies) can be computed in time O(|V |3 · |E| · |Q|2 · |F |2),
where (V,E) is the underlying graph and Q and F are the sets of states and accepting states of the
automaton. Here, we use the unit-cost model for arithmetic operations.

3. The size of optimal strategies is bounded by |V | · |Q| · |F | which is tight up to a factor of |F |.
4. The value of an optimal strategy is bounded by (|V | · |Q|+ 1) ·W , if it is finite at all, where W is

the largest weight appearing in the graph. This upper bound is shown to be tight.

5. Finally, we briefly consider the case of infinite state systems. In finite graphs, if there is any
controller, then there is also one with finite value. We give a very simple infinite graph in which
this is no longer the case: There is a controller, but none of finite value.

Let us stress that the results for reachability games mentioned in Item 1) are not novel and follow from
stronger results (see, e.g., [6, 25]). However, we were unable to locate a reference for all the properties we
require of our blackbox. Hence, for the sake of completeness, we present the construction for reachability
as well, which also serves as a gentle introduction to the machinery necessary for recurrence.

Proofs omitted due to space restrictions can be found in the full version [28].

2 Definitions

Let N denote the nonnegative integers and define N = N∪{∞} with n < ∞ and n+∞ = ∞ for every
n ∈ N. Given a finite directed graph (V,E) and v ∈ V , let vE = {v′ ∈ V | (v,v′) ∈ E} denote the set of

1It is not hard to reduce this setting to the one of classical Büchi games by taking the product of the graph and the automaton.
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successors of a vertex v.

Finite Automata A deterministic finite automaton (DFA) A= (Q,C,qI,δ ,F) consists of a finite set Q
of states containing the initial state qI ∈ Q and the accepting states F ⊆ Q, a finite set C of colors which
we use as input letters, and a transition function δ : Q×C → Q. Let δ ∗(w) denote the unique state
that is reached by processing w ∈ C∗, i.e., δ ∗(ε) = qI for the empty word ε and δ ∗(w0 · · ·w jw j+1) =
δ (δ ∗(w0 · · ·w j),w j+1) for a nonempty word w0 · · ·w jw j+1 ∈C+. The language of A is L(A) = {w ∈C∗ |
δ ∗(w) ∈ F}. The size of A is defined as |A|= |Q|.

Infinite Games Let us fix a finite nonempty set C of colors. A (weighted and colored) arena A =
(V,V0,V1,E,w,c) consists of a finite directed graph (V,E) whose vertices are partitioned into the ver-
tices V0 of Player 0 (drawn as circles) and the vertices V1 of Player 1 (drawn as rectangles), a weight
function w : E → N (drawn as edge labels), and a coloring c : V → C (drawn as vertex labels). We
require every vertex to have an outgoing edge. A game G = (A ,Win) consists of an arena A and a
(qualitative) winning condition Win⊆Cω .

A play in G is an infinite path ρ = v0v1v2 · · · ∈ V ω through (V,E). We lift the weight function to
plays and play prefixes by adding up the weights of the edges of the play (prefix). Similarly, we lift the
coloring to plays and play prefixes by applying it vertex-wise. A play ρ is winning for Player 0 in G , if
c(ρ) ∈Win; otherwise, it is winning for Player 1.

A strategy for Player i ∈ {0,1} is a map σ : V ∗Vi → V satisfying (v j,σ(v0 · · ·v j)) ∈ E for every
v0 · · ·v j ∈ V ∗Vi. A strategy σ for Player i is positional, if we have σ(wv) = σ(v) for every w ∈ V ∗ and
every v ∈Vi. We denote such strategies w.l.o.g. as mappings from Vi to V .

A play v0v1v2 · · · is consistent with a strategy σ for Player i, if v j+1 = σ(v0 · · ·v j) for every j with
v j ∈ Vi. A strategy for Player i is winning from a vertex v if every play that starts in v and is consistent
with the strategy is winning for Player i.

Memory Structures and Finite-state Strategies A memory structure M = (M, init,upd) for an arena
(V,V0,V1,E,w,c) consists of a finite set M of memory states, an initialization function init : V →M, and
an update function upd: M×V → M. The update function can be extended to finite play prefixes in
the usual way: upd∗(v) = init(v) and upd∗(wv) = upd(upd∗(w),v) for w ∈ V ∗ and v ∈ V . A next-move
function Nxt : Vi×M→V for Player i has to satisfy (v,Nxt(v,m))∈ E for all v∈Vi and m∈M. It induces
a strategy σ for Player i with memory M via σ(v0 · · ·v j) = Nxt(v j,upd∗(v0 · · ·v j)). A strategy is called
finite-state if it can be implemented by a memory structure. We define |M | = |M|. Slightly abusively,
we say that the size of a finite-state strategy is the size of a memory structure implementing it.

An arena A = (V,V0,V1,E,w,c) and a memory structure M = (M, init,upd) for A induce the ex-
panded arena A ×M = (V×M,V0×M,V1×M,E ′,w′,c′) where E ′ is defined via ((v,m),(v′,m′))∈E ′ if
and only if (v,v′)∈ E and upd(m,v′) =m′. Furthermore, w′((v,m),(v′,m′)) =w(v,v′) and c′(v,m) = c(v).
Every play ρ = v0v1v2 · · · in A has a unique extended play ext(ρ) = (v0,m0)(v1,m1)(v2,m2) · · · in
A ×M defined by m0 = init(v0) and m j+1 = upd(m j,v j+1), i.e., m j = upd∗(v0 · · ·v j). The extended
play of a finite play prefix in A is defined analogously. Note that a play (prefix) and its extension have
the same weight and the same color sequence.

Given a positional strategy σ ′ for Player i in A ×M , define the finite-state strategy σ for Player i
in A by specifying the next-move function Nxtσ ′ with Nxt(v,m) = v′, where v′ ∈V is the unique vertex
with σ ′(v,m) = (v′,m′) for some m′ ∈M.
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Remark 1. Let σ and σ ′ be as above and let ρ a play in A . Then, ρ is consistent with σ if and only if
ext(ρ) is consistent with σ ′.

Now let M =(M, init,upd) be a memory structure for the arena A =(V,V0,V1,E,w,c) and let σ ′ be a
finite-state strategy for Player i in A ×M = (V ′,V0,V ′1,E

′,w′,c′) implemented by M ′ = (M′, init′,upd′)
and Nxt′. We define the product of M and M ′ as M ×M ′ = (M×M′, init′′,upd′′) where init′′(v) =
(init(v), init′(v, init(v))) and

upd′′((m,m′),v) = (upd(m,v),upd′(m′,(v,upd(m,v)))),

which is a memory structure for A . Further, we obtain a finite-state strategy σ for Player i in A
implemented by M ×M ′ and Nxt, which is defined as Nxt(v,(m,m′)) = Nxt′((v,m),m′).
Remark 2. Let σ and σ ′ be as above and let ρ a play in A . Then, ρ is consistent with σ if and only if
ext(ρ) is consistent with σ ′, where ext(ρ) is defined with respect to M .

Let A be an arena with vertex set V and coloring c : V →C, and let A = (Q,C,qI,δ ,F) be a DFA
over C. Then, we define MA = (Q, initA,updA) with initA(v) = δ (qI,c(v)) and updA(q,v) = δ (q,c(v)),
which is a memory structure for A . By construction, we have upd∗(v0 · · ·v j) = δ ∗(c(v0 · · ·v j)). In
particular, c(v0 · · ·v j) ∈ L(A) if and only if upd∗(v0 · · ·v j) ∈ F .

3 Weighted Limit Games

Recall that C is the finite set of colors used to define winning conditions. The limit of a language K ⊆C∗

of finite words is

lim(K) = {α0α1α2 · · · ∈Cω | α0 · · ·α j ∈ K for infinitely many j}

containing all infinite words that have infinitely many prefixes in K. For technical reasons, we require in
the following ε /∈ K.

We call a game of the form G = (A , lim(K)) a weighted limit game and define the value of a
play ρ = v0v1v2 · · · as

valG (ρ) = sup
j∈N

min
j′> j

c(v0···v j′ )∈K

w(v j · · ·v j′),

where min /0 = ∞. Intuitively, we measure the quality of a winning play by the maximal weight of an
infix between two consecutive prefixes whose color sequences are in K. Note that this value might be ∞,
even for plays in lim(K) (see Example 1) and that it is necessarily ∞ if the play is not in lim(K). Also,
let us remark that this definition depends on K, not only on lim(K): It is straightforward to construct
languages K and K′ with lim(K) = lim(K′), but the value functions induced by K and K′ differ. Hence,
we always make sure that the language K inducing the value function is clear from context.
Remark 3. Let G = (A ,Win) be a weighted limit game. Then, valG (ρ)< ∞ implies c(ρ) ∈Win.

Note that the other direction does not hold, as shown in the next example.
Example 1. For the sake of simplicity, we identify vertices and their color in this example. Hence, let
K = {v0,v1}∗v1. Then, lim(K) is the set of words having infinitely many occurrences of v1. Now, in a
game G with winning condition lim(K) and a weight function mapping every edge to 1, valG (ρ) is equal
to the supremum over the length of infixes of the form v1v∗0 in ρ . This may be ∞, even if the play ρ is in
lim(K), e.g., in the play

ρ = v0 v1 v0v0 v1 v0v0v0 v1 v0v0v0v0 v1 v0v0v0v0v0 v1 · · · .
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Given a strategy σ for Player 0 and a vertex v, define valG (σ ,v) = supρ valG (ρ) with the supremum
ranging over all plays ρ that start in v and are consistent with σ . Remark 3 can be lifted from plays to
strategies.

Remark 4. Let G = (A ,Win) be a weighted limit game and let σ be a strategy for Player 0. Then,
valG (σ ,v)< ∞ implies that σ is a winning strategy for Player 0 from v in G .

Again, the other direction of the implication does not hold, which can be seen by constructing a
one-player game where Player 0 produces the play from Example 1.

We say that a strategy σ for Player 0 in a weighted limit game G is optimal, if it satisfies valG (σ ,v)≤
valG (σ ′,v) for every strategy σ ′ for Player 0 and every vertex v. Note that this definition is a global one,
i.e., the strategy has to be better than any other strategy from every vertex.

Further, a weighted limit game with winning condition Win⊆Cω is regular, if Win = lim(L(A)) for
some DFA A over C. Note that every such language is ω-regular, (in fact it is recognized by A when
seen as Büchi automaton). In contrast, not every ω-regular language is a regular limit language, e.g.,
the ω-regular language (a+b)∗bω of words with finitely many a is not a regular limit language. In fact,
Landweber showed that the regular limit languages are exactly the languages recognized by deterministic
Büchi automata [27].

Our main results on regular weighted limit games show that Player 0 has an optimal strategy in every
such game and how to compute an optimal strategy.

Theorem 1.

1. Player 0 has an optimal finite-state strategy in every regular weighted limit game.

2. The problem “Given an arena A and a DFA A, compute an optimal strategy for Player 0 in
(A , lim(L(A)))” is solvable in time O(|V |3 · |E| · |Q|2 · |F |2), where (V,E) is the graph underlying
A and Q and F are the sets of states and accepting states of A (using the unit-cost model).

Before we prove this result, let us comment on one restriction of our model: We only allow nonneg-
ative edge weights. The reason is that it is straightforward to construct a game witnessing that optimal
finite-state strategies do not necessarily exist in arenas with negative weights.

Example 2. Consider the game depicted in Figure 1. As Player 0 moves at every vertex, we can identify
plays and strategies. Also, for the sake of simplicity, we identify vertex names and colors and consider
K = (v0v∗1v2)

∗, i.e., the winning plays are of the form (v0v+1 v2)
ω . For every j > 0, Player 0 has a

finite-state strategy to produce the play ρ j = (v0v j
1v2)

ω with valG (ρ j) = − j, which is also the value of
the strategy from v0. Hence, she can enforce arbitrarily small values. Furthermore, straightforward
pumping arguments show that every finite-state strategy has a bounded value, as it has to leave v1 after
a bounded number of steps.

Altogether, there is no optimal finite-state strategy.

To prove Theorem 1, we first consider the simpler setting of weighted reachability games, i.e., games
where a prefix in K has to be reached at least once. This problem is a special case of more general
problems that have been considered before (see, e.g., [6, 25]). However, these works do not prove all the
results we require here. Hence, we discuss in Subsection 3.1 a fixed point algorithm computing optimal
strategies in reachability games. Then, we use this algorithm as a black box to build another fixed point
algorithm computing optimal strategies in weighted limit games (Subsection 3.2).
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Figure 1: The arena for Example 2.

3.1 Computing Optimal Strategies in Weighted Reachability Games

Given a DFA A over C with ε /∈ L(A), define for a play ρ = v0v1v2 · · ·

valRG (ρ) = min
j∈N
{w(v0 · · ·v j) | c(v0 · · ·v j) ∈ L(A)},

where min /0 = ∞. So, valRG (ρ) is the weight of the shortest nonempty prefix of ρ whose label sequence
is accepted by A. This also minimizes the accumulated weight, as we only consider nonnegative weights
on edges. This definition for plays is lifted to strategies σ for Player 0 as for limit games: valRG (σ ,v) =
supρ valRG (ρ) where ρ ranges over all plays starting in the vertex v that are consistent with σ . Similarly,
optimality of strategies is defined as for limit games.

In the remainder of this section, we show how to compute optimal strategies with respect to valRG ,
given an arena A and a DFA A. First, let A ×MA = (V,V0,V1,E,w,c) be the product of A and the
memory structure induced by A (see Page 116). Furthermore, let F be the set of vertices of the form (v,q)
where q is an accepting state of A, i.e., F is a set of vertices of the product arena, not the set of accepting
states of A. However, reaching a state in F from a vertex of the form (v, init(v)) signifies that the label
sequence induced by the play is accepted by A (see Page 117).

A ranking for A ×MA is a mapping r : V → N. Let R denote the set of all rankings. We order
rankings by defining r v r′ if r(v) ≥ r′(v) for all v ∈ V , i.e., r′ is “better” than r if r′ assigns ranks that
are pointwise no larger than those of r. Hence, the least (and thus the worst) ranking is the one mapping
every vertex to ∞. Furthermore, there are no infinite strictly ascending chains of rankings, as the ranks
only decrease in such a chain, but are always nonnegative.

Next, we define the map ` : R→R via

`(r)(v) =


0 if v ∈ F ,
min{r(v),minv′∈vE w(v,v′)+ r(v′)} if v ∈V0 \F ,
min{r(v),maxv′∈vE w(v,v′)+ r(v′)} if v ∈V1 \F .

We will use ` to compute the value of an optimal strategy: At vertices in F , Player 0 has already
achieved her goal, i.e., they are assigned a rank of 0. Now, if it is Player 0’s turn at a vertex v /∈ F ,
then she has to move to a successor. As she aims to minimize the accumulated weight, she prefers a
successor v′ that minimizes the sum of the weight w(v,v′) of the edge leading to v′ and the rank of v′.
The reasoning for Player 1 is dual: he tries to maximize the accumulated weight. Finally, for technical
reasons, we ensure that ` does never increase a rank via taking the minimum with the old rank of v (which
ensures that ` is monotone).

Remark 5. We have r v `(r) for every ranking r.
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Let r0 be the least element of R, i.e., the ranking mapping every vertex to ∞, and let r j+1 = `(r j)
for every j. Then, we define r∗ = rn for the minimal n with rn = rn+1. Note that such a (least) fixed
point rn exists due to Remark 5 and as v has no infinite strictly ascending chain. From r∗ one can derive
an optimal strategy for Player 0 and the values of such a strategy.
Example 3. Consider the arena depicted in Figure 2, where we mark vertices in F by doubly-lined
vertices. We illustrate the computation of the rankings r j below the arena, which reaches a fixed point
after four applications of `, i.e., r4 = r5. Note that the rank of vertex v4 is updated twice.

Let us sketch how to extract a strategy for Player 0 from the fixed point r4. Consider, e.g., the
vertex v2 ∈V0. It has rank 4 and an edge of weight 4 leading to a vertex of rank 4−4 = 0, which is the
optimal move. In general, every vertex v of Player 0 with finite rank r(v) has an edge to a successor v′

such that r(v′) = r(v)−w(v,v′). Dually, consider the vertex v1 ∈V1: It has rank 5 and every edge leaving
v1 goes to a vertex v′ of rank at most 5−w(v,v′). Again, this property is satisfied for every vertex with
finite rank.

Hence, using these two properties inductively shows that Player 0 has a strategy so that every move
from a vertex that is not in F decreases the rank by the weight of the edge taken. Thus, as ranks are
nonnegative, a visit to F is guaranteed unless from some point onwards only edges of weight 0 are
used. However, we will rule this out by ensuring that the target of the edge of weight 0 has reached
its final rank before the source of the edge, e.g., the successors v2 and v3 of vertex v3 have rank 4 and
the corresponding edge has weight 0. However, v2 has reached its final rank one step before v3 has.
Ultimately, we show that either the rank or this so-called settling time strictly decreases along every
edge taken from a vertex that is not in F. As there is no infinite descending chain in this product order,
F has to be reached eventually. Using dual arguments, one can define a strategy for Player 1 and then
show these strategies to be optimal.

In the example, Player 0 moves from v4 to v3, from where she moves to v2 and then to v0. This strategy
is optimal from every vertex and realizes the value r4(v) from every vertex v. For example, the unique
play consistent with this strategy starting in v4 has value 11.

It is instructive to compare the computation of the rankings to the attractor computation for reach-
ability games (see, e.g., [23]): a straightforward induction shows that the j-th level of the attractor
computation is equal to {v | r j+1(v) 6= ∞}. However, the attractor yields a strategy that minimizes the
number of moves necessary to reach F while the rankings minimize the accumulated weight. This dif-
ference is witnessed by vertex v4: the attractor strategy takes the direct edge to v0 of weight 99 while
the rankings induce the strategy described above, which realizes a smaller value by taking a longer path
through the arena.

We sketch how to obtain an optimal strategy σ for Player 0 from the fixed point r∗, and how r∗ and
σ can be computed in polynomial time. To this end, we need to introduce some additional notation.
Consider the sequence r0,r1, . . . ,rn = r∗ as above. Due to Remark 5, we have r j(v) ≥ r j+1(v) for every
j and every v. The settling time of a vertex v is defined as ts(v) = min{ j | r j(v) = r∗(v)}, i.e., as the first
time v is assigned its final rank r∗(v). The construction of an optimal strategy is based on the following
results about ranks and settling times, which formalize the intuition given in Example 3.
Lemma 1. Let v ∈V .

1. r∗(v) = ∞ if and only if ts(v) = 0.

2. v ∈ F implies r∗(v) = 0 and ts(v) = 1.

3. If v ∈ V0 \F then r∗(v) ≤ w(v,v′)+ r∗(v′) for all successors v′ ∈ vE. Furthermore, there is some
successor v ∈ vE with r∗(v) = w(v,v)+ r∗(v). Finally, if r∗(v)< ∞, then v can be chosen such that
it additionally satisfies ts(v) = ts(v)+1.
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Figure 2: The arena for Example 3 and the evolution of the corresponding rankings.

4. If v ∈ V1 \F then r∗(v) ≥ w(v,v′)+ r∗(v′) for all successors v′ ∈ vE. Furthermore, there is some
successor v ∈ vE with r∗(v) = w(v,v)+ r∗(v).

5. If v ∈V1 \F and v ∈ vE with r∗(v) = r∗(v)< ∞, then ts(v)> ts(v).

We call successors v as in Items 3 and 4 optimal. If Player 0 uses an optimal successor, then the rank
decreases by the weight of the edge. If this weight is 0, i.e., the rank stays constant, then the settling time
decreases. Similarly, along all edges available to Player 1, the rank decreases at least by the weight of
the edge. Again, if that value is 0, i.e., the rank stays constant, then the settling time decreases.

Using these properties, we define a strategy for Player 0 in A . To this end, we first define a positional
strategy σ ′ for her on A ×MA as follows: at a vertex v ∈ V0 \F move to some optimal successor of
v. From every vertex v ∈ F ∩V0 move to an arbitrary successor. Now, let σ be the unique finite-state
strategy in A implemented by MA and Nxtσ ′ , the next-move function induced by σ ′.

Lemma 2. σ as defined above is an optimal strategy for Player 0 in G .

This result is proven in two steps. First, one shows valRG (σ ,v) ≤ r∗(v, init(v)) for every vertex v of
A , applying the properties posited in Lemma 1 inductively. Secondly, analogously to the construction of
σ , one constructs a strategy τ for Player 1 satisfying valRG (ρ)≥ r∗(v, init(v)) for every vertex v of A and
every play ρ starting in v and consistent with τ , which is again proven by applying Lemma 1 inductively.

Furthermore, by bounding the settling times of vertices one can show that the fixed point r∗ is reached
after a linear number of applications of `.

Lemma 3. We have r∗ = r|A |·|A|+1.

A simple corollary of the previous lemma yields an upper bound on valRG , which follows from the
fact that each application of ` increases the ranks by no more than the maximal weight of an edge.

Corollary 1. If valRG (v)< ∞ then valRG (v)≤ |A | · |A| ·W, where W is the largest weight in A .

One can show that the upper bound on the value is tight, e.g., using a game similar to the one
presented in Figure 5 on Page 126.
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3.2 Computing Optimal Strategies in Weighted Limit Games

Now, we use the fixed point algorithm of the previous subsection to achieve the main goal of this work:
solving regular weighted limit games optimally. Thus, fix a weighted arena A and a DFA A over C
inducing the winning condition lim(K) and let A ×MA = (V,V0,V1,E,w,c) be the product of A and
the memory structure induced by A. Furthermore, let F be the set of vertices of the form (v,q) where q
is an accepting state of A, i.e., F is again a set of vertices of the product arena, not the set of accepting
states of A.

Recall that R is the set of rankings r : V → N, which is ordered by v with r v r′ if and only if
r(v) ≥ r′(v) for all v ∈ V . Hence, the largest (i.e., best) element of R is the ranking mapping every
vertex to 0. We use the operator ` defined in Subsection 3.1 to solve limit games. Recall that ` allows
to compute, for a given set of goal vertices, an optimal strategy that ensures a visit to a goal vertex.
However, here we have to treat the set of goal vertices as a parameter because we need to compute
optimal strategies for subsets of F . Hence, we write `F ′ for F ′ ⊆V for the operator

`F ′(r)(v) =


0 if v ∈ F ′,
min{r(v),minv′∈vE w(v,v′)+ r(v′)} if v ∈V0 \F ′,
min{r(v),maxv′∈vE w(v,v′)+ r(v′)} if v ∈V1 \F ′.

All results proven about ` in Subsection 3.1 also hold true for `F ′ . In particular, we can compute an
optimal strategy for Player 0 to reach F ′ and for Player 1 to avoid F ′ whenever possible, and to maximize
the weight, if it is not possible.

The fixed point of `F ′ induces an optimal strategy for Player 0 to reach F ′. However, on vertices in
F ′, from which she reaches F ′ trivially (i.e., in zero steps), the fixed point does not yield any information
on how to reach F ′ again. However, this information can easily be generated from the fixed point. Given
an arbitrary ranking r and a set F ′ ⊆V of vertices, define the completion cmpltF ′(r) of r (with respect to
F ′) via

cmpltF ′(r)(v) =


r(v) if v /∈ F ′,
minv′∈vE w(v,v′)+ r(v′) if v ∈ F ′∩V0,
maxv′∈vE w(v,v′)+ r(v′) if v ∈ F ′∩V1.

If r is the least fixed point of `F ′ , then cmpltF ′(r) is obtained from r by assigning to each vertex in F ′

the minimal weright it takes Player 0 to reach F ′ once more. This is necessary, as we need to reach F
infinitely often to win a limit game. The values for all v /∈ F ′ coincide in r and cmpltF ′(r).

Recall that the definition of optimal successors in Subsection 3.1 with respect to the least fixed point
r of `F ′ is only defined for vertices in V \F ′. For r′ = cmpltF ′(r), we can extend this notion to F ′ as well
as follows: a successor v of v in F ′ is optimal, if r′(v) = w(v,v)+ r(v).

Now, we again define an operator `L updating rankings and show that determining a fixed point of
the operator induces optimal strategies for both players. Intuitively, the operator tries to reach F with
minimal weight, but also has to account for the fact that F has to be reached repeatedly, i.e., the ranks of
the vertices reached in F should be as small as possible.

Formally, given a ranking r, let r(F)= {r1 < r2 < · · ·< rk}, i.e., the rh are the different ranks assigned
by r to vertices in F . Now, define Fh = {v ∈ F | r(v) ≤ rh} for 1 ≤ h ≤ k, i.e., we order the vertices in
F into a hierarchy F1 ⊆ F2 ⊆ ·· · ⊆ Fk according to their rank with the intuition that smaller ranks are
preferable for Player 0. Let r′h be the least fixed point of `Fh for 1≤ h≤ k and r′′h = cmplt(r′h). Then, we
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Figure 3: The arena for Example 4 and the evolution of the corresponding rankings.

define the ranking `L(r) via

`L(r)(v) = min
1≤h≤k

(max{r(v),r′′h(v),rh}),

i.e., to compute the new rank of v we take into account the old rank and then minimize over the maximum
of the weight to reach some Fh and the maximal old rank of the vertices in Fh, which indicates (in the
fixed point) how costly it is to reach F repeatedly from this vertex.

Remark 6. We have r w `L(r) for every ranking r.

Now, let r0 be the ranking mapping every vertex to 0, i.e., the v-largest ranking, and define r j+1 =
`L(r j) for every j > 0.

Example 4. Consider the game in Figure 3 and focus on vertex v1. Its rank is updated from its initial
value of 0 to 2 (because the vertex v2 in F can be reached with weight 2) and then 3 (because reaching
F once more from v2 incurs weight 3 = max{2,3}) and then to 7 (as F is no longer reachable from v3,
but from v0 which incurs weight max{4,7}).

To begin our proof of correctness, we show that the ranks assigned by the r j are bounded by some
polynomial that only depends on A and A (but is exponential if weights are encoded in binary). In
particular, this implies that there is some n such that rn = rn+1. Again, we denote rn for the smallest such
n as r∗ (which is the greatest fixed point of `L).

Lemma 4. Let v ∈ V and j ≥ 0. If r j(v) < ∞ then r j(v) ≤ (|A | · |A|+ 1) ·W, where W is the largest
weight in A .

In the following, consider the application of `L to r∗: let the rh, Fh, r′h, and r′′h be computed with
respect to r∗ as described above. For every v ∈V , let h(v) be such that

r∗(v) = min
1≤h≤k

(max{r∗(v),r′′h(v),rh}) = max{r∗(v),r′′h(v)(v),rh(v)}.

If there are several possible values for h(v), we pick the smallest one with this property (although this is
inconsequential).

Next, we define a finite-state strategy σ ′ for Player 0 in A ×MA implemented by a memory struc-
ture M ′ = (M′, init′,upd′) with M′ = {1, · · · ,k}, init′(v) = h(v), and upd′(h,v) = h, if v /∈ Fh, and
upd′(h,v) = init′(v), if v∈ Fh. Thus, the memory is initalized to h(v) when starting at v and stays constant
until a vertex v′ ∈ Fh(v) is visited. While moving to v′, the memory is again initialized to h(v′) and stays
constant until Fh(v′) is visited. This procedure is repeated ad infinitum. It remains to define the next-move
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function: Nxt′(v,h) is an optimal successor of v with respect to r′h, if v /∈ Fh, and an optimal successor of
v with respect to r′′h , if v ∈ Fh. Let σ ′ be the strategy implemented by M ′ and Nxt′ in A ×M and let σ

be the strategy induced by M and σ ′ in A .

Lemma 5. We have valG (σ ,v)≤ r∗(v, init(v)) for every v in A .

Recall that we have a sequence r0 w r1 w ·· · w rn = rn+1 = r∗ of rankings with r j+1 = `L(r j) for
every j ≤ n. Here, we define the settling time ts(v) of a vertex v ∈V as the minimal j with r j(v) = r∗(v).

Remark 7. r∗(v)> 0 implies ts(v)> 0 and rts(v)−1(v)< rts(v)(v).

Next, we define a finite-state strategy τ ′ for Player 1 in A ×MA implemented by a memory struc-
ture M ′ = (M′, init′ upd′) with M′ = V , init′(v) = v, and upd′(v,v′) = v, if v′ /∈ F , and upd′(v,v′) =
init′(v′) = v′, if v′ ∈ F (recall that the first argument of an update function is the current memory state and
the second one a vertex). To define the next-move function, we distinguish three types of vertices v ∈V .

We say v is of type zero, if r∗(v) = 0. If this is not the case, i.e., if r∗(v)> 0, then we have

r∗(v) = rts(v)(v) = min
h
(max{r′′h(v),rh}) (1)

due to Remark 7, where the r′′h and rh are computed with respect to rts(v)−1. Now, we say v is of type one,
if there is an h such that r∗(v) = r′′h(v). Then, we define h(v) to be the maximal h with this property.

Finally, if there is no h with r∗(v) = r′′h(v), then we must have r∗(v) = rh for some h. Due to the rh
being strictly increasing, there is a unique h = h(v) with this property. In this case, we say v is of type
two.

Now, if v is of type zero, then we define Nxt′(v′,v) to be an arbitrary successor of v′ (recall that
the first argument of a next-move function is the current vertex and the second one the current memory
state). If v is of type one, then we define Nxt′(v′v) to be an optimal successor of v′ with respect to r′′h(v).
Finally, if v is of type two and we have h(v) = 1, then let Nxt′(v′v) be an arbitrary successor of v′. On
the other hand, if v is of type two and we have h(v)> 1, then let Nxt′(v′v) be an optimal successor of v′

with respect to r′′h(v)−1. Let τ ′ be the strategy implemented by M ′ and Nxt′ in A ×M and let τ be the
strategy induced by M and τ ′ in A .

Lemma 6. We have valG (τ,v)≥ r∗(v, init(v)) for every v in A .

Lemmata 5 and 6 imply that σ and τ are optimal strategies (where optimality of Player 1 strategies
is defined as expected), i.e., the first part of our main theorem is proven.

The construction of τ also yields an upper bound on the number of iterations of `L that are necessary
to reach the fixed point.

Lemma 7. We have r∗ = r|F |+1.

It remains to determine the overall running time of our algorithm. Recall that we have defined F
to be the product of the set of vertices of the arena A and the accepting states of A. Untangling the
construction above shows that the fixed point of `L can be computed in time O(n3es2 f 2), where n and e
are the number of vertices and edges of A and s and f are the number of states and accepting states of
A: Due to Lemma 7, it takes at most |F |+1 = n · f +1 applications of `L to reach the fixed point, each
taking at most |F | computations of a fixed point of `F ′ . Each of these takes at most n · s+1 applications
of `, which each takes time e · s in the unit-cost model.

Note that optimal strategies for Player 0 in A are implemented by memory structures that do not
need to keep track of weights of play prefixes, only pairs of vertices and states. The following corollary
gives an upper bound on the size and quality of optimal strategies.
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Figure 4: The arena An (left) and the automaton As (right) for the lower bounds in Example 5.1. Here,
a, b, and c are the colors of the vertices. Furthermore, all missing transitions of the automaton lead to a
rejecting sink state that is not drawn for the sake of readability.

Lemma 8. Let G =(A , lim(L(A))) be a weighted reachability game with n vertices and largest weight W,
and let s and f be the number of states and accepting states of A. Then, Player 0 has an optimal strategy
for G of size ns f with valG (v)≤ (ns+1) ·W for all vertices v with valG (v)< ∞.

The following example shows that both the upper bound on the memory size and the upper bound on
the value of an optimal strategy are (almost) tight.

Example 5.
1. We begin with the lower bound on the memory. Consider the arena An and the automaton As

(for n > 0 and s > 1) depicted in Figure 4 inducing the game Gn,s. The automaton accepts the
language a(as−1b)∗c. Note that we can identify (winning) strategies for Player 0 with (winning)
plays, as all vertices are controlled by Player 0. Also, from every vertex v j there is a unique play
(strategy) ρ j = v jvs−1v′(v′j)

ω with valGn,s(ρ j) = n+ 1+ j. Every other play starting in v j has a
larger value. Hence, there is a unique optimal strategy for Player 0, which, for every j, yields the
play ρ j when starting in v j.
Furthermore, standard pumping arguments show that every strategy for Player 0 yielding, for
every j, the play ρ j when starting at v j has at least n(s− 1) states, which are required to reach
v′j when starting at v j and to be able to traverse the self-loop at the vertex v exactly n− 2 times,
as required by the winning condition. Note that this lower bound does not take the number of
accepting states into account, i.e., it is not completely tight.

2. Next, we consider the lower bound on the value of an optimal strategy for Player 0. Figure 5 de-
picts an arena Am and a DFA An (for m > 1 and n > 1), which accepts the language ((an−1b)∗c)∗.
Note that we can identify (winning) strategies for Player 0 with (winning) plays, as all vertices
are controlled by Player 0. Actually, there is a unique winning play (i.e., winning strategy) for
Player 0 starting in v1, i.e., the play

((v1)
s−1v′1(v2)

s−1v′2 · · ·(vn)
s−1v′nv)ω

with value mnW. Hence, the value of an optimal strategy from v1 is mnW.

The lower bound on the value presented above is tight while the lower bound on the memory is off by
a factor of f , where f is the number of accepting states of the automaton. We expect that the upper bound
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Figure 5: The arena An (top) and the automaton As (bottom) for the lower bounds in Example 5.2.
Here, W is an arbitrary nonnegative integer and a, b, and c are the colors of the vertices. Furthermore,
all missing transitions of the automaton lead to a rejecting sink state that is not drawn for the sake of
readability.

can be improved by removing the factor f by exploiting some monotonicity properties. In particular, this
should be true in the case where we are not constructing a uniform optimal strategy, i.e., one that is
optimal from every vertex. Recall the game presented in Example 5.1: here, the factor n in the memory
requirement is due to the fact that the strategy intuitively has to memorize the vertex v j the play starts in
in order to move to the corresponding v′j to achieve the optimal value. On the other hand, a strategy that
is only optimal from some fixed v j does not have to store the initial vertex but can instead always move
to v′j and thus only needs v−1 memory states. Whether the upper bound can be improved in this setting
is left open for further work.

4 Limit Games in Infinite Arenas

The (qualitative) winning region Wi(G ) of Player i in a regular weighted limit game G contains all
vertices v from which Player i has a winning strategy. In the previous section, we have considered a
quantitative notion of winning by measuring the quality of strategies. For finite arenas, it turns out that
our quantitative notion is a refinement of the qualitative one.

Lemma 9. Let G = (A , lim(L(A))) be a regular weighted limit game and let σ be an optimal strategy
for Player 0 in G . Then, W0(G ) = {v | valG (σ ,v)< ∞} and W1(G ) = {v | valG (σ ,v) = ∞}.

The previous refinement result relies on the finiteness of the arena. In fact, it is no longer valid in
infinite arenas, even in very simple ones with unit weights.

Example 6. Consider the infinite arena presented in Figure 6 and K = (ab+c+)∗ab∗, i.e., Player 0 wins
every play starting in the vertex colored by a. Furthermore, the value of a play is equal to the length of
the longest infix with label sequence in c∗a.

Now consider the play ρ with coloring

abcabbccabbbcccabbbbccccabbbbbccccc · · · .
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Figure 6: The arena for Example 6. Vertices are labeled by their colors and every edge has weight 1.

It is winning for Player 0, has value ∞ (as the length of c-blocks is unbounded), and consistent with every
strategy for Player 0, as Player 1 moves at every vertex.

Hence, although Player 0 wins from the vertex with label a, she does not have a strategy with finite
value from this vertex.

Note that the graph underlying the arena in Example 6 is a configuration graph of a one-counter
machine, a particularly simple class of infinite graphs with many desirable decidability properties (see,
e.g., [32] for games on such graphs). Nevertheless, quantitative winning no longer refines qualitative
winning.

As mentioned above, the proof of the refinement lemma relies crucially on the finiteness of the arena,
which yields the upper bound on the values of an optimal strategy. Hence, on infinite arenas, there are
three classes of vertices: those from which Player 0 can win with a bounded value, those from which she
can win, but not with a bounded value, and those from which she cannot win at all. Thus, the landscape
for infinite arenas is, in a sense, much more interesting than for finite arenas and being able to win even
with a finite value is more useful than just being able to win.

5 Related Work

Quantitative infinite-duration games have received considerable attention, e.g., in the form of games with
mean-payoff conditions [2, 18, 30, 38] and other payoff conditions [6, 22, 38], energy conditions [4, 15,
24, 33], quantitative logics for specifying winning conditions [1, 19, 26, 36, 37], variations of the classical
parity condition [11, 12, 13, 20, 31], and other models [3, 5, 7]. Weighted limit games are related to some
of these models.

In particular, the problem of determining the value of an optimal strategy in a weighted limit game
is related to the optimal cover problem for one-dimensional consumption games [5]. Such a game is
also played in a weighted arena and while an edge with weight w is traversed, a battery is discharged by
w units. Furthermore, there are special edges that allow to recharge the battery to an arbitrary amount.
Now, the optimal cover problem asks to compute the minimal battery capacity that allows Player 0 to
play indefinitely without ever completely depleting the battery.

As long as the arena does not contain any cycles consisting only of edges with weight 0, one can
turn a weighted limit game into a consumption game: After every visit to a vertex in F , the battery is
recharged and then drained by the weight along the edges until F is visited again. Now, one can show that
the minimal sufficient capacity for the battery corresponds to the value of an optimal strategy. However,
in the presence of cycles of weight 0, this correspondence no longer holds, as such a cycle is sufficient for
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Player 0 to not drain the battery, while this is not sufficient in a weighted limit game if the cycle does not
contain a vertex from F . Formulated differently: consumption games have a safety winning condition
while a limit game has a liveness condition.2

On the other hand, synthesis of optimal strategies in weighted limit games can be seen as a special
case of the optimization problem for Prompt-LTL with costs [37].3 This is an extension of classical
LTL [29] by the prompt-eventually FP [26]: The formula FPϕ holds with respect to a bound k on some
weighted trace π , if π can be decomposed into π = π0π1 such that the weight of π0 is at most k and π1
satisfies ϕ with respect to k. Intuitively, ϕ has to be satisfied within a prefix of weight at most k. Now,
the formula GFPa with respect to a bound k expresses that the atomic proposition a holds infinitely often
and that the weight between consecutive occurrences is bounded by k. So, computing the minimal k for
which Player 0 has a winning strategy for the game with winning condition GFPa, where a holds exactly
at the vertices in F , yields the value of an optimal strategy. Furthermore, a witnessing winning strategy
can be computed [37].

Finally, weighted limit games can be seen as a special case of two-color parity games with costs [20]
(with binary encoding [35]), a variant of parity games where Player 0 aims to minimize the weight
between the occurrences of odd colors and the next larger even color. An optimal strategy for the parity
game with costs [35] is also optimal for the weighted limit game.

However, all three approaches do not yield the fine-grained complexity analysis presented here, e.g.,
tight upper and lower bounds on the memory requirements and values of optimal strategies.

6 Conclusion

In this work, we have considered the problem of computing optimal strategies in regular weighted limit
games. Such strategies always exist in finite arenas, and are efficiently computable by a fixed point
algorithm. Furthermore, we have shown that allowing negative weights leads to games without optimal
strategies and how the relation between qualitative and quantitative winning is affected by considering
infinite arenas.

The case of infinite arenas is also a promising direction for further work. We conjecture that our fixed
point characterization can be lifted to limit games in infinite arenas as well, with some minor adaptions
to account for infinite branching and using transfinite induction to obtain the fixed points. However,
these are no longer effective, due to the infiniteness of the arena. Instead, it seems promising to consider
saturation-based methods [9, 10].

Another direction for further work is concerned with more general definitions for the value of a play.
Here, we have accumulated the weight of certain infixes. Instead, one could, e.g., consider the average
weight of these infixes.

Finally, another promising direction for further work concerns quantitative winning conditions, e.g.,
limit conditions, in games with imperfect information [17].

2Note that a visit to F could be enforced by having a second dimension that implements a countdown timer that is decre-
mented along each edge.

3Prompt-LTL with costs is the fragment of Parametric LTL with costs allowing only one parameter, which is introduced
in [37] without a name.
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